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ON NONSTATIONARY MOTION OF A COMPRESSIBLE
BAROTROPIC VISCOUS CAPILLARY FLUID BOUNDED BY A

FREE SURFACE*

W. M. ZAJACZKOWSKIt
Abstract. The author considers the motion of a viscous compressible barotropic fluid in 1{3,

bounded by a free surface that is under surface tension and constant exterior pressure. Assuming the
initial density is sufficiently close to a constant, the initial domain is sufficiently close to a ball, the
initial velocity is sufficiently small, and the external force vanishes, the existence of a global-in-time
solution is proven, which satisfies, at any moment of time, the properties prescribed at the initial
moment.
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1. Introduction. We consider the motion of a viscous compressible barotropic
fluid in a bounded domain t C ]l3 which depends on time t E R1 The free boundary
St of t is governed by the surface tension. Let v v(x, t) be the velocity of the fluid,
p p(x, t) the density, f f(x, t) the external force field per unit mass, p p(p)
the pressure, # and the viscosity coefficients, a the surface tension coefficient, and
P0 the external (constant) pressure. Then the problem is described by the following
system (see [7, Chaps. 1, 2, 7]):
(1.1a) p(vt + v. Vv) + Vp(p) #Av Vdivv pf in T,
(1.1b) Pt + div(pv)- 0 in T,
(1.1c) P[=O PO, vlt=O Vo in fl,
(1.1d) Tfi aHfi -Pofi on T,
(1.1e) v. n on Dr,
where (x, t) 0 describes St, T Je(0,T)t X {t}, t is the domain of the drop

at time t, 120 i2 is its initial domain, T UtE(O,T) t {t}, is the unit outward
vector normal to the boundary (fi V/iVI), and #, , a are constant coefficients.
Moreover, thermodynamic considerations imply _> 1/3# > 0, a > 0. The last
condition (1.1e) means that the free boundary St is built of moving fluid particles.
Finally, T 21"(v, p) denotes the stress tensor of the form

Tij -phij + # (O,v + Ov) + ( )hidivv =_ -phii + Di(v),
where i, j 1, 2, 3, D ]I)(v) is the deformation tensor and H is the double mean
curvature of St, which is negative for convex domains and can be expressed in the
form

(1.3) Hfi As (t)x, x (x, x2, x3),
where As (t) is the Laplace-Beltrami operator on S. Let St be determined by x
x(sl, s2, t), (sl, s2) E U C 2, where U is an open set. Then we have

(1.4) Ash(t) g-/20sg-/2a08 g-/2Osgl/2gOs, , 1, 2,
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where the convention summation over the repeated indices is assumed,
g det{gaB}a,=l,2 ga xa .x, where xa Osx, {gaB} is the inverse matrix to
{gaB} and {} is the matrix of algebraic complements for {g}.

Let the domain fl be prescribed. Then, by (1.1e), fit {x e R3: x x(, t), E
}, where x x(, t) is the solution of the Cauchy problem

(1.5)
Ox

t), e e

Therefore the transformation x x(, t) connects the Eulerian x and the Lagrangian
coordinates of the same fluid particle. Hence

x + u(, s)ds =_ Xu(, t) x(, t),

where u(,t) v(X(, t), t). Moreover, the kinematic boundary condition (1.1e)
implies that the boundary St is a material surface; so if E S So, then Xu(, t) St
and St {x: x- X(,t), S}.

By the continuity equation (1.1b) and the kinematic condition (1.1e) the total
mass M is conserved and

(1.7) / p(x,t)dx= M,

which is a relation between p and
Let us define an equilibrium state to be a solution of (1.1a-e) such that v 0, t

e is a bail for all t R1 and f 0. Then, in view of (1.1a, d), p pe const, and
p(pe) (2hiRe)+Po, where Re ((3/4r)l12e[)/3, and by (1.7), Pe
By summarizing we have the following.

DEFINITION 1.1. Let M, a, P0 and a functional dependence p p(p) be given.
Let f O. Then by the equilibrium state we mean a solution of (1.1a-e) such that

v=0, p=p , ftt=n ,

is a ball of radius Re that is a solution of the equation

p(M/((4r/3)R3)) 2hiRe + Po,

which is also a relation between the total mass M and volume Igtel.
In this paper the existence of such global solutions is proved when the velocity v

is small, the density p is close to a constant, the domain ftt is close to a ball, and the
external force vanishes. Hence, we show the stability of the equilibrium state, which
means that any motion described by (1.1a-e), which starts from a state sufficiently
close to the equilibrium state, remains close to it for all time. However, we are not
able to show that it converges to the equilibrium state as t is passing to infinity. To
prove the global existence of solutions of (1.1a-e) close to the equilibrium state, the
surface tension is important because it controls a shape of the boundary and implies
that it is close to a ball. The case without surface tension is considered in [35].

Finally, to prove local existence (see Lemma 5.1) and then to prove global exis-
tence (see Theorems 5.5 and 5.6) we need the following compatibility conditions:

DO(’i(v, p)fi aHfi + P0fi)It=o,s O,
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where times derivatives of v,p, p, at t 0 are calculated from (1.1 a, b) and D8
means tangent derivatives only (see Remark 5.7).

As far as we know this paper and [35] are the first papers that treat global
existence of solutions to free boundary problems for compressible viscous fluids in
three dimensions. In the one-dimensional case there is a result of Matsumura and
Nishida [8], who additionally takes gravitation into account.

Since 1976 Solonnikov has been working in free boundary problems for equations
of incompressible viscous fluid [20], [21], [23], [25]-[29]. In a series of papers he
showed the existence of global motion of a viscous incompressible fluid bounded by a
free boundary, both with surface tension (see [231 and [25]) and without it (see [26]).
The latter case is proved for solutions of incompressible Navier-Stokes equations by
using the Korn inequality. To prove the existence of solutions of the incompressible
version of problem (1.1a-e) with surface tension the existence of solutions of the
initial-boundary value problem for the Stokes system with a corresponding boundary
condition of type (1.1d) with surface tension has to be shown (linear problem). By
using potential theory techniques, this was also accomplished by Solonnikov (see [21]).
It should be emphasized that the existence of solutions of the latter problem was

shown in anisotropic Sobolev-Slobodetskii spaces W2’/2 with noninteger positive
(see definitions at the end of this section). The boundary condition (1.1d) with
surface tension contains both first- and second-order derivatives of solutions, so the
considered problem is noncoercive. Solonnikov used the spaces W2’/2 with noninteger
to prove the existence of solutions of the incompressible version of the problem (1.1a-

e) in Sobolev spaces as low as possible to omit compatibility conditions. In the case of
compressible fluid we have had to also prove the existence for the linear problem (3.3)
which, because of the boundary condition (1.1d) (see also (3.3)), does not follow from
the general theory of initial-boundary value problems for Douglis-Nirenberg parabolic
systems (see [24]). The existence of solutions of that problem is shown in the same
anisotropic Sobolev-Slobodetskii spaces as in the incompressible case (see [34] and

[36]). This implies that in this paper the technique of spaces W2’/2 has to be used
in 3, where the local existence for (1.1a-e) is considered (see [34] and [36]). In these
considerations it is convenient to use noninteger to reduce a number of coefficients
of type T-a, a > 0, where T is the time of local existence, in the norms used in its
proof (see [36]). Such coefficients may imply difficulties in the proof of local existence.
However, to prove global existence we need local solvability of (1.1a-e) in such classes
that v e W24’2(T), p e W’3/2(T) CI C(O,T;ro’a/()) (see Remark 3.2 and [37],
where existence of local solutions in these classes is shown). Then global existence is
proved in class j/I(t), t E R+ (see definition of A/I(t) at the beginning of 5), which is
implied by differential inequality (4.195) (see Lemma 5.1).

Now we make some comments on the literature concerning free boundary problems
for the nonstationary incompressible Navier-Stokes system. Local existence of solu-
tions in the case without surface tension is proved in H61der and Sobolev anisotropic
space by Solonnikov in [26] and [27] (see also [20]). Potential theory techniques are
used to prove the existence of solutions of the corresponding linear problems in Hblder
and in Sobolev spaces (see [28] and [29]). In all papers of Solonnikov the Lagrangian
coordinates are used. Global existence is also proved by Beale [3], [4], where the
free boundary is infinite and gravitation is taken into account. Local existence with
surface tension is considered by Allain [2].

Local existence of solutions for compressible fluids without surface tension is
proved by Secchi and Valli (see [16]), but with surface tension by Solonnikov and
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Tani (see [31]).
Lately, Secchi showed existence and uniqueness of solutions of equations describ-

ing the motion of gaseous stars (see [17]-[19]).
References to the literature concerning stationary free boundary problems can be

found in [15]. Moreover, in [15] eileckas and Zajaczkowski proved the existence of
stationary motion of viscous, compressible, barotropic fluid bounded by a free surface
governed by surface tension. In the proof, one has to assume that the domain and
the external force satisfy some extra symmetry conditions. In .the present paper the
global existence is proved for f 0 and without any symmetry conditions, so there is
no connection with the result in [15]. However, similar to the case treated in [15], to
prove global existence the necessary a priori estimate is found by the energy method
that was also used in papers [8]-[12], [15], [32], [33], and [35].

This paper relies heavily on the following main points. First we study inequality
(2.33), which guarantees that variations of the volume of (denoted by I1) and the
surface area of St (denoted by St I) are as small as we need for all time. This inequality
follows from conservation laws for (1.1a-e) (see Lemma 2.1) and a special Choice of
the parameters of the problem (1.1a-e) (#, v, a, Po, P P(P), 1121, ISI, v0, P0, f 0) (see
Lemma 2.2), which implies that the right-hand side of (2.20) is sufficiently small. This
result is crucial for the proof of global existence in the compressible case only, because
in the incompressible case I1 is constant. We have to underline that the result is
shown under the assumption that the considered fluid is barotropic, so p Ap’,
where A, a are constants and > 1. Moreover, (2.65) is essential because it ensures
that f is close to a ball. Second, we prove the local-in-time existence of solutions
to (1.1 a-e) by employing the Lagrangian coordinates, and we find a suitable a priori
estimate (see Theorem 3. i--the proof is shown in [36]). The existence is proved in such

IT2,1/2.-}-i I-l-I,I/2J-1/2classes that v 2 P 2 ,1/2 3/4 N t_J {0}, (0, 1/4).
However, to prove global existence we need a local solution such that v 6 W24’2(T),
p W32’3/2(tT) C([O,T];F]’3/2(Ft)) (see [37] and Remark 3.2).

Moreover, to prove global existence we also need a bound for variations of the
solution near the equilibrium state in terms of the appropriate norms of vo, p(Po)
po-2a/Ro, H(x, 0))+2/R0 (see Remark 3.2, where (3.6) is such an inequality), where
the last expression measures the deviation of the initial domain from a ball. From
this inequality and imbedding theorems we have the minimum and maximum of the
density, which are necessary to find the inequality (2.65). This fact and the use of
Lagrangian coordinates, which also exist only locally suggests that the proof of global
existence should be done step by step by employing local existence. However, this
procedure needs a special a priori estimates because (3.6) is not sufficiently strong.
The inequalities are shown in 4 (see (4.195), Theorems 4.13 and 4.14, and (4.197)),
whose proofs constitute the most technically difficult part of this paper. It requires
the technique of an energy method, which is very close to the methods used in [33] (see
also [8]-[12], [15], and [32]). To prove the inequality we need much more regularity of
solutions than is needed to show the local existence. This is achieved in Lemma 5.1
under appropriate assumptions on initial data.

The global existence is proved in the case f 0. The main result is formulated
in Theorem 5.5. In the case of the external pressure P0 0 the proof of Lemma 2.2
essentially simplifies and the necessary relations between parameters of (1.1a-e) may
be explicitly formulated (see Lemma 2.8). In this case the global existence result is
stated in Theorem 5.6.

In this paper we use the anisotropic Sobolev-Slobodetskii spaces W2’t/2(T),
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e R+ (see [5, Chap. 18]) of functions defined in 2T x (0, T). In fact, W2’/2

are Besov spaces for 7/.; the equivalence between W2’/2, 7Z, and Besov spaces
follows from considerations in [1, Chap. 7]. In the case of noninteger we have the
norms (D c 3)

dxdy,+ D"u(u,

II=[] Ix Yl3+2(-[1)

Lu((0,T)) +((0,T)) It T
j=O

o 2

+ dt dxdy Ix yl+(-[])

+ dx dtdt
It- t1+2(/2-[/2])

where D Oa:... 0=, O O/Ox, O 0/, and we use generalized (Sobolev)
derivatives. Similarly, by using local coordinates and a partition of unity we introduce
the norm in the space W’/2(ST) of functions defined on ST S x (0,T), where
S 0. We so use W() with the third norm of (1.10) for functions defined in. We do not distinish norms of scal and vector-valued functions. To simpli
notation we write

II II ,Q II IIW ,’/’cQ) if Q fT or Q ST, >_ O, II II ,Q II llWhcQ) if Q 12

or Q (O,T),l >_ O, and W’(Q) W2(Q) L2(Q). Moreover,
lUlp,Q1 <_ p <_ cx and Ilull ,p,  -IlullL(O,T;W()).

For the proof of global existence we also need the following notation: H(Q)
WJ(Q), where Q is one of the following expressions: , S, T, and ST. We introduce
the space F0’/2() with the norm

O_<2i+lal_<l

and F() with the norm

Ilullr ( )
O<i</--t
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where >_ k, k E Z+ U {0}, 0 _< E R.
ll,l/2We define np(O,T;-o (f))with

F,/and C([0,T]; (f)) with the norm

IlUlIc([O,TI;ro,/2 (a) sup lult,o, .
te[0,T]

We also need

where II is the Euclidean norm either of a vector or a matrix.
Moreover, we shall use the imbedding (see [5] and [13])

(1.11) Wr(fl) C L(fl), f C R3, c + 3/r 3/p <_ ,
where IlUlIL() IDulp, and the corresponding interpolation inequality holds

(1.12)

where a/i + (3/5)(1/r l/p) < 1, e e (0, 1).

2. Global estimates and relations. We start with conservation laws for prob-
lem (1.1a-e).

LEMMA 2.1. Suciently smooth solutions to problem (1.1a-e) satisfy

(2.1)

where If/l volt, IStI is the surface area of St, h(p)= f(p(p)/p2)dp,

Moreover,

d-- pv y dx pf y dx,

where r a + b x x, a, b are arbitrary constant vectors, and

--d / pxdx /
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Proof. To prove (2.1) we multiply (1.1a) by v, (1.1b) by v2/2, add the results,
and integrate over ftt to get

n

1
[0t(pv2) + V. (pvv2)] dx- s TijnivJdT

+ -pSij + # (vx + vx, + #)5 div

Using (1.1d) we obtain

From (1.3) and (1.4), as in [23], one obtains

By (2.4) and (2.5) we have

(2.6)

_d (L lpv2 dx+ ]St,)+-E(v v)+(v #),,div Vllo,n,2dt

fn (P po)div v dx fn P$ v dx.

Now we consider the term involving the pressure. Using the equation of continuity
we have

-L (p po)div v dx L (p Po)(PPt + pv Vp)/p2 dx

L [o(h + pohl),t +pv. V(h + p0hl)] dx,

where hi(p) f(dp/p) lip. Since

[Pt + div(pv)](h + poh) dx O,

we get

-Jfa (p po)div vdx-/[(p(h + poh)),t +div(pv(h + poh))] dx- p(h + poh) dz.
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Inserting (2.7) in (2.6) and applying phi 1 gives (2.1).
To show (2.2) we pass to Lagrangian coordinates, so we have

d- pv rl dx - po()v(X(, t), t) rl(Xu(, t))d,

where we used the fact that p Po/J and J is the Jacobian of the transformation
(1.6).

Now differentiating the integrand, using (1.1b), and proceeding exactly in the
same way as in [23] we get (2.2). Finally,

d- px dx po()Xu(, t)d po()v(Xu(, t), t)d pv dx,

so (2.3) is satisfied. This concludes the proof.
Now we find restrictions on parameters of problem (1.1a-e) which imply that the

variation of [ft[ is small for all time. Let us assume that solutions of (1.1a-e) are
sufficiently regular. Let

(2.8) u- #/3 >_, 0.

Then

ECv, v) + (v- )lldiv  ll ,m2 - (v++ + dx + (v- #) (div v)2 dx

Since (1 + 2 + 3)2 _< 3(12 + + 32) the above expression is not less than
2#/3)l[div v[10,n, which by (2.8) is nonnegative.

Hence, assuming f 0, (2.1) implies

(2.9)
< pov dx + (Po) dx + Polal +  lSl d,
-2

.h p(p) Ap, o (p) (A/(- ))p’, > 1.
Using (1.7) and the Hhlder inequality one gets

Now rom (.) on obtains

(2.10) ( A M’) 1/(’-1) d< la [ <
-1 d -P0
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Introducing the mean density ht M/Itl, one gets

(2.11)
Mpo

--</t<-- ((x-- 1)d)1/(-I)AM
We also obtain

(2.12) o (- 1)d

In this way we have shown that lal and Ct fat o(p(x))dx are bounded from
below and from above.

Multiplying equation (2.9) by Iftl-1, using the Hhlder inequality (fa,pdx)’ <_
Iftl-lfnp dx and (1.7), we obtain

(2.13)

where

AM
(2.14) y(x) pox + co(:rxa-1/3 dx-1 + x > 1 x =_ ll2tlx-l’

and co (367r) 1/3, (4r/3)Rt Ifhl.
Our aim is to find restrictions on the coefficients of (2.13) (po, a, d, A, , M) that

lead to small changes of Ifhl for all t _> 0. For this purpose we have to find a
minimum of the left-hand side of (2.13) and to show that for some relations among
P0, a, d,A,x, M (2.13) holds only for small changes of Itl near the minimum point.
Since the last three terms on the left-hand side of (2.13) are positive, we have

(2.15) y(x) =_ y(la, I) _< 0.

This inequality holds for all physical drop volumes, and so for all real physical motions
governed by (1.1a-e).

Now our aim is to determine minimum points {x0} of y y(x). In view of
(2.15) we must look for such minimum points x0 that x0 > O,y(xo) < O,y’(xo)
O, y"(xo) > 0. Moreover, the coefficients in y y(x) must be chosen in such a way
that Ix- x01 is small for x e {x: y(x) N 0}. Examining (2.15) instead of (2.13) is
justified since Ix- x01 <_ e for x e {x: y(x) N 0} (where e is sufficiently small) implies
that Ix x01 N e also for x E {x: y(x) + a <_ 0}, where a denotes the sum of the last
three terms on the left-hand side of (2.13).

Minimum points of y y(x) are determined by the equation

(:2.16) y’(z) =- [po. + coa( 1/3)=/a d(x 1)]x-2 0.

Viete’s formulas imply that the solutions Xl,X2,X3 of (2.16) satisfy

xl x2 xa ( d(x -1) ) _coa(X- 1/3)> O, aI/a + a=l/a + z/a < O,
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so there exists only one positive root of (2.16). Denote it also by xo. To calculate it
we consider the equation which follows from (2.16):

(2.17) w3 4- 3pw 4- 2q 0,

where w u 4- #0, u x1/3 P -#o2, q #0
3 -o, #o (coa(t;- 1/3))/3po,

o d(t- 1)/2pore. At a point xo of a minimum y y(x), we have

(2.18) y"(x) x=zo PoXo + 2v0 Poxo xo + 2#ox > 0,

because x0 > 0 and the last equality follows from (2.16) expressed in the form Xo 4-
_2/3

#0o -2v0=0.
Now we find restrictions on the variations of [tl near the minimum point xo.

Since limx_0 y(x) AM/(- 1) > 0 and lim__.o y(x) oc, if we assume that
the parameters P0, a, t;, and d vary in a bounded set, we find that xo xo(Po, a, t, d)
belongs to a compact set separated from zero by a positive number, and y(x) 0 has
exactly two positive solutions, which also belong to a compact set. Denote them by
Wl, w2, and 0 < Wl < w2. Inequality (2.15) implies that wl < [t[ < w2. Expanding
y(x) in a Taylor series in a neighborhood of x0 up to the second order, we obtain

I!y(x) y(xo) + y txo + Oh)h2,

where e (0, 1), h x xo. Assume that (xo h, xo + h) c (wl, w2). Since y(x) <_ 0
for x E (xl,x2), we have

(2.19)

Moreover,

y"(xo+Oh)

1. ,,% t?h)h2o < o +
hence for h > h. > 0 we have y"(xo +Oh) > y. > 0. For xo +Oh close to xo we use the
fact that yg ya(x), where a (P0, a, , d) $ B, which is sumed to be a bounded
set, is a continuous function of x. Then, ya(xo), B, being sepated om zero,
so is y(x) for x kom a sufficiently small neighborhood of xo.

By (2.19), -y(xo) small yields h small. Then (2.13) implies

+ ]t]- p dx pdx < -y(xo).
g-1

To get h[ small we can also sume that the denominator on the right-hand side of
(2.19) is lge and -y(xo) is bounded. In this ce the len-hand side of (2.20) is not
small. However, it is difficult to find conditions guaranteeing that y"(x) is lge.

Now we find the minimum of y y(x), so we look for solutions to (2.17). Let

(2.21) n q2 + p3 u0(u0 ).
Then we have the following possibilities:

(.)
n>0, u0>2, coshv::u0/-l>l, u:0(2z-1)>0, z:cosh/3.
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(2.23)
D < 0 and vo E (#3o, 2#1, cos := o/o l, u #o(2Z- 1) > 0, z cos o/3.

(2.2a)
D _< 0 and voe (0, #], cos := 1 o/g,

Moreover, xo u3.
Using the above notation we have

o(2- 1), z cos@/3 /3).

-1)(2- )-* ,(2- 1)-2o/(- 1)](o) =,o,o [(-

+ AM’/(- 1)

and y"(X)lx=zo > 0 yields

(2.26) (2- 1) 2o < o.
Equation (2.26) implies that the first term on the right-hand side of (2.25) is negative.
This enables us to make y(xo) arbitrarily small.

Let (2.22) be satisfied. Then (2.26) is satisfied and (2.25) has the form

(2.27)
y(xo) =-(to- 1)-1po#(2 cosh(/3)- 1)3(’-1)

[2(cosho + 1) -(to- 1)(to 1/3)-l(2cosh(v/3)- 1)21
+ AM’/(,- 1) _= -(#o, o, po, a,A,M).

The first expression in (2.27) is a decreasing continuous function of z cosh(/3) and
#o, which vanishes for z 1/2. Thus there exists a set of parameters of #o, o, Po, a, A, M,
such that y(xo) is very small negative.

Let (2.23) be satisfied. Then (2.26) is satisfied and (2.25) yields

(2.28)

y(xo) -(t- 1) -1Po#o3’(2 cos(v/3)- 1)3(’-l) [2(cos + 1)

-(to- 1)(t- 1/3)-1 (2 cos(/3)- 1)2]
+AM’/(. 1) -2(#o, ,Po, a, A, M),

where the first expression achieves its minimum at 0 and increases with
Therefore, to guarantee that y(xo) is negative for some o we have to assume that

(2.29) (3- 1/3)(t- 1/3)-lpo# > AM’.

Under this assumption there exists a set of parameters such that y(xo) given by (2.28)
is very small and negative.

Finally, assume that (2.24) is satisfied. Then (2.26) is satisfied for (0, r].
Moreover, (2.25) gives

(2.30)

y(xo) =-(- 1)-po#(2 cos(’/3- p/3)- 1)3(-1)

[2(1 cos) (to 1)(t 1/3)- (2 cos(r/3 o/3) 1)2] + AM’/(t 1)

= (- 1)-lpo#30F() + AM’/(- 1) =_ -3(u0, p, po,,A,M),
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where o e (0, r], F(0) 0, F(r/2) (x/- 1)3(-1)[2 (a 1)(a 1/3)-1 (x/ 1)2]
and dF/do > 0. Therefore, as in the above case we have to assume that

(2.31) po/zo3F(o) > AM, o e (0, r].

The above considerations imply that there exist sets of parameters #o, o, Po, a,
A, M such that conditions (2.22), (2.23), and (2.24) can be satisfied and y y(xo)
can be determined by (2.27), (2.28), and (2.30), respectively, such that y(xo) < 0 and

(2.32) ly(0)l _< ,
where may be made arbitrarily small. Then by (2.19) it follows that

(2.33) sup varlft _< c, t E R+.

From (.aa) we ve Y., P- ,, Pl ,,,,, l (were fo on-

venience we sume that , C t) because fa, p dx is bounded. Hence

(2.34) supv]t] c2, t R+,

where Ct fa (P) dx.
Thus we have proved the following.
LEMMA 2.2. Let e > 0 be small. Assume that the parameters o, o,Po, , A, M,

where o a(- 1/3)/(3po), o d(- 1)/(2po), satis the relation

(2.35) o e I, o < (go,,po, a, A, M) ,
where i 1, 2, 3,, i 1, 2, 3, are deteined by (2.27), (2.28), and (2.30), respec-
i,, 1 (,,), (,,:,], (0,,], co,h Vl o/- 1, co
o/, , cosv 1 o/.

Then there exist constants c, c2 independent of (they can depend on the param-
eters) such that (2.33) and (2.34) hold. Moreover, in the case (2.35) we have

h= 1.e.. .(ecoh(/)- ). Q .(eo(/)- ). ad Q
.(eo(/ /) ).

The condition (2.36) means that for parameters satising (2.35) the volume lal
of the considered drop does not differ much om the constant value Q, i 1, 2, 3.
This means that the initial volume [l must also be close to Q, i 1, 2, 3.

On the other hand, from physical reons the drop volume [t] should also be
close to the volume [e] of the drop in the equilibrium state (see Definition 1.1).

For this purpose we show the following.
LEMMA 2.3. Let the assumptions of Lemma 2.2 be satisfied. Then there exists a

constant c4 such that

where is sufficiently small.
Proof. Consider the case Qi, where i E {1,2,3}. Recall that xo Qi. Then

(2.16) determining xo has the form

(2.38) pox’ + (to 1/3)t_1.. __-/3 t-1 O.cO,0 + (- 1) dx-1
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Moreover, we have

(2.39) 0 <_ -y(xo) -(pox + coax-1/3 dx- + AM/( 1)) _< 2.

In the case of the barotropic fluid (1.9) takes the form

(2.40) polfl 4- 2(4r/3)/3alfel-/3 AM O.

Employing (2.38)in (2.39)yields

(2.41) 0 <_ pox 4- (2/3)coax-/3 AM <_ (- 1)2.

Calculating the coefficient in the second term in (2.40) we have

2(4r/3)l/3a (2/3)c0a, because co (36r)/3.

Hence (2.40) takes the form

(2.42) P01t[ + (2/3)coalftel-/3 AM O.

Comparing (2.41) with (2.42) implies (2.37). This concludes the proof.
Considering variations of Ift[ near the volume [fe[ we choose a constant c5 such

that

(2.43) libel- [[[ _< c Vt e

where comparing (2.33) and (2.36)-(2.38) we have c3 + ca + c5
Finally, (2.35) and (2.20) imply that for t _> 0 the left-hand side of (2.20) must

be smaller than cie2, so 1/2f pv2 dx <_ cie2, the considered drop must be close to
a ball, and the last term on the left-hand side of (2.20) that vanishes for a constant
density is small, too.

To prove the global existence, we assume that ft is diffeomorphic to a ball, so St
can be described by

(2.44) I1---- - n(, t),

where S is the unit sphere.
LEMMA 2.4 (see the proof of Theorem 3 in [23]). Let S be determined by (2.44)

and suppose that the origin of coordinates coincides wih the barycentre of f. Le
p(x, t) be a density defined for x s at, and let t E (TI, T2). Assume that there exists
a maximum and a minimum of the density for t (T, T2) denoted by

(2.45) p. min min p(x, t), p* max min p(x, t).

s la*l M/p*, la, M/p*,p Mlla, I.
Then there exists a constant 5 (0, 1/2) such that if

(2.46) sup IR(w, t) Rtl + sup [VR <_ 5Rt, t e (T, T2),
S S

.where IVRI2 R + (sin0)-2R2 in spherical coordinates, Rt ((3/4r)ltt])/3 then

(IR(, t) Rtl2 / JVR(, t)j2)d
(2.47)

<_ c(ISl- 4rR2) + c2Rla, l-2(lal- la, I) 2,
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where Cl, c2 are constants that do not depend on and R.
Proof. To make the barycentre of f coincide with the origin of coordinates we

must have (see Remark 2.6)

(2.48) p(x, t)x dx dw p(r, co, t)r3p(w)dr O,
JO

where () (cossin,sinsin,cos). We write (2.48)in the form

1 fR(’t)(.a) ((,,)-p)()d+ (R(,)-R)() 0,
J0

where the first expression can be estimated by

(r/p)(p* p)Ra(w, t) rRa(]/M)(M/],] M/])
(,R/u,)(l- ],l).

om (4=/3)R e have

(.0) ,(R(,) R) 0.

om (2.48)-(2.50) we obtain

1
(2.51) R 1(R-Rt):-Rt I(R-Rt)2- Zl(R-Rt)3,
(2.52) - (-)o()+ (o-)

To estimate }St[-4 om below we use the formula

d we write the inted in the form

(2.3)- +ff + lwl
1
[2(R R)22a(-) + + IVRI]

1 da
(1-) ( ( +

Therefore,

Z IZ 2_ 2
(2.54) Isl- 4R I(R- Rt)2+ IVRI I(R Rt) + I,
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where I is the integral of the last term in (2.53).
Using the inequality

s 1]f(0))[2d(M - [V/ do)

for f a+.P+R-Rt, where a (1/4r) fsl (R-Rt)dw, (3/4r) fs’ (R- Rt)pdw,
we get

IIR -R, I1,; < (1/6)IIVRII + 4"(lal + I1) + IlllWllo,s.2O,S

Using (2.51) and (2.52) we obtain

(2.56)

and

I,1-< c3,511R-

Ibl _< c,,511R Rllo,s, + c(R/lf,l)(ll- I,1)

III < c,(llR RII:
0,s + IIVRIl,s).

From (2.55)-(2.57) for sufficiently small ti one gets (2.47). This concludes the proof.
The double mean curvature of S in spherical coordinates has the form

(2.58) /-
Rsin sin OvzR + IVRI:

Now we consider the equation

oo vZ - jVRI] V/R / IVRI:Z

2
(2.59) 7-l(n)-t- -- h(w),

where h(w)
From Theorem 4 in [14] we have the following.
THEOREM 2.5. Let R E Hk2+5/2($1), k Z+ LJ {0} be a solution to (2.59) that

satisfies (2.46) with sufficiently small . If h e H2+1/2($1), then

(2.60) IIR- Jll+.,s -< Cllhll.,s. + II.R- Rllo,s,, # k + 1/2.

To guarantee that the barycentre of Dt coincides with the origin of coordinates,
we need the following.

Remark 2.6. Assume f 0 and

(2.61) / povo dx O, / pod O.

Then (2.2) and (2.61)imply f, pvdx- O, and then (2.3) gives (2.48).
Now we formulate the main result, which is necessary in the proof of global

existence.
Remark 2.7. Let the assumptions of Lemma 2.2 be satisfied. Let I**1

maxt Itl, I**[ mint Itl, ** maxt Ct, and ** mint Ct. Let IS**l 47rR2,,,
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where R** is determined by (4r/3)R,3, --I**1. Then IStl- IS**I > 0. Moreover, by
Lemma 2.2 we have I**1- I**1 < e, ** -** < e. Furthermore, by writing (2.1)
in the form

(2.62)

we obtain

2
(2.63)

where o, 0 o() will be made arbitrily small.
Since the minima of I1, I1,, for t +, exist, we can always obtain (2.63)

with an arbitrily small right-hand side because we can choose in Lemma 2.2 so
small that the right-hand side of (2.63) is small we plebe. To ensure the lt
inequality we have to sume

(2.64) Oovdx e.

Moreover, the coefficient a0 in (2.63) will be chosen in such a way that Lemma 2.4
yields

(2.65) -21 ]nt 2dx + R(w, t) Rt,1 <_ o.

Finally, we consider the ce P0 0. Then, instead 0f (2.9), we obtain

2
(2.)

< povdx + (oo)dx + lSl d0.-2

Hence instead of (2.13) we have

d + (ISI- a-R?)InI-
A

0,+a-1 (’t]-l/tpadx (a,pdx)) <

where

(2.68) yl(x)=coaxtC-1/3-doxa-l-J x" ]ft[

Inequality (2.67) holds for physical volumes [t[. Since the last three terms in (2.67)
are positive, we have

(2.69) Yl ([ftl) < 0.
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An extremum point x0 of the function Yl -Yl (x) calculated from the relation

(2.70) Yl (x) =_ cod(to 1/3)x-a/3 do(a 1)x-2 0

is

do(a-1 )3/2o 1/3)

This is a positive number. From the form of yl y(x) we have yl(0) AM’/(a-
1) > 0, y(cx)) oo, yi(x)lx<xo < 0, Yi(X)lx>xo > 0, so xo is a minimum point. We
also have

(2.72) yT(Xo) (2/3)do(t- 1)X-3 > 0.

From (2.69) it follows that there are two strictly positive solutions of the equation
y(x) 0. Denote them by w, w2. We have 0 < wl < x0 < w2 < oo.

To guarantee (2.69) we have to require that

2( do )(3-)/2( )3(-)/2(2.73) yl(xo)---g -I/3 c0a
+ AMS/(a- 1) < 0.

Using the form of do from (2.66) in (2.73) yields

2
(t- 1)3C-1)/2(t- 1/3)(3-1)/2(c0()-3(-1)/2

(/ A / ) C3-)/povdx + pdx / diS + AU/(a- 1) < 0.
-1

Since M -fpdx, we see that (2.74) may hold.
Now we show that for a given > 0 there exists a set of pameters a, d0, A, M

such that me X IX] , where X
Moreover, x0 X. To calculate me X in the ce of small e we estimate solutions
to the equation

(2.75) Yl (x) coax’-/3 dox’-1 -+- AM’/(, 1) 0.

We expand the functions x- and X2/3 near the minimum point xo in the form

(2.76)
x-1 --x- q-(- 1)x-2h q-(1/2)(- 1)(a- 2)x-3(&)h2,
x2/3- x/3 -F (2/31x/3h- (1/91a/3h2,

where (xo- h, xo + h) C (w, w2) and i E (x0- h, xo-4-h), i- 1, 2.
Assume that h is small. Put (2.76) into (2.75) and take into account terms up to

the second-order with respect to h only. Then we obtain

[ (2 5 2) (a -1)(a 2) ] x,_3h2,._y(xo)"(2.77) Cod --a-+- xo-do 2

Using (2.71) in (2.77) yields

(2.78) Ihl <_ (-3y(xo)/(do(a- 1)x-))1/2.
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Now we impose restrictions on the parameters a, Po, v0, f, A, a, S, M such that
for a given > 0 we have yl(xo) < 0 and -y(xo) < 2. Hence by (2.78) we have
Ih _< (3/(do(a- 1)x-))/2 ce, where may be assumed to be as small as we
need. Thus we have shown the following.

LEMMA 2.8. Let > O. Then there exists a set ofparameters , Po, vo, f, S, a, A, M
such that y(xo) < 0, lyl(xo)l _< s and

(2.79) sup var ll2tl < c1, t > 0,

and there exists a constant c2 such that

(2.80) sup var Ct < c2s, t > 0.

3. Local existence. To prove the local existence of solutions to (1.1a-e) we
write it in the Lagrangian coordinates introduced by (1.5) and (1.6)"

(3.1)

in T,
in T,
on ST

in f,

in f,

where u(, t) v(Xu(, t), t), 1(, t) p(Xu(, t), t), q(, t) p(Xu(, t), t), g(, t)
f(X=(,t),t),

Vu =0z V,, V, 0,, ru(u, q) -qI + lDu(u) and

() {, (o,v +ov’) + ( ,),v. },

V=. u OzkVui. Let A be the Jacobi matrix of the transformation x x(, t)
Xu(, t) with elements a0 0 + f Oui(, T)dT. Assuming ]VCuloo,r _< M, we
obtain

(3.2) 0 < c1(1 Mr)3 <_ det {Ox } <_ c2(1 + Mr)3, t <_ T,

where Cl, c2 are constants and T is sufficiently small. Moreover, det A exp(f
udT) po/rl.

Let St be determined (at least locally) by the equation (x, t) O. Then S is
described by (x(, t), t)lt=0 () O. Moreover, we have

a(z(, t), t) v(, t) and rio fio()

THEOrtEM 3.1. Let vo e W2t+(f), Po e W2t+(f), f e C+(R3 (0, T)), S e
3W2+5/2, > and 2 4 e N C {0}, e (0,1/4). LetG G(t,ti,a,,’) be

an increasing positive function of its arguments (its definition is given by (3.55) in
[36]), where a Ilpollt+x,a,/ -[Ifl[cz+l(a(O,T)), " -lu(0)lt/,o,n, which is such
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that G(O, O, ,, ") > O. Suppose that > G(O, O, a,/, /). Let [v(0)lt+l,O, _< . Let
1 be sujficiently small (see the proof of Lemma 3.3 in [36]). Let T, be so small that

O<cl(1-T,)3<_det - <_c2(l+T,

where ol is an increasing positive function which is defined in the assumptions of
iemma 3.3 fo, [361, (,t) +
a > 0 and o(, t) is defined in the proof of Theorem 3.6 from [36].

Then there exists T**, 0 < T** <_ T, such that .for T <_ T** there exists a unique
+,/+(),solution to problem (3.1) such that u

C([0, T]; ()) and

(3.3) <- .A, + +
-< (llpoll,+ ,a + II1/poll,+ ,a) P2(T,T’ A),

where 2 is an increasing positive function defined in the theses of Lemma 3.5 in [36].
Having shown the local existence of solutions to (3.1), we find a more appropriate

estimate that will be useful in the proof of global existence. Let us recall that Rt
(rlttl) 1/3, t _> 0. In view of Definition 1.1, we shall look for motions of (1.li-
e) which are close to the equilibrium state. Assuming that the initial motion is
sufficiently close to the equilibrium state, we introduce the quantity qa q- P0 -q0,

where q0 2a/Ro. The quantity describes changes of the pressure near the sum of
external pressure P0 and the initial pressure of surface tension in the case when, at
the initial moment, our drop is a ball (q0). Therefore, we consider

where Hog g g.nono, Hg g g-tiff, and

qat =-q(y)divuu (Po + q0)divu,

q,r It-o p(po) po qo,

where (y) pn(rl)y/p(r), p, Onp.
By Theorem 3.1 we have the existence of solutions to (3.4) and (3.5). Moreover,

we obtain the following.
Remark 3.2. Let u, r/be solutions of problem (1.1a-e). Then from (3.4) and (3.5)
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for sufficiently small T we obtain the estimate

Iluli+, + IIqll+, + Iql+,o,o,

o3 (T, IIoll,+,,a, IlPoll,+x,n, I111c’+’=O,T,
[11110,+O,T + I1o11+,,

+ lip(p0)- p0 -q011 +, + IIH(, 0)+ 2/Roll+/:,s],

where 1 > 23-. The existence of solution v,p of (1.1a-e) such that u E W24’2(T),
q e W’/=(T) nC(O,T;r’/=()) and estimate (3.6) for l= 2 are proved in [37].

Proof. Applying Lemma 3.3 from [36] to (3.4) yields

I111,+, _< (T, , c, ,,, IlSll..,+,) [llqll,+, + Ilgll,,

+ IIH(:, 0) + /P,,oll+l/,s]

Integrating (3.5) implies

From (3.8) we have

(3.9)
II<s<,ll+,r + I<s<,l+,o,<><>,r’ <_ c(T, i, a, /3,’)’, IISIl,+/)

(T<’IIII+,. + liP(no) po ,:soll+,,), <, > O.

From (3.7) and (3.9) for sufficiently small T we have (3,6). This concludes the proof.

4. Global differential inequality. Assume that we have proved the existence
of a sufficiently smooth local solution. First we find a special differential inequality
that enables us to prove the existence of a solution by energy estimates and then to
prove global existence.

To show it we consider the motion near the equilibrium state vc 0, pc
Po + 2afRo, pc MI((4r/3)R); Ro is a solution of the equation. ,’.Ml((4r/3)R3o))
po + 2afRo, qo 2afRo and pa P P0 q0. Therefore, we examine the following
system:

(4.1a)
(4.1b)
(4.1c)

p(v + v. Vv’) -OjTij(v, pa) pf’in t,t e [0, T],
Pt + div(pv)= 0in fit, t e [0, T],

7(v,Pa) aAs,x nn + q0fion St, t e [0, T],

where
Using the barotropic law p p(p) we write (4.b) in the form

Pat + v Vpa +p(p)div v 0,

where @(p) ppp/p.
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Set p,
Now we point out the following facts concerning the estimates in Lemmas 4.1-4.12

and Theorems 4.13 and 4.14.
(1) The numbers 6 are assumed to be small and are separately numbered in each

lemma.
(2) We distinguish absolute constants, denoted by c, which may depend on such

parameters of the problem as #, v, , a, A and which are coefficients in those terms in
the right-hand sides of the inequalities that contain the highest derivatives only, and
are finally balanced by the left-hand side main terms after appropriate summing.

(3) We distinguish the coefficients by the lower-order terms, nonlinear terms, and
also by the force terms which depend on p,, p*, T,

a ][vl[3,n,,dt’, ao(t) =- vzdT b =-- [[S[[4+I/2, M, p0,

on the parameters that guarantee the existence of the inverse transformation to
x x(, t), and also on the constants of imbedding theorems considered over fit.
Generally, the coefficients are increasing functions of the parameters. In the state-
ments of the lemmas, we denote such coefficients by P1, P2,..., (common numbering
for all lemmas) and independently in each lemma by al, a2, Moreover, Pi, ai are
positive and increasing functions of a and b.

(4) We have to underline that all estimates in this section are obtained under
the assumption that there exists a local solution of (1.1a-e) so that all the quanti-
ties p.,p*,T,a, b are estimated by the data functions. Moreover, the local solution
guarantees the existence of the inverse transformation to x x(, t). Generally, the
quantities p., p*, a, b, M, P0 might be large.

LEMMA 4.1. Let v, pa be a sufficiently smooth solution of (4.1). Then

(4.3)

21d/n (pv2+ 1(drP p)p2) dx + __s ga. oo Vs, dTft. ood

< [Ipall 2 + vsdTO,t
0,st

+ H(-, 0)+ G
2 24- Px (llvllo,n, + Ilfllo,n,) + p2x Y ,

where 1 e (0, 1), P P(p., p*, ao(t)), i 1, 2, and

(4.4)
x _llvll2 2

Ii/oY1 X + vdr
2,St

O,S

Proof. Multiplying (4.1a) by v, integrating over nt, and using (4.1b, c) implies
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Equation (4.2) yields

and

pdiv v dx
p(p)

dx

2

(4.6) [F -F div(Fv) + (Fpp F)div v] 0,

where F 1/(p(p)(p)); so

d 1 p2
adx_t_ (F-Fpp)div v dxPa div v dx -- p(p) 2

din 1 p2a
dx + lllpll2(4.7) <

dt tp(p) 2 O,ft

+ a (v, , )llw 2,t"

In view of Lemma 5.2 from [35] d the relation p(p) -Po P-P(P) P’()(P- P),
[P, pe], we have

(a.s) ll,ll < (v*)(Ea()+ llvll0,allll,a)-1,t

By the Hhlder and Young inequalities the right-hand side of (4.5) is estimated by
2(a.) ll,ll0,a + ()vllIll,a.

Now we consider the boundy term in (4.5). By exploiting the Lagrgian c
ordinates we express St follows: x(s s2, t) (s s2) + f u((s, s2), T)dT, where
{sx, s2 } U C R2, so the boundary term takes the form

(4.10) . + . oo (q). + :5 v.

/.(Os (gas.) + u’d8ld82

The first term we write is the following:

s(0) + . ad + N,

ga xs. x:, ga(0) s- : and

2 2 2lYi < v,dllo,s, + llv a 0,
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The second term in the right-hand side of (4.10) takes the form

2 dt
gafi, vsdT" vsdT ds + N2,

where

0,st

Hence, taking ii, i- 1,..., 5, sufficiently small and using (4.7) and (4.10) in (4.5) we
obtain (4.3). This concludes the proof.

LEMMA 4.2. For a su]ficiently smooth solution of (4.1) we have

(4.11)

where 2 E (0, 1), P3(2) behaves like a, a > 0, and

(4.12) Y2 X2 [p 2 2

Proof. Differentiating (4.1a) with respect to t, multiplying by vt, and integrating
over fit yields

(4.13)

where

N1 < 111 2 2 C(1 /9*0,, + c(dh)[llf[ll, + X221 + )llfllo,.
From (4.2) and (4.6) with pat in place of Pa we obtain

(4.14)
f ptdivvtdx<

1 d/f 1 2 dx+52llPat 2

ftt 2 - P(P) Pat

+ (p,, p*, )x.

The boundary term in (4.13) is equal to

(4.15) fs T(v,p),, .fi v, ds -a
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where

Next, using the Lagrangian coordinates we have

-a A v v ds -a/uO (g/’Ov) v t dsids2

(a.)
-ad fsd gavs. g vso g ds + N3,

and

IN31 < 4 (llvtll 2 2 a3X.1,ft + IlVxxll,t,) + a211Vllo,fh -F

Finally, from (4.13)-(4.16) and Lemma 5.3 from [35] we obtain (4.11) for sufficiently
small 5’s. This concludes the proof.

From Lemmas 4.1 and 4.2 we have the following.
LEMMA 4.3.

(4.17)

id/n [ 1 ]

+ (llvll 2x, + IIvll,) + ( ) (lldiv vii 2o,, + Ildiv vt 2

+ P5(o, P* 3)X3Y3 + P6 2 2(l$1,o,, + Ilvllo,,),
where e3 (0, 1) and

(4.18) xa x,Ya X. + vdr
2,S

To obtain an inequality for x-derivatives we write problem (4.1) in Lagrangian
coordinates, so we can introduce a partition of unity in the fixed domain Ft. Therefore,
we have

(4.19)

where /(, t) p(x(, t), t), u(, t) v(x(, t), t), g(, t) f(x(, t), t), q(, t)
p(x(, t), t), q q Po qo, Vu k.O (l) qvrl/q, and

(4.20)
u(u, q) {Tu (u, q) } {-q5i + # (Vuj + Vui) + (u #)SiyVu" u}.
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Next we introduce a partition of unity ((}, {}), ft U. Let t be one of
the t, and s and () {() be the corresponding function. If is an interior
subdomain, then let be such that c and () 1 for e &. Otherwise, we

sume that NS , NS , C . Let E PNS C NS, NS.
Introduce local coordinates {y} connected with {} by

(4.21) yk k,(, ,), 3k nk(), k 1, 2, 3,

where k is a constant orthogonal matrix, such that is determined by y3
F(yl, y2), F E H4+1/2, and

{y" lyl < d,i 1, 2,f(y’) < y3 < F(y’)+ d,y’= (y,y2)}.

Next we introduce functions u’ and q’ by

q(a.22) "() ()1= () ()1=(
where (y) is the inverse transformation to (4.21). rthermore, we introduce
new viables by

(4.23) z=y, i=1,2, z3=y3-(y), ye,
which will be denoted by z (y), where is extension of F to with E H5().
Let () {z "lzl < d, i= 1, 2, 0 < z3 < d} and (). Define

(.) () ’()1=-,, () ’()1=-,(.
We introduce k ()z,Vz,]=x-,(z), where X() (()) and y () are
described by (4.21). We also introduce the following notation:

() ()(), 4() ()(), e fi, fin s ,

where (z) ()=x-().
Under the above notation problem (4.19) h the following form in an interior

subdomain:

(4.27a) yfi VT(fi,) ’ VuB(u,) TJ(u,q)Vu + k,
(4.27b) { + q@(y)V, fi q(y)u.V k2,

and in a boundary subdomain:

(a.Sa)
(4.28b)

(a.eSc)

where

(/o’ /o’ )
B(u, )=(u’V +V,) + ( ),. V,
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and q,/ indicate that the operator Vu is replaced by 7.
In the next considerations we denote z1, z2 by T and z3 by n.
LEMMA 4.4. Let the assumptions of Lemmas 4.1 and 4.2 be satisfied. Then we

have

where the summation over the repeated indices (a, 1, 2) and coordinates (x, s
(s1, s2)) is assumed, P7 is a positive increasing function, P7 P?(a, b), and

(4.31)

Proof. At first we consider interior subdomains. By differentiating (4.27) with
respect to , multiplying the result by fiA (A is the Jacobian of the transformation
x x()), and integrating over f, we obtain

(4.32)

where Ilhllo, Ihl2Ad) x/2.
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By the continuity equation (4.27b), we have

(4.33)
1 d 9f 1 2aAd+N1- d- q(y)

where

2 2
2,1,5 2,5 2]

Consider the Stokes problem in "
(4.34)

2#Vu VV. fi + V4=y yfi + k,

V.=V.,

1o =0.

Hence, we have

(4.35)
i1112 2 < a6(ll.Oii2,5 -- 114 II 1,5 0,5 / lu[2 2

1,o, / IIqllo,)

+a(llull2 ][t ll22, / IIqll,) ud’r + cllV=" 11,.
3,5

Using Lemma 5.1 from [351 in the case G , v fi, from (4.32), (4.33), and (4.35)
for sufficiently small 61 and 62, we obtain

(4.36)

ld( 1 2)Ad2 dt " + qgt(,q

t 2 (1/ 2/ 11111, / )llV. 110, /

_< x(lluell, + IIqel120,)

+ as(llll 2 2
0, / lul 2 0,)1,0, / Ilqoll / a9Xa(()Y

where X4() lul2,1,52 + Iqal2,1,5,2 Y4() X2() + llu1123,5 + f Ilul123,sdT.
Now we consider subdomains near the boundary. Differentiating (4.28a) with

respect to T, multiplying the result by fiJ, and integrating over 2 yields (J is the
Jacobian of the transformation x x(z))

(4.37)
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where we have used the inequalities

and

and the fact that VF can be expressed in terms of f ud’r. Consider the boundary
term in (4.37). Using the boundary condition (4.28c), we obtain

(4.38)

Similarly as in (4.10) the first term on the right-hand side is equal to

-a g(., 0) + . ’’. tssdsds2 + N2,

where

The second term on the right-hand side of (4.38) takes the form

2 dt
gaf" ss.dTfi. tss, dT ds + N3,

where

d- + I111, + ax5 11112o, +
2,,
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Finally, the last term in (4.38) is bounded by

By summarizing, we have proved

(4.39)

< a d gafi, gssdT gssodTds
2 dt

+ IIll ) IIll,0, + a16

(4.40)

a H(., O) + - (ss rids

2,

3,

om the continuity equation (4.28b) we get

ldq,,)lOjdz+N4v. Jdz ..,.
where

and P P(I f zdt’lo,, IJhJ]o, (f Ihl2jdz)/2) From (4.37)-(4.40) and Lemma
5.1 from [35] in the case G , v 2r, we have

1 d 1 ~2

2 dt/ (2 + O()q.) Jdz

a d f
_

+ g(.,O) + .d’

2,

+ ]41, + H(., o)+

T a2oXa(fi)Ya(fi),
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where Xa() 2 2 2 dr’3, + fo 11113,
Applying he operaor ( + )Q o (4.28b), dividing he resul by (), and

adding o (4.284) gives

(.)

()
"+ V(V(#))V. + (() V) + k.OV() V(#)

Multiplying the normal component of (4.42) by anJ and inteating over implies

11 d +Jdz+ II.ll2

dt () o,

o, + (lla, II + I111 + I111 + I111,)0, 1, 0,
(4.43)

+422 I111 )2,11 dt’ll3, + ( + (11

( I’ ))+14

We write (4.28a) in the form

(4.44) # ,A’ v,v. V,4 +’ + k k,

Multiplying the third component of (4.44) by ’53nJ and integrating over yields

(4.46)

ld f^,fi3 113-II 0,h

+ 3(1111x, + II011o, + I111, + IItllo,)
+ 1(ll3tllo, + I111o,C)

q-a24 Iqa 2 dt’I..,111]., + I111., + I111

To estimate unn-i i 1, 2, and we write (4.44) in the form

-#A + V,4

’ ’5 + k k + Vz, 7i + vVz,div2

f* + vVz, div’5,

and the boundary condition (4.28c) as

0’5 0,53 (0’5 0’53 lih) + lk5. i i(4.47)=-0z--Y+ 4
0z # #

i 1,2, z3 O,
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where we have also used the fact that . 0, i 1, 2. Considering the problem
(4.46) and (4.47) in we have to add the boundary conditions

(4.48) illz’l=d O, ilz=d O, i 1,2,(,,ll,l=d O, (,,la=d O.

Multiplying (4.46) by fii, summing over i 1, 2, integrating over , and using bound-
ary conditions (4.47) and (4.48) yields

(4.49) [[V’ll,h <- 691[[[,h +c ([[/’[1, + [[’11, + I[div [1,),
where the prime denotes that only two components (i 1, 2) are taken into account.

We now look for a function w E HI() such that

(4.50) div w Oh, W3[z3--0 X(Z/) jf (adz, Wlo\ O, wi[z3=o O, i 1, 2,

where X(z’) is a smooth function such that f,2 X(z’)dz’ 1, X(z’) >_ O, X[Iz’]=d O.
Moreover, 1 _< 4d2[x]oo,, so ]X[oo, >- 1/(4d) Finally, assuming that X vanishes

only in a neighborhood of the boundary of , we require that min X(z)]z,]<,/2 > O.
Hence

1-- X(z’)dz’ > f X(z’)dz’ > d2 min X(z’) so min X(Z’)< lid2
__’[-d/2 [z’[_d/2 [z’[_d/2

Therefore, we can assume that X(z’) _< c/d2.
We look for solutions of (4.50) in the form w Vo / a, where o is a solution to

the Neumann problem

o, i 1, 2, [ dz 0,

and

(4.52)
diva=0, alohkg=-V[oh\,2, a.fi[,2,=O a.lg=-.V[9, i=1,2,

where n, Ti, i 1, 2, are normal and tangent vectors to .
Since the compatibility condition for (4.51) is satisfied, there exists a unique

solution to (4.51) such that o e H2() and

(4.53) 11 112, c(ll  llo, + I1 ollo, + 11 o111/2, ) c(1 +
because
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where we have used the fact that IVl c/d3.
Similarly, the compatibility condition for (4.52) is satisfied because ft. VOloh\t

0. Hence, there exists a solution to (4.52) such that c E H () and

(4.54) III11, -< llVoll/,oo <_ IIolI=, <_ II/,IIo,.

By summarizing, there exists a solution of problem (4.50) such that w E H () and

(4.55) I111, < 1111o,.

Now we estimate 11411o,. Multiplying (4.46) by w and integrating over t yields

The boundary term which follows from integration by parts in the first term of (4.56)
is estimated in the following way:

% ll-ll2,l] 11112,

_< II IIo, III11,.
The second term on the left-hand side of (4.56) is equal to

,, wadz’ fn (,,div wdz,

where

and

,,dz (,,X(z’)dz’

-< cdI/211,IIo,II,,IIo, <- ,3114,, II, + c(,3)dll4llo,,

div w II,,II,,.dz

Finally, the last term in (4.56) can be expressed in the form

Vdivt’wdz=divtw3dz’-fadivdivwdz,
where

Idivw3dz’ (t,,dz div fi X(z’)dz’
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By summarizing, we obtain the estimate

(4.57) llall, ( 1311azl120, + c (11]11, + IIh’ll,h + llfiz331102, + II div fill,h)
for sufficiently small d.

Now instead of problems (4.46) and (4.47) we consider the problem

~iO3u, h i= 1, 2.

i 1, 2, 3,

Multiplying (4.58) by ~uz, summing over i 1, 2, and integrating over yields

(4.59) ~, 2 div2"2,Ilu’llo, < zllq,,,ll, / c(11]’11, / IIh’,llo, / II ).

Finally, let us introduce a function Wl E W() such that

(4.60) divwl ,, wl loft 0.

By j (l,,,dz 0 there exists a solution of (4.60) such that w e H() and

(4.61)

Multiplying the first equation of (4.58) by w and integrating over gives

(4.62) I1,,’11, < (11]11o, + [Idiv 11, + I1,11o,).
From (4.49), (4.57), (4.59), and (4.62) we have

(4.63)
o, + Ilu,ll, + I1,112o, + 11’11o2,

< c(ll]’ll, / IIh’ll 2 Ildiv 2, / 11, / Ila111,)

From the form of ]’ and h’ we have

2Ilfll 2o, < c(ll.ll, + 11,11o2, + 11112, + II,llo,)

(4.64)

Finally, from (4.46) we obtain
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Therefore, equations (4.63)-(4.65) imply

(4.66)
2

+a26 dt’ (llll 2,a)2, + IIll + 4llll,
3,fi

No qutio (4.4), (4.4), (4.4), d (4.) fono:

(4.)

unlZ) + O(O) qaz dz: dt
( + -+ gaOfi ssdT ssodT ds’

12 2

+ IlR(.,t) R(,0) 2
,,2,15 dT / [lzzll, / H(. 0)+

2,:

/a2(11.11, + I1,o, +

We also have

(4.68) dd Jdz -< x611,ll, + cllll,. + a2924(fi)g4(fi)

om (4.67) and (4.68) we have

(4.)
ld

1 ( ]
2

< el7 dT + IIll2 + IIR(.,t) R(, 0) 2

2,
o, + H(o)+

o, ,,i

+alX4()g().
We examine the second germ on he left-hand side of (4.69). By employing ghe facg

ghag he parg of the boundary St { () 0} can be described in he local
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coordinates {y} by the formula yi si, i 1, 2, y3 _/(sl, 82, t), we have gag 5a+
", where "f /s/s (1 + s21 +/s2.)-l. Assuming that supp{} is sufficiently
small, we have that I/sl < 1/2. Then, performing summation over s E (s,s2}, we
write the second term in the form

2 dt - /3t" tssdT" tssdTv/dsds2

+ -- fi" tsl s dT v/dsds2

(a.o)

ad/u(1 t ( 2))
2

-4- -- ,= fi. s,s,dT + 2 H(., O) + dsds2

where a 5a + 2ea and 2 aa 2 +.
We use (4.70) in (4.69) d then we go back to the viables . Then om the

resulting estimate and (4.36), aer summing over all neighborhoods of the ptition
of unity, and going back to the viables x and kom using (4.17), we obtain

1d ( 1 )2 dt
plvl Ipl dt,o + pV(p) ,o

+ ga ft. vsdTfi, vsdT @ ft. vsfi.vs, d8

+ tafi" Vss.dvfi. VsszdTds+

(4.71)
ivl22 + Ipl2+ ,,n ,o,n

< e7 vdT +. H(., O)+ - o,s
+ IIR(’, t)- R(.,

2,St

+ a32(iv12 2 2lYl,o,a) + aaaX4Y4IIo,a +
d

H(. O)+ ds+4
By virtue of the interpolation inequality (1.12), we obtain

(4.72)

d
H(. 0)+

2
/a34(llH(" 0)/ 114O,Sl / [Ivllo,)

Expressing boundary conditions (4.1c) locally we have

/0 _o( )(4.73) a8t tdt’ t + ofi @u(t, (l)fi + l + 12,
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where

(/o /o )(4.74) Ii __ij (t, )aj, 2 a 27 tdT + tdT2

Multiply (4.73) by f tdt’, then differentiate with respect to T and multiply by

f tdt. By integrating the result over and summing over all neighborhoods of
the partition of unity we obtain

vdT
0,

From (4.71), (4.72), (4.75), and sufficiently small 57, 5is, 59 we get (4.30). This
concludes the proof.

Now we obtain an inequality for the third derivatives.
LEMMA 4.5. For a suciently smooth solution of the problem (4.1a-c) the fol-

lowing inequality holds:

(4.76)
d8

I,S
+ IIR(-, t) R(., 0)113,s,2 )-- P9 ( 2 2 2 )

+ P10 H(.,0) +
1,1

+ P11Xs(1+ Xs)Ys,

where the summation over the repeated indices (c,/) and coordinates x, si (s1, s2), i
1, 2, s (s1, s2) is assumed and

x5 Ilvll, + Ip 2 /12,1,. + IIvll,. + Ilvll3,.,dT,2
Jo
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2 2 2 2 I
f

I13, +
Jo

Proof. We use the introduced partition of unity. First we consider interior sub-
domains. We differentiate (4.27) twice with respect to , multiply the result by 2A,
and integrate over to get

l d jffirlzAd + #jffi(V2 + Vuj)2Ad2 dt

(4.79)

where

< x (llOull, + II0q IIo,) + al(llull 2

+ a2X5(fi)(1 +

X(fi) I111z, + Iq12,1, -I111, + IIlla,dt,
(4.80)

y(fi)- Ilull u u u fot4, -I-IIql13, + Iqlu,l, + Ilutllx, + Ilull,dt’.
From the continuity equation (4.27b) we obtain

Xd 1 ~2(4.81) eeV" fieeAd 2 dt q(rl)qAd + N1,

where

INxl < 5z 114ee IIu- / allull u0,f 2, q- a3X5(fi)(1 -4-

Using the form of kl (see (4.27a)) from (4.34) we obtain

I111, + 11411 <a4(llll2 2 2
2, 1,a + Ilull2,a + IIq, llx,a + IItlll,)

+a
(4.82)

+ ue’ 1 + udt’ Ilull,n
3,fi 3,fi

+cll .1122,"
Empoyi.g Lemm 5. om [35] i. the ce V fi, , nd (a.79), (a.81), nd
(4.82) we get

1 d( 1 ()ad,+2 dt nfi + q(n) I111=3, + I111,

(4.83) _< (1111o, + IIOqll,) + a(llll, + lul=,, + I1@111,)

+rx(fi)( + x(h))Y(fi).
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Now we consider a subdomain near the boundary. Differentiating (_4.28a) twice
with respect to r, multiplying the result by fiJ, and integrating over yields

21 d/(dt
1 ) #+ c()( Jaz + 1,

, + IIll,n + IIll,n)+ X(h)(1 + X()Y(),

where ghe X(), Y(fi) e aenea by (4.aO) wih insgead of , aria u, are
replaced by , 0- We have used Lemma g.1 from
and

ld 1 -2

where

INI < 1111, + al011ll 2,t q- a11Xs()(1 -f-Xs())Ys().

Considering the boundy erm in (4.84) we obtn he expression

(. (, q)),.. .:dz’

Similly, in the ce of (4.38), the first term on the right-hd side is equal to

2
dsds + Na

where the summation over the repeated indices s, s2 is sumed, and where

3,

3,

The second term on the right-hd side of (4.85) takes the form

2 dt
ga. sssdT. sssodT ds + N,
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and

dr )3,
3,fi

2

Finally, the last term in (4.85) is estimated by

r + i1=112 2
o, + ax611allo,s.

3,8

By summarizing, we have

(4.86)

By summarizing, we have

2 dt rlur + 4’(1)qr Jdz

ad f ’’- foo

+ I1(., t) (., o)II 3,S+ H(. 0)+ 1,

+a19(11112 2
2,. + I1-II1,. + I111,) + oX(fi)(1 + Xs(fi))Y(h).

Differentiating the third component of (4.42) with respect to T, multiplying the
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result by ,n.,-J, and integrating over yields

1 d Sa # + v
2,,.jdz + 11,112o,2 dt

< cll..ll2
0,

+a21(112 2
2,l,a + II0lll,a + II011,a)

+22x()( + xs())().

Dieeiig he third component of (4.44) with respect to T, multiplying the

1 d ]nOlL12Jdz + +
2t 2 11’1120,

(lla..ll,n + IlO..ll,n)
(.89) +(12 + )(ll.ll,n + II#ll,n)lll 214+/2,

+2allll2 2
1,n + 2(llll],n + I11121,n + IIlll,n)

+.2xs(fi)(1 + Xs(fi))Y (fi).

By differentiating (4.46) gwice with respect o T, multiplying by rJ, inteaging
over , and using ghe boundary condigion (4.47), we get

(4.90)

Moreover, from (4.46) we obtain

(4.91)

By summarizing, inequalities (4.87)-(4.91) we get the following:
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(4.92)
1 d )(2. + [3n. 1) + 0()q" Jdz
2 dt

+ gafi ss2sadT SlS2sodrd8

4+/2,

, ,s

+a30(]12 2
2,1, + ][a][, + []1,) + a31X5()(l + Xs())Y5().

By differentiating the third component of (4.42) with respect to n, multiplying
the result by annJ, d then integrating over implies

(a.)

2 d (#)a;Jd +

,2 82 t 12< C(llvl 2, + (16 + cd)(izzz[]2 4+ 3,

+-3=(1,1=,, + It1, + I1,, + I111,)
+ as3Xs()(1 + X5())Ys().

We write (4.28a) in the form

(4.94)

Differentiating the third component of (4.94) with respect to n gives

(4.95)

Finally, differentiating (4.46) with respect to n yields

(4.96)
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From (4.92), (4.93), (4.95), and (4.96) we obtain

(4.97)

-’21 dT + H(. O) + + IIR(’, t) R(. 0)112
3, 1,S

3’S1

2 2+as(l12,1, + 114111, + 111121,) + 9x()(1 + x())Y().

To obtain the full second derivative of u under the derivative with respect to time,
we examine the expression

(4.98)
l d ]2zzjdz= (]zz "zztJ+ ]t2zzJ+ ]2zzJt)dz2 dt

where we have used the relations

(4.99) t + 7. 2 0 and Jt J7. 2.

Employing (4.98) in (4.97) and using the fact that 22 is sufficiently small, we obtain

(4.100)
< C(23 + cd)(ll,ll2 I1, +

2
2

J0 113,

+(11,, + I111, + IIll
12 )+ IIR(" t) n(- o)11
l,q

Now we examine the second and the third terms in the left-hand side of (4.100).
Applying the same considerations as they were used in the case of inequalities (4.69)
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and (4.70), we obtain that both terms are equal to

where af is defined in (4.70).
Now, going back to the variables in the inequality (4.101), summing over all

neighborhoods of the partition of unity (for the interior neighborhoods we use the
inequality (4.83)), and then going back to the variables x, we obtain for sufficiently
small il and d the inequality

(4.102)

d
H(. 0)+ ds.+ a43X5(1 -+- X5)Y5 + 4a ,,

In virtue of the Young and Hblder inequalities we get

(4.103)

d
H(.,O) + ds
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Finally, using (4.73) and repeating the considerations following (4.75) gives

3,St

0,,(4.104)

+ H(., 0) + N ,s
II=,s,

+ (1111 II=,a,) Ilvll dT.3,at + [[P 2
4,ft.

Therefore, om (4.102)-(4.104) for suciently small 524, 52, 526, we obtain (4.76).
This concludes the proof.

To estimate the first term in the right-hand side of (4.77) we nd the following
result.

LEMMA 4.6. For suciently smooth solutions of problem (4.1a) we have

1 Z(2 1 2)
-+-I1, 2 2112,a, /

(4.105)

-I-P12(lv12,o,a, + [p,, 2II,O,a, +

-t-P1326 (1-t- X6 Y6

where

(4.106)

Proof. We use the partition of unity. First we obtain the inequality in an interior
subdomain. Differentiatin_g (4.27a) with respect to t and (, multiplying the result by

and integrating over f yields

(4.107)

l d rlfz2tAd +/(V,,fi +2dt

_< 5lllll,n + ax(llu, lll=,n + IIq,,,ll =o,n + Il,o,n)

+aX6(a)Y6(a),
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where

By the continuity equation (4.27b) we have

(4.108)

where

2

fh 1 d jf 1 12atAd + N1teV.Ad - d-- q(vl)

2INll
_

61ll,,t112, 4- a3lul2,x, + aaX()(1 + x(t))Y().
From (4.34) we obtain

(4.109)
2

,o,a + Il,0,)+ x()r().
Employing Lemma 5.1 from [35] in the ce C fl, v fi, and (4.107)-(4.109) we
obtain for sufficiently small 6 and 62,

(.110) < a(llttll20, + Il,,a + Iq

+asX6() (1 + X6())Y6().
Now we obtain an estimate in a subdomain near the boundary. Differentiating

(4.28a) with respect to t and T, multiplying the result by 2trJ, and integrating over
yields

(4.111)

-4- a9(ll2 211,0, / Ilx,o,)2,0, + la 2

-t- al0X6()(1 -f- X6())Y6(),

where X6(fi), Y6(fi) are equal to X6(fi), Y6(fi) with 2, t, fi instead of u, q,,, fi,
respectively. Moreover, to obtain (4.111) we have used Lemma 5.1 from [35] in the
case G (, v 2t, and

l d / 1 ~2 Jdz + N2atr ttrJdz -- (t() qatr
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and

IN, _< :allq,ll ’:, 4- all 1122,1, -4--a12X6()(1 4- X6())Y6()
Let us consider the boundary term in (4.111). Using the boundary condition

(4.28c) we obtain

-[ (,(, )),.J’

2
(4.112) --a

-r (tjottdT )
,tr
rJdz 4- jf (ks + k6),rtJdz.

The first term on the right-hand side of (4.112) is estimated by

111122, + I111, + H(.,0)+

/a14(lll12 2
o,a + IIllo,c).

The second term is equal to

where

+ a13(llfil[ 2
3, 4- llall],allall2,a)

,S

2 dt
gafi, fiss’fi" fisszds + Na,

INI < Ilall, + Ilall3, 4- fid
2,

4-a15 Ilall], dT + Ilall], fid + allall,.
a,fi 3,fi

Finally, the lt term is bounded by

+als(llal124, + Ilall 2 dT ).3, 3,

By summarizing, we have

(4.113)

<_ a d
dt j ,gafi fis’ fi tsJdz

+es Ilatll = 2, + [lil], + d + H(. 0)+
2,
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3,
4,

+ o(1111 ^)o,a + I111o,,
fO0td’r

By exploiting (4.113) in (4.111), it follows that

(4.114)

By differentiating the third component of (4.42) with respect to t, multiplying
the result by antJ, and integrating over yields

(4.115)

By differentiating the third component of (4.44) with respect to t, multiplying
the result by z3nntJ, and integrating over implies

(4.116)

By differentiating (4.46) with respect to t and T, multiplying by fiJ, integrating over, and using (4.47) we get the following:

(4.117)

Moreover, from (4.46) we obtain
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(4.118)
unnt II < (5la + cd)IIll 2 2 0,)

+ aaoX()(1 + X())Y().

Finally, we have

(4.119)

From (4.113), (4.115)-(4.119) we obtain, for sufficiently small 6’s,

(4.120)

+als I]tzzll2
2 2

o,z-4- ,d’r 4- H(. 0)-I-
2,

+aa(ll +101,o,, ,o, + I01,o,)
+ aa2X6()(1 + X6())Y6().

By going back to the variables ( in (4.120), summing over all neighborhoods of
the partition of unity (where we use (4.111) for the interior subdomains), then going
back to the variables x and using estimate (4.104), we obtain (4.105) for sufficiently
small 6’s and d. This concludes the proof.

To estimate the first term in the right-hand side of (4.105) we need the following
result.

LEMMA 4.7. For a sufficiently smooth solution of the problem (4.1), the following
inequality holds:

(4.121)

where

(4.122) 2 212,0,ftX7 Ivl3,1,n, + IP g Ivl,2,a, -4-IP 2 lu"2 dT.[3,1,t + 112,t
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Proof. Differentiating (4.1a) twice with respect to t, multiplying by vu, and
integrating over fit yields

+ al([f 2 XT)YT,IIo,,) / a2XT’(1 -’t-I,o, / II.h 2

where we have used

pudiv dxvtt

Lemma 5.4 from [35], and

12 X)Y.INI _< 11,,I o, + X(1 +
Employing boundary condition (4.1c) we obtain

(4.124)

where

ld/n 1 2

2 dt PiP)Pattdx + N1,

+ a(llvll2 + IIvll,.,) llvl13,., + vd-2,t
2,

Moreover, by the continuity equation (4.2) we have

(4.125) IIp,, II o,a, _< 11,, II l,at + a6__.,_X,(1 + XT)YT.

Hence, (4.123) and (4.125) imply (4.121). This concludes the proof.
Summarizing, from Lemmas 4.5-4.7 we obtain the following.
LEMMA 4.8.

(4.126)
1 d/ft ( D2 -’2

2 dt Pl ,tUl +
1 2 12)p(p) ID,tP dx

2
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2
H(-, 0) +

where the summation over repeated indices (a, 1,2) and coordinates (z, si
(s1, s2), i 1, 2, s (s, s2)) is assumed and

(4.127)
Xs Ivl2 -4-IPa 2 2

3,1,t 12,0,t-4-

Ys Ivla,=,n / Ip.l,i,n, + Ilvll,n,d.

Finally, we obtain inequalities for the fourth derivatives.
LEMMA 4.9. For a su.iciently smooth solution of the problem (4.1a-c) the fol-

lowing.estimate holds:
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4A_1/2,S vdT
3,St

where the summation over repeated indices (a, 1,2) and coordinates (x, si
(si, s2), i 1, 2, 3) is assumed and

x / Ilvll dT,3,2,t 3,t

(.129)
Y9 Ivl2 + Jp ]0

Proof. We use the ptition of unity. First, we consider interior subdomains. We
differentiate (4.27a) three times with respect to , multiply by fiA, and inteate
over to get

d
+ () A2dr q

+ (v, +v (-- I1,
(.1o)

< (lleeell, + [[a[[,)+ a ([[u[[ 2,a + Ilall,a +

where

We have also used

where

+a2Xg()(1 A- X())Yg(),

ld 1

IN1[ < 211@1[02, + a3[lu[[ 2 X()3, + aX9()(1 + )Yg().

Moreover, the following relation has been employed, too:

< lleell2 X())Y9(fi)I, + a5X9()(1 +
om the problem (4.34) we obtain

2 2 2

(a.l)
+ Xg(fi)( + x(fi))Yg(fi).
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From (4.130) and (4.131) for sufficiently small i we have

(4.132)
< as(lu132,2, + tlqll 22, + 111122,) + agXg()(1 + Xg())Yg(),

where Lemma 5.1 from [35] in the case G 2 and v fi has been used.
Now we consider a neighborhood of the boundary. Differentiating (4.28a) three

times with respect to T, multiplying by firrJ, and integrating over yields

(4.133)

+aXg()(1 + X2())Yg(),

where X9(), Y9() has the form X9(), Y9() with fi, t, instead of u, q, , re-
spectively. Moreover, we have used

l d jf 1
2 dt 0(}qa"rJdz + N2,

where

INI < 5sllqll= =0, + a1211113, + a13Xg()(1 + X())Yo().

We have also employed the following considerations:

+a3x(fi)(1 + x())Y(),

and

where 56 and 57 have been assumed sufficiently small.
Finally, Lemma 5.1 from [35] in the case G and v firrr has been used.
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Using the Lagrangian coordinates and boundary condition (4.28c) we rewrite the
boundary term in (4.133) as follows:

-[. (’(, (.)),..-. .r.-Jdz’

Similarly, as in the cases of (4.38) and (4.85), the first term in the right-hand side of
(4.134) is estimated by

ootdT 2

We estimate the second term by

(/o II ) o /o /oadf a^9 tdT + II-,-II, + l.g n. rrrs, dt’" r==sdt’ds
4,

4,

Finally, the lt term is bounded by

1 1, +3, + xo Ilu
4,

Summarizing, we have

(4.135)

(,=)),=. Jdz’ 5 -2d ====dt’

ad
n(., O) + 42dr

1,a + dT + H(’,0) + + IIR(’,t) n(,0)
a, 2,
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3, + fidT + ]JR(. t)- R(., 0)1] 20,S
0,

+ a22 IlR(’,t) R(-,0) 2

4,S

,+/,s dr

+ a2311all],a dT

From (4.133) and (4.135) we obtain

(4.130)
1 II= (^-2 1~2)

+ j n. d’. d’d
a d Z (H(.,O) + 2 ) fi.1 dtds

o,a + II4ll,a + d ,
+ II(.,t)(., o)

IIo,sl + II0ll 2+24 lal],2, + a + I1112 2,o,a 2, + [[R() R(. 0) 2

+ I11 113,81 dT3,, ad. + IIR(.,t) R(,0) 2

]14+1/2,81 dT
3,

+aoX(fi)(1 + x(h))Y(h).
Differentiating the third component of (4.42) twice with respect to T, multiplying the
result by {nrJ, and integrating over gives

1 d[ 1 "2 1
2 dt Jf 1() qanTrJdz q- _11112,,(lanvr,, 2O,f

(4.137)
< (13 "4- cd)(llz=ll 2 2

o, / IIq,,,--llo,)

+,11.,--,-.,-1121, + a2’r(l’al],2, + IIq,.1122,c + I1.011.,)
q-a28Xg() (1 -4- X())Y9().
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Differentiating the third component of (4.44) twice with respect to T, multiplying the
result by Unnrr~3 J, and integrating over fl implies

(4.138)

Differentiating (4.46) three times with respect to T, multiplying by fi’J, integrating
over , and using the boundary condition (4.47) we obtain

(4.139)

-f-a32X9()(1 + X())Yg().

Moreover, from (4.46) we find

(4.140)
I1’11, < (17 +cd)(1111o2, + IIzll2o,)

+ c(llI1, + [l(div )ll, + IIqll2"o,)
+ a33(112 2

3,2, + IIall2, + l[ll],) + az429()(1 + X())g9().

To summarize, from (4.137)-(4.140) we obtain

(4.141)

Differentiating the third component of (4.42) with respect to n and -, multiplying by
q,nnrJ, and integrating over yields

(4.142)
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Differentiating the third component of (4.94) with respect to n and T gives

(4.143)
II(div )112 < (2 + ad)(llll, +0,

+ a(llll, + I111,) + a39(1 2 2 2.

+ ,oX(h)(1 + Xg(fi))Y(h).
Next we differentiate (4.46) with respect to n and T. Hence we get

(a.laa)
I111o, <- (22 + d)(llll-o, +

+ (11112o,. + (v ).I1,. + I.I1,.)
+ al(ll2 2

3,2, + 11112, + I111,) + a42X9()(1 + X())Y9().
om (4.141)-(4.144)we obtain

1 d
1..I2 + Jdz +

(4.x45) < (3 + ad)(llll, + I111
+1111, + a.3( 2 2lul3,2, + I111, + 11112,)
+a44X9(fi)(1 + Xg(fi))Yg(fi).

Differentiating the third component of (.42) twice with respect to n, multiplying the
result by annnJ, and inteating over yields

o,a)(4.1a6) < (25 + ad)(llll,. + I1112
2

Differentiating the third component of (4.94) twice with respect to n implies

Ii(div )=112 < (26 + cd)(llullo, + IIqllo,)
+ (1111=

0, + IIq==ll,) + aa7(ll2 2,)

We differentiate (4.46) twice with respect to n. Hence after integrating over we
obtain

(4.148)
I111, < (2 + cd)(11112o, + I111,)

+ c(llzll2 2,)o, + II(div )=11, + IIqllo
+ aag(l12 2 2

2,h
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Finally, using that

(4.149)

from (4.145)-(4.149), we obtain

(4.150)

From (4.136) and (4.150) it follows that

(4.151)
1 d fa (^~25 d-- rlUzzz + Oql(l)qazzz) Jdz

a d
H(. O) + eft. firrrdt’ds

4,

0,

+IIR(., t)R(-, 0) )
+a5 I111, dT + IiR(’, t)- R(,, 0)1123,s dT

+aX(fi)(1 + Xg(fi))r(fi).

Now we examine the second and the third terms in the left-hand side of (4.151).
Applying the same considerations as in the case of (4.69), (4.70), and (4.101) we find
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that both terms are equal to

2 dt _a. SlS2SasadT%. sls2szsdtJdz

+ " ss2ssdT Jdz

d
H(. O) + Jdz’

Going back to the variable in (4.151) and (4.152), summing the result and (4.132).
over all neighborhoods of the partition of unity, using that i32 and d are sufficiently
small, and, finally, going back to the variables x we obtain

(4.153)

ld/n (2pvxxx+ 1 2Paxx)dx2 dt p(p)

2
ds

< =l + IR(.,t) R(.,0)o, + .d
4,s

+ g(., O) +
,s

ll2,a + vd + IIR(’, t) R(., 0) Ilo,s2 +llfll2,a2
0,

+a56 Xg(+X)Y9 + Ilvll 2 vdT + IIR(. t) (., 0)112 vdT3, 3,S
4,S

ds.

4,S

We have the estimates

vdT --< 34(llvllo,a + IIpllo,a)
4,S

+ as (IIR(" t) R(. 0) 2 H(., 0)
2 2

+
2,S
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4,t
vdT

3,t

and

d
H(. 0)+ ds

Using (4.154) and (4.155)in (4.153)implies (4.128) for sufficiently small (34 and ti3.
This concludes the proof.

To estimate the first term in the right-hand side of (4.128) we need the following
result.

LEMMA 4.10. For a suciently smooth solution of the problem (4.1a-c) the
following inequality holds:

(4.156)

where el0 E (0, 1), the summation over repeated indices (a, f 1, 2) and coordinates
(x, s, (s1, s2), i 1, 2) is assumed, and

(4.157)
=vl3,2,n,-I-Ip,,13,1,a,-4- Ilvll3,a,d,

Y10 2 t13,1,a, + dT.vl14,a 

Proof. We also use the partition of unity. First we consider the interior subdo-
mains. Differentiating (4.27a) twice with respect to and once with respect to time,
multiplying by ttA, and integrating over yields

(4.158)

+-a2Xlo(/)(1 -f- X2o(fi))Ylo(fi),
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where

3,2, + Iq,,13,1, + Ilul13,5dr,

Yxo(fi)lulz fo
Moreover, the following considerations have been used:

Xd 1 -2tV"tAd 2 dt q()qtAd + N,

+[(V),t Vt] tAd

< 11,111,a + aX0(fi)( + Xo(fi))Y0(fi),

where

Nx < aI1IIo, + aall,, + a5Xlo(fi)(1 + X2o(fi))Ylo(fi).

From (4.34) we obtain

(4.159)

Now, by applying Lemma 5.1 from [35] for G fi and v 2t from (4.158) and
(4.159) for sufficiently small il, we have

Now we consider boundary subdomains. Differentiating (4.284) with respect to t
and twice with respect to T, multiplying by t--J, integrating over , and applying
Lemma 5.1 from [35] for G f and v 2tr gives
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where we have used the following relations:

2ld/ 1 ~2

dt
{at" trtJdz @(]qrJdz._. + N2,

[(7’(, )),t -(t,t)]tJdz

+Xo(h)( + Xo(h))Yo()

0,fi + a14{{2 Xl2o(fi) YlO3,2, + a5Xlo()(1 + ().

Moreover, Xo(), Yo() e obtained from Xo(), Yo(), replacing u, q, , by, , , respectively.
In view of the boundary condition (4.28c) the boundy term in (4.161) can be

estimated in the following way:

(4.162)
2 dt
gs .nus Jdz + N3,

where

0, ,
la,1,

om (4.161) and (4.162)we obtain

(4.1a)

2dt

+l, + (- ,)l(iv),0,

,1,0 ,1,0) + oXo(O)( + Xo(O))yo(O).

Differentiating the third component of (4.42) with respect to and t multiplying the
result by OnrtJ and integrating over implies

2 dt u,
qntJdz

o,)(4.14)

+Xo(fi)(1 + Xo(fi))yo(fi).
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Differentiating the third component of (4.44) with respect to T and t, multiplying the
result by -3unnrtJ and integrating over t gives

(4.165)

ldfa2dr

From the problem (4.46)-(4.48) we have

(4.166)

where prim denotes that only components u1, u2 are taken into consideration. More-
over, from (4.46) we get

(4.167)

Summarizing, from (4.164)-(4.167) we obtain

+a29Xlo(fi)(1 A-- X2o(h))Ylo(fi).

Differentiating the third component of (4.42) with respect to t and n, multiplying the
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result by nntJ, and integrating over yields

(4.169)

1 d ff/z T tz 2qantJdz
2 dt

1

+ (16 + ad)(lltll2 2
0, + IItllo,)

2+ a30 (l13,,s + I12,1,2 + I1u,,h: + aaXo(fi) (1 + Xo(fi))Yo (h)

Differentiating the third component of (4.44) with respect to n and t, multiplying the
result by ~3 J, and integrating over implies

(4.170)

Finally, from (4.46) we get

(4.171)

Ilu,... IIo,fi_< c (div2),nrt IIo,a + II,/,.,. IIo,a
+ C((19 - cd)(lltll, + I1,112"0,.)
+ a34(ll,x,a + I012

Hence, from (4.168)-(4.171) it follows that

(4.172)

rllunt + qaznt Jdz + Ilu,..ll, + 114,.,112

< 2o11.11,. + cll,ll2 cd) 2

+a3(lt2 +1,12,3,1,. 2,, + I1,1,) + azrXo(h)(1 + Xo(h))Ylo(fi).

To obtain a full derivative (zzzt under the integral over and under derivative with
respect to time, we need the following:

(4.173)
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From (4.163), (4.172), and (4.173) we obtain for sufficiently small 5 and d,

(4.174)

+a39X10(h) (1 + X0(h))Y10(h).

Going back to the variables in (4.174) and using (4.160), we sum the inequalities
over all neighborhoods of the partition of unity. Then, going back to the variables x
in the followed estimate and using smallness of 523, we obtain (4.156). This concludes
the proof.

To estimate the first term in the right-hand side of (4.156) we need the following
result.

LEMMA 4.11. For a suciently smooth solution of the problem (4.1a-c) the
following inequality holds:

(4.175)

#+u 2 ) adp(p) qxtt
dx + -- g vtss vtsods

o,n, IIo,n +
O,S

where

(4.176)
Xll ,vl3,o,a, / Ip13,o,a, / Ilvll3,a.dT,

Nil 2 2 2-Ivl4,,a / Ip13,o,n / Ilvll4,adT,

Proof. We also use the partition of unity. First we consider interior subdomains.
Differentiating (4.27a) twice with respect to t and once with respect to ; multiplying
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the result by fittA and integrating over yields

(4.177)

ldjffi( ~2 1-2)2 dt yut + q(rl)qt Ad

+g

2,0,

A-a2Xll()(1 A- X121 (fi))Y11(h),
where

Xxx(fi)--Il,o,s + Iql :z La,o, + IIll,dt,

gll()- lul,x, / Iq,, 3,o,n -4- Ilull4,dt.
We have also used the fact that

jffi q,,ttV,, ftttAd
1 d Jf5 1 - Ad+N2 dt q(rl) qatt

[(VVufi),** -VVfiu] fi,tAd + Jf5[(V),** -Vu] tuAd

< ,2I1- 2
0, + a3X11(fi)(1 + X?l ([’))Yll (fi),

where

1212 + a5Xll(fi)(1 + XI([’))Yll(INxl _< ,3 I1- I1), + a ,3,x,

From (4.34) we obtain

(4.178)

Now from (4.177) and (4.178) for sufficiently small (1 and Lemma 5.1 from [35] for
G and v ttt, we get

(4.179)

1 dfi(-2 1-2 )Ad+llzttll2 dt Yutt + qqirl)qtt 2,fi + IIt/,,ttllx,h

< as(lul,o, -+-Iq,,I,o, + I1,o,) / agXll(h)(1 -+- X121 (h))Y11(h).

Consider the boundary subdomains. Differentiating (4.28a) twice with respect to
t and once with respect to T, multiplying the result by ttt-J, and integrating over
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gives

(4.180)

-4-axo(ll,o, -+-Iql 2,o,a + Il,o,a)

+allXll ()(1 + X21 ())Yll (),
where we have used Lemma 5.1 from [35] in the case G , v tt, and

~2-< a(II==.ll). + I1@=- II(.) + a21ul3.x. + al3Xll ()(1 + Xl())Yll (),

and

ftttq,ttJdz
1 d fa 1

2attJdz+N22 dt ()

IN21 < 11,.. o,t5 + alal’g],l,t5 + alXl()(1 + X2i())Yii().

Moreover, Xll (), YI() are obtained from Xll (), Yll (), replacing u, qa, , by
fi, , , respectively.

Employing the boundary condition (4.28c) the boundary term in (4.180) can be
expressed in the following way:

(4.181) (t’(i, O,)),tt,. tt,Jdz’<_ df2 dt
gagt, fttss- ft. fttsso Jdz’ + N3,

where

IN31 < (11..112 I1), +o, + Ilut
2

H(. O)+ ---1o + al6lUl3,,
2,S

+ aTXii()(1 + Xll ())gll ().
From (4.180) and (4.181) we obtain for sufficiently small

(4.182)

ldfa (1_2) adf2 dt lttr + Oql(l)qttr gdz’ + -- gafi, fttss-gt" ttss, gdz’

+11.112 ( (air ) II

II 211 )0,
2,S

+a1(11,o, + I012,o,a + IOl,o,a) + a19X11 ()(.1
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Differentiating the third component of^(4.42) twice with respect to t, multiplying the
result by ,nttJ, and integrating over i2 implies

1 d fFtl.t-+-u~2q(,nttJdz + -1 O,t

(4.183) +(9 + cd)(llzttll 2 2
0, + I1’110,)

+ax()( + x())Y().

Differentiating the third component of (4.44) twice with respect to t, multiplying the
result by t3,atJ, and integrating over , we have

(4.184)
1 d f^ -3

2 dt.rl]u’ntl2Jdz + 2 ll-3u’’llo,2
< c(llll, + llll2 2

o,fi

+ ( + cd)(ll***ll 2o, + II*** IIo,a)
+ a22(ll2

From the problem (4.46)-(4.48) we have

(4.185)
+clldiv 11 1,t -’1- a24(lfi[23,o, + IO,l,o, + Il,o,)

+a25Xll ()(1 + X121 ())Yll ().

Moreover, from (4.46) it follows

(4.186)
Ila’, IIo, < c (ll(div ),.tt I1,, + IIq,llo,)

+ a26(11,o, + 14I2
,o, + II,o,) x()(1 x(6))Y().
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Summarizing from (4.183)-(4.186) we have

(4.187)

Finally, using the inequality

t2zuJdz < 51llattll, + cll,ttll
(4.188)

+ (llll],a + I
om (4.1a) and (4.1a7) we obtain

(.la)

21d(-2dt 0(9)

<517(IItll 2
o, + Ilall, + Ilall:o,a + H(., 0)+

+ aao(lal,o,n + I01=,0, + I.l,o,n) + aXx()(1 +X())Y().

Going back to the variables in (4.189), then summing the result and (4.180) over all
neighborhoods of the ptition of unity, we finally obtain (4.175) after going back to
the viables x and suming that 17 is suciently small. This concludes the proof.

Finally, to obtain an estimate for the second term in the right-hd side of the
inequality (4.175) we have to show the result.

LEMMA 4.12. For a suciently smooth solution of the problem (4.1a) we have

ld/( 1 ) ad2 dt tt + p(p)Pttt dx + gafi. Vttsfi" Vttszds

(4.190) +11.11,. + Ilp,il0,t

I,o,a)IIo, + P(I +
+PX( + x)Yx,

where X12 Iv 2 2 213,o, Y12 Ivla,x,a +13,0,1]t -- ]Pa 2
3,0,12t"

Proof. Differentiating (4.1a) three times with respect to t, multiplying the result
by vttt, integrating over Ft and using Lemma 5.5 from [35], we obtain

+ ,(IIAII : : x)Y,fl:,o,n -4- (1 +O,t "" CXl2



ON NONSTATIONARY MOTION 69

where by the boundary condition (4.1c) the boundary term has the form

(4.192) s (nTJ(v P))’tttvttds= a d s2 dt
gfft.vtts ft" vttsods + N1,

where

INll < 2(llvll2 2 2 (1 X22)Y120, + IIv[lo,) -4- alJvJ3,0, + a2Xx2 +
By (4.2) we have

(4.193) ]]Pattt 2II0, -< cllvtll,a / cX12(1 -f- X2)Y12.
Therefore, from (4.191)-(4.193) we obtain (4.190). This concludes the proof.

From the above lemmas for sufficiently small e’s we have the following result.
THEOrtEM 4.13. Let

(t) _= plvl,o + p(p)Ipl,o dx

(4.194)

kv k’ r d’n d’ds

+ ft. Osvl.dt ds

+ g ft. vdt’ft" v,dt’

2

Io,a / IIpll / IIR(. t) R(. 0)llo,s,20,t

For sufficiently smooth solutions of the problem (4.1a) the following estimate holds:

(4.195)
d

cP(X)X(1 + Xa)Y + cF +

+ (., o + N ,s
+e (., ol + N ,s

+ c IIR(,t) R(.,0) 114+/,s vdr
3,St

113,s vdT
4,St

+ IIR(., t) R(., 0)l14,s
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where Cl, i 1-6 depend on p,, p*, T, a, b, constants from theorems of imbedding and
Korn inequalities (see 5 in [35]); dil then is a small parameter, and

x Ivl fooI,o, / Ilvll dr’,3,0,n, / IP 2 2

(4.196) Y Ivla,l,n + IP

2,0,t

Repeating the proof of Theorem 4.13 in the proper way we obtain the following.
THEOaEM 4.14. For suciently smooth solutions of the problem (4.1a) we have

d
(t) + Co(t)

<cTP o+ 2 2vlla,dT o + II dT

(4.197)
+eo H(., 0) + N ,s

+ JlR(.,t) R(., 0) 2+62c H( 0)+

+a12 IIR(., t) R(., 0)1124T1/2,S1 vdT
3,St

+IIR(. t) R(. 0)112 vdT3,S
4,St

heFe 2 8 8Gll pFeteF c7-c12 he the 8ae popeie8 ThoFem 4.13
ad

(.198) o(t 2 213,2,tII,,, + I

and

5. Global existence. Let us introduce the spaces

A/l(t) (v,p) qo(t) + o(T)dT

;(t) {(,,p): (t) < },

where (t) and (I)o(t) are defined in (4.194).
In this section, to prove the global existence of the solutions, we assume that the

external force vanishes, so that

(5.1) f--0.
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First we prove the following.
LEMMA 5.1. Let the initial data vo,po,S of (1.1a-e) be such that (v(0),p(0)) E

Af(O) and S H4+1/2. Let

npov0 ldx O, xdx 0,

where a + b x x, and a, b are constant vectors.
Let the. initial data vo, pao, S and the parameters of (1.1a-e) (po, a, d, A, e;, M) be

such that

II(0) _< el, X(0) --= H(., 0) +

0(t) _= sup [In(., T) Ro IIR,,,s__ -< coeo,

2

2
2+1/2,S

t <_T,

where o,1,2 are sufficiently small (o appears in Remark 2.7--see (2.65)).
Then there exists a local solution of problem (1.1a-e) such that v, pa

T, where T is the time of local existence (see Theorem 3.1) and

(t) + O(T)dT < Cl((O) + x(O) + #(t)) clA < cl(eo + 1 + 2).

Moreover, we have that St Ha+l/2.
Proof. Take

(5.4) vo,Po

such that the assumptions of the lemma hold. Then, in view of Theorem 3.1 and
Remark 3.2 there exists a local solution of (1.1) such that

u e q W32’3/2(FtT) C(O,T;r),a/()),

where T is the time of local existence. Next, in view of Theorem 2.5, St H4/1/2

Moreover, (3.6) implies

(5.6)

where the last inequality follows from (5.2) and v,p in (5.6) are written in the
Lagrangian coordinates, so u(, t) v(x(, t), t), q(, t) pa(x(, t), t).

Integrating the equation of continuity we have

[/0/(, t) Po() exp divuu dT
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so, using (5.6), we have that /tt e Lo(0, T; L2(f))fqL2(0, T; H1 (f)), rh e Lo(0, T; H2(f))N
L2(0, T; H3(f)), and the following estimates are valid:

Writing (4.2) in the Lagrangian coordinates, we have

q +q(r/)divu 0;

so integration with respect to time yields

(5.8) q q(0) q(y)div uudT.

Using the estimate (5.6) for the local solutions we also obtain that qa belongs to
the same spaces as r/above and the following estimate for solution (5.8) holds:

(5.9)

In the above considerations we have used the imbeddings

(5.10)

and

(5.11) (fOt Ilul[,fdT)l/2o
lul,.dT <_ aT1/2

<_ cT1/2(qg(O) "4- X(0)) _< a(i -+- 2).

By repeating the proof of Lemma 4.10, we have

(5.12)

where N N1 + N2 and M is such an expression that

MdT <_ c(99(0) + X(0))
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holds in virtue of the estimates for the local solution.
Similarly, using Lemma 4.11, we have

d addsdt
([[vtt [[2

(5.13) -< (i + N)(llv.ll, + ll-II, + llvll2o,)

( Z )o,a + e N, M(r)dr M.

Ninally, Lemma 4.12 implies

d d(5.14) dt Ivu , (N)M,o, + cM]]v +
where in virtue of the equation of continuity (4.2) we have

]]Pau2o, < c]]vu2o, + c(N)M.
om (5.12)-(5.14) and the lt inequality we obtain for sufficiently small e, e,

N and f MdT that

2 2 2 ]2 20, + +

+ supf g (ft. vss-fi" vs + fi" vsft. vs + fi" vus-fi" vus) ds
JS

Using (4.104) and (4.154) in (4.195) we have

d
d- + o

<_ cP(X)X(1 / X3)y / c2(t) / c3 2]
4

H(.,0) +
2,

a,s+ H(-,0)+ 2,s
2 2/ c5(11v114, / IIp,l13, / IIR(’, t) II,s

+ IIR(" 0)- ll2 2+/,s) llll d3,

2 2 2+ [(1,11, + 1 ,, + IIR(., ) I1, + IIR(., 0) 11,]
2 2 2 2 2e(]]v]a,a + ]]Pa]3,a)+ ]]V]o,a + ]Po, + ]]v]] dT0,

]2 + IIR(’,t)- Roll 2
2

o,s, + IIR(., t) 112O,S+ H(.,0)+
+ (11113,, + IIp 1
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Integrating (5.15) with respect to t and using the fact that e, 0, el, 2 are sufficiently
small, we obtain

(t) + o(T)dT

_< (-le- + H(.,o) + N ,s
< c(e0 + e + e).

Hence, we have shown that (v,p) E AzI(t), t <_ T and (5.3) holds. We have to empha-
size that to prove the above result the standard technique of mollifiers or differences
should be used. This concludes the proof.

LEMMA 5.2. Assume that there exists a local solution to (1.1a-e), which belongs
to ]A(t),t <_ T. Let the assumptions of Lemma 2.2 be satisfied. Then there exists
5 (’,) e (0, 1) such that

(5 16) ]]p]]2 < c25,0,

where 5 @ (0,1), c3 + c(5)o, c(5) is a decreasing function of , and o is
taken om Remark 2.7.

Proof. Let (1/) fn pdx and pn p Pn. Then

(.17) llpllo, llp, o, + llp po qollo,,.

We introduce a function a solution of the problem

(5.18)
divv Pt in t,

z=0 on St.

0
1In view of Lemma 2.2 in [6] there exists e W2(Qt) {u e W(Qt) "uls 0} such

that

Multiplying (1.1a) written in the form

+. Vv + Vpfl divD(v) 0,

by , inteating the result over t, and performing inteation by pts, we obtain

L P’divOdx=L "(v)divOdx+L p(v+v. Vv)dx.

Taking (5.19) into account and using the fact that our local solution is such that
]p],n + ]v], c, we have

(.o) ll Io, < (llll + llllo,)0,

To estimate the second term in the right-hand side of (5.17) we use

(5.21) IlPa Po qoll 2 =latllPa, Po qo2
O,t
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and the relation

( 2)(5.22) lat-p0-q0=fi’D(v)’5-a H(.,t)+ -(p-pat) on St,

which follows form the boundary condition (1.1d).
From (5.21) and (5.22) we have

(5.23)

[10,s H(., t)
2 2

< (llpl o.a, + IIv c(e IIo.a,+ IIo.,)IIo.a,) + )(11 Pn, I1

where c() is a decreasing function of
Inequalities (5.17), (5.20), and (5.23) imply

(5.24)

Finally,

< cllR(., t) Roll 2,S

+ IIR(., t) Roll=O,S1"

From (5.24) and (5.25)it follows

/
Iio,., < Ilvll + up IIp,.ll,n, +4,fT

(5.26) \ t<_T

2+ c(llvll =o,, + IIR(’, t) Ro IIo,, ).

From (5.6) and Remark 2.7 (see (2.65)), the inequality (5.26) follows (5.16). This
concludes the proof.

Now we have the following.
LEMMA 5.3. Let (v,p) e A/l(t),t <_ T be a solution of the problem (1.1a-e).

Then u(, t) v(x(, t), t) 6 C(to + A, T; H4(t)) and the estimate holds

sup II vl]4,n, < c@(0) + x(O)) cA,
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where to > 0, > 0, to + < T.
Proof. Let (t) e C be such that (t) 1 for t > to + , (t) 0 for t <

to + /2, 0 < (t) < 1, ](t)l < c/A, where (d/dt). Let
Then they are solutions of the problem (see (3.1) and (5.1))

(.28)
Tu,t- #V,u- v,V, .un V,q, +u in T,
HoHDu(u)fi 0 on ST,

+qo" B(r)dr + qxo" on Sr,
uxlt=o O in,

where qx qax is treated a given function, Hog g- o(fio" g), Hg g- fi(fi-g).
The second boundary condition (5.28) follows from the following inteation by parts:

0 x(r)0r rioT(U, qa)fi afioAs (r) + u(r’)dr’ qofio" fi dT

0r [xfioV(U, qa)]dT

-I [XfioV(u, qa)fi + afiOXS. (T) ( + 1"U(T’)dr’) + qaxO,(fiO

-go.

Nex we introduce he differences: u(l (, t) u(, t) ui ((, t),((t) ((, t)
qi((, t), where w’((, t) w((, t- s), 0 < < to. herefore, we obtain ghe following
equations:

(.)

u") (.) u(.)

non((’))n Ho(n()n- n’,()’ f o S,
+o(D(uk)fi Du,(uk)#) afio (As. (T) A.

+ ((/- ’(’)/e + i0. (- ’) al + a(e
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Let us introduce the notation: A E (0, 1), to + A < T, Qx x (to + A,T),G
S x (o + ,T).

From considerations in [34] we get

Now we have to estimate the particular terms in the right-hand side of (5.30). Using
the explicit form of E, F, G1, G2 we have

(5.31) Ilu()ll4,Q <_ c(A)As.

Hence we have

.,o (toTA,T)

dt + Ilu(t)ll,ndt
+

Ilu(t) u(t s)ll z< sup
s

a,a dt + Ilu(t)ll,adt < c(A)A.
8 +A

Therefore, by imbedding theorems for Besov and Nikolskii spaces we have (see [13,
Chap. 6.1])

1B2,o (0, T) c C([0, T]) for > 5"

Hence (5.27) is shown. This concludes the proof.
Now we prove a result which guarantees a prolongation of the local solution. The

result plays a crucial role in the proof of global existence. A similar result is shown
in [33] and [35].

LEMMA 5.4. Assume that there exists a local solution in ]4(t), t <_ T. Let 1 be
a positive constant. Assume that

< 7/2e , e (0,

(t) sup (t’) < 5o, H(., 0) +
t’<t

2

<_ d, 5o, d (0, 1).
2,S

Then for sufficiently small 7, 5o, and d we have

(5.33) (t) _< 7/21, t < T.

Proof. First we have to obtain an appropriate differential inequality which enables
us to prove (5.33). Introducing the new quantity

(5.34) Ooo O0 + vdT
4,St
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and using (4.154) and (5.1)in (4.195) yields

(.a)
d
d’-cP + oo <_ cP(X)X(1 + X3)y +c(t)

", ", I[4,s-F -I-

4+1/2,S+c H(- 0)+ 2,xl

+ vllR(’, $) R(’, O)II 2 Il foo 123,S vdT
4,S

where

(5.36)

The inequality (5.35) has been proved for the local solution. Therefore, in view of
boundary conditions (4.1c), Lemmas 5.1 and 5.2, we have

IlR(,t) R(.,0) zll4/x/2,s
< II(-,t) Roll4+1/2,81 + I1(’, 0) II.+/,S(5.37)
< c(llv 2 2 t) Roll2I1,, / IIpll / IIR(.,3,"t 0,S + IIR(’, 0) RoII+I/2,s1

O(eo "- el "-
Using (5.37) with sufficiently small eo, el,e2 in (5.35) we obtain

d
-o + oo <_ cP(X)X(1 + X3)y + cbl(t)

114,s,+ +

where we have used the fact that IIH(’, 0)+ (2/Ro)ll is also small.2,S
Employing the inequality

(5.39)
II(.,t) (0) 2 II,s114,s, < IIR(-, t) Ro + IIR(’, o) Roll4,,l

4, / IIll +3,t
11 2,S1

+ (t),

and introducing the new quantity

(5.40) (I) (I)oo +
2

H(., 0) + %--

2

2,S,
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instead of (5.38), we get-+ <_ cP(X)X(1 + X3)y + c(t)c H(., 0) + 00 2,Sl

where we have used the fact that 1(t)

_
c(k(t).

Using X(t) <_ (t) + f *o(r)dr, Y(t) <_ o(t) + f o(r)dr,

o(r)dr <_ c t) +

where the last inequality follows from (5.3), the first term on the.right-hand side of
(5.41) yields

P(X)X(1 + X3)y <_ cA + c(1 + 3)(I)o + cA2,

where we have used that o(t) _< c(t). Hence, using the form of A, instead of (5.41),
we get

(5.42)
d 1
V + < eV( + Va) + e 5() +

where 51 is a constant which bounds all previous constants.
Assume that t, inf(t e [0, T] (t) > //21}. Consider (5.42) in the interval

[0, t,]. From the definition of t, we have that o(t,) //251. Then for t g t, we have

e1() + e +12(0)<1 o+d+H(., 0) +
2,t1

Let us assume that 7, 50, d axe so small that

(5.43) "1 o+d+ <
161

where 2 is a constant from the inequality

(5.44) -o(t) <_ (t).

Therefore, from (5.42) we obtain

So, knowing that (5.44) holds, we have

[1P t* < -c 2 16’1

Hence t(t,) < 0, a contradiction. This concludes the proof.
Finally, we prove the main result of this paper.
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THEOREM 5.5. Assume f 0 and relations (2.35) among the constant parameters
#,v,a,M,A,a, ISI, Ifl, fn povdx, f pdx, po of (1.1) such that the quantities

and

1/ povdx + . + po(lS2l- I.1) + (ISl- IS, I) < oB--
are sufficiently small and Ct (A/(a 1)) f pdx, o,, mint Ct, If,[
mint ]fttl, IS, 47rR,2, and (47r/3)R,3 [ft, (see also Lemmas 2.1 and 2.2 and Re-
mark 2.7).

Assume that Po e H3(fl), vo e H6(ft) are such that

(5.46) /npovo (a + b x x)dx O, /poxdx O,

where a, b are arbitrarily constant vectors, and

(5.a7) (o) < ,
where pa p(p) po qo, qo 2a/Ro, Ro ((3/4)11)x/a and 1 is su.Ociently
small.

Assume that St is described by Izl- R(, t), S (unit sphere) and the initial
boundary S So belongs to H4+1/2 and is very close to a ball, so that

where 2 is suciently small.
Assume compatibility conditions (for more explanation see Remark 5.7)

D8 0’t (ql’(v, p)ft aHfi + Po)lt=o,s 0,

Then there exists a global solution of (1.1a--e) such that (v, pa) 5 ]td(t),St e
Ha+/u, t E R and

(5.49) qa(t)

Moreover,

pv (a + b x)dx O, xdx 0,

and

1 fa pv2dx + Ct . + po(ll -I,1) + a(Istl IS, I) < B < o-
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Proof. In view of (5.47) and (5.48) from Lemma 5.1 it follows that there exists a
local solution (v,p) E ]/l(t), t <_ T, such that

(5.50) (T) + (o(T)dT <_ Cl(OI + C2),

and T is the time of local existence.
Then for t < T we have

IR(., ) Rol < IR(’, 0) Rol + IR(’, ) R(.,

_< H(-,0) +__
C2(Cgl -{- O2)

where we have used that

+ cllR(. O) Ro I],sl + c udT

IR(., t) R(., 0)1 I11 I11 I ’1/(11 + I1) and x + udT,

IVR(t)! 5 IVR(0)I +1 u(r)drl +l VU(T)dT[ C3(al + 32).

Assume that a + 32 is so small that (2.46) holds with a sufficiently small . Then
(2.47) is lid. Next, sufficient smallness of quantities in (5.45) implies sumptions of
Lemma 2.2. Thus, in view of Lemma 2.4 and Remk 2.7 there exists small 3 o
such that

(5.51) IIllo,, + IIR(-, ) II,s, <- .
Next in view of Lemma 5.2 we have that

IIpll 2 < 4 c4[c1(1 + 2)’ + c53]0,t

where 5 (0, 1), so a > 3. Therefore,

5(t) x (. +.) -0.

Then in view of Lemma 5.3 we have

(5.52) 1,

so (5.50) and (5.52)imply

(5.53) ilvll m 2

Therefore, from the boundy conditions we get that St H+/2 and

II 2
(5.54) H(., T)+

Knowing that

2,S
< 8( + -) + ()-o,

IRT Rol
_

cI2T 21
_

cgao

e (0,).
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we obtain

__< g’C8(O1 -1-- O2) -- C1000 __< O2,

where the last inequality imposes a restriction on s0 (it must be sufficiently small).
Finally, Lemma 5.4 yields

(5.56) (T)

Therefore (5.47) and (5.48) are satisfied for t T.
Now we are in a position to extend the considerations for interval IT, 2T]. In view

of (5.56) and (5.51) for t T, Remark 3.2 implies local existence of solutions for
t E IT, 2T] which is such that

IlUlla,(T,2T) + IIqII3,(T,2T) + Iq13,0,o,(T,2T) -- CX( + 3),

where on the right-hand side we generally have the same bound as for t E [0, T].
Therefore,

/T udT

__
C12(O1 -- O3),

so the change of the shape of Gt is as small as for interval [0, T]. Hence the Korn
inequalities and imbedding theorems necessary in the proof of (4.195) can be applied
with the same constants. This follows that the same inequality (4.195) holds for
t IT, 2T]. Continuing the considerations, we prove global existence. This concludes
the proof.

THEOREM 5.6 (case with P0 0). Let the assumptions of Theorem 5.5 with
Po 0 be satisfied. Then there exists a global solution

v,pa p- 2a/Ro e A(t), t E H4+l/2t E 1+
such that (5.49) holds.

The proof is the same as in Theorem 5.5.
Remark 5.7. We express explicitly the compatibility conditions formulated in

assumptions of Theorem 5.5. Let i 0. Then they take the form

(5.57)

( )Ds lD(vo)fio- (Po)- Po fio- Os.v/gf Is o, Il <- 2,

where fio 1 x x ,, i 1,2,gof a-f,go det{gof},gf is
the inverse matrix to go.

For i 1 we have

D/lD(vt(0))fio + D(vo)fit(0)-pt(O)fio-Ip(po)-Po-)fit(O)
-o,(zs,=)l,=o) Is 0, I,1-< 1,
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where vt(O),pt(O) are calculated from (1.1a, b) at t 0,

(0) o + vo (vo + vo:). ( ),
1 2[ ll X 23

o(s,)l=o O(s,)l=o + so
and coefficients of Ot(As,)lt=o depend on goaa, 0tglt=o vow. + .vo and their
derivatives with respect to s (sl, s2). Finally, the case i 2 gives

((,..(o))no + 2(,.(o))n.(o)+ (o)n..(o)- p.(O)no 2p.(o)n.(o)

where vtt(O),ptt(O),fitt(O) are calculated inductively by employing (1.1a, b) at t 0
and

o(zxs,)l=o (ozxs,)l,=o + a(o,zxs,)l,=o,o + ZXs,,(o),
2where coefficients of (02tA&)lt=o depend on O,g,alt=o vat(O). + 2v0a. vof+. vat, Otg/ It=0 and g0a.

Acknowledgment. The author is very indebted to professor V. A. Solonnikov
for very fruitful discussions during the preparation of this paper.
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Abstract. Dunn and Serrin [Arch. Rational Mech. Anal., 88 (1985), pp. 95-133] proposed
the interstitial working term and modified the system of compressible fluids based on the Korteweg
theory of capillarity. This term was introduced to overcome a difficulty: the higher-order terms of
density are not compatible with the classical theory of thermodynamics. In this paper the existence
of local solutions to the above system in the multidimensional case are discussed.

Key words. Korteweg material, linearization, local solution
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1. Introduction. In order to model the capillarity effect of materials, Korteweg
[5] formulated a constitutive equation for the Cauchy stress that includes density
gradients. Specifically, he proposed a compressible fluid model in which the "elastic"
or "equilibrium" portion of the Cauchy stress tensor T is given by

(1.1) T (-p + aAp +/[Vp[)I + 6Vp (R) Vp + "V (R) Vp,

where

p p(x, t) is the density of the fluid at the point x at time t;
Vp and/kp are the gradient and Laplacian of p with respect to x;
(a (R) b)ij aibj is the tensor product of a and b;
a, , , and - are functions of density p and temperature 0;
p p(p, ) is the pressure.

This form of T is a special example of an elastic material of grade N (N 2 in
this case). The difficulty with these higher-grade models is that they are, in general,
incompatible with conventional thermodynamics. In order to remedy this difficulty,
Dunn and Serrin [2] proposed the concept of interstitial working w. It turns out that
w must have the form

where n is the outer unit normal to the boundary of the domain in which the usual
set of integral balance laws is postulated and w is called the interstitial work flux
representing spatial interactions of longer range.

Employing this interstitial working into the balance of energy equation, they
derived the following set of equations for the conservation of mass, the balance of
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linear momentum, the balance of energy, and the Clausius-Duhem inequality:

+ v. (pu) 0,

Du
p-- V T,

(1.2)
p- =T.L-V.q+V.w,

p0-.+V.q q. V0
>0

where Df/Dt ft + u" VJ’ and we have the following:
u u(x, t) is the velocity of fluid;
0 O(x, t)(> 0) is the absolute temperagure;
e e(x, t) is the specific internal energy per unit mass;
/- r/(x, t) is the specific entropy per unit mass;
T T(x, t) is the Cauchy stress tensor;
q q(x, t) is the heat flux vector;
L=Vu.

Remark 1.1. In Dunn and Serrin "V" denotes differentiation with respect to the
particle and "grad" denotes differentiation with respect to the point. We do not make
such a distinction in this paper. They both mean the differentiation with respect to
the point.

In terms of the Helmholtz free energy - 0/, the last inequality in (1.2) can
be rewritten as

(1.3) o n0g _<0.

They consider the materials of Korteweg type in which the constitutive relations
are given by

(1.4)

e (p, 0, d, S, g, L),
/= /(p, 0, d, S, g, L),
T T(p, 0, d, S, g, L),
q= q(p, 0, d, S, g, L),
w w(p, 0, d, S, g, L),

(p, 0, d, S, g, L),

where d Vp, S ST ,2p, and g V0. Using the Clausius-Duhem inequality
(1.3), it is shown that S, g, and L drop out of-e, /, and and indeed that

(p, 0, d),
rl= -o(p, O, d),

(p, 0, d) 00(p, O, d).

Furthermore, they have proved that for a given Helmholtz free energy (p, 0, d) the
following forms of w and T,

T (_p2p + pd-Cd + P2V" Cd)I pd (R) Cd,
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are compatible with (1.3). Here p2p(p, O, O) is the pressure and @ is the "static"
portion of the interstitial work flux w. They have shown that if the material possesses
a center of symmetry, @ 0. In what follows, we consider the materials that possess
the center of symmetry. They also have observed that the classical forms of viscosity
and conductivity tensors are compatible.

In this paper we consider the existence of a unique, local, smooth solution in the
two-dimensional isothermal motion of the Korteweg type materials, where the viscous
effect is also included. The three-dimensional case can be discussed similarly. The
restriction to isothermal motions is a special one, and it would be important to remove
it in future work. In what follows, we state the assumptions on the Helmholtz free
energy and derive the system that we shall discuss. We assume that the Helmholtz
free energy is given by

(1.7) F(p) / _p(p2 / pu),

where F is a smooth function of p and y is a positive constant. This choice is to
make the terms appearing in (1.2) as simple as possible, yet reflect the effect of the
higher-order terms of p.1

With the choice of the Helmholtz free energy given in (1.7) and with A 1

the system then becomes

(1.8)
p + () + () o,
() + (u) + (,) (T) + (T),
(pv) + (puv)= + (pv2)u (T21)= + (T22)u,

where u and v are the x and y component of the velocity and

(1.9)

Tll T12 )T-
T21 T22

_p + - (p2 + p2) + ,pAp I- z 2P,P P
+V,

(1.10) p p2F’(p),

Vll(1.11) V
V21 V12)V22 --/{(Vu) + (Vu)T (Vu)I}.

Here I is the unit rank-two tensor, and superscript T denotes the transpose of a tensor.
Since we discuss the existence of a local solution, we do not need the monotonicity of
the pressure on p. Further computation simplifies the V. T term

(1.12) V. T -Vp + ypV(/kp) + V-V.

In this paper we discuss the local existence for the initial value problem of (1.8)
with the initial data given by

(1.13) (p, ,,)(, u, 0) (p0, 0, 0)(, u).

Another reasonable choice is to change the last term in (1.7) with (,/2)(p2= + p2). Although
this choice may be physically more realistic, mathematically it is more cumbersome to handle. For
example, the expression for V. T becomes more complicated; therefore, we do not discuss this case.
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We assume that the initial data satisfy

(po -/Yo, no, vo) G Hk (R2), po _> i > O,

where k > 4 and fi0 > 0 is a positive constant. Denote by II, II II, IIo the L2 norm
and by I1" Ilk the kth order Sobolev norm. Set

(1.14)
T

lll lll{r -= sup (ll (t)ll + llVp()ll + (llW(,911 + llW(,Oll dt
O<t<T

and

where w _= (p, u, v). Then the main theorem of this paper can be stated as follows.
THEOREM 1.1. For any initial data (Po, no, vo) such that the condition Po > > 0

is satisfied and (po- rio, no, vo) Hk(R2) (k > 4), where 0 > 0 is a constant, there
exists a T > 0 such that in t [0, T], the Cauchy problem (1.8) and (1.13) has a unique
solution (p, u, v) such that P-go e L([0, T]; Hk+I(R2)), (u, v) e L([0, T]; Hk(R2)),
and

(1.15) II1 111 <   llwoll + Ilpoll k+l"

Since the linearized problem of (1.8) and (1.13) is not of any classical type, the
existence of solutions is not known even for the linearized problem. We prove the
existence of solutions for the linearized problem by establishing an energy estimate
for the dual problem and then using the dual argument.

For one-dimensional problems, the effects of the higher-order derivatives of den-
sity (or in the context of elasticity, the higher-order derivatives of strain) have been
discussed extensively in phase transition problems where the pressure or the stress is
a nonmonotone function of the density or strain. In compressible fluids, Serrin [11],
[12] reconsidered the Korteweg theory and has shown the existence of steady profile
connecting two different phases. In [13] and [14], Slemrod considered the existence of
travelling wave solutions connecting two different phases. In elasticity, Andrews and
Ball [1] discussed the existence and the asymptotic behavior of solutions in the hard
loading case. Concerning the dynamical aspects of the soft loading case, Hattori and
Mischaikow [4] proved the existence of global solutions and a global compact attractor
in H1, examined the dynamic stability and the bifurcations of stationary solutions,
and demonstrated the connecting orbit problems in the semiflow. Sprekels and Zheng
[15] discussed the existence of solutions to the equations of a Ginzburg-Landau the-
ory for structural phase transition in shape memory alloys. The system that they
discussed was derived by Falk [3]. It is interesting to note that his system has the
same term as the interstitial working term, although he derived it independently. This
motivates our study of multidimensional problems.

In the one space-dimensional case, the problem is solved by introducing La-
grangian coordinates, and the system (1.8) reduces to scalar equations for the velocity
u of higher order. However, in the higher-dimensional space, this kind of reduction
is not available. The appearance of higher-order derivatives of p in the momentum
equations of (1.8) makes the system unsymmetric. Therefore, to obtain the a priori
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estimate for the linearized problem, we have repeatedly used the first equation in
(1.8).

This paper consists of four sections. The second section discusses the linearization
of (1.8), (1.13), and the a priori estimate for smooth solutions for the linearized
problem. Section 3 establishes the existence of solutions for the linearized problem
and in 4 we discuss the existence of local solutions for (1.8) and (1.13) and complete
the proof of Theorem 1.1.

2. Linearized problem and a priori estimate. The linearized equations for
the perturbation tb (, i, )) of (1.8) at a given solution w (p, u, v) can be written
as follows:

(2.1)
(Ct nt- UOx "Jr- VCy)D nt- p(i.tx 2t" i)y) nt- 1 ((I)) ]1,
(o +o +o)+’() /x ,/ (+%) +() ],
(o +o +o) +’() /x ,/xo (+) +() ].

Here j(.) (j 1, 2, 3) denote the linear functions of the arguments with the coeffi-
cients of 1 depending upon Vw and the coefficients of 2, 3 depending upon Vw and
V(u,v).

Consider the Cauchy problem of (2.1) with initial data:

(.2) (, , 0) o(, ), (,, 0) o(, ), (, , 0) o(, ).

Equations (2.1) can be rewritten in the following matrix form:

(2.3) L(w)@ _= L2(w)b =- Otb + AlOz(v + A2Oy(v + (T1 + T2)tb + (tb) ],

where A1, A2 are coefficient matrices of the first-order space derivative terms and
T1 + T2 is an operator matrix involving derivatives of order two or higher:

(2.4) AI=. p’(p)p-i u 0 A2= 0 v 0
0 0 u p(p)p-1 0 v

(o) )(2.5) Ttb -uA
V5 T2tb _#p-1 /t -f- (tzz -+-/)xy)

A + 5( +)
Let (., .) denote the L2 inner product in the (x, y) e R2. Denote I1" I1-- I1" I]0, the

corresponding norm, and I1" Ilk, the kth order Sobolev norm.
Let/0 be a constant such that the variables w (p, u, v) in the coefficients of

(2.3) satisfy

(2.6)
t,x,u

Let Co denote the constant that depends only upon 0. Then we have the following
zero-order energy estimate.
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THEOREM 2.1.
satisfies the estimate

and

The smooth solution (v e C([0,T] R2) of (2.1) and (2.2)

o(1111 + IIvll2) + IlWll + IIw, Co(llll + IIVll + II]11 +

( jo
T )(2.8) II1, []IO,T <-- Co(T) IIoll + I1,o111 + (11111 + II,AII)d

Hr h ,o, Ill’lllO,T is defined as follows:

(2.9) II1,111 ) fo
T

O,T =-- sup (11()11 + IIV()II + (IlW()II + IIV/,()II) d.
0<<T

Proof. Define the diagonal matrix

100)Ao= 0 p 0
00 p

Taking L2 inner products of (2.3) with vector A0zb gives

(2.10) (O(v, Ao(v) + ((T + T2)4,, Ao’d,) _< Co(ll]ll + IIll +
Obviously,

(2.11) (Ot(v, Ao(v) >_ 11.o112 Collll2

From the first equation in (2.1),

p( +) -(o +o + ,o)p- e() + ],

and standard integration by parts gives

(2.12)

(T’d,, Ao’d,) (A5, p(’5, + ’bu) + Vp. (’5,/,)*)
(,/,-(o + o, + ,o,,) t (,) + ] + vp. (,

> o, llvll Co- IIvll llwll Co(llll +

(2.13)
<Tb, Aob> -#<A/ + 1/2 (/ + bv),/> #<Ab + 1/2 (/v + buu), b)

_> u(llWll2 + IIV/,ll 2) CollVllllll.
Combining (2.10)-(2.13) and noticing that IlAoll I111, IIAoVll IIVll by (2,6),
we obtain the estimate (2.7) by taking e << 1.

By the Gronwall theorem, we have from (2.7) that

(2.14)

II(t)ll : + Ilvh(t)ll: <_ ec* (lloll : + IIV,aoll :) + ec(-)(ll.f(s)ll: + II.fx(s)ll)ds.
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Replacing the terms IIw(t)ll z + IIVP(t)ll on the right of (2.7) and integrating in t from
0 to T, we obtain (2.8).

To derive higher-order estimates, we denote I1" Ilk the kth-order Sobolev norm in
(x, y) E R2 and

Let/k be a constant such that the variables w (p, u, v) in the coefficients of (2.3)
satisfy

sup(p-+lD,,wl+lPtl)+lllwllllk.t,,y
ij[<2

Let Ck denote the constant that depends only upon/k. Then we have the following
kth order energy estimate.

THEOREM 2.2. For integer k > 4, the smooth solution (v C([0, T] R2) of
(2.1) and (2.2) satisfies the estimate

(2.16)
Ot(llll + IIll/x)+ I111/ + I111/

and

(2.17)
T

II1+111 _< Ck(T)(11+o11 + Ilboll+) + Ck(T) (11/112 + IIAIl+l)dt.

Proof. Applying the operator Vj to (2.3), we have

(2.18) ,(w)VJtb Vj] -IVY, ,]zb.

Taking the L2 inner product of (2.18) with AoVJtb, we obtain

(2.19)
O, llVll + IIV+*ll + IIV+’ll + (AoVtb, TVJtb)

<_ C ([tzb[[ff + [[)[[ff+, + Jill[if_, + [(a0Vzb, IVY, ,]zb)[).
First consider

(AoVtb, T1VJzb) v(/V), pV (2x + Cu)) + v{/V), VpVj (/, ))t).

From the first equation in (2.18), we have

v( +) -(o +o +0)v-e(v) v] IVY, L(o)].

Noticing that IVj, L1 (w)] is an operator of order j, hence

(AoVtb, TVtb) _> -(AV), pVIt)
-, (llV.+’ll + IIV+lll’) c (llV+’ll + II]11+)
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Since

_> OllV+Pll C(llV+Pll + II]11) (llV+ll + IIV+ll)
by the first equation in (2.3), we have

(2.20)
(AoVJ,TVJ) OllV+pll

(liVe+x6112 + IIV+16112) 0(11v+1112 + ll]111+).2
To discuss the terms involving the commutator [V] we notice the structure

of the operator L in (2.3) and the terms in IVj,] having the form

V-F(w)V+, 0 i j 1,

where F denotes smooth functions of its argument. According to Nirenberg’s inequal-
ity [7], [9], we have

(2.21) IIV-’F(w)V=+’IIo C (IVF(w)IvolIV=II_I + IIVF(w)ll-xlV%lco),
where [-co denotes the usual mimum norm of continuous functions. Consequently,

(2.22) I<A0V@, [v, L])I CollVllllll+x + ClVlcollVll.
Replacing I<A0V@, [v,L]>l in (2.19) by (2.22) and summing up for all j k,

we have

o(1111 + I1 2pll+x) + 11611+x + 11611+x
(2.3)

For k 4, Hk(R2) C C2(R2); therefore, we obtain (2.16).
Applying the Gronwall theorem to (2.16), we find

(2.24)
IIll + IIPIILx

Ck IIw0ll + IIb011+l+ II}ll + IIAIl+x + c(-)(ll]ll + IIAIl+l)da

peig I111 + I111+1 in (.16) nd integrating in t over [0, T], we obtain (2.17).
This concludes the proof of Theorem 2.2.

Remark 2.1. om (2.24) and (2.3), it is ey to obtain the corresponding esti-
mates for .. xistenee of solution for lineized problem. By the ener estimate
(2.17) and the continuation method, in order to prove the existence of the solu[ion
for the problem (2.1) and (2.2), we need only to show the existence of a solution for
f C([0, T] x R), 0 0 with the lower-order terms in (2.1) omitted.

In the following, we use the dual method [6], [10] to prove the existence of the
following problem in [0, T]"

(z.1) z 0, +0+i0+ (1 +r) ,
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(3.2) @(x,y,O) =0.

In (3.1), the operators T1, T2 are defined in (2.5), and the matrices B1, B2 are obtained
by omitting the lower-order terms of A, A2 in (2.4):

(3.3) B-- 0 0 0 B2= 0 0 0
0 0 0 0 0 0

The adjoint operator L* for (5.1) is defined by

<Lb, > <b, L*>.
To prove the existence of weak solution @ e L2([O,T],HTM) for (3.1) and (3.2), we
need to establish the energy estimates of negative order for the operator L*. Since
the operator L is not symmetric, we first derive the classical energy estimate for

(3.4) L*=-0t-B0,- B20-4- (T -f- T)b [,

(3.5) (x, y, T) O.

THEOREM 3.1. The solutions of (3.4) and (3.5) satisfy the following estimate:

( /0
T )114,(t)ll + 114,,3 (t)11] < c II.(t)ll + II(-)lld

Proof. Explicitly, the operator L* can be written as follows:

-(o, + o. + o,)$1 + /(o.& + o$) ,
(3.7) -Otb2 o%(pbl) (/X + 30xx)(p-l2) 3c%y(p-l(b3) 2,

-o& o(p&) (/ + o)(,-&) o(-) .
Taking the inner product of the second and third equations in (3.7) with 2, 3

and integrating by parts, we have

(3.8)

Then, takin.g the inner product of the second and third equations in (3.7) with
-A2,-A3 and integrating by parts, we have

(3.9)

From the first equation of (3.7),

(o + o&) -[(o +o+ o)& + 1,
and

-<p&, o4,) > -1/2Ollp-1/2&ll CIl&ll
I<p, (Ou + O,v))[ < CIl&ll;
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therefore, we obtain the following estimate from (3.9):

(.o)

Combining (3.8) and (3.10), we obtain

(3.) -o,( +v,) +-, c(+v,+).
Applying the Gronwall inequality and noticing 0 at t T, we get (3.6) in
Theorem 3.1.

Next we derive the negative norm estimate for the solution of (3.3) and (3.4). Let
A denote the operator with symbol

A() 1 + ]]2,

where (, 2) is the dual variable of (x, y). Now we e going to establish the
following estimate.

THEOaEM 3.2. For any s R, the solutions o] (3.4) and (3.5) satis the following
estimate:

(3.12) IlA(t)l2 + {A"+22,a(t)ll2 C Ih"9(t)2 + IIh9(T)2dr

Proof. Let L* denote the second d third components of the operator L*.2,3
Consider the inner product

Similar to (3.8), we have

(3.3)
C ]]A2 + + [A,,])).

Since the commutator operator [A

<A 2,3

Therefore, we obtain the following om (3.13):

(3.14)

Then consider the inner product

Similar to (3.9), we have

(.)
-alVA.$.l +,I,-nA’$.ll <,h (0A’$ + %A$)>2

c (II,$,I + v,l + I,II + I<’,, [’, ,]>*).
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From the first equation in (3.7),

and

-(pASI, AS[(0t + Oxu + 0vv)l]) >_ -1/20tllx/rfiASl II: CIIA81112
hence

(a.1)
A(0. = +0uA*a)} > 0,ilvh=&ll2

Because [h8, L,3] is an operator of order s + 1 with respect to 2,3 and an operator
of order s with respect to 1,

(3.17)

om (3.15)-(3.7), we have

(3.18)
-o, (IIVA*&2,all 2 + O, llx/-A&lll2) + lip-1/2

Combining (3.14) and (3.18), we obtain

_oq ([ias[[2 _+_ [[ 8" ) _{_

(3.19)
_< c, (IIA*&II = + IIVA*&=,all = +

Applying he Gronwall inequMity to (3.19) concludes the proof of the Theorem 3.2.
om Theorem 3.2, it is standd to derive the existence of a differeniable we

solution for (3.1) and (3.2). Since, for any lge integer k,

T(Ak],A-kb>dt

Applying (3.12) for s- -k, we have

Therefore,

T

]oo
T

]o
T

<_ C [IAk]lldt [lA-kL*&lldt.

defines a bounded linear functional of L* in the space L2([O,T],H-k(R:)). By the
Hahn-Banach extension theorem and the Riesz representation theorem, we obtain a
weak solution w E L:([O,T],H(R)) such that

(3.20) /o /o
T

(], b)dt (w, L*b)dt g e C ([0, T) x R2).
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Since differentiable weak solutions satisfy the equation in the classical sense, we
have proved the following existence theorem.

THEOREM 3.3. For all ] E C([O,T],Hk(R2)), ]1 C([O,T],Hk+I(R2)), (Vo
gk(R2) and 15o e gk+(R2), the Cauchy problem (2.1) and (2.2) has a unique solution
(v such that its norm Ill,bill is bounded and satisfies the estimate (2.17).

4. Local existence of solution for the nonlinear problem. In this section,
we shall establish the local existence of classical solutions for the Cauchy problem of
(1.8) and (1.13). Consider the initial value problem

(4.1)
p + (pu) + (p) 0,
(pu)t + (pu2 + p)x + (puv)v (T)x + (T2),
(pv)t + (puv) + (pv2 + p)v (T21) + (T22)v,

p(, u, 0) p0(, u), (, u, 0) u0(, u), v(x, , o) o(, ).

We have the following theorem.
THEOREM 4.1. For any initial data (Po, no, vo) such that the condition Po >_ > 0

is satisfied and (po- rio, no, vo) e Hk(R2) (k >_ 4), where rio > 0 is a constant, there
exists a T > 0 such that for t [0, T], the Cauchy problem (4.1) and (4.2) has a unique
solution (p, u, v) such that P-o e L([0, T]; Hk+(R2)), (u, v) e L([0, T]; Hk(R2)),
and

IIlolll GIlooll + Ilpoll/z.

Remark 4.1. The solution in Theorem 4.1 is the classical solution, i.e., all the
corresponding derivatives in (4.1) and (4.2) exist and are continuous and satisfy (4.1)
and (4.2) in the classical sense.

Remark 4.1 is shown as follows. From

(4.3) p e L (0, T; Hb), (u, v) L (0, T; Ha),

we have, by the Sobolev imbedding theorem,

(4.4) V3p L (0, T; cO), V2 (u, v) e L (0, T; cO).

From (4.1), we obtain

(4.5) O,p e L (0, T; H3), 02 (u, v) e L (0, T; H2).

Therefore,

OV3p e L(O,T; H), OtV2 (u, v) e L (0, T; H).

Combining (4.4) and (4.6), we have, by the trace theorem [8],

(4.7) V3p E C(0, T; cO), V2(u, v) e C(0, T; C).

Using (4.1) again, we have

(4.8) 02 p e L(O, T; HZ ), O (u, v) e L (0, T; H).



KORTEWEG TYPE 97

Combining (4.5) and (4.8), we have

(4.9) Otp e C(O, T; cO), Or(u, v) e C(O, T; cO).

This concludes the proof of the remark.
As in 2, denote the quasilinear differential operator in (4.1) as

t:()

(0 +0 + o)p+ p(u +) o,
(Or + uOx + vOu)u +p’(p)p-lOxp AOp #p-lAu

(o+0) o,3p

(o +o +o)+’()p-op /o -/

(o+o) o.3p

Let @0(x, y, t) be the unique bounded solution for the Cauchy problem

(4.10) Otw -/kw O, (, u, 0) o(, u).

It is readily checked that the solution 0(x, y, t) satisfies the following estimate:

(4.11) fo
T

f0
T

IlOtolldt + 11oll+2dt < C]lwoll 2

Let w 0+b, the problem (4.1) and (4.2) can be rewritten as the following Cauchy
problem for the new unknown functions b:

(4.12)
() -(0)0 ],
(,u, 0) =0,

where L(zb)b (o + zb)b + ((o + b) (o))o is the.quasilinear differential
operator of b, whose linearization has the same structure as L in 2.

Since by (4.11), ]1 E L2(O,T;Hk+I), and )2,3 E L2(O,T;Hk), it is obvious that
Theorem 4.1 is equivalent to the following.

THEOREM 4.2. Under the condition of Theorem 4.1, for any 1 L2(0, T; HTM)
and ]2,3 L2(0, T; Hk), there exists a T > 0 such that in t [0, T], the Cauchy
problem (4.12) has a unique solution (v such that/ L([0,T]; Uk+l(R2)), (/, ) E
L([0, T]; Uk(R2)), satisfying

Proof. Theorem 4.2 is proved by iteration. Let b0(x, y, t) 0 and zbj(x, y, t)
(j 1, 2,---) be defined as the unique solution of the following linear Cauchy problem:

(4.14) ()j_l)l)j ], "j(x, y, O) O.

Choose T << 1 such that (2.15) is satisfied for 0 in [0, T]. By the Sobolev
imbedding theorem [9], we need only to show that for T, 5 > 0 sufficiently small, we
have the successive solutions bj (j 1, 2,...), satisfying
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(4.16)

Assume (4.15) and (4.16) to be true for j and smaller indices. From the energy
estimate (2.17) for the linearized problem, we have

0

T

On the other hand, zbj+l -zbj satisfies the homogeneous initial data and the following
equation:

(4.17)

Applying (2.17) of the order k- 2, we have

T

(4.18)

Choosing 8 such that Ck-28 < 1/2, we obtain (4.16). This finishes the proof of Theorem
4.2.
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INSTABILITY OF PLANAR INTERFACES IN
REACTION-DIFFUSION SYSTEMS*

MASAHARU TANIGUCHI? AND YASUMASA NISHIURA$

Abstract. Instability of planar front solutions to reaction-diffusion systems in two space di-
mensions is studied. Let e denote the width of interface. Then the planar front solution---or a solution
having an internal transition layer which is flat--loses its stability when the length of interface along
the tangential direction exceeds o(el/2). The wavelength of the fastest growth is of O(e1/3) which
is inherent in the system and determined by the nonlinearity and diffusion coefficients. Complete
asymptotic characterization of these quantities as e 0 is given by the analysis of what is called the
singular dispersion relation derived from the linearized eigenvalue problem. The numerical computa-
tions also confirm that the theoretically predicted fastest growth wavy pattern actually arises from a
randomly perturbed planar front.

Key words, stability, interface, singular perturbation, reaction diffusion system

AMS subject classifications. 35B25, 35B32, 35K57

1. Introduction and main results. A variety of dissipative structures are cre-
ated by symmetry breaking through successive bifurcations. The resulting patterns
often have a separation boundary (or interfacial region) between two stable physical
or chemical states. The simplest geometry of such interfaces is planar, and there is an
extensive literature concerning "transition from planar to wavy patterns" in various
fields. Especially in solidification problems, the classical Mullins-Sekerka instability
is well known [MS], where the main issue is to determine the finite (or infinite) band
of unstable wave numbers and find the fastest growth wavelength. They solved a free
boundary problem of a Stefan type model where the interface has no thickness. How-
ever, there are several drawbacks to this approach, especially in the relation between
linearized stability and nonlinear one which is in general unclear in this framework
from a mathematical point of view (see, for instance, [St]). This motivates us to take
another approach, namely, to adopt reaction-diffusion equations where the interface
has small but positive thickness and there are no free boundaries. The phase field
model (see, for instance, [Ca]) and activator-inhibitor systems, which we treat here,
are the most well-known examples. The main objective of this paper is to describe rig-
orously the transition from planar to wavy patterns for the reaction-diffusion system
(I.I).

Since our model system (1.1) is semilinear parabolic, it has several important
advantages: global existence (in time) of solutions is easily obtained and the linearized
stability implies a nonlinear one; it is an appropriate framework to study symmetry
breaking bifurcations, since dynamical system theory can be applied to it; numerically
it is quite easy to track the behavior of interface, since location of an interface is defined
as a contour.

Despite this, there are very few rigorous results for asymptotic characterizations
of reaction-diffusion systems. The main reason is that it is not an easy task to char-
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acterize asymptotic forms as the thickness of an interface tends to zero, since both
planar solutions and eigenfunctions of the linearized eigenvalue problem have singu-
larities at the layer position in the above limit. In fact, for some problems, sharp
interface models where the width of interface equals zero, are easier to handle; see
[Ch], [HNM], and [GGI].

However, as far as the stability problem is concerned, the SLEP method origi-
nated in Nishiura and Fujii [NF] turns out to be quite useful to resolve the difficulties
mentioned above. They decomposed the linearized eigenvalue problem into singular
and nonsingular parts like the Lyapunov-Schmidt reduction in bifurcation theory and
gave an asymptotic characterization of the singular part. This method has been de-
veloped by [NM], IN1], and [N2], and enables us to control critical eigenvalues which
are crucial to the study of stability and bifurcation; see also [Sa] and [GJ].

The aim of this paper is the following. First, we derive a fundamental relation
of eigenvalues and wave numbers called the singular dispersion relation from the lin-
earized eigenvalue problem at a planar front solution; second, by using this relation,
we determine the size of instability region in wave number space; third, we character-
ize the asymptotic behavior of the fastest growth wavelength as well as the associated
eigenvalue when the width of interface tends to zero; finally, we study numerically to
what extent the linearized stability analysis is valid to predict qualitatively the final
wavy patterns starting from a perturbed planar front.

The idea of [NF] is available to resolve the first two problems. For the third
problem, however, a more subtle analysis is necessary to determine such wavelength,
because the eigenfunction which characterizes such wavelength has no useful limit
when the interface becomes sharp. It should be noted that our theory is based on the
analysis of linear stability, thus the theoretically predicted fastest growth wavelength--
namely that ofO(l/3)--is valid only when the perturbation is small. Nonetheless,
our numerical computations show that this wavelength is dominant even for largely
deformed wavy patterns (see Fig. 2).

In [OMK], they obtained interesting bifurcation curves for special activator-
inhibitor models. They could solve explicitly the linearized problem, since piecewise-
linear nonlinearity was employed. However, they did not treat the third problem
mentioned above.

The model system takes the following form:

(1.1)

Ou 1
T-- Au + -f(u, v)
Ov (, z, y) + ,- DAy + g(u, v)
Ou Ov
0--; 0 0- (t, z, y) + 0,

where ft is a rectangle in the (x, y)-plane:

(1.2) fl (0, 1) x (0, ), > O,

-, and D are positive constants, A 02/0x2 + 02/0y2, and u denotes the unit outer
normal vector. Assumptions for f and g will be stated at the end of this section. Let
H(e) (u(x, e), v(x, e)) be a one-dimensional steady state solution (see Fig. 1), which
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is defined in 2; then it is apparent that ll(e) defined by

(1.3) 11()---- ((x,y,),9(x,y,)),

{ ---9(x, y, e) = v(x, )
for any (x, y) E

is a two-dimensional stationary solution of (1.1). The location of interface/ of
defined by

(1.5) Fe _-- {(x,y) e ;fi(x,y,e) ho(9(x,y,e))}
forms a straight line through x xe, where xe denotes the layer position of 1(e) (see
Theorem 2.1).

x=O x-l

FIG. 1. The graph o.f (e).

In order to study the stability properties of 1(), we resort to the linearized
principle, namely, we determine the spectral distribution of the following linearized
eigenvalue problem at

(1.6)

where () e2A / fu(fi, 9) and 9() =- DA -t- gv(, 9). Under the hypothesis given
in Theorem 2.1 for (f,g) and parameters (T,D), our results can be summarized as
follows (more precise statements are given in 4).



102 MASAHARU TANIGUCHI AND YASUMASA NISHIURA

MAIN THEOREM. (a) (Instability result.) There exists el el(f, g, D, T) > 0
such that the following stability criterion holds for any fixed e e (0, el)"

(1.7) it(e) is stable if < w(e)e, and is unstable if > w(e)e5

where w(e) is a positive function satisfying

(1.S) limw(e) o(0)- > 0.
e.l,0

(b) (The fastest growth wavelength.) Let ,)max(e) be the eige?lvalie of (1.6)
with the largest real part. Then, for any fixed e 6 (0, el), ,\max(e) exists and is a real
number satisfying

(1.9) lira Amax(e) o(O)/T > O.

The eigenspace associated with Ama(e) is the linear hull of a finite number of eigen-
functions, each of which can be expressed by

(1.10)

where Wmo(e)(x), Zmo(e)(X) are smooth functions given by (4.6), and too(e) is some
positive integer that satisfies

(1.11)
rV4D

Here 5(e) is a positive function satisfying 5(e) -- 0 as e O, and c, c are positive
constants given by (2.11). The associated fastest growth wavelength is thus given by

(1.12) #o(e)
2 / 4D

+

Note that the principal part of the right-hand side does not depend on .
REMARK 1.1. In the case when f is a piecewise linear function, part (a) was

obtained by [OMK].
In the singular dispersion relation (see (3.25)), the term ea2 corresponding to

surface tension exerted along the tangential direction cannot be negligible, because
it becomes dominant for deformations of short wavelengths (large wave numbers).
On the other hand, from (1.11), we see that the most unstable wave number (see
(4.5)) tends to c as e $ 0. Dealing with the behavior of eigenfunctions for large
wave numbers requires a delicate analysis. Also, it should be noted that although
the eigenfunctions (Wmo(s)(X),Zmo(e)(X)) associated with Amax(e) have finite limits in
appropriate function spaces as e 0, the limit of Zmo(e)(x) turns out trivial. Hence
it is not an easy task to extract useful information to obtain (1.11) from their limits.
In general, when we deal with (1.6) in a multidimensional domain, we cannot expect
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any "useful" limits of the eigenfunctions with the largest growth rate as 6 0. This
makes a sharp contrast with one-dimensional cases, in which the configuration of the
limiting eigenfunction gives crucial information about the stability. In this paper, we
always study (1.6), keeping 6 positive, and get asymptotic expansions of eigenvalues
for a small but positive 6.

From the Main Theorem, it is anticipated that a wavy pattern having the wave-
length (1.12) starts to grow most rapidly at the first stage when a small perturbation
is added to 1(6). We check this numerically for the data:

(1.13)
D=0.4, 6=0.0075, 2.46, T 1.

In view of (A2), (A3), (2.11) and Remark 2.3, this immediately leads to

v*-l, h_(v*)--0, h0(v*)--1/2, h+(v*)-l,
J’ v* 1/4 "7 [", c=1/49’,

(I)(v/) 1/{1 + exp(-}/x/)}.

By numerical computation for the one-dimensional solution 11(6), we have

g(U, V)dx O.117.

which together with (1.8) and (2.13) implies that w(6)61/2 0.35 Hence, it follows
from the Main Theorem (a) and (1.13) that 1(6) is unstable. Substituting (1.14) into
(1.12), we see that the most unstable wavelength is equal to 1.232..., which implies
that 4-mode wavy pattern should in general be selected after a short transition period.
Here note that any mode higher than or equal to 8 does not grow from Theorem (a)
and /8 < w(6)61/2. Fig. 2 shows the evolution of a planar interface (see (1.5)) after
we add a small bump on it (a) or give a random perturbation (b). The predicted
wavelength (1.12) is seen to be dominant not only at the initial stage but also at
the final stage in which the wavy patterns are fully developed. The final two states
coincide almost exactly up to the phase shift.

On the other hand, suppose we put a pure sinusoidal perturbation of 5-mode on
the planar front as in Fig. 3(c). The solution settles down to a wavy pattern of 5-mode,
not 4-mode. This process is rather robust. In fact, even if we add a small bump to
the previous perturbation as in Fig. 3(d), the same final pattern will eventually arise
as before. This suggests the coexistence of stable wavy patterns (at least 4- and 5-
modes) for the parameter values (1.13). Nevertheless, our numerical computations
confirm that in most cases the solutions converge to the 4-mode pattern. Thus the
theoretically predicted wavy pattern seems to have quite a large basin of attraction.

Now we state the assumptions for f and g.
(A1) f, g are smooth functions of u, v defined on some open set O in R2.
(A2) The nullcline ((u, v) e O; f(u, v) 0} is sigmoidal and consists of three

curves Ci (i -, 0, +). We have Ci {(u, v) E O; u hi(v), v =/}, where hi is a
smooth function on an interval/ (i -, 0, +). Let v (respectively, ) be the minimum
(respectively, maximum) of I_ (respectively, I+), then we have h_(v) < ho(v) < h+(v)
for any v E I* (v, ).
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(al) (a2)

(bl)

(b2)

FIG. 2. The evolution of interfaces from planar ones I. (a) A small projection is added
to Fe; (b) F is perturbed randomly.
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(c2)

(c3) (dl)

(d2) (d3)

FIG. 3. The evolution of interfaces from planar ones II. (a) F is perturbed by a pure
sinusoidal perturbation; (b) a small projection is added in addition.
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fh+(v)(A3) Let J(v) =_
Jh_(v) f(s, v)ds for v e I*, then there exists v* e I* such that

J(v*)-O,J’(v*)<O.
(A4) The nullcline of g intersects transversally with that of f. Let the intersection

point on C, if it exists, be denoted by Pi (hi(vi), vi), for i -, 0, +. Then we
assume that v_ < v* < v+.

(Ah) (a) fu < 0 on R_ t.J R+, where R+ are defined by

R_ ((h_(v),v);v_ < v <_ v*}, R+-- ((h+(v), v); v* <_ v < v+};

(b) gin- < 0 < gin+;
(c) (Ia. I-a)l----/ > 0, a-I-./ < 0.

R_
f-0

FIG. 4. The nullclines of f and g.

Fig. 4 shows typical functional forms of nullclines of f and g. It should be noted
that, in order to satisfy (A1)-(Ah), it is not necessary to assume that f and g intersect
in this manner (monostable type).

The outline of this paper is as follows. In 2, we summarize several results for
the Sturm-Liouville eigenvalue problem as well as the existence of a one-dimensional
layered solution. In 3, we derive the singular dispersion relation (3.25) from the
linearized eigenvalue problem at a planar front solution ll(e). In 4, we prove the
main result Theorem 4.1, and show that the Main Theorem is a direct consequence of
this theorem.

We shall use the following notation throughout this paper:
I= (0, 1).
Ca {), C;$ >_ -a} for a > O.
B(X, Y) the set of bounded linear operators from X to Y, where X and Y are

Banach spaces.
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(’,’)L (I) --the inner product in L2 (I).
Hi(I), H-I(I) the usual Sobolev space and its dual space.
HI()(’, ")H-I(I) the inner product between the above spaces.
o, O the usual symbols of Landau.

2. Preliminaries. We start by summarizing the results of existence and stability
of monolayered equilibrium solutions to (1.1) on a finite interval I:

(2.1)
TUt --2Uxa: -t- f(u, V),

x E I, t > 0,
v Dvx + g(u, v),
u -O-v, x E OI, t > O.

We state the existence and stability of monolayered equilibrium solutions of (2.1) as
follows.

THEOREM 2.1. Assume f, g satisfy (A1)-(Ab). Then there exists D. > 0 and for
any D > D., there exists T. > 0 such that, .for any fixed (D, T)
(2.1) has a stable equilibrium solution ll() (u(x, ), v(x, )) for arbitrary e (0, o),
where o o(f,g,D, T) > 0. {[(); e (0,0)} iS bounded in C(I) C2(I). Moreover
there exists x* I and V C (I) which is a monotone decreasing function such that

u c([0, +
(2.2b) v(.,e)--.V in C(I),

as e O, where is an arbitrary positive number and

h+(V(x)) if x e [0,x*],
(2.3) U(x)

h_(Y(x)) iI x e (x*, 1].

Proof. See Appendix 1 in [NF] for the existence; see also IF], [Ito], [MIni, and
[Sa]. For the stability, see [NF] and [NM].

REMARK 2.1. D. is given in [NF, Prop. 1.1], and T. is expressed by (4.14) in

4.2.
REMARK 2.2. The location of the interracial point x x of ll(s) is defined by

(2.4) u(xe,e) ho(v(xe,e)).

The upper estimate for the distance between xe and x* is given by Ixe x* O().
(See Sakamoto [Sa] for the proof.)

In order to solve (1.6), it is important to know the spectral behavior of the
following Sturm-Liouville problem:

(2.5) L(e)[] in I, Cx 0 on OI,

where L() is a selfadjoint operator defined by

d2
(2.6) L() 2x2 + fu(u(x, ), v(x, )).

Let (i()}i>0 be the complete orthonormal set in L2(I) consisting of the eigenfunc-
tions of L(), and let (i()}i>0 be the associated eigenvalues. It is clear that {i()}
are real numbers (0() > () >_ 2() >_"" ). More precisely we have the following
results.
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PROPOSITION 2.1. (1) There exists a constant , > 0 such that

(2.7) i() < -. < 0 < o() (i 1, 2, 3,...

is satisfied for any E (0, so), where so is the same one as in Theorem 2.1. Moreover
o() =- -1o() converges to a positive constant o(0) as O.

(2) {e-1/2o()}o<<o is bounded in Lx(I), and there exist positive constants
,B such that

(2.8) Io(x,e)l <_ Be- exp(-fllx- x’lie
(3) Let ho, h and h2 be the functions defined by

forx G I.

(2.9a) ho(x, e) e- 5 Co(x, e),

(2.9b) h(x,e) -e-S fv(u(x,e), v(x,e))o(x,e),
1

(2.9c) h2(x, e) e-gu(u(x,e),v(x,e))o(x,e).

Then they satisfy

(2.10) hi(x,) ---* c(x x*) in U-i(I),

as O, where c is a positive constant (i O, 1, 2), and 5(x-x*) is Dirac’s 5-function
at x*. We have

(2.11) c -TJ’(v*), c 7(g(h+(v*), v*) g(h_(v*), v*)},
where 7 is a positive constant (see (2.13)).

Proof. See [NF], [NM], and [Sa] for the proof.
COROLLARY 2.1. Under the same notation as in Proposition 2.1, we have

(2.12a) Ihi(x,e)l <_ B- exp(-flx x*l/e .for x e I,

hi(x,)ldx <_ 2B/,(2.12b)

fori 0, 1,2. In particular, we have IIh(x,)ltH-(z) < B, for some B, B,(f,g,D) >
O.

Proof of Corollary 2.1. We obtain the conclusions from (2.8), (2.9), and the fact
that {1(e);e (0,e0)} is bounded in C(I) x C2(I). We replaced S by a larger one,
if necessary. Since hi(e) is bounded in L(I) uniformly for , it is uniformly bounded
also in U-1 (I) (i 1, 2).

REMARK 2.3. According to [NF], 7 and 0(0) in Proposition 2.1 are explicitly
given as follows. Let (/) be a monotone increasing function in C(R) defined by
the unique solution of

d2(I)
+ f((I)(r/), v*) 0, O(0) ho(v*), (I)(oo) h+(v*),

dr/2
then they are given by

-1IldO/dull  .( ),

o(0) -72J’(v*)D- g(U(x), V(x))dx.
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3. Derivation ofthe singular dispersion relation for the planar front. The
aim of this section is to derive the singular dispersion relation (3.25) of eigenvalues and
wave numbers for the planar front. Because of the singular nature of the transition
layer as s 0, we immediately encounter several difficulties to solve (1.6), namely

(1) The highest order term of (s) degenerates when e 0;
(2) () and hence the coefficients of (1.6) become discontinuous at the layer

position when s 0.
The method given by Nishiura and Fujii [NF] is one of the useful tools for resolving

these difficulties, and in fact we can derive (3.25) with the aid of this. However, we
have another subtle problem which is inherent in higher-dimensional case, namely the
dependency of eigenvalues on the wave number along the interracial direction. It turns
out that the fastest growth wave number depends on and tends to infinity when e 0.
A careful analysis is needed to describe this dependency, and will be discussed in 4.

It is convenient to use a complete orthonormal system {Ym}m__o in L2(0, ), where

--1/2 for m 0,
(3.1) Ym(Y) x/g-/2 cos(mTry/g) for m > 0.

For (w, z)in (1.6), we set

(3.2) win(x) w(x,y)Ym(y)dy, Zm(X) z(x,y)Ym(y)dy,

for x e I, (m 0, 1, 2,-.. ). Then (w,z) is expanded as follows:

(3.3) (,) ()Y(), z(,) ()Y()
vn--0 vn--0

in L2(t). This decomposes (1.6) into the following countably many eigenvalue prob-
lems for (win(x), z,(x)) and A e C with m e N:

(3.4a) (L() 2a2)Wm + fv(, )Zm eTAWm,

(a.4b) D- + ,,(a, ) -/) , + ,(a, )w, ,,,
on I, subject to the zero flux boundary conditions

(3.4c) dwm dwm
dx

(0)=0=
dx (1), dx

(0) 0 -d--x (1),

where a _-- mr/g and

(3.5)
d2

L(e) _= 2-x2 + f= (fi,

Since the planar front [() (fi, ) defined by (1.3) and (1.4) is independent of y, so
are fv(, V), g(, V), It is obvious that L() defined above is the same as (2.6).
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REMARK 3.1. If (3.4) has a solution A e C and (Wm(X),Z,(x)) (0, 0), then
(w,(x)Ym(y), Wm(X)Ym(x)) satisfies (1.6) with the same A. On the contrary, if (1.6)
has an eigenvalue e C and an eigenfunction (w,z), then (Wm(X),Zm(X)) defined
by (3.2) satisfies (3.4) with the same A for any m e N. Moreover, (win(x), Zm(X)) is
nontrivial for some m N.

This remk allows us to study (3.4) for eh m N instead of studying the
eigenvalues and eigenfunctions of (1.6). Hereaer we regd a a continuous valuable
in [0, ), although a tes only discrete values. We begin with the following fact.

PROPOSITION 3.1. Let e C be an eigenvalue of (3.4) for some e [0, ).
There ests a positive constant , A,(f,g,D), and for any given > O, there is
g(5) such that either

< -, < 0 or ]e:a + er] <
holds for any e (0, g($)).

Proof. The proof of this lemma can be cried out by the same argument in
[NF,Prop.2.1] with no essential changes. We omit the proo

It suffices to study the behavior of eigenvues in C. because the others have
nothing to do with the instability of (e). Therefore we may sume, by virtue of
Proposition 3.1, that there is a positive function () (5(e) 0 0) such that

(3.6) le2a2 + eTA < 6(e),
for y e e (0,e0), where e0 to(f, g, D, T) > 0 is the same one in Theorem 2.1.
We note that 5(e) is independent of (, A). om (3.6), we have, for small e > 0,

(3.7) I,@) 1 ,12 > 0 (i 1, 2, 3,... ),
which tees the existence of (3.9) below. We me some prepations in order
to derive the relation (3.25).

First we introduce two operators om L2(1) to L2(1) follows:

(3.Sa) R(, a, A) -gv(fi, )-gu(,)(L()__2K2
(3.8b) S(, a, A) -gu(fi, 0)(L() 22 A)2t(-Sv(, 0).),
when > 0, where

(’, ,())(n L(3.) (L@) . ,)* ,() .: .,@) (I) L(I),
i=1

and when 0, we set

(3.10) R(0,., ) (. I.)/(-I)i
v=v()

(3.10b) S(0, a, A) fvgu/fu2[
.=v(.)

Note that the right-hand sides of (3.10) e independent of (, A), d that the right-
hd side of (3.10a) is a strictly positive function on I, by virtue of (2.3) and (A5) in

1. Next we define a sesquilinear form B(, a, A)" Hi(l) x Hi(I) C follows:

(3.11) B(e, a, A)(z, z2) D (z, Z})L(i + ((R(, , A) + Da2 + A) z1, Z2)L(i),
o zl,z e H,(). We o defie opeato T@, , A) HI (I) H-I(I) by

(3.12) T(, a, A)z -Dz** + (R(, , A) + Da2 + A)z,
for z HI(l). Applying the standd L-Milgr theorem, we have the following
lemma.
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LEMMA 3.1. There exist e. > 0, 5. > 0 (0 < 6. < ./2) such that (i)-(v) hold
true .for e E [0, e.), t E [0, cx3) and )t C. which satisfy

(3.13) le2a2 + T)[ < 6..

(i) R(e, , ), S(, , ) are uniformly bounded linear operators from L2(I) to
L2(I) .for (, to, )t).

(ii) B(e, to, ) is a bounded and coercive sesquilinear form on Hi(I).
(iii) T(, to, )t) belongs to B(HI(I),H-I(I)), and has an inverse operator denoted

by g(e, , ). g(e, , ) is a uniformly bounded linear operator from H-I(I) to Hi(I)
for (e, a, A).

(iv) (3.6)

K(e, a, A) --. K(0, t,,k) in B(H-I(I),HI(I)),

as e O. The convergence is uniform for (to,)) in any compact subset of [0, 0) x Cx..
0

(v) K(e, tc,)t) depends continuously on e, analytically on Cx. and real-
analytically on t > 0 in B(H-i(I),Hi(I)), respectively, and satisfies

(3.14a)
OK

(e, to, A) -K(e, a, A)K(e, , A) eTK(e, , A)S(e, a, A)K(e, to, A)0A

(3.14b)
OK

(e, t;, ) -2 {D K(e t;, A)K(e, , ) + e2K(e, t;, ))S(e, t;, ))K(e, to, )}.Ot

Proof. We first note that [ (, ) can be regarded as a function of x, and
is uniformly bounded in C(i) x C2() for e. Using this fact, (2.7) and (3.13), we
can see the right-hand sides of (3.8), (3.10) belong to B(L2(I),L2(I)) and satisfy the
conclusions of (i). The proofs of (ii)-(v) can be carried out by the same arguments as
in [NF, Lemma 3.1] by making use of (3.13). n

We set el el (f, g, D, T) > 0 such that we have

(3.15) el < min{e.,e0}, 0 < 6(e) < 6. for any e (0,1).

We have, from (3.43),

(3.16) (L(e) 232 eTA)WIn -fv(ft,

for any fixed (0, 1). Multiplying the both sides of (3.16) by i(e), and integrating
over I, we obtain

(i(-) g-22 T)(Wm, i())L2(I) (--fv(t, +)Zm, i())L2(I).

In view of (3.7), (3.9) and (3.17), we see that it is necessary that w,(x) should have
the form:

(3.18) w, a00(e) + (L e2a2 eT,k)t (--f(fi, )Zm)
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for some c0 E C. The solvability of (3.16) will be discussed in the proof of Lemma 3.2.
In what follows we shall derive necessary conditions so that A may be an eigenvalue
of (3.4). Inserting (3.18) into (3.4b), we obtain from (3.12)

(3.19) T(e, e;, A)Zm aogu(, 9)o(e),

which yields

(3.20) Zm aoK(e, , A)(gu(, )o(e)).

Putting c- 1/2c0 and using (2.9), we rewrite (3.18) and (3.20) as follows.

(3.21a)

(3.21b)

Zm aK(e, , A)h2(e),
1

Multiplying both sides of (3.4a) by 0(e) and integrating over I, we find

(3.22) (Co(e) e22 T)(Wm, 0())L2(I (--fv(, )Z,n,, 0())L2(I).

From (3.21b), we have (win, 0(e) L2 (I) ae-1/2. Hence we see om (2.9) and (3.21a)
that (3.22) can be rewritten

(3.23) (o() 2 T) (g(e, , X)h2(e), hl())L2(I).

Without loss of generality, we can sume (win, Zm) to be nontrivial, which implies
a # 0. Thus we obtain from (3.23)

(3.24) 0(e) e2 T (g(e, g, )h2(e), h (e))L2(I).

LEMMA 3.2. For any ed e e (0, e), A e C. is an eigenvalue of (3.4) if and
only i it satisfies

(3.25) F(e, , A) 0,

where

(3.26) F(, , )) =_ 0() 2 TA H(e, , )),
(3.27) H(e, , A) _= (K(e, , A)h2(), hi (e))L2(I).

The associated eigenfunction of (3.4) is represented by (3.21). We call (3.25) the
singular dispersion relation for the planar front.

Proof. Tracing back the arguments before Lemma 3.2, we see that all what we
have to do is to show the solvability of (3.16) starting from (3.25) and (3.21a). Let us
consider the homogeneous equation:

(3.28) (L(e) 22 T,) 0 in I, Cx 0 on OI.

In the case where (3.28) has no nontrivial solution, we can solve (3.16) as follows.

(3.29) (-fv(, )Zm, 0())L2(I +
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From (3.21a) and (3.25), we have

(The first term of (3.29))--c-0().

Putting together the above two equalities, we obtain (3.18). Next we consider the case
where (3.28) has an nontrivial solution. In view of (3.7), we see that it is 0(). We
can assume that

0(e) e era 0,

which, together with (3.25) yields

H(, a, A) =0.

Hence we obtain, from (3.21a),

which equals to the orthogonality condition in (3.16). This completes the proof, ra

4. Proof of the Main Theorem. The aim of this section is to give a proof
of the Main Theorem in 1. We first state a key result Theorem 4.1 in 4.1, which
immediately leads us to the Main Theorem. In 4.2 and 4.3, we study the precise
behaviors of solutions of (3.25) with respect to a, which are the main ingredients of
4.4, where we present a proof of Theorem 4.1. More precisely, a priori bound for
solutions of (3.25) is given in 4.2. In 4.3 we parameterize the eigenvalues by a of
the form A(, a) with the aid of the standard implicit function theorem. We
also show in 4.3, that associated with sufficiently small a and sufficiently large a is

In 4.4 we characterize t() in Theorem 4.1 by (0/0) (, t()) 0.negative-valued.

Although it is just a necessary condition for a(e), it turns out to be sufficient to control
the behavior of t(e) when 0 (see (4.2)).

4.1. Asymptotic behaviors of the fastest growth wave numbers and
their eigenvalues. The following is a key result in this section.

THEOREM 4.1. Under the same assumptions for D and r as in Theorem 2.1,
there exists el el(f, g,D, T) > 0 such that (1), (2), and (3) hold true for any fixed

(0,1).
(1) L e C. as (3.25), hen a.
() Th _(), () (0 < _() < () < oo) h h=, (-,, oo)

satisfies (3.25) with some [__a(e), ()1, then < O.
(3) Let 8 be the set of (, ) satisfying (3.25) and > O, then we have

s {(, ); c [_(), ()], (, )},

where A(e, .) is a real-valued function that fulfills
(i) A(, .) e C[_a(),(e)];
(ii) A(e,_a()) 0 A(, ());
(iii) A(, a) > 0 for any e; (_.a(), ())
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with the asymptotic limits

(4.1) lim()2 0(0) and limh() 5(0) e (0, c).
e0

Moreover, let (e) be any local maximizer of (, .) in (5(e),(e)); then we have, as
0,

C1C2(4. 1
4D

(4.3) A(e, a) ---, o(O)/T uniformly for e (() M, (e) + M),

where M is any positive constant. Note that the asymptotic characterizations (4.2)
and (4.3) do not depend on the choice of a local maximizer.

Proof of Main Theorem (a). Let m(t), () be defined by

We have 0 < 2m() < (e) < o. By virtue of Remark 3.1, Lemma 3.2, and Theorem
4.1, we have the following alternative.

Case 1. If [m(), (t)] includes no positive integer, then (1.6) has no eigenvalue
whose real part is nonnegative.

Case 2. If (re(e), (e)) includes a positive integer, then (1.6) has at least one
positive real eigenvalue.

Let us put w() r-l/2()-1. We have

1
(4.4) w(e)e r(e)- t/re(e).

When < w(e)l/2, we have () < 1 from (4.4). Hence Case 1 holds in this case,
which implies that () is stable. When > w(e)el/2, we have () > 1 from (4.4).
Putting () N + (N is a positive integer; 0 < _< 1), we get

re(e) < ()/2 (N + )/2 _< N,

which implies that a positive integer N belongs to (re(e), (e)). We see that Case 2
holds, and hence 1/() turns out to be unstable in this case. vl

Proof of Main Theorem (b). From Main Theorem (a), we see that Case 2 holds
and hence 11() becomes unstable for sufficiently small . We set

for m E N V (m(e), ()). In view of Theorem 4.1, we see that there exist a finite
number of positive integers which maximize A(, .). Let us denote arbitrary one of
them by m0(e). Then A(e, .) must have at least one local maximizer in ((m0(e)-
1)r/f, (m0() / 1)r/f). Let () be any one of them. We can apply Theorem 4.1 for
this (e). Then it follows that

el0),-. < 1
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are satisfied, which yields (1.11). We note here that (1.11) holds true regardless of our
way of selecting m0(). We put

Then we have < =/e. Using (4.3), we obtain

as e 0 which, together with Ama(e) A(e, a0(e)), yields (1.9). Next, from (3.21),
we have

(4.6b)

Zmo() aK(e, n0(e), Amax())h2(),
1

Wmo() ae-o(e) + (L(e) 20()2 Tmax())’f(--fv(’, )Zno()),

where is an arbitrary constant in R. Since (Wmo(), Zmo()) satisfies (3.4), the stan-
dard bootstrap argument implies that Wmo() and Zmo() are C-functions on I. At
last we obtain (1.12) immediately from (1.11), which completes the proof of Main
Theorem (b). [3

REMARK 4.1. Using Lemma 3.1 (iv) and (2.9c), we have the limit of (4.6a) in
Hi(I) as ,[, O. Let the limit be denoted by z*. From (4.35b) and (2.9c), we obtain

1
[[the right-hand side of (4.6a)llL=(,) O(o()-),

which, together with the fact a0() -- cx as 0, implies that z* is a trivial function.
Hence it follows, from (2.9a), that Wmo(e)(x) converges to ac6(x- x*) in H-I(I) as

0.
4.2. A priori bound for eigenvalues in C.. In this subsection, we show the

uniformly boundedness of A6 C. satisfying the singular dispersion relation (3.25).
We introduce a Sturm-Liouville operator:

d2
To -D-x2 / (fugv

v=v()

subject to the zero flux boundary condition. Let {n,7}noo=0 be the complete or-
thonormal set and the eigenvalues associated with To. It is clear from (2.3) and (A.5)
in 1 that the eigenvalues are strictly positive. It follows from the general theory of the
Sturm-Liouville problems (see for instance [CH]), that {,}=0 is bounded in C()
and 7n O(n2) (as n T oo). In view of Lemma 3.1 and (3.12), we have

(4.8) K(O,a,A)5(x x*) Z ,(x*)n(x)
n=0n)-- in C(I).

In what follows we assume A, < 70 with replacing A, in Proposition 3.1 by a smaller
one, if necessary. In order to treat (3.25), the following properties of H (see (3.27))
are useful.
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(4.11a)
(4.11b)

(iii)

(4.12)

LEMMA 4.1. Under the same hypotheses of Lemma 3.1, we have (i)-(iii).
(i) H(e, , A) is a continuous and uniformly bounded function of (, , A) with

(4.9) 0(0) H(0, 0, 0) < 0.

o

(ii) H(s, , A) depends analytically on A E C,. and real analytically on > O,
respectively. We have

(4.10a)
OH

(e a, ) -I(e, a, ) eTJ(e, a, )

(4.10b)
OH

(e a, ) -2a{n I(e, a, ) + e2. g(e, a, )},

where I(e, a, A), J(e, a, A) are unifoly bounded functions ddned by

I(, ., ) (K(, ., )K(, ., )h(), h()),(1),
J(, ., ) (K(, ., )S(, ., )K(, ., )h(), h()),().

We have

(4.13)
I(O,t,A) cc H(i)(K(O,t;,A)K(O,a,A)5(x- x*),5(x- x*))H-(I)

cc. (K(O,a,A)5(x x*),K(O,a,A)5(x X*))L(I)
=(,)1
+ +n=0

Proof. Bically the above properties of H e the consequences om those of K
in Lemma 3.1 except (4.9), (4.12), and (a.x3). The inequality (4.9) comes om the
stability of () when T 1/, which w proved in [NF] (see also JiM, Thm. 2.2]).
Next, let 0 in (3.27) and (4.11a), then by virtue of (2.10), (4.8) and the property
of K(, a, )in Lemma 3.1 (iv), we obtain (4.12)and (4.13), respectively. H

Now we can give T., which appeared in 2 and 3 and in the sumptions of
Theorem 4.1. We put

T, cTc IlK(0, O,-A,)(x x*)ll 2L2(I)
(4.14) (,):

=0 (-,)

Here we used (4.8) to get the second equality of (4.14). Since A, A,(f, g, D), we can
see that T, depends only on f, g and D. Our standing sumption for T throughout
this paper is given by

(4.15) , < .
Recalling (3.15), Lemma 4.1 is valid for any (0, ). Then we have the following a
priori estimate for .
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PROPOSITION 4.1. There exists M1 M(f,g,D) > 0 such that, .for any fixed
(0, e ), we have

(4.16) IAI < M

for any eigenvalue of (3.25) in Cx..
Proof. We take the real part and imaginary parts of (3.25), respectively,

0(e) ea2 TiRA !RH(e, a, A) 0,
-rA H(e, , A) 0,

which yields

TA 0(e) e2 H(e, , A) _< I4o(e)l + IH(e, , A)I,

The conclusion follows from Proposition 2.1, Lemma 4.1 (i), and (4.15). D
REMARK 4.2. In view of the proof of Proposition 4.1, we see that the assumption

(4.15) is too strong to obtain a priori bound, in fact, it suffices to assume that T is
strictly bounded away from zero. However, as we will see in 4.3, we need the condition
(4.15) to guarantee that the eigenvalues of (3.25) in Cx. are real and hence there does
not occur the instability of Hopf type.

4.3. Parameterization of eigenvalues in C.. The objective of this subsec-
tion is to show that the distribution of eigenvalues of singular dispersion relation (3.25)
is, as a function of a, like a parabolic curve qualitatively. More precisely we shall prove
the following:

(1) Every eigenvalue in C. must be real.
(2) All the eigenvalues in C. can be parameterized by a. Especially nonnegative

ones, which interest us most, are located on an e-dependent interval [5(e), g+(e)) with

limet0 g+(e) oo (see Prop. 4.3). The eigenvalues outside of this interval, namely
those for small a or large a, are negative.

We begin with the study of the asymptotic behavior of K(e, a, A) of (3.25) for
large a,. which, combined with the term -ea2, determines the behavior of eigenvalues.

We make a decomposition defined by

(4.17) K(e, a, A) K(a) + K(e, a, A),

for e E [0,e.), > 0 and A C., where the first and the second terms are defined
below. We first introduce a sesquilinear form on H (I):

(4.18) 2:1 2B(a)(zI z2) D( x, Zx)i2(i) + Da2(zI Z2)i.(i),

for z, z2 Hi(I) and a > 0. We also define an operator given by

(4.19) T(a)z =_ -Dx2 + Da2 z,
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for z e H (I) and > 0. Since B() is bounded and coercive, by using Lax-Milgram’s
theorem again, we see that T() has an inverse operator g(), which is a bounded
linear operator from H-I(I) to HI(I). In a loose way, it can be represented by

(4.20) K(a) -Dx2 + Da2 H-I(/) --. HI(I).

The second term of (4.17) is simply defined by

(4.21)

It turns out later that K() plays a dominant role for the study of the asymptotic
behavior of K(e, , A) as T oo. The following Green’s function for T() with the
Neumann boundary condition is useful:

coshx cosh (1 )
Dsinh(4.22) G(x, , )

cosh (1 x) cosh
Dsinh

(0 < x < < 1),

(0< <x< 1).

The following lemma can be checked by a direct calculation from (4.22).
LEMMA 4.2. There are positive constants M2 M2(D) and d d(D) such that

we have

(4.24)

(4.23) max_ IG(x, 2, ’)1 < M2. -1 (; > 1),
x,EI

OG
max (x,,;) < M2

(4.25) ma_ IIG(x,-, < M2. a-3/2 (a > 1),
xi

(4.26) m IIG(, ",  )IIH (0 < M2. a-l/2 ( > 1),
x$I

1
(4.27) IIG(x*,.,)ll() =4D2a3 + o(exp(-da)) (as T ),

(; > 1),

where x* is the position of the layer (see Theorem 2.1).
Since HI(I) can be imbedded into L2(I) or L(I) continuously, we can regard

an element of B(H-I(I),HI(I)) as that of B(H-I(I),L2(I)) or B(H-I(I),L(I)).
LEMMA 4.3. There exist positive constants M M(D) (i 3, 4) such that we

have

(4.28a) IIK(n)lls(.-,(),r()) < M3. - (a > 1),

(4.28b) < M3-a-1/2 (a > 1),

and moreover, if {O(t)},>l is a set of functions satisfying IIO()IIL=(I) </’i;-1, then
we have

(4.29a) < M4-a-3 (a > 1),
(4.29b) [l(a)O(a)llL=(i) < M4-a-5/2 (a > 1).

Proof. See Appendix 1.
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(4.31)
(a.a:)
(4.32b)
hold for a > ,.

LEMMA 4.4. Let us assume in addition to the hypotheses of Lemma 3.1, that
I) < M1 is satisfied, where MI is the same one as in Proposition 4.1. Then there
exists a, a, f, g, D) > 1 such that we have

(4.30) K(e, , ) K()R(e, , )K() Io > ,,
where R(, a, ) is a bounded linear operator in L2(I). There exists M5 M(f g, D) >
0 such that

IIR(e, a, )11,((),()) < M,

liK(,/, )[]1(H-1(I),L2(I)) < Ms. a-3,

I[(, , )[lfl(H-t(I),L(I)) < Ms" --5/2,

Proof. See Appendix 2.
LEMMA 4.5. We assume that > , in addition to the hypothesis of Lemma 4.1,

where a, is the same one as in Lemma 4.4. Then there is M6 M6(f, g, D) > 0 such
that we have

(4.33)
(4.34)
(4.34b)

IH(e, , A)I < M6. a-x/,
II(, a, ,)1 < M6" -5/2,
IJ(, , A)I < M6. a-5/2.

pooy, uig (a.28) d (a.32), we obtain, om (4.17),

(4.35) IlK(e, , )ll(n-(z),z(z)) < (Ma + M). -x,
(4.35b) IlK(e, a, a)ll(H-’(),z(z)) < (M3 + M).
for a > a,. In view of (3.27), we have

(a.z) Iu(,-, )1 IIK(, , )h()ll(). IIh()ll,().
om Corolly 2.1, hi(e) is uniformly bounded in 52(I) d also in U-l(I) (i 1, 2).
Using this fact and (4.35b), we obtain (a.33) om (4.36). om (4.35) ad the
boundedness of S(e, , ) in Lemma 3.1, we have

(4.374) IlK(e, -, )h(e)llz(z) O(-),
(4.37b) IIS(e, , a)K(e, a, a)h(e)llz(z) O(-).
Ming use of (4.29b) and (4.32b), we obtain, om (4.17),

(4.3s) IIK(, , )O()ll(z) O(-/),
where {O(a)} is a set of nctions satising llO(a)[lLZ(i < a-1. Regarding eh term
of (4.37) to be O(a), we obtain from (4.37) d (4.3S)

IIK(,-, )K(, , )h()ll() O(.-/),
IIK(,-, )S(,., )K(, , )h()ll() O(.-/).

In view of the definitions of I(, a, ) and g(, a, A), we obtain (4.34) fom the above
inequalities and the uniformly boundedness of h() in L1(I).

Before studying the a-parameterization of solutions of (3.25), the following ob-
servation is bic in chacterizing the behaviors of eigenvalues in Cx,, which allows
us to consider only real solutions of (3.25).
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PROPOSITION 4.2. Let
[0, oo), then must be a real number.

Proof. See Appendix 3.
It is crucial to know the location of zero eigenvalues of (3.25) and their dependency

on e to clarify the stability properties of the planar front. In fact, there exist two zeros
of (3.25) at _() and (), where () remains finite and () --, oo as 0. It turns
out that instability occurs on the band region (_a(), ()), and outside of this interval
the associated eigenvalues become nonpositive. The smaller one __a() can be controlled
by studying the reduced problem of (3.25) (namely the limiting one of (3.25) as 0).
While;more careful analysis is needed to handle the larger one (), and hence we
will discuss it in 4.4. Nevertheless we can show that the eigenvalues of (3.25) become
negative for sufficiently large as well as for small . Moreover we can parameterize
all the nonnegative eigenvalues by , which we are most concerned with. Putting

---0 in (3.25), we have

(4.39) F0(e, a) 0,

for E [0, 1) and E [0, x), where

(4.40) F0(e, t;) _-- F(e, a, 0) 0() -et2 H(e, a, 0).

Recalling that (3.26) is well defined up to 0 from Lemma 4.1, we see from (4.40)
and the property of H in Lemma 4.1 that

OFo (O,t) 2teD. c’c IIg(o,e;,O)6(x- x*)l[,(O > O,(4.41) 0R
for > 0. On the other hand, by using (4.9) and (4.33), we have, from (4.40),

(4.42) F0(0, t)l,=o < 0, F0(0, t)l,=oo > 0.

From (4.41), (4.42) and the continuity of F0(0, .), we see that there is a unique t _a(0)
such that

(4.43) F0(0, _a(0)) 0(0) H(0, _a(0), 0) 0.

Thanks to (4.43) and (4.41), we can apply the standard implicit function theorem to
(4.39) at (e, a) (0,_a(0)) yielding a unique _a(s) with

(4.444) F0(e, _()) 0,

(4.44b) _() --. _(0) e (0, oo) (as $ 0),
(4.44c) F0(e,a) < 0 for any a [0,_()),

for any (0,). We replaced 81 in Proposition 4.2 by a smaller one, if necessary.
In view of (3.26) and (4.33), we eily see that when a O(-/2) the term _42

becomes O(1) and hence it is enough to compete with 0() to determine the sign of
the eigenvalue A. This motivates us to take the following special scaling of a given by

(4.45) +() . -,where is a constant satisfying

(4.46) o(0) < a2 < o(0)+ TA..
Replacing e by a smaller one again, we have the following two lemm.
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LEMMA 4.6. For any fixed E (0,1), it holds that

1OF
(e, a, A) < (T T, < O

for (a, A) e [0, oo) x [-,, MI) satisfying (3.6).
LEMMA 4.7. We have, .for (0,) and t [_a(),+(e)),

F(, a,A)l=_. _> 1/2A,(T--T,)> O,
F(e, a, )IA--M1 < O.

Proof of Lemma 4.6. Let us assume the contrary; then we have a sequence
((si, tci, Ai)}l such that si --, 0 as i " oo, and each (i, ai, Ai) satisfies (3.6), (3.25),
and

OF
(i A)> I(T_T,)

0A
Using (3.26) and Lemma 4.1, we rewrite it as follows:

(4.48) --T +.I(ei, ai, Ai) + eiTJ(ei, ai, Ai) E --1/2(T T,).

First, we consider the case in which {ai} is unbounded. Without loss of generality,
we can assume that ai oo as i T cx). Let i T cx) in (4.48). Then from (4.34) we
obtain the inequality: --T >_ --1/2(T--T,), which contradicts the positiveness of T. Next,
we consider the case in which {ni} is bounded. Since {)i} is bounded, we can take
a subsequence such that a --, n0 [0, oc), and A -- A0 [-A,,M]. By virtue of
Lemma 4.1 and the definition of T,, we have

Letting/T x in (4.48) and using the above inequality, we have --T+r, >_ --1/2(T--T,),
which contradicts (4.15). We complete the proof of Lemma 4.6.

Proof of Lemma 4.7. We can obtain the second inequality from the definition of
F(e, a, A) and the boundedness of H(e, a, A) in Lemma 4.1, and (4.15), if we replace
M1 by a larger one, if necessary. It is enough for us to prove the first inequality. Let
us assume the contrary, then there exists {(ei, ai)}0 such that we have ei -- 0 as
i T oo, i e [5(g’i),g+(i)) and

(4.49) F(e, , -,) < 1/2, (T T,),

which is equivalent to

(4.50) 2o(i) eiai + TA, H(ei, ai,-A,) < 1/2A,(r r,).

From < +(ei), (4.45) and (4.46), we see that the first three terms on the left-hand
side of (4.50) can be estimated from below:

(4.51) lim.{o(ei) .2 rA,}>_i + 1/2rA,.
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First we consider the case in which (hi} is not bounded. By taking a subsequence,
we can assume ni oo as i 1" oo. We let i T oo in (4.50). Then from (4.33), we have
the inequality: 1/2TA, _< 1/2 A,(T--T,), which contradicts the positiveness of T,. We next
consider the case in which {hi} is bounded. By taking a subsequence, we can assume
that ni --+ n0 > _a(0) as i 1" oo. Hence we have

limF(ei, n, -A,)

(4.52) 0(0) + TA, H(0, n0,-A,)
H(0,_(0),0)- H(0, no,-A,)+TA, (from (4.43)).

Using (4.12) and (4.14), we obtain

H(0, _a(0), 0) H(0, n0, -A,)

{-A, + D(n -5(0)2)} {7n + D_(0)2}{’)’n - Dn A,} -> --A,T,.

Putting together (4.52) and the above inequality, we obtain

lim F(e, n,-A,) _> --A,T, + TA, A,(T T,).

On the other hand, we, have from (4.49),

li--r f(,, n,, -A,) _< 1/2A,(T T,).

Combining the above two inequalities, we get A,(T--T,) _< 1/2 A,(T--T,), which contra-
dicts (4.15). Thus we complete the proof of Lemma 4.7.

PROPOSITION 4.3. For any fixed E (0,el), the statements (1) and (2) hold true,
where () and-g+(e) are given in (4.44) and (4.45), respectively.

(1) If A e (-A,,M1) satisfies (3.25) with some n [(),+()), then A < O.
(2) A unique A A(, n) satisfies (3.25) .for each n e [__a(),+(e)), where

is a real-valued function of C-class .for n and the derivative is given by

(4.53)
0A

(e, n)
OF

(e, n, (e, n))/OF (e, n, (e,o--;

Proof of Proposition 4.3. As for (1), we see, from the assumption, that n must
lie in [0,_a(e)) or [+(e), oo). In view of (4.40) and (4.44c), we have

F(e, n, 0) < 0 for any n e [0,_a(e)),

which, combined with (4.47), leads to

F(e, n, A) < 0 for any A >_ 0 and n e [0,_a(e)).

We have the desired result when n [0,_a(e)). Next we consider the case in which
n e [+(e), oo). In view of the definition of +(e), we have the inequality: (0(0)
a2 < en2, which combined with (3.26) yields

TA 0() Cn2 H(, n, A)
(4.54)

<{’0(e) a2 } H(e, n, A).
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We see that H(e, , A) converges to zero as e 0 because of (4.33) and >_ +(e),
while {0(e)- a2 } converges to a negative value 0(0)- a2. Hence we have A < 0 for
e E (0, el) and _> +(e). It suffices to prove (2). Making use of Lemmas 4.6 and
4.7, we have a unique A e (-A., M1) which satisfies (3.25) for each e [_a(e),+(e)).
Let this A be denoted by (e, to). Lemma 4.6 allows us to apply the standard im-

plicit function theorem to (3.25) around (e, n, A) (e, n, A(e, )). Since F(e, , A)
depends continuously on e and real analytically on (in particular, it is of C-class
for n), we see that A(e, n) is continuous for e, of C-class for n, and the formula (4.53)
holds.

4.4. Asymptotic characterization of the fastest growth wave number
and proof of Theorem 4.1. The singular dispersion relation (3.25) has strictly
positive solutions somewhere on the interval [_a(), +()) of Proposition 4.3. In fact,
suppose we take n e-9 (0 < <: 1/2), then we see from (3.25) and (4.33)

TA(, -) 0() s(-)2 H(,-, A(, -))

o(O) > o o).

Since A(,_a()) 0 and A(,+()) < 0, it is clear that a continuous function A(, .)
has a positive maximum in (_a(), +()).

We study in this subsection the asymptotic behaviors of the largest eigenvalue
A() of (3.25) and the associated wave number () when --. 0.

There is at least one local maximizer of A(,.) in (_a(),+()) for any fixed
( (0,1). Let () be an arbitrary one of them and let us put A() A(,()).

From the definition of () and that of A(), it follows that

(4.56a) F(e, a(), A()) 0,

(4.56b) 0_ (, a(e)) 0.

In view of Proposition 4.3, we can rewrite (4.56b) as follows:

OF
=0

or equivalently (see (4.10b)),

D. I(, a(), ()) 2. j(, (), A()) 0.

REMARK 4.3. The relation (4.56b) implies that a() is a stationary point of

A(,-). Although it is not a sufficient condition for a() to be a local maximizer, we
will be able to obtain enough information to control the asymptotic behaviors of a()
and A() as tends to zero.

PROPOSITION 4.4. ()( (__a(),+())) satisfies

limea()2 _< a2,

as
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while A(e) remains in (-,, M1) .for any e E (0, el). MI is the same constant as in
Proposition 4.1.

Proof. The boundedness of A(e) is a direct consequence of that of A(e, .) in Propo-
sition 4.3. We can obtain the first inequality from a(e) < +(e) and the definition of
+(e). It is enough to prove a(e) --, x) as e $ 0. Let us assume the contrary; then we
have a sequence (en}nc)__l such that en 0 as n T cx), {a(en)}n__l remains bounded
and that

(4.59) en D. I(en, a(e), A(e)) e2 J(e, a(e), A(en)) 0.

By taking a subsequence, we can assume

e A(en) A0 e I-A,, M],

as n T cx). In view of Lemma 4.1, we have

(4.60) D. I(e,,a(e,),A(e.)) DcTcllK(O,o, Ao)5(x > o.

Since J(en, a(en), A(en)) remains bounded, the first and the second terms of the right-
hand side of (4.59) converge to zero as n T x). (4.60) is not consistent with (4.59).
This is a contradiction and completes the proof.

We study the asymptotic behaviors of a(e) and A(e) more accurately. It turns out
that the first and the second terms of (4.58) play a dominant role in the limit of e $ 0
and " oc. Without loss of generality, we can assume a, < a(e) for e (0, el). Recall
that a, is a constant appeared in Lemma 4.4. In view of Lemma 4.5 and Proposition
4.4, we have

(4.61) e21J(e, , A)I _< e2M6;(e)-5/2 _< 0"4M6g(e) -13/2,

for e (0, ex). In order to study the second term of the right-hand side of (4.58), we
use the next lemma.

LEMMA 4.8. We assume hat 0 < e < ex, to, < to, and IAI < M. Then we have

(4.62) (K(a)h2(e),K(a)h(e))L.(i)l < MT. R-a,

where M7 MT(f, g, D) > O, and , is the same constant as in Lemma 4.4.

Proof. In view of (4.17) and the definition of I(e, a, A), we see that I(e, a, A) can
be rewritten as follows:

4

(4.63) I(e, a, A) -= E Ij(e, a, A),
j--1

where
/l(e, g, z\)----(K(a)K(a)h2(e),h(e))L.(i),
I2(e, , A) =_ (K(t)K(e, t, A)h2(e), h (e))L2(i),
I3(e, , A) =_ (K(e, , A)K(a)h2(e), h (e))LO.(i),
I4(e, t, A) ((e, n, A)(e, , A)h2(e), hi (e))L(I).
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Using (4.30) and the fact that K(a) is a selfadjoint operator, we have

x (e,
I3(, a, A) (R(, a, A)K(a)K(a)h2(), K(a)h ())L:(I),
Ia(, , ) (R(, , A)g(a)g(, , A)h2(), g(a)h ())L(I).

By virtue of Schwarz’s inequality, the estimates in Lemm 4.3 and 4.4, and Corollary
2.1, we obtain

]I2(e,a,A)] < (B.)2M3M5 a-a,
I3(,,) < (B,)2(M3)2MaM5 -4,
]Ia(e,a,A)] < (B.)2M3M4(Mh)2" -6.

Substituting these into (4.63), we obtain the desired result.
Using (4.61) and (4.62), we have, from (4.58),

(4.64) D(g(a(e))h2(), g(a(e))h ())L(I)] < Ms" a()-4,
where Ms Ms(f, g, D) > 0.

In order to obtain the ymptotic form of the le-hand side of (4.64), we need
preparations. We introduce two positive constants 1, 2 (0, 1), which will be speci-
fied later, and divide I (0, 1) into two subintervals:

(4.65a) 1 1i(8) U/ut(),
for (0,), where

(4.655) Zi() (X* 0,, X* + Ot ), /ut() X Xi(),
and

(4.66a) 1 Ii(g)I (g),
for a (a,, ), where

(4.66b) Ii(a) (x* -o: x* + -o), 2 x
Let ci (e) be defined by

(4.67) c,(e) f h,(x)dx (i 1, 2).
()

LEMMA 4.9. ci() c; as 0, (i 1, 2).
Proof. For i 1, 2, we have

(4.68) () hi(x,)dx hi(x,)dx /u() hi(x,)dx.

Since we see that the first term of the right-hand side of (4.68) converges to c from
(2.10), it suffices to show the second term converges to zero. Using (2.12), we have

[hi(x,e)[dx +
*1

[hi(y + x* )l d

01 --1

(2N/). exp(--sO-l),
which completes the proof.
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LEMMA 4.10. Under the same hypothesis as in Lemma 4.8, we have

(K(a)hi(e))(x) ci(e){G(x, x*, ) + ri(, x, a)} + pi(s, x, a)

for x e I (i 1, 2), where ri(e, ., ), pi(e, ., ) are functions with

(4.71a) IIr(, ", a)l[Lo(I) <_ M2 e (i 1, 2),
(4.71b) _< M2" exp(-fl-1) (i= 1,2).

Proof. Using (4.65a) and Green’s function of T(a), we have

(K(a)hi(e))(x) + G(x, , a)h(, e)d,
() ()

for x e I (i 1, 2). From (4.24), we have

IG(x,, a)-G(x,x*,a)l <_ M21 x* < M2e’,

for x E I and E In (e). We rewrite it as follows:

G(x, x*, a) M2e < G(x, , ) < G(x, x*, a) + M2e

for x e I and e I,(e). We multiply each side of the above inequality by hi(, )
and .integrate it over I(e), then using (4.67), we obtain

for x I and i 1, 2. The above inequality implies that, if we write

G(x,(,a)hi((,e)d( ci(){G(x,x*,a) + ri(e,x,a)},

then ri(e,., ) e C(I) satisfies (4.71a) for i= 1, 2. It suffices to show

(4.72) pi(e, x, G(x,(,a)hi((,e)d(

satisfies (4.71b). Indeed we have, from (4.69) and (4.23),

Ithe right-hand side of (4.72)1 _< M2/a*. (2B/)exp(-el-1),

Replacing M2 with a larger one, if necessary, we obtain the desired
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LEMMA 4.11. Under the same hypothesis as in Lemma 4.8, we have

(K(a)h2(e), K(a)hl (e))L.(I) 1():()
4D23

< M9 {eln-(1+02) -+- e201 -+-exp(-dtQ}

where d is the same one as in Lemma 4.2, and M9 Mg(f, g, D) > 0.
Proof. Making use of (4.70), we have

(4.74)
(K(t)h2())(x). (K(tc)hl ()) (x)

[c,(){c(, ,, ) + (,, )} +1(, x, )]
x [(){(x, x., ) + (, x, )} +(, x, )],

for x E I. Using (4.71b), we obtain

(the right-hand side of (4.74)) cl (e)c2(s)(, x, to) + p(, x, a),

for x E I, where

(e,x,) =_ {a(x,x*,) + rl(e,x,)}{a(x,x*,) + r(e, x, )}

and p(e,., ) is a function of x which satisfies

IIp(, ", )llLo(i) < M2 exp(--/eol-1).

We replaced M2 with a larger one, if necessary. It suffices to show that

( x, a)dx ()()Cl

4D2t3

is estimated by the right-hand side of (4.73). We have

where

(, ) :_ ./, [C(x, x*, )12dx,

2(,/) [ G(x,x*,l){rl(,x,l,) + r2(,x,a)}dx,
Ji()

/ G(x,x*,t){rl(,x,t) + r2(e,x,a)}dx,Y3(e, )
2()

y(, ) ](,x,)(,x,)dx.
We have, from (4.27),

1
1 (e, g)

4D23 - o(exp(-da)).
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From (4.23), (4.66b), and (4.71a), we obtain

[2(e, a)[ < 2-2 M2a-1. 2M21 4(M2)21

By a direct calculation from (4.22), we have

IG(x,x.,n)ldx O(-2 exp(-nl-0)).

Using (4.71a) and the above estimate, we obtain

13(, a)l < M2e*" O(a-2 exp(-al-u)),
14(e, a)l < (M2)2e2*.

Putting together the above estimates, we conclude (4.73) for some M9 Mg(f, g, D) >
0.

Proof of Theorem 4.1. Since we already showed (1) in Proposition 4.2, it is enough
to prove (2) and (3) with the aid of Propositions 4.1 and 4.3. Combining (4.64) and
(4.73), we have

4Da()3

M8 { s
< a(e)a + M9D ;(6)1+0 + e20 + exp(-da())}.

Multiplying both sides of the above inequality by a(e)3, we obtain

()3_ CI(e)C2()
4D

< Msa(s)-1 + MgD {s0 a(s)2-0 + e201a(e)3 + a(s)3 exp(-da(s))}.

We choose 01 and 02 appropriately in order to make the right-hand side of (4.75) tends
to zero as e 0. Let us set 01,02 such that

(4.76) 201 + 02 2 > O, 401 3 > O.

For instance, we can take 01 7/8, 02 7/8. Since we have a(e) < g+(e), we have

(4.77a)
(4.77b)

01 ;(e)2-02 < 0 (0-e-1/2)2-0. 0-2-O:e(20+Ou-2)/2

e20 N(e)3 < e20 (0"e-1/2)3 0-3e(401-3)/2,

which yield (4.2). We note that the convergence of (4.2) is uniform regardless of our
way of selecting a(e). Now we show the unique existence of a zero solution of (3.25)
which goes to c as e 0. We see that A(e) A(e, a(e)) is positive for small e. From
Proposition 4.3, we also see that A(e, g+(e)) is negative. Since A(e, .) is continuous, we
obtain at least one zero point in (a(e),g+(e)). Let g(e) be an arbitrary one of them,
then by the definition of g(e), it holds that

0),
F(e, 0) 0(e) eg(e)2 H(e, g(e)2, O.
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Using (4.33) and the above equality, we obtain (e)2 --+ 0(0) as $ 0, which implies,
for any given ’ > 0, () must lie in the interval

for small e > 0. Since the asymptotic characterization (4.2) holds for any stationary
point of A(e, .), we see that A(, .) is monotone in the above interval. Accordingly ()
is uniquely determined and satisfies (4.1). There are no other zero points of A(, .)
in [_(), +()) besides 5() and (). We see that 5() remains bounded, while ()
goes to infinity as e --+ 0. Hence it holds that 0 < 25() < () < cxa for small . Let
us take any 1() from (()-M, ()/M). Then it follows that 1() e [(),+())
for small e > 0, and 1 (e) O(-1/3) as 8" 0. We have

TA(e, (e)) 0(e) n(e)2 H(e, (), A(e, (e))).

Making use of (4.33), we see that the right-hand side of (4.78) converges to 0(0) > 0
as 0 uniformly for al (). We obtain (4.3), and this completes the proof of Theorem
4.1. D

Appendix 1 (Proof of Lemma 4.3). Let z e H(I) and h e H-(I) satisfy
the equation: T(n)z h, which is equivalent to

(1) D(z,(px)i2(i) T Da2(z,fl)L.(.) H-I(I)(h,)HI(I) V E H(I).

Substituting z for o, we obtain

2DIIz (,) +Dae Ilzll
H-I(I)(h, z)"(I) -- IH-(I)(h, z)H(I)I.

We have

(3)
1 D

IlhllH- (OIIzllm(o +

Putting (2) and (3) together, we get

In particular, we obtain

() 1

which leads to (4.28a). In order to prove (4.28b), we use the expression by Green’s
function:

z(x) G(x, , a)h({)d{

H(I)(G(x,., a), h} H-*(I),
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for x E I. Making use of the Schwarz inequality, we have

(4)
Iz(x)l IHI(I) (G(x, ., a),

<_

for x e I. We obtain (4.28b) from (4.26) and (4). Next we prove (4.29). Assume that
z Hi(I) satisfies T(a)z O(a). Multiplying both side by 2 and integrating over I,
we have

2Dilzxll2i2(x) + D2lizlli(,) (O(I),Z)L2(I)

In particular, we have

D 211zll =0 IIO( )IIL=,)IIzlIL=O,

which, combined with the assumption for O(a), yields (4.29a).
(4.29b). Expressing z by Green’s function

Finally we prove

z(x) G(x, , n)O(, a)d (x I),

and using the Schwarz inequality, we obtain

Iz(x)l

Combining (4.25) with (5), we obtain (4.29b). Thus we complete the proof.

Appendix 2 (Proof of Lemma 4.4). Since the latter half of this lemma,
namely (4.32), can be proved by using the former half and Lemma 4.3, it suffices to
show (4.30) and (4.31). By the definition of T(e, a,A) (see (3.12)), we have

(6)
T(e, a, ) T(a) + R(e, a, A)+ A

T(a) {I + Z(e, a, A)},

where I is the identity operator in L2(I), and

(7) Z(e, a, A) K(a) {R(, a, A) + A}.

In view of Lemma 3.1 and Proposition 4.1, we see that {R(e, a, A) + A} is uniformly
bounded in B(L2(I),L2(I)). Since the norm of K(a) in B(L2(I),L2(I)) is O(a-1)
from (4.28a), there exists a, a, (f, g, D) such that

(8) IIZ( , < 5

holds for any a > a.. Since B(L2(I), L2(I)) is a Banach space, we see that

W(, , ) E(-1)JZ(, a, A)J
j=O
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exists in B(L2(I),L2(I)) and its norm is less than 2. We have

(9)

Using (9), we rewrite (6) as

K(e, a, A) {I Z(e, a, A)W(e, a, A)}K(a).

In view of (4.17) and the above equality, we obtain

g(, a, A) -Z(, a, A)W(, a, A)g(a),

which, combined with (7), implies that (4.30) holds true, if we set

(10) R(, a, A) -{n(, a, A)+ A}W(, a, A).

We see that both {n(, a, )+ } and W(, a, A) are uniformly bounded operators in
L:(I) for (, a, A), and so is R(, a, A). We complete the proof of Lemma 4.4. [3

Appendix 3 (Proof of Proposition 4.2). We prove Proposition 4.2 by contra-
diction. Let us assume that there exists {(en, an, An)}n__l such that each (en, an, An)
satisfies (3.25) and

(11) en--0 as n lc, An0 for any n.

By virtue of Proposition 4.1, we may suppose, without loss of generality, that An
A0 E CA. as n T oc. We rewrite the right-hand side of (3.26) by

(12) F(, a, A) 0() a2 TA X(, a, A) i}A{r Y(e, a, A)},

where X, Y are real-valued functions defined by

(13) H(e, a, A) X(s, a, A) iAY(e, a, ).

Since (en, an,)m) satisfies (3.25) and (11), we obtain

(14a)
(14b)

o,
T Y(n, an, An) O.

It is apparent from (11) that (14b) is equivalent to

(15)

We have two cases A0 : 0 and A0 0. First we consider the case A0 0. We can
assume that {an} remains bounded, because if not, we see that the left-hand side of
(15) converges to zero by virtue of (4.33), while the right-hand side of (15) converges
to TA0 ? 0, which is a contradiction. Hence we can assume an -* no as n T oc
without loss of generality. It follows from Lemma 4.1 that

lim Y(en, an, An)
nToe

---H(0, n0, Ao) E (3’n + D---’oi + (Ao)2"
n--O
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By the definition of T. and (4.15), we see that the right-hand side of the above equality
is less than T, which contradicts (14b) as n T oc.

Next we consider the case A0 0. We make some preparations under the
hypotheses of Lemma 3.1. From now on, all function spaces are considered as those
of real functions. Let P(, , A) and Q(, , A) be the operators defined by

(16) R(, ,, A) P(e, a, A) + ieTAQ(e, a, A).

We introduce a bilinear form from H (I) x H (I) to ]R defined by

B(, a, A)(z, z2) D(z, z2)L2<I) + ((P(, , ) + Da2 + A)z, Z2)L2<I),

for z,z2 e H(I). We also define an operator from HI(I) to H-(I) by

(17) T(e, a, A)z -zx + (P(e, a, A) + Da2 + A)z,

for z E H1 (I). Then we have
LEMMA i.1. Under the same hypotheses of Lemma 3.1, we have (i)-(v).
(i) Both P(, , A) and Q(, , A) are uniformly bounded linear operators from

L2 (I) to L2 (I) for (, , ).
(ii) B(e,a,A) is a bounded and coercive sesquilinear ]orm on Ht(I).
(iii) T(e, , ) belongs to B(Ht(I),H-(I)), and has an inverse operator denoted

by g(e, , ). g(e, to, A) is a uniformly bounded linear operator from H-I(I) to H(I)

(iv) (a.6)

K(e, ,, A) --, K(0, ,, A) in B(H-(I), H(I)),

as e O. The convergence is uniform for (, ) in any compact subset of [0, oo) x Cn..
(v) We have, for , > .,

(18) I(K(e,a,A)K(,a,A)h2(),hl(e))L(I)I < M6. a-5/2,

where M6, t. are the same constants in Lemma 4.5.
Proof. By virtue of (3.7), we can obtain (i) by a simple calculation from (3.8a)

and (16). The proofs of (ii), (iii), and (iv) can be carried out by the same argument
as in [NF, Lemma 3.1]. A similar argument used to obtain (4.34a) is also valid to get
(v).

From the definitions of T(e, ,, A) and T(e, a, A), we have

(19)
T(e, a, A) T(e, ,, A) + iT}A{I + eTQ(, ,, A)}

T(, a, A){I / i}AZ(s, , A)},

where

(20) Z(, a, A) K(e, a, A){I + sTQ(e, , A)}.



INSTABILITY OF PLANAR INTERFACES 133

LEMMA A.2. Under the same hypotheses of Lemma 3.1, there exists
u,(f, g, D) such that it holds .for Iikl < , that

(21) K(, a, A) {I iAZ(, , A)}{I (A)2W(, a, A)}K(, a, A),

where W(, , A) is a unifoly bounded linear operator in L2(I) for (, , A).
Proof. In view of (20) and Lemma A.1, we see that Z(, a, A) is uniformly bounded

in B(L2(I), L2(I)) for (, a, A). Since B(L2(I), L2(I)) is a Sanach space, we have

() {I + i2(, ,)}- {-i(,,)},
n0

for small A. We set

(, a,A)= (-1)n(A)2{(e, a, A)}2n+2.
n=O

Then we see that W(, a, A) is uniformly bounded for (, a, A) in B(L2(I), L2(I)) and
that kom (22),

(2) {I +z(,,)}- {I iz(,, )}{I ()w(,, )}
in (L(0, L()). It ronow om (19) that

(2a) K(,.,) { + iaZ(,.,)}-IK(,.,).
Combining (23) and (24), we obtain the desired result.
om the definition of Y(e, , ),

Y(.,., .)
(2) -H(.,..,.)/.

-(K(., .., .)h:(.), h(.))z.()/.,
which, combined with (21) and (20), leads to

(26) (z(,., ){- ()W(,.,}K(,.,)h(),hx())(.)

(K(e, a, A)K(e, a, A)h2(e), hi ())L2(I) ......... + O(n) +

If {an } is unbounded, we may sume that an n T by taking a subsequence.
Using Lemma A.l.(v) and the sumption An 0, we see that the right-hand side
of (26) converges to zero, which contradicts (14b). Hence {-n} must remain bounded.
So we may sume that we have an a0 [0,) and An A0 C. n T
Letting n T in (26), it follows om Lemma i.1 (iv) and (4.8) that

lim Y(e, a, A)n

(n + Da + A0)2 < ’
which contradicts (14b) when n T . We complete the proof of Proposition 4.2.
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TIKHONOV REGULARIZATION FOR FINITELY
AND INFINITELY SMOOTHING OPERATORS*

B. A. MAIRt

Abstract. The main goal of this paper is to obtain a unified theory of Tikhonov regular-
ization, incorporating explicit asymptotic rates of convergence based on a priori assumptions, which
cover both the finitely and infinitely smoothing forward operators, and to extend a classic result of
Natterer to this more general framework. More specifically, it is shown that, for a large class of
operators, as in the finitely smoothing case obtained by Natterer, the stabilizing functional involved
in the minimization process can be determined by larger norms over much smaller classes than those
determined by the a priori assumption for the true solution.

Key words. Tikhonov regularization, Hilbert scales, spectral measure

AMS subject classifications. 45L05, 35R25

1. Introduction. The method of Tikhonov regularization is one of the most
widely applied methods for solving ill-posed inverse problems that arise in a wide
variety of problems in science and engineering. As is well known, the main difficulty in
applying this method occurs in the choice of a regularizing parameter, usually denoted
by a, depending on the error in the data. Both a priori and a posteriori methods of
choosing a have been developed, mainly for the case of finitely smoothing forward
operators (cf. [12] and [23]). However, many problems in partial differential equations
(cf. [3], [6], [7], [10], [11], [13]-[15], [25]-[27]), linear systems theory (cf. [10] and
[18]), statistics (cf. [8]), optics (cf. [4]), and astronomy (cf. [9]), just to mention a few
areas, give rise to linear ill-posed problems determined by infinitely smoothing forward
operators. The main goal of this paper is to obtain a unified theory, incorporating
explicit asymptotic rates of convergence based on a priori assumptions, which covers
both the finitely and infinitely smoothing forward operators. We also show that, as
in the finitely smoothing case (cf. [22]), the stabilizing functional involved in the
minimization process can be determined by larger norms over much smaller classes
than those determined by the a priori assumption for the true solution. In other
words, it certainly does no harm to "over-regularize." In fact, the application of over-
regularization to severely ill-posed inverse heat conduction problems (cf. [3], [15], [26],
and [27]) have greatly improved the accuracy of the resulting numerical algorithms.

More specifically, we consider the problem of finding an approximate solution to
an operator equation of the form

T(x) =y,

based on inaccurate data y. Although the results in 2 cover a more general case,
for this discussion assume that T is injective with dense range, and that the data
satisfies IlY -Yll -< . As in [19]-[23] and [27], consider approximations obtained by
minimizing

IITx y,ll 2 + c211Bxll 2

*Received by the editors October 8, 1992; accepted for publication March 15, 1993. This work
was partially supported by National Science Foundation grant DMS 9006308.

tDepartment of Mathematics, University of Florida, Gainesville, Florida 32611.
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over the domain of a suitable constraint operator B, where it is assumed that the true
solution x0 satisfies, IIBxoll <_ E.

By using techniques in [20], [21], and [26] and a condition describing the degree of
ill-posedness of quite general T in terms of the spectral measure of B’B, it is shown
in 2 that the Tikhonov regularized solution xa, satisfies

( )Ilxa, x011 O V/-l(i2) if a ,
where is a convex function which quantifies the ill-posedness of the operator T.

This generalizes the classical result (cf. [2], [22], and [23]) for finitely smoothing
operators, in which -l(t) is simply a power of t. For the general case considered here,
there is no closed form for -l(t). Explicit convergence rates can only be obtained
from estimates of the behavior of -1 (t) as t --+ 0. The surprising fact is that this basic
result enables us to generalize a well-known result of Natterer [22], thus providing a
new result for an important class of inverse problems (see 5).

In 3, we specialize this result to the case when the approximation is taking place
in a Hilbert scale, {X8 s e ]}, to obtain the usual result (cf. [2], [22], and [23])
for finitely smoothing T and a logarithmic rate of convergence for a general class of
infinitely smoothing operators (cf. [2] and [26]).

To demonstrate the significance of the general result, 4 applies it to problems of
deconvolution and inversion of dilationally invariant transforms (cf. [1], [2], [4], [5],
[7]-[9], [13]-[15], and [24]). There we obtain a convergence rate for a very general class
of deconvolution problems that is faster than the classical one obtained in [2] for the
special case considered there.

In the final section we show that for a very general class of operators, if approx-
imation is taking place in a Hilbert scale and it is assumed that the true solution
xo e Xq, then the unique minimizer of IITx- y,5112 T a211xll2p over x e Xp, for any
p _> q, and an appropriate choice of a, produces an approximation of x0 with the
same rate of convergence as when p q. This generalizes the result of Natterer for
finitely smoothing operators obtained in [22]. It is interesting to note that the proof
here is very different from that in [22]. It simply uses the basic result in 2 and
denseness properties of the spaces in a Hilbert scale, avoiding the very involved use of
interpolation theorems present in the classical proof.

2. A general error estimate for Tikhonov regularization. Let X, Y be
Hilbert spaces and T X ----, Y be a bounded, linear operator with nonclosed range
7(T). Then the Moore-Penrose inverse Tt is not continuous and the problem of
solving the equation

Tx y

is ill-posed, even if y 6 T(T).
In this section we use basic properties of Moore-Penrose inverses contained in [2],

[17], [20]. Here, we consider the problem of obtaining an approximate "solution" to
the equation

(2.1) Tx yo,

based on inaccurate data y, where y0 is not even assumed to be in 7Z(T).
We assume y0 is in the domain, T)(Tt), of the Moore-Penrose inverse T, which

is 7Z(T) + 7Z(T) +/-.
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For any such y0, let

(2.2) x0 Tt(yo).

This is the so-called best approximate solution to (2.1) and is the unique classical
solution if T is injective and y0 E 7(T).

Since y0 is usually not known, we need to obtain an approximation to x0 based
on the approximate data y.

Let Q denote the orthogonal projection of Y onto 7(T) and assume that the
appproximate data y satisfies

(2.3) IIQ(y yo)JJ < 5.

To construct a regularized solution of (2.1), we need a "constraint operator" B
that quantifies the smoothness constraints imposed on our solution x0 (cf. [2], [19]-
[21], and [27]).

DEFINITION 2.1. Let B be a closed, densely defined operator on X, mapping its
domain V c X onto a Hilbert space Z. For each a and i > 0, define the quadratic
functional La, on V by

La,(x) IITx yll + =llBxll=.
Then we seek an approximation to x0 obtained by minimizing La, over V.
To guarantee the existence of a unique minimizer, we assume the following.
Assumption 2.2. There exists f > 0 such that IITxll >_ llx]l for all x E Af(B).
Then, by reformulating the minimization as a least squares problem, the following

is shown in [20].
THEOREM 2.3. La, has a unique minimizer xa, V. Furthermore, xa,

Z)(B*B) and is the unique solution of (T*T + (2B*B)xa, T*y.
Now, to obtain explicit convergence rates for the error in approximating x0 by

xa,, assume the following.
Assumption 2.4. T is injective.
The general case can be reduced to this, by considering the restriction of T to

Af(T)+/-

DEFINITION 2.5. For each e > 0, (e) sup{llxl] x e V, IITxll <_ e, IIBxl] <_ 1).
THEOREM 2.6. Under Assumption 2.4, for any > O, I]xa,- xoll <

v/(l) + IISoll
Proof. We need to go back to the characterization of x, as the result of a least

squares method. As in [20], for a > 0 define ga" Y ---, Y Z by ga(x) [Tx, (Bx],
where [y, z] represents the generic element in Y @ Z, and the inner product on this
space is: ([y, z], [y’,z’])ycz (y,y’)y +(z,z’)z. Then x, K([y,, 0]), where K is
the Moore-Penrose inverse of Ka. Hence xa, is characterized as the unique solution
in V of the equation

Kax,,, Q.([y,, 0]),

where Qa is the projection of Y onto n(K) T(K).
Now, for any x V,

([y Qy,, 0], K,x)yez (y, Qy,, Tx)y O,



138 B.A. MAIR

since y -Qy E T(T) +/-. Hence,

Now, by (2.4),

Qa[y, 0] [Qy, 01 e 7(Ka)+/-.

Kaxo -[Qy, 0] Ka(xo x,) + K,xa, -[Qy, 0]
K.(xo x,) + Q.[y, 0] [Qy, 0].

Hence by (2.5) and (2.3),

Thus,

IIK.(xo- x,)ll 2 _< IIKxo- [Qy, 01112
IITxo QYII2 + 211Bxol12
IlQyo QyIJu + aUllBxoJl2

_< 2 / liBoll.
IIT(xo x.,)ll _< v/2 + a2llBxoll2,

IIB(xo-=.,)11 _< + IIBxoll.
The result follows from Definition 2.5.

Now, to obtain an a priori error estimate, assume that the true solution x0 satisfies
the following.

Assumption 2.7. [IBx0[I _< E, for some fixed constant E.
Then, from Theorem 2.6 we obtain the following.
THEOREM 2.8. Let (5) 5/E, and define x x(),. Then

I1- xoll < E’

This is a slight improvement and generalization of Theorem 3.4 in [2]. To make
this result more applicable we need to obtain an estimate of v(e). To do this, assume
the following (cf. [26]).

Assumption 2.9. There exists a continuous function [0, oo) -+ [0, oc) such
that: (i) the map s -+ (s)/s is increasing on (0,

(ii) (s) 0 if and only if s 0;
(iii) is convex on an interval containing {l/A" A is in the spectrum of B’B};
(iv) there exists a constant m > 0 such that

fm2 dA4,(A) <_ IITxll 2 for all x T)(S*S),

where A4 is the spectral measure of B*B.
THEOREM 2.10. Assuming 2.9, v() _< V/-l(2/m2) for all > O.
Proof. Let x I)(B*B). Then, by Jensen’s inequality and Assumption 2.9,

v ilUxll= v f A d./V[=,=(A) ]lBx[I 2

< IITll 2
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Now, the graph of the restriction of B to T)(B*B) is dense in the graph of B. Hence,
the above inequality is valid for x E V.

Now, if IIBxll _< 1, then Ilxll <_ Ilxll/llBxll; so

 (llxll 2) <  (llxll2/llBxll 2) IITxll 2
Ilxll2 -Ilxll2/llSxll2 m211xl12"

Hence (llxll 2) < [ITxll2/m2, The proof is completed by noting that -1 exists and
is increasing.

THEOREM 2.11. Under Assumptions 2.4, 2.7, and 2.9,

]lxe xo]] <_ x/S .V-1 m2E2
0 V/V-I((2)

3. Approximation in Hilbert scales. In this section we consider the fre-
quently used constraint of assuming that the best approximate solution is in some
fixed ball in a Hilbert scale. The case when T is a finitely smoothing operator has
been well studied (cf. [2], [22], and [23], and the references therein). Here we obtain
the classical result as a special case of Theorem 2.11 and obtain a new result applicable
to a general class of infinitely smoothing operators when the Hilbert scale is viewed
as Sobolev spaces.

Assumption 3.1. Assume that (X8 s E R} is a Hilbert scale generated by a
selfadjoint, densely defined, unbounded operator L, on X, with IILxll >_ Ilxll, for all
x /)(L). As usual, X0 X, and Xs 7)(L).

The usual method of regularization by smoothing in a Sobolev space is obtained
from the general case by setting V Z Xp, for some p > 0, and B to be the
identity on Xv.

Then, the approximation xa, obtained in Theorem 2.3 is the unique minimizer
of the quadratic functional

where I1" lip denotes the norm in Xp. Now, under these assumptions, it is easy to see
that T)(B*B) X2v and B*B L2v. Hence, by Theorem 2.3, we obtain

(T*T + a2L2p)x, T*y.

Now, consider the classical choice of c(5) 5/E (so x,, x), where it is
assumed that the solution x0 satisfies

II 011p E.

To obtain an estimate on the rate of convergence of x to x0, it is often assumed
that there exist constants a, m, M > 0, such that

mllxll-a IITxll MIIxll-a for all x e X.

To fit this into the framework of Assumption 2.9, let be the spectral measure
of L. Then the spectral measure of B*B L2p is given by

(3.2) djA(A) d()tl/2p).

We now deduce the classical convergence rate (cf. [2] and [22]) from our results in 2.



140 B.A. MAIR

THEOrtEM 3.2. If mllxll_a <_ IITxll .for all x E X2v, then

Hence, setting o(s) sl+a/v, we see that Assumption 2.9 is satisfied.
Clearly, qo-l(s) sp/(a+P) and the result follows from Theorem 2.11.
To deal with a general class of infinitely smoothing operators, we need to inves-

tigate properties of functions of the following form.
DEFINITION 3.3. For each/,- > 0, define the function

Cf,7(s) sexp -- if s>0 and ,7(0)=0.

Then it is easy to see what follows in Lemma 3.4.
LEMMA 3.4.
(i) The map s (1/s),7(s) is increasing on (0, cx3).
(ii) Cf,7(s) 0 == s 0.
(iii) If fl > 1, then ,7 is convex on [0,1].
LEMMA 3.5. Cf-,(s) (/(log 1/s))1/7 (1 + o(1)) as s --, 0+.

-1Proof. Let t Cf,7(s). Then

log s log t
t7

Hence

where

t (log t-logs logs
1/7

log t
log t ft-7

-1

-1

--1/7

-1

by (3.3)

-1/7

Hence G(s) --, 1 as s - 0+.
This result (not the proof) is similar to one in [26].
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THEOREM 3.6. If there exist positive constants a, m, and b such that

m2 J exp(-bAa) dz,z(A)< IITwll = for all x E X2p,

then

max{b, 1} )p/aIIx-xoll < /E
2log(mE/e)

Proof. From (3.2) it is clear that

for all x X2p,

where (s) s exp (- max(b, 1}s-a/2v).
Hence, by using Lemma 3.4, it is clear that Assumption 2.9 is satisfied.
It is interesting to note that this convergence rate is obtained for such a wide

class of problems by using the classical choice of ((5) 5/E, contrary to results in [2,
10.2], which indicate a different choice for the particular example considered there.

4. Applications. It is well known that inverse problems for the heat equation
have important applications in science and engineering. The basic, so-called Inverse
Heat Conduction Problem (cf. [a]) gives rise to the problem of solving convolution
equations with kernels whose Fourier transforms decrease exponentially fast (cf. [6],
[7], and [15]). Our result applies easily to a general class of such deconvolution prob-
lems.

For a given kernel K L2(IR), consider the problem of solving the convolution
equation

(4.1) K f g

for f, g L2(R), given approximate data g L2(R), satisfying

Assumption 4.1.
(i) There exist constants a, b, c > 0 such that the Fourier transform ofK satisfies

I/()1 > ce-1"1 or a e a.
(ii) For some p > 0, the true solution lies in a fixed ball in the usual Sobolev

space Hv, i.e., IlfllH < E.
THEOREM 4.2. Assuming (4.2) and Assumption 4.1, let f satisfy

K(s)]()
i/()1= + (5/E)2(1 + s2)p

(s).

Tnen IIf fll= O([lg(1/5)]-P/a)
Proof. Consider X Y L2(IR), Tf K f, Sf f- f", and L $1/9.
Then Hv P(Lv) Xv, and we are in the framework of 3.
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Now, IITfll f I/(x/Au -1)12d-,I,I()), where : is the spectral measure
of L.

Hence, by Assumption 4.1,

IITflI > e2 exp(-2bAa) d:y,y(A).

The result follows from Theorem 3.6, and the representation of f (T*T + (82
/E2)L2p)-T*g.

The classical inverse problem of determining initial temperature from later tem-
perature readings (cf. [10]-[14] and [25]) also gives rise to an ill-posed problem with
an exponential rate of decrease of its spectral information. Hence, the analysis in [14],
which provided only partially explicit convergence rates, can now be modified using
Theorem 3.6 in order to obtain a slightly different numerical scheme with completely
explicit error bounds.

Many inverse problems in optics and astronomy (cf. [4] and [9]) can be modeled,
at least approximately, by the problem of solving an integral equation of the type

(4.3) k(st)f(t)dt g(s),

given approximate data g.
As in [1] and [4], (4.3) is equivalent to solving the convolution equation

(4.4) G g F,

where

(4.5) g(t) e-tk(e-’), F(t)

Thus an approximation to f can be obtained from the regularized solution of
(4.4) if K e L2(R). Error estimates can be obtained from the classical Theorem 3.2
or from Theorem 3.6.

To state our results here, we will find it useful to introduce the following (cf. [24]).
DEFINITION 4.3.
(i) For any f: [0, oo) --. R, define Jf(t)= tf(t).
(ii) Define the measure t on [0, oo) by d#(t) dt/t.
(iii) Ux (#) denotes the set of all absolutely continuous functions f on [0, oo) such

that f(0) 0 and f L2(#), with the usual norm.
As noted in [24], # is the Hair measure of the group [0, oo) under multiplication

(cf. is]).
Now, consider the problem of Laplace transform inversion. An application of

Theorem 3.6 in the special case of p 1 gives the following (cf. [24]).
THEOREM 4.4. Suppose the data g satisfies IlJ(g -g)llL(z) <- 5, and the true

solution, f, to the equation,

o
e-’tf(t)dt g(s),

satisfies IIJfllH(.) < E. Lt f(t) F(logt), where

r(1 -i) ()(s)
(Isinn=Sl + (1 )
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and G6(t) e-tg6(e-t). Then IlY filL2(,) 0([log(1/6)]-1).
Proof. As in [1], Ik(s)l u rs/I sin hrsl _> ce-. The result follows by applying

Theorem 3.6 with p a 1.
This same error estimate was obtained in [1].
Now, consider problem (4.3) with the kernel k(t) J(t)/t, where J is the

usual Bessel function (cf. [4]). Using formul in [15], it is ey to see that the Fourier
transform of the corresponding kernel K given by (4.5) satisfies

8I(s)l /a(1 + s2)(9 + s2)t/2"
Hence this problem is not ill-posed the Laplace-inversion problem and can be
solved by the clinical result for finitely smoothing operators. In fct, under the same
conditions in Theorem 4.4, the convergence rate for this problem is O (52/)

5. Higher-order regulization. This section combines the general framework
in 2 with the bic sumptions for approximation in Hilbert scales (3) to extend the
result in [22] to a more general framework that includes both the finitely and infinitely
smoothing operators. Also, the method of proof differs from that in [22] even for the
special ce considered there.

More specifically, sume (2.3) and Assumptions 2.4 and 3.1. The a priori -sumption on the solution x0 is the following.
Assumption 5.1. There exists q > 0 such that xo Xq and IIx011q E for some

constant E.
The degree of ill-posedness of T is charterized by the following.
Assumption 5.2. There exists a decreeing, continuous function w (0, ]

[0, ) such that
(i) w(s) O s ;
(ii) the function s s w(s-) is convex on [0, 1] for each 7 > 0;
(iii) there exist constants m, M > 0, and 0 < p 1 such that

/w d, [[Tx[[ 2 M2 .[ wP d, for all x X2q,m2

where is the spectral meure of L.
DEFINITION 5.3. For each r > 0, define the function [0,) [0, ) by

Since the spectral meure, (r), of L2r is given by d()(A) d(A1/u), then
from Assumption 5.2, we see that the following holds.

Remark 5.4. For eh r > 0, the function r satisfies Assumption 2.9 with B*B
L2r.

The following technical result will be used in the subsequent theorem to compare
the convergence rates of two components of the total error.

LEMMA 5.5. For any p q > 0 and constant C > O,

(ii) I(cA[(A)] (p-q)/q) O([(A)]P/q), as A 0+.
Proof. Let C m(1, C). Then for any t > 0, since w is decreeing, Cp(t)

Ctw(t-/2p) Ctw((Ct)-l/2p). Hence, (Cp(t)) Ct.
Part (i) follows eily. To prove (ii), let t (A). Then,
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THEOREM 5.6. Assume Assumptions 5.1, 5.2, p >_ q, and let xa, (T*T 4-
L2p 1T*y Then

a(5)
1 + E__M 6o [l(2)](p--q)/2qE

where

Proof. The basic idea is quite natural: to use the denseness of Xv to obtain an
approximation, xl to x0. Then, use the basic Tikhonov regularization to estimate Xl

in Xp. However, these approximations have to be carefully done to maintain suitable
orders of convergence.

It will be essential to observe that for each 5 > 0 there exists T(5) T oc as 5 0
such that

(5.1) T(()- [-1((2)] -1/2q
and T()-2qw(T())P

_
2p,

To obtain asymptotic error estimates it suffices to assume i is so small that 5 <_ 1
and ’(5) _> 1.

Let x--- f[,r()] dxo. Then, IlXl-x0112 f(r(),oo) dxo,o <- 1/T(5)2q f(r(),oo)
q d=o,=o ().

Hence, from Assumption 5.1,

E
(5.2) Ilxl  oll -()q"

From Assumption 5.2,

by Assumption 5.1. Hence, by (5.1),

By using the triangle inequality, (5.3), and the data error in (2.3), we obtain

IIQy Txl II <- (1 + EM)SP.

To use the data y to recover x by minimizing IITx-yll2+211xll2p over x e Xp,
we need an estimate of the size of I11

f f

y[1 ,’r(<)1 J[1 ,’r($)]

Thus,

(5.5) <-- ET(5)P-q.
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By applying Remark 5.4, the error estimate (5.4) and the a priori norm bound (5.5),
to Theorem 2.11, it follows that if

a(5) (1 / EM)5o
ET()P-q

then, by (5.1) and Lemma 5.5,

Er()-q

The result follows from (5.1), Lemma 5.5, and (5.2).
Now, to obtain the result in [22], set p 1, and w(A) A-2a, a > 0. Then

r(A) Al+a/r and Assumption 5.2 reduces to the one in [22]:
(5.6) mllxll-. < IITxll <

Since -I(A) Ar/(a+r), the result in Theorem 5.6 says that, under (5.6) and
Assumption 5.1,

I1o, 011 O(/+) h() O(+/+).
We now obtain an analogous result for the general class of "infinitely smoothing"
operators discussed in 3 and 4.

COROLLARY 5.’/. Suppose that there exist positive constants a, b, c, m, and M
such that

m2 /exp(-b)a) d,())_< IITxll 2 <_ M2 J exp(-cAa) d,())

.for all x X2q, and the best approximate solution xo satisfies
I1 o11 < E.

Given data y satisfying IIQ(y- yo)ll <- , let xa, (T*T-}-c2L2p)-T*y,
where p >_ q.

Then

I1(), xoll O log where

t(6) O 60 log and p min maxb, 1}’l
More specifically,

I+EM60 v/(6)P-q, wherea(6) S
/(6)2q exp (- max(b, 1}r/(6) -a) 62.

Proof. Let f max(b,
Set w(A) exp(-/Aa). Then, for all

Now, from Definition 3.3, s w(s-) ,(s). Hence, by using Lemma 3.4,
Assumption 5.2 is satisfied. The result follows from Theorem 5.6 and Lemma 3.5, by
noting that q )f,a/2q and 1(620) O(t1(62)). ["!

Preliminary testing indicates that the numerical accuracy of inversion schemes
are improved by using this result.
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REGULARIZING MICROSCOPES AND RIVERS*

MARC DIENERt
This paper is dedicated to Professor Jean-Louis Callot, in memoriam.

Abstract. This paper proposes a generalization of the existing geometric studies of resonance.
The Riccati equation associated with any second-order linear equation is extended to any C first-
order equation. The Morse-critical point is generalized to any "generic" critical point. The resonant
solution becomes a general canard solution. The paper explains how to find the regularizing blowup,
and shows how classical special functions become enlarged in rivers, i.e., some resurgent solutions
of polynomial differential equations. The paper shows a matching principle that connects the slow
solutions with these rivers. The method to show the existence of canards is applied for some Union-
Jack equations, i.e., equations with a critical point where three smooth curves intersect.

Key words, resonance, turning points, singular perturbations, matching, canard, river, Union-
Jack, macroscope, microscope, nonstandard analysis, Newton polygon
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Introduction. For the problem of turning points of singularly perturbed linear
second-order differential equations [21], one is indebted to Kopell [14] for a geometric
study of resonances, remarkable solutions, discovered by Ackerberg and O’Malley [1],
of some boundary value problems in the neighbourhood of the equation’s turning
points.

At the heart of the proof of the main theorem, Kopell introduces a crucial blowup
that turns the singular perturbation problem into a..regula.r one. The first approxi-
mation of that new equation is a Hermite equation U- XU + kU 0 depending on
the real parameter k. It is well known that this equation admits, for noninteger k,
a basis of solutions, generally denoted by Hk+ and H-, with polynomial growth at
+cx3 and -oc, respectively. When k becomes an integer, these two solutions become
equal to each other and turn into a polynomial: the Hermite polynomial. As observed
independently by Kopell and Callot [5], it is the "crossing" of these two special func-
tions that makes possible (and necessary) the existence of the resonant solutions. We
want to show here that the special functions (or more precisely the inverse of their
logarithmic derivatives) admit a generalization, the "rivers," that make it possible to
solve this kind of turning point problem for a much more general class of equations.

Let’s briefly sketch Callot’s approach. One first factors out the invariance of the
set of solutions of the second-order differential equation ii- f(x)it + g(x, a)u 0
by considering the new unknown y u/it. So, one considers the slow-fast Riccati
equation edy/dx -f(x)y + g(x, a)y2 + e whose slow curve {g(x, a)y2 f(x)y O}
is the union of the two smooth curves C1 {g(x, a)y f(x)} and C2 (u 0} (see
Fig. l(a)). In those variables, a resonant solution is a slow solution (i.e., infinitely
close to the slow curve) staying infinitely close to C1 on both sides of some "critical
point" x0, i.e., here, of a point such that f(xo) O, and such that, near x0, C1 is
attracting for x < x0 and repelling for x > x0. This is precisely what is usually called
a canard [3], [101.

Now comes the trick we want to consider here in a general set-up. In order to
determine the behaviour of the slow solutions when they come across the halo.1 of

Received by the editors September 16, 1991; accepted for publication (in revised form) January
14, 1993.

Laboratoire Centre National de la Receherche Scientifique, J. A. Dieudonn6, Universit6 de Nice,
06108 Nice Cedex 2, France (d+/-enermath.un+/-ce.fr).

We use here the methods of nonstandard asymptotics. We recall in the appendix (4) most
nonstandard definitions and results involved here: we indicate by a star * the words defined there.
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(a) (b)

FIG. 1. Sketch of Callot’s proof of the existence of resonant solutions. (a) The slow curve of
the Riccati equation edy/dx f(x)y + g(x, a)y2 + e; (b) The rivers Y=(X) of the Riccati-germite

equation dY/dX -XY+ kY2 + 1 for k near to 1. For larger k, the river would have an analogous
behaviour at infinity, but would exhibit Int k- 1 simple poles.

the critical point (x0, 0) (and see how to choose the value of the parameter a in order
that such a solution is a canard), one introduces a microscope- u

that is regularizing, in the sense that it turns the singular perturbation of the Riccati
equation into a regular perturbation of the so-called Riccati-Hermite equation

dY/dX -XY + kY2 + 1,

where k k(a):-- g(x0, a)/f’(xo).
Let Y :- + +Hk/Hk The nation Yk+ and Yk- can clearly be perceived in

Fig. l(b): they are the only trajectories asymptotic to a (neither horizontal nor ver-

tical) straight line, here X kY. The striking fact about these solutions is that the
other nearby solutions depart from it in an "exponential way." This kind of behaviour
has been studied since that time for general polynomial differential equations, and
these solutions are now called rivers (see below).

Let U _C ]2 be a nonempty standard open set, e > 0 an infinitesimal, and f a
function defined on U, with regular e-shadow expansion*.

In this paper, we consider the general nonlinear singular perturbation problem
associated with equation

(I) edy/dx- f(x, y) (e > 0 infinitesimal),

where f(x, y) fo(x, y)+ef: (x, y)+. with (fn) a standard sequence of e functions
of (x, y) E V. One may think of f(x, y) F(x, y, e) for some standard smooth function
F, but it could as well be f(x, y) :--- G(x, y, e, ) with the sum to the smallest term
of some diverging series anen.

The purpose of this paper is first to show how to associate with any equation (1)
one, or if necessary several, regularizing microscopes in the neighbourhood of a critical
point of the slow curve fo(x, y) 0, one for each growth type of the branches of this
curve. This makes it possible to convert the singular perturbation into the regular
perturbation of one or more polynomial differential equation: the local models.
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We shall then see that the special functions of the above example are not a "mira-
cle": the local model indeed has rivers; the rivers are solutions that are transcendent,
but, as in the case of the special functions of physics such as the Airy function, they
have remarkable asymptotic behaviour that lead to efficient numerical approxima-
tions. We shall recall the definition and main properties of the rivers at 1.2.

The final problem is to relate the behaviour of the slow solutions of (1) when they
are infinitely close to the critical point with the rivers of the local model. This study
will lead to Theorem 3.1, a matching principle, which is the central result of this
paper. It shows how these rivers generalize the special functions Yk introduced in
the recalled study, and make it possible to specify the behaviour of the slow solutions
of (1) near the critical points.

In the introduction to 2, we shall give an example in which the critical point is the
intersection of three smooth curves. Using a transversality argument (the "crossing"
of two rivers) on the local model, we will show (Corollary 3.2) the existence of canards.

1. Slow-curve branches, Newton polygons, and rivers. The local models
near critical points of the slow curve depend strongly on the geometry of this slow
curve at that point. We give here some elementary tools that yield crucial information
about that geometry from a finite number of terms of the Taylor expansion that give
dominant balance near the critical point.

This first section will recall some definitions and define notation that we shall need
in the sequel concerning the branches of curves f(x, y) 0. Then it will introduce
our main tool, the rivers.

1.1. Branches of generic Co curves.
DEFINITIONS. Let f be a function defined in the neighbourhood of (x0, Y0). Let

be a continuous function, whose domain T() is a closed interval with nonempty
interior, and having xo as one of its ends.We call o a branch at (x0, Y0) of the curve
C of equation f(x,y) f(xo,yo) if o(x0) Y0 and f(x, (x)) f(xo, yo) for all
x E T(). One specifies that o is a positive or negative branch, according to the
sign of x x0 for x E T(o), x xo. Let k and r be real numbers, k 0 if r 0.
We say that is a branch of type (k, r) at(x0, yo) (or, for short, a (k, r)-branch) if
(x) yo klx xolr when x --. x0 in T)() in the case k 0, or (x) Yo(-- 0) in
the case k r 0.

We denote by the classical relation "is asymptotic to" in the neighbourhood
of x0 or +, according to the context. In nonstandard words this is equivalent, for
standard , x0, k - 0, and r, to (x) Yo + klx x01r(1 + i) with i

_
0 as soon as

x
__

x0 if xo R. If x0 +/-x), it means (x) kxr (1 + ) with i
_

0 as soon as x is
unlimited*, of the sign of +/- -1, +1}.

Puiseux’s theory [12], [15] shows that if f is analytic in the neighbourhood of
(x0, y0), the curve C is a union of (k, r)-branches with r rational (and possibly the
straight line x xo). The assumption that f is o is much too flabby to force an
analogous result, as (: could be any closed subset of R2. Nevertheless one recovers
an analogous result if f is not too degenerate; for that purpose, we introduce now
what we shall call the lower Newton polygon Af(f ;x0, Y0). Proposition 1.2 will show
how to determine the growth types of the various branches of f 0 using this lower
Newton polygon and the polynomial f0 that we shall now define (see also Fig. 2).

DEFINITION. Let f be a o function on a neighbourhood of (xo, Yo) R2. We
call the Taylor set of f at the point (x0, Y0) the set of couples of integers T(f; xo, Yo) :--

((re, n) : (0,0)l(+n)(x0 Y0) 0} if (x0 Y0) (0,0) we’ll just write T(f) for
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i,-exponent

x-exponent

FIG. 2. The curve f 0 and the lower Newton polygon at (0,0) associated with f(x,y)
(x 2y)(2y x2) - x3y2 cos(x y); here if(x, y) 2y(x 2y) and 2f(x, y) x(2y x2). The curve
shows two negative and two positive branches at (0, 0), of growth-type x/2 and x2/2 at (0, 0).

2(/;0, 0). Let (f; Xo, Yo) be the convex hull in ]Rmn of the union of all quadrants
m > and n > for all (,) E T(f; Xo, Yo).

The (lower) Newton polygon of f at the point (xo, Yo) is the union Af(f; xo, yo)
of all oblique segments that build the border of (f; xo, Y0). If (xo, Yo) (0, 0), we’ll
just write Af(f) for Af(f ;0, 0).

We call coslope of a nonhorizontal segment a the real number r such that (1, r)
is orthogonal to a. If r is the coslope of some segment a contained in Af(f; xo, yo)
we say that r is a coslope of JV’(f; xo, yo); r is then necessarily a positive rational (see
Fig. 2). If there is no point (m, n) e Af(f; xo, yo) such that n 0 (i.e., if (y- Yo) is a
factor of f(x, y)- f(xo, Yo), we shall say that r 0 is (also) a coslope of Af(f; xo, y0).

In 1.2 we shall define an upper Newton polygon for f any polynomial.
DEFINITION. We assume that T(f; xo, yo) q}. We define the r-valuation of f at

the point (x0, Yo) as the minimum #r(f; xo, Yo) of all m -rn for (m, n) T(f; xo, yo).
We’ll just write #r(f) when (xo, Y0) (0, 0). We denote by rf(X, Y) the polynomial,
sum of all monomials of the Taylor expansion of f at the point (xo, Yo) with r-valuation
equal to # := #(f; xo, Yo)"

m+rn--p

1
m !n !Jv (xo, yo)Xmyn.

Remark. The polynomial rf is r-homogeneous of r-degree=# := #(f; xo, Yo),
that is, rf()X, )Y) )rf(X, Y) for any > 0. For r - 0, its Taylor set is contained
in the segment a of Af(f; x0, yo) with coslope r if any and then Af(rf; x0, Y0) a, or
is just equal to one point of Af(f; xo, y0).

LEMMA 1.1. Let f be a standard function, such that f(0,0) 0 and
T(f) . Let > O, c

_
O, and r e R+ standard. Set # #r(f), x X, and

y Y. For all limited (X, Y), one has f(x, y) cd’(rf(X, Y)
Proof. As f and r are standard, so* is #. Let N be a standard integer,N >

Max {#, We write f as f TNf + RNf, where Tf is the Taylor polynomial
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of f at (0, 0) of degree N, and RNf is the rest of the Taylor expansion. For all
infinitesimal (x, y), one has RNf(X, y) (Max {Ixl, lyl})N+l ( denoting a generic
limited real number), and thus RNf(aX, ry) c as N + 1 >_ Max {#, #/r}.

Thus, it suffices to show the lemma in the case where f is a standard polynomial
TNf(x, y) this case is trivial.

PROPOSITION 1.2. Let f E C be any function defined on some neighbourhood
(0, 0), such that f(O, O) 0 and T(f) . Let k and r be nonzero numbers. If the
curve f 0 admits a negative (k, r)-branch at (0, 0), then r is a coslope olAf(f) and

=o.
Proof. By transfer*, we may assume that f and the branch are standard. Since

is standard, and as o(x) klxlr, the real numbers k and r are standard. Let
c > 0 be any infinitesimal. The hypothesis (x) klxl for x < 0 implies that
(-) k(r(1 -}-). Let # :- #(f ;0, 0). Lemma 1.1 implies that

f(-a, (-a)) f(-a, kar(1 + )) a(rf(-1, k(1 + )) +

with
_

0. Dividing by c the relation f(a, (c)) 0, one gets rf(-1, k(1 +)) - 0.
Since rf is a standard continuous function, one has

rf(-1, k) f((-1, k(1 + ))) (rf(-1, k(1 + ))) 0.

Thus rf(-1, k) 0 since k 0, the polynomial rf(X, Y) cannot be just equal to
one monomial; r is thus a coslope of N’(f).

Here is a somewhat more general result that we will not use here.
PROPOSITION 1.3. Let f e o be standard such that f(O, O)

Let (c,)
_

(0,0), c > 0, such that f(c,) O. Assume that (r with r
appreciable. Then some standard ko
k0cr(1 -}-; ro is a coslope of Af(f;xo,yo) and rof(1, k0)--0.

Proof. Let r0 := or ? 0, and # := #to(f), which is standard, as are f and r0.
Let N _> Max (#, #/r}. Using the factorization cr ar-roaro and reasoning as in
proof of Lemma 1.1, one checks that f(, ) a" (of(1, (-o) _}_ ). Sincef(a, )
0, dividing by , one sees that rof(1, cr-)

_
0. Since p(g) "= rof(1,g) is a

nonconstant standard polynomial, thus unlimited for any unlimited K, k c-has to be limited, thus near-standard in R. Let ko :-- k. One has 0 (rof(1, k))
rof(1,k) of(1, k0). We have to show that k0 0. If we set s :- 1/r and
g(x, y) :- f(y,x), as 8, the previous reasoning shows that l:-- 8-8 is near-
standard in R, and c =/8o with so := %. Thus kaTM kl8 klro, with
k and limited. Finally, 1 klTM and k

1.2. Rivers of polynomial differential equations. The polynomial differen-
tial equations that occur as local models for the behaviour of the slow solutions near
the critical points of the slow curve have a few remarkable solutions called "rivers"
that "organize" the qualitative behaviour of the other solutions. These solutions are
of polynomial growth and attract or repel exponentially the nearby solutions. These
rivers generalize the (logarithmic derivative) of the special functions, the distinguished
solutions of (the Riccati equations associated with) the second-order linear differential
equations occuring in mathematical physics. We recall here briefly the definition of
rivers of a polynomial differential equation and the effective methods to determine
the rivers using an upper Newton polygon and the polynomials rP associated with P
that we also define now. For more details see [11], [7], and [20].
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Let us consider the following differential equation:

dY
P(X, Y)(2)

dX

with P(X, Y) any polynomial with real coefficients.
DEFINITION (see [4]). Let Y be any solution of (2), and k and r two real numbers,

with k # 0 if r 0. We say that Y is a solution of type (k, r) of (2) at X
(respectively, X -oc) if there exists a real number X0 such that Y is defined on
IX0, +cx) (respectively, (-oc, X0]), and if

(X) klXIr at X +oc (respectively, X-

We say that is a river of type (k, r) of (2) at X +o (respectively, X -oc) if
is a solution of type (k, r) of (2) at X +cx3 (respectively, X -cx3) and if

lim X P{(X, V(X))

We shall use the expression "of growth type kXr at X +/-oo" as a synonym "of type
(k, r) at X +/-x."

This last hypothesis suffices to ensure the exponential attracting or repelling of
nearby solutions (see [4]). Here come two definitions introducing objects useful to
determine the rivers of a polynomial differential equation.

DEFINITION. Let P := Y amnXmyn, and let/) :D(P) be the convex hull in
R2 of the half-lines m < and n , for all (,) such that am-a 0. We call the+
upper Newton polygon of the polynomial P the union jI(P) of all oblique segments
of the border of T.

If a is a segment contained in JPl of coslope r, we say that r is a coslope of
If (Y k) is a factor of P for some k E R, we shall say that r 0 is (also) a coslope
of

DEFINITION. Let r E R and P(X, Y) a,,xmyn for any polynomial. We
define the r-degree of P to be the number OrP := Max {m + rn ainu # 0}. We set

P(X,Y) a,nxmyn.
m+rn--OrP

Remarks. As we already pointed out, for any smooth function f at (x0, Y0),
the polynomial f is r-homogeneous of r-degree=# := #r(f; x0, Y0), and, if r 0, its
Taylor set is contained in the segment a of Af(f;xo, yo) with coslope r if any and
then Af(f; x0, Yo) a, or is just equal to one point. Thus Af(f; x0, Yo) A4(f),
r(rf) =,.f =,.(,.f) and 0r(rf) Pr(f ;X0, Y0).

By construction of Af(rf; x0, Y0), any of its coslopes r are nonnegative; this was
done intentionally, for the sake of simplicity, choosing to define E as the convex hull of
a union of quadrants, indeed, a curve of type (k, r) at (x0, Y0) with r < 0 would tend
to infinity when x goes to x0; the problem would no longer be local so we would need
some rigidity on f, such as "f is a polynomial in y" (this is beyond the purpose of
this paper); nevertheless, in 3 we give an example on singular deformation to show
how curves of type (k, r) with r < 0 arise.

As we consider here a river solution of polynomial differential equations, it is no
longer necessary to exclude the case r < 0: this is why the upper Newton polygon
was introduced as the convex hull of horizontal half-lines instead of quadrants as in
the previous case. So AzI(P) may have some negative r as coslope.
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There is a result [11], [4] in which (a) and (b) are the analogs, for rivers, of
Proposition 1.2 for the branches of the slow curve at a critical point; condition (c)
is related to the behaviour of the other solutions with respect to the river: for X
unlimited (that is, for x := CX

_
0, where

_
0), the river behaves as a slow solution

of a (usually other) slow-fast differential equation. As rivers are concerned with the
behaviour of the equation at infinity, it .is the upper Newton polygon that is of interest
here. Proposition 2.1, Theorem 2.2, and finally the matching principle 3.1 will make
precise the relation between growth type of a branch at a critical point and rivers of
the related local model under the regularizing blowup.

PROPOSITION 1.4. /j’ (2) has a solution of type (k, r) at X =l=o, then (a) r
is a coslope of the upper Newton polygon 3d(P); (b) rp(:l= 1, k) O. Moreover, this
solution is a river at Z =l=cx if and only if (c) c(r) :- 1 r + OrB > O.

Conversly, if beyond properties (a), (b), and (c) above, one has

rP,(1, k) :/: O,

then the rivers-existence theorem [11] implies that (2) has indeed a river of type (k, r).
One of the interests of the river solutions lies in the fact that they admit, as most

special functions, a (diverging) asymptotic expansion of Gevrey type [7], and that they
are resurgent [13], [6] and, in particular, summable in the sense of the summation
of diverging series [17]. In practice, in the "good cases," i.e., if rP.(+l,k) 0
and for r p/q with p and q > 0 integers, any river has an asymptotic expansion
kxr n>0 anx-n/q for which it is easy to compute as many terms as desirable, with
help, for example, from programs such as Maple or Mathematica. The fact that the
expansion is of Gevrey type, that is, (an) grows no faster as n !, implies among other
things [19] that the error committed when truncating the sum is of order equal to
the first "neglected" term. So one may compute approximations of the rivers of order
of the smallest term anx-n/q ("summation up to the smallest term"), or excellent
approximation with few terms, as for the diverging expansions of special functions.
The fact that the expansion is resurgent is related to its "transasymptotic" expansion
(exponential corrections). So rivers lend themselves nicely to numerical computations.

2. Regularizing microscopes and local models.

Examples and definition. Let us consider the following example of slow-fast
differential equation (Fig. 3):

(3) edyldx (y ax)(y bx)(y cx) + p(x, y), with abc 7 0

with a < b < c three standard real numbers, and p a standard Co function with
T3(p) -= 0, i.e., zero Taylor polynomial of degree 3. The slow curve is the union of
three smooth curves passing through the origin, and tangent to the three straight
lines y ax, y bx, and y cx, respectively, that motivate the name, Union-Jack
equation, that we give to it; (0, 0) is a more degenerate critical point than in the case
of a Riccati equation. Let us perform the following change of variable:

(4) cX=x, Y=y, witha=el/3.

Since e --- 0, this operates as a microscope on the phase-space, and the image is
a blowup of this phase space. The behaviour of the solutions for (X, Y) limited
corresponds to the behaviour of solutions of (3) in the c-galaxy of (0, 0). Equation
(3) becomes

dY/dX (Y aX)(Y bX)(Y cX) + s-lp(X, Y).
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FIG. 3. Slow-curve of a Union-Jack equation 3 and its image under a regularizing blowup.

Since, by assumption, the Taylor polynomial of degree 3 of p is zero, we see that the
term e-lp(X, cY) is infinitesimal for (X, Y) limited. In other words, the blow up
(4) made it possible, in the vicinity (i.e., infinitesimal) of the critical point, to convert
the singular perturbed equation (3) into a regular one. The shadow of the solutions
of (5) are solutions of the standard differential equation

dY/dX (Y aX)(Y bX)(Y cX).

And this is now a polynomial differential equation. An easy study of its rivers shows
that this equation has three rivers at X +cx), and as many at X -cx), all being
asymptotic to kXr for some k a, b, c, and r 1. Theorem 3.1 will show that any
slow solution following {y bx} for x < 0 (attracting solution), or {y ax} or
{y cx} for x > 0 (repelling solution), is infinitely close to the corresponding river
at the scale of (X, Y).

In this study, we want to elucidate a double "miracle": how to associate with any
critical point of a large class such a desingularizing blowup, and how to approximate
the slow solutions in the very vicinity of the critical point by a river of some stan-
dard, polynomial, differential equation. As an example of possible application of that
method, we shall show how to deduce the existence of canards in a one-parameter
family of Union-Jack equations.

DEFINITION. Let qa(x) Yo + k(x x0)r be a positive (respectively, negative)
branch of the slow curve {f0 0} of (1) in the neighbourhood of (x0, Y0). We call this
the regularizing microscope of (1) in the neighbourhood of (x0, Y0) with respect to the
branch 99 any change of variable x xo+aX, y yo+/3Y, with a > 0, c

___
0 and any

/ > 0, that converts that equation into dY/dX F(X, Y), with F of class S, F O,
such that the standard equation dY/dX F(X, Y) admits a solution asymptotic to
kXr at X +oc (respectively, X -c). Equation dY/dX F(X, Y) will be called
a regularizing blowup of (1) (by the considered regularizing microscope).

Remark. For small enough c =/ it is always possible to get an infinitesimal
F, that is, a regular perturbation of the trivial equation dY/dX 0. This way to
"regularize" the singular perturbation is of course of low interest: it is just a way
to express the classical theorem of local straightening of locally Lipschitz differential
equations’ solutions. This is why we ask for F 0; as we shall see, this needs a more
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subtle choice of and/, neither too large nor too small.

2.1. Case J’ Jo: the simple equation. We first consider the case of the
simple equation

edy/dx- fo(x, y) (e > 0 infinitesimal),

i.e., the case where f is a standard function. It is easy to see that the microscope

(8) x xo + aX, y yo + aY,

centered at a standard point (x0, Y0) of the slow curve, yields the following blowup of
()"

dY/dX (al-r/)f(xo + aX, Yo + arY) (al-r+z/) (rf0(X, Y) + 5),

with # #r(f0 ;x0, Y0) and 5
___

0 for any limited (X, Y). In order to get a regularizing
microscope, one has to consider those choices of a such that al-r+z/ is appreciable,
for example, equal to 1, which means that a l/(1-r+z). The crucial point of
this study consists in observing that for some convenient choices of r the shadow of
the near-standard equation associated in that way is a polynomial equation exhibiting
rivers.

PROPOSITION 2.1 (case of the simple equation). Assume f is standard (i.e.,
f fo) and that (0, O) belongs to the slow curve {f0 -0}. Let r >_ 0 be any coslope
of the lower Newton polygon Af(fo), # #r(fo), and k be any root of (the algebraic)
equation r(fo)(+/-l,k) 0. Lets If(i-r+#). In that case s > O, a 8 is
infinitesimal, the microscope

(9) x sX, y sry

is regularizing for (7), and the resulting blowup is infinitely close to the polynomial
equation

(10) dY/dX fo(X, Y).

If (rf0) (+/-1, k) # O, this equation has a river of type kXr at X +/-oo.

Proof. One has 1/(1 r + #) > O: let (m, n) E Af(fo) be the point of the segment
a of the lower Newton polygon of fo of coslope r that has the largest ordinate n; one
has n > 1 and thus

1-r + #--1-r + #r(fo) l -r +m +rn-- (l +m) +r(n-1) >_ 1.

Thus 1 r + # is positive and is standard, whence a := l/(1--r+tt) 0.
The microscope is regularizing: Lemma 1.1 implies that

f(x, y) a(rf(X, Y) + 5),

with 5
_

0 for all limited (X, Y), whence

dY/dX a-rae- (rf0(X, Y) + ) o(X, Y) + --: F(X, Y),

and F fo. The short-shadow lemma* [9] implies that the shadows of the solutions
at this scale really are solutions of (10).
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Equation dY/dX F(X, Y) does have rivers: the polynomial rf0 is r-homoge-
neous (of r-degree # :-- #r(f0)), and its upper Newton polygon jr4 (rf0) is just equal
to the segment a. Since (rf0) (+/-1, k) 0, the rivers-existence theorem [11] implies
the existence of one river of type kXr at X +/-c. [:]

Examples. Case of a regular point of the slow curve. Assume f f0, i.e.,
f is standard, and that (0, 0) is a regular point of the slow curve of (1), that is,
f0(0, 0) 0 and f0f0(0,0) 0. The implicit-function theorem implies that the
slow curve (f0 0} is, in the neighbourhood of (0, 0), a standard smooth curve
tangent to the straight line {y kx}, with k -A/B, where A :- f0(0, 0) and
B :-- f0y(0, 0). So, it has two branches (one for x >_ 0 and one for x <_ 0), of type
(k, 1).

The microscope x eX, y eY is regularizing and turns (1) into a near-standard
equation, the shadows of the trajectories of which being solutions of

dY
=AX+BY.

dX

This equation has the explicit solution (X) :- -XA/B- A/B2, which is a river,
both at X +o and at X -oo, of the same type as the two branches of the slow
curve.

Case of a fold point. In [16], Mishchenko and Rosov study the behaviour of the
solutions of (1) near a fold point at (0,0), that is, in the case fo(0,0) 0 and
fo(0, 0) 0, but fo-(0, 0) 0: the slow curve looks like a horizontal parabola: it
has two branches (assumed to be negative) of type (k, 1/2).

Let so ; the microscope x e8X, y e8o/2y is regularizing at such a
fold-point. It turns (1) into a near-standard equation, the shadows of the trajectories
being solutions of

dY
AX + BY2

dX
1, ,,

(0, 0) It is a Liouville equation that exhibits [11]with A f0: (0, 0) and B joy-
two families of rivers (Fig. 4), one containing just one isolated river (asymptotic to
y +x/:-- on the figure, and that the authors call the "dividing solution," which
they are able, in that case, to express in terms of Bessel functions), and the other
containing an infinity of rivers, all asymptotic to each other (and to -/:-- on the
figure). The types of the two families of rivers are equal to those of the two branches
of slow curve.

2.2. Regular deformations. We now come back to the general case, where

f f0 + fl +"" that we shall consider in different ways, according to whether the
microscope (9) used to regularize the simple (or simplified) equation (7), obtained by
replacing f by f0, is still regularizing for the complete equation (1) or not.

Let us first consider the example of the following equation:

(11) edy/dx +/-(y x)(y x2) + e(a + bx), with a, b e .
The slow curve, with equation (y- x)(y- x2) 0, exhibits some branches at (0, 0) of
type x with r 1 and r 2. Let’s consider successively the cases r 1 and r 2.

For r 1, considering the simplified equation leads to selecting s 1/2, the
microscope x 1/2X, y 1/2y yields the blowup

(12) dY/dX +/-(Y X)(Y gl/2x2) -- a + I/2DX,
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FIG. 4. Slow-fast equation with slow curve exhibiting a fold point, and its image under a
regularizing microscope. This last equation has a unique river asymptotic to x/-:-, and an infinity
of rivers all asymptotic to -v/-:, and actually with the same asymptotic expansion: they are
exponentially close to each other.

which, for limited a and b, is infinitely close to a standard equation (i.e., is a regular
perturbation), namely, dY/dX :l:Y(Y- X) + %.

1.For r 2, considering the simplified equation suggests once more letting s ,
the microscope x l/2X, y eY transforms (11) into

(13) dY/dX q:X(Y X2) + el/2y(y X2) + as-1/2 + bX.

We notice here that if a is standard nonzero, the term as-1/2 is unlimited: the
microscope that is regularizing for the simplified equation associated with (11) is no
longer regularizing for the complete equation (11).

In terms of the following definition, the "deformation term" e(a + bx) is a regular
deformation for the growth-type x1, and a singular deformation for the growth-type
x2 (if a 0).

DEFINITION. We say that (1) is a regular deformation at the point (xo,Yo) of
the simple equation (7) for the growth type xr, if, for so 1/(1 -r + #r(f0; x0, y0)),
the microscope

(14) x xo + esX, Y Yo + esory

is regularizing for (1). If not, we call it a singular deformation at the point (zo, Yo) of
(7) for the growth type xr.

The purpose of the following theorem is first to show that only an explicit finite
number of terms of the expansion of f ell + 2f2 +--. may introduce a singular
deformation of the simple equation for a given branch-growth type. Then it establishes
a relation existing between the local model of the simple equation and that of the
complete equation, in case of regular deformation. This will make it possible to show
(Corollary 2.3) that these two models have essentially the "same kind" of rivers.

THEOREM 2.2. Let so 1/(1 r + #r(f0)). A necessary and sufficient condition
for (1) to be a regular deformation at the point (0, O) for the simplified equation for
the growth type xr is that, for all p such that 1 < p < 1 + so(r- 1), the following
inequality holds:

(15) p- 1 + s0(1 r + #(fp)) > 0.

If so, the blowup dY/dX F(X, Y) of equation (1) by the microscope (14) is infinitely
close to some standard polynomial differential equation

dY/dX P(X, Y), with P(X, Y) rfo,
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called the local model of (1) at the point (xo, yo) (0, O) for branches of growth type

Proof. Let p* > 1 + so(r- 1) be some fixed standard integer and denote #(fp)
just by #p. One has

f(x, y) go(x, y) + fl (x, y) +... + P* (fp. (x, y) + ),
for all (x, y)

___
(0, 0); thus, for M1 limited (X, Y)

F(X, Y) e-+s(-)f(eX, ersX)

Z --l+so(i--r)+p+sol (rfp(X y) + #)
p<p*

0) + #)

= Y) +
p<p*

So, the deformation is relar if and only if all the exponents of this later sum are
positive or zero, that is, if (15) holds for all p < 1 + so(r 1). If so, let H. := {p <
P* P + sop 1 + so(r- 1)} ;so, for any limited (X, Y),

F(X, Y) Y) =: p(x, Y).
pH.

Since this defines a standd polynomial P, one finally h F P.
Still in that ce, let p 1 p 1 + so(r- 1), d sume that fp brings

a noninitesimM contribution to F(X, Y), that is, sume -1 + s0(1 r) + p +
sor(fp) 0. By definition of so, we thus have p + sor(fp) 0 + Soar(f0), whence
r(f0) r(fp) p/So, which is strictly positive, since p 1 and So > 0 we saw
in Proposition 2.1. Thus r(f0) > r(fn), d P r(OF) rfo.

Example. If r 1, the condition 1 p < 1 + so(r- 1) is never satisfied, and
thus y deformation is automatically satisfied for the oh type xr" at a regul
,oi.t o t fold ,oit, o t Moe oit (I(0, 0) 0, J (I)(0, 0) (0, 0), but
hess (f)(0, 0) 0) any deformation is regul for all oh types of the brches that
reach such a point. This explains why all the existing studies of cands never came
across the problem of singular deformations.

COaOLLAaY 2.3 (regul deformations). Assume (xo, yo) (0, 0). Let r 0 be a
coslope of the lower Newton polygon (fo), and ko any root of the algebraic equation
fo(1, k). Let so 1/(1 r + (fo)). q (1) is, at the point (0, 0), a regular
defomation of the simplified equation (7) for the growth type xr, the microscope (14)
x soX, y ersoy is regulazing for (1), and the image of equation (1) by this
microscope (14) is infinitely close to the standard polynomial equation

(1) dWdX P(X, Y),

with rP(X, Y) rfo. If (rf0) (1, k0) 0, this equation has a ver of type koXr

at X .
Proof. The previous theorem implies that rp rf0, and the existence of rivers

of type (k,r) for dY/dX P(X,Y) depends only on that polynomial rp: so the
corollary follows immediately from Theorem 2.2.

We shall come back to the problem of singular deformations at the end of the
study of preresonant solutions.
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3. Preresonant trajectories.

3.1. Entrance in the halo of a critical point. The two previous sections
were dedicated to the geometric study of (1), that is, in some sense, to the formal
solutions of that equation. We can now come to the study of the behaviour of the
(slow) solutions of that equation, when x becomes infinitely close to a critical point.
Actually, to know that the solution is slow for x not infinitely close to the critical point
does not always give strong information about its behaviour when x becomes infinitely
close to that point. Indeed, consider, for example, the equation sdy/dx -2xy, which
has a critical point at (0, 0), and whose solutions are given, as a function of the initial
condition y_ -(x_), by

The hypothesis that the solution is equal to an infinitesimal y_ (x_) at some
"initial condition" x_ 0 does not suffice to give some control on y for x

_
0: for

example, for x_ -1 and x 0, y_ may be infinitesimal and (0) y_e1/ may take,
according to the value of y_, any infinitesimal value, and y(0) may even be appreciable
or illimited, for some convenient choice of y_

_
0. This comes, essentially, from the

fact that the slow curve y 0 is repelling for x < 0 (or attracting for x > 0). In the
general case, we can get a good precision on the behaviour of slow solutions in the
halo of the critical point (x0, Y0) and more precisely under a regularizing microscope,
only for solutions that follow an attracting curve for x < x0, or a repelling one for
x > x0. Such a solution, defined and satisfying that condition on both sides of x0 is a
canard [10], also called [18] "resonant in the sense of N. Kopell." This is why we shall
call any solution satisfying that condition on one side (at least) of the critical point
preresonant.

DEFINITION. Let T)() ---. R be a (k, r)-branch at the point (x0, Y0) of the
slow-curve fo(x,y) 0 of (1). We say that is a preresonant branch at (xo, Yo) if
and only if is standard, (f0)(x0, Y0) 0, and (fo)(x, (x)) is nonzero and of the
same sign as (x- x0) for all x E :D() not equal to x0 (i.e., if and only if (x0, Y0) is

critical, and for x x0, (x, (x)) is attracting if x < x0, or repelling if x > x0).
Let o be a (k, r)-branch at (x0, Y0) of the slow curve of (1) and a solution of

(1). We say that is a preresonant solution at (Xo, Yo) attached to if and only if
is preresonant, and for all x x0 in :D(), (x) is defined and (x)

_
(x).

Examples. For a Union-Jack equation (3) (with a < b < c) (Fig. 3), the slow-
curve at (0, 0) has one preresonant branch defined for x < 0 which is tangent to
y bx, and two preresonant branches defined for x > 0, tangent to y ax and
y cx, respectively.

At a fold point (Fig. 4), one of the branches of the slow curve is preresonant and
the other is not.

To each preresonant branch there corresponds, on the regularizing blowup, an
isolated river that is a shadow of the image by the microscope of any preresonant
solution infinitely close to that preresonant branch. Theorem 3.1 shows that this is a
general fact.

We shall consider in this main theorem the case of a preresonant branch defined
for x < x0, with x0 0; one has of course an analogous result for any standard x0,

and also for any preresonant branch defined for x > x0.
THEOREM 3.1 (matching principle). Let k O, r > O, x_ < 0 be standard, and

: Ix_, 0] ----, R be a preresonant (k,r)-branch at (0, O) of the slow curve of (1); Let
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so := 1/(1- r + #r(fo)) Assume that (,fo)’ (-1, k) O, and that (1) is a regulary

deformation .for the growth type of of the simplified equation

Let P(X, Y) be the polvnomial such that the shadow of the blowup of (1) bv the regu-
larizing microscope

(17) x esoX, y rsoy

is

dY
(lS)

dX
P(X, Y).

Let be any maximal solution of (1) such that (x_)
_

qo(x_). Then
(1) There exists some limited X+ < 0 such that is defined and preresonant,

attached to qo on [x_ x+ with x+ "= esoX+
___

O.
(2) For all x [x_,x+] such that x

_
O, if x/eso is unlimited, then y(x)

klxl (1 +
(3) Equation (18) has a unique river (-cx),a) IR of type (k, r) at X
yor any x near-standard in the image Y(X) of by the microscope

(17) is infinitely close to (X). So for x "= esx, (x) is defined and satisfies

?(x).

Proof. The proof uses a zoom technique introduced by Callot for the Riccati-
Hermite equation [5], and presented in a more general case by Benoit in [2]. It
consists of a three-step study, the middle step connecting the scales of the first and
the last step using a typically nonstandard technique.

Behaviour of for x << 0 and for x <_ xo - O. As the branch y qo(x) is negative
by assumption and thus attracting, as it is preresonant, the solution y is defined
and satisfies (x)

_
qo(x) for all x such that x_ < x << 0 and thus, by permanence

(Fehrele’s principle*), there exists x0 - 0, x0 < 0, such that this stays true for all

As qo is asymptotic (tangent) to klxlr at x 0 with k 0, there exists some
standard x

_
e [x_, 0) such that qo(x) 0 for all x

_
e Ix_, 0). As the result is local,

without loss of generality, we may assume that x_ x_.
As qo is standard, qo(x) is appreciable on Ix_, 0) for all x 0, and thus (x)

qo(x) + fl qo(x)(1 / f) if x 0. By Fehrele’s principle, there exists some infinites-
imal x _< x0 such that this stays true for all x <_ x. Possibly choosing a smaller
infinitesimal x, we may also assume that Xo/so is unlimited (negative). Without
loss of generality we now change x0 into x0 x.

Behaviour for x
_

0 outside the S-galaxy of O. We now assume that x0 <_ x < 0,
Ixl large enough for x/so to be unlimited. We both have to show that (x) is defined
and that (x) klxlr (1 + it).

Let :- (x)/Ixl, and choose k_ < k+ standard with the same sign such that
k_ < k < k+, and such that [k_, k+] contains no other root than k of the algebraic
equation rf0(-1, K) 0. We shall show that it is absurd to assume that (x) leaves
(k_, k+) on the external domain under consideration here. This will imply, on one
hand, that (x) stays defined, as the compact {(x,y)lxo <_ x <_ O,k_lxlr <_ (x) <_
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FIG. 5. The equation (1), its image by the microscope (19), and its image by the regularizing
microscope (21).

k+[xlr}(c hal (0, 0)) is contained in the domain of (1). On the other hand, this implies
also that a(x)

_
k as k_ and k+ are standard and can be chosen arbitrarily close to

k, and so assertion (3.1) will be shown.
So assume that a(x) leaves (k_,k+) at Xl _> x0, with xl/e8o unlimited, that is,

k_[xlr < y(x) < k+[x[r for all x e [xo, xl) and (xl) k+[x[. Let s(< so) be such
that x/esl -1, and consider the microscope

(19) x esl, y eTM r/.

Let be the image of by this microscope; () ers’(/e’) and thus k_lhl <
() < k+llr for all _< -1 limited, and (-1) k+.

This is absurd; indeed, the image of (1) by the microscope (19) is a slow-fast
differential equation

(20) e
ddy

with d :- 1- Sl(1-r+#r(f0)) > 0 and
the slow curve of which, for < 0, is the union of the branches y Klxlr for the
various roots K of f0(-1, K) 0. The differential equation is thus fast at the point
(-1, if(- 1)) (-1, k+), and oriented towards the branch klxl, as by asumption
(f0)y (-1, k) < 0, which contradicts that (,ff()) is contained in the crescent
[k_, k+] for _< -1.

Behaviour for x in the es-galaxy of O. We just showed that (x) is defined and
satifies the inequalities k_lxl < y(x) < k+lxl for all x E [x0, 0] such that x/es is
unlimited. Thus by Cauchy’s permanence principle* there exists some x+ < 0 such
that X+ x+/e is limited, and such that this internal property stays true for all
x [x0,x+], which implies, in particular, assertion (3.1).

In other words, the image Y of the solution y by the microscope

(21) x esX, y eTMY

keeps contained, for X <_ X+ limited, in the region k_lXIr <_ Y(X) <_ k+lXIr

(Fig. 6) as, for X <_ X+ limited, x := esoX >_ x0; (X) is thus limited for all limited
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k+lxlr

FIG. 6. The unique river of (22) which is contained in the crescent-shaped region X < X+,
k_lXl

_
Y

_
k+lXl for all (limited) X sucently negative.

X _< X+. By the short-shadow lemma, has thus a shadow ]Y, also contained in the
close, standard region k_lXIr <_ (x) <_ k+lXIr, which is necessarily a solution of the
shadow (22) of (1) by the regularizing microscope (21):

dY
(22)

dX P(X, Y).

But, by Corollary 2.3, one has rP(X, Y) rf0. As equation rP(-1, K) (= rf0(-1,
K)) 0 has a unique root, k, between k_ and k+, by Proposition 1.4, Y is asymptotic
to k[XIr at X -oc. As, moreover, (rp) (-1, k) < 0, by the rivers-existence
theorem [11], 1 is_necessarily t_he unique river of (22), that is, of type (k, r). As 17
is the shadow of Y, one has Y^(X)

_
Y(X) for all limited X. As k_ and k+ are

standard and of the same sign, Y(X) is appreciable for all limited X _< X+, and thus
(X) (X)(1 / ) for all limited X; hence assertion (3.1).

Here is, as an example of application, a corollary giving the existence of canards
for certain one-parameter famillies of Union-Jack equations. Such canards are not of
class S (i.e., the shadow of their image exhibits angles).

COROLLARY 3.2. Consider a continuous, one-parameter d E family of Union-
Jack equations

(23) xx (y ax)(y bx)(y cx) + p(x, y, d)

with a < b < c fixed standard numbers, p an internal function with regular e-shadow
expansion, p(x, y) po(x, y) + e(pl (x, y, d) +, on some standard neighbourhood
of ((0,0)} [A, C], with T3(po)(x,y) =- O, pl standard continuous such that a
p (0, O, A), and c p (0, O, C).

Then there exist values da (A, B) (respectively, de e (B, C)) of the parameter
d for which (23) has a canard, that is, more precisely, a slow solution, defined on the
halo of 0 (and further), following, .for x < O, the attracting branch of a slow-curve
tangent to y bx, and following, for x > O, the repelling branch tangent to y ax
(respectively, y cx).

Proof. As the Taylor polynomial of P0 of degree 3, T3 (P0) is zero, the slow curve of
(23) has, at (0, 0), three negative branches, qo, qo-, qo-, and three positive branches

+qoc, tangent, respectively, to the three straight lines y ix, y bx, and
y cx (fig. 7(a)); the three preresonant branches are qo-, qo+, and qoc+. We shall
show the existence of a value de (B, C) and of a canard, for d de, following qo-
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.....

(b) (c)

FIG. 7. (a) the six branches, at (0, O) of the (fixed) slow curve of the family (23); (b) and (c)
are some trajectories o] (24), image by the regularizing microscope o] (23) ]ord B and d C.

and c+. One would proceed analogously for the existence of a canard following Oa+
for some d da E (A, B).

Let x_ << 0 < x+ be such that x_ E T)(o-) and x+ T)(c+). Choose y_
b- (x_) and y+

_
c+(x+)," so, (x_, y_) and (x+,y+) are two "initial conditions"

belonging, respectively, to the halo of the two considered branches of slow curve:
let

_
and + be the maximal solutions of (23) passing through these two initial

conditions; as in (23),

_
and + are dependent continuously on the parameter d.

LEMMA 3.3. Let dY/dX F(X,Y,d) be a continuous one-parameter d
[D_,D+] family of locally Lipschitz dierential equations defined for all (X, Y)
[X_,X+] x R. For each d [D_, D+], let (X, d) -

_
and (X, d) + be the max-

imal solution through Y_ and Y+ for X X_ and X X+, respectively (Y+ may be
constant or may depend continuously on the parameter d). If there exist X and Xo+
in [X_,X+] such that Y_(X,D_) < Y+(X,D_) and Y_(Xo+,D+) > Y+(Xo+,D+),
then there exists dce [D_, D+] such that Y_(X, dc) Y+(X, dc) for all X e IX_, X+].

Proof. Consider the map " [D_, D+] ---. R "= Rt2{-oc, +oc} that to each value
of the parameter d associates the value of ]7_ (X+, d) if this value is defined, or
if ]7_ stops to be defined because it tends to +oo for some X0 < X+. By continuity
of F and Y_ with respect to d, o is continuous. By uniqueness o(D_) < Y+ and
o(D+) > Y+. Thus, by continuity with respect to d of o and Y+, there exists dc such
that (dc)= Y+. By uniqueness, for d dc, 1- +.

Here is the principle of the end of the proof.
Looking at the solutions

_
and y+ on the regularizing blowup, where, by The-

orem 3.1, these solutions are infinitely close to the isolated rivers Y_ and Y+, shows
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that for d B and d C, the solutions

_
and y+ are defined and slow until x 0,

that is, on Ix_, 0] and [0, x+], respectively, which for d- B, one has y_(0) < +(0),
and that for d C, these values at 0 of the solutions are in the inverse order. Thus by
Lemma 3.3 there exists some dc E (B, C) such that for this value of d,

_
=_ +" this

solution is the desired canard. Let us check the various facts stated in this reasoning.
Consider the following regularizing microscope

l/3x x, l/3y y

that we already used in example (11). The shadow of the corresponding blowup of
(23) is

(24)
dY
dX

(Y aX)(Y bX)(Y cX) / D, with D Pl (0, 0, d).

Let +(X) :- -1/3+(/3X) be the images of the solutions +(x). Theorem 3.1
implies that _(X) is defined and infinitely close to the unique river ]7_ asymptotic
to Y bX, if X is near-standard in the domain of ]Y_. Analogously+(X) is defined
and infinitely close to the unique river 17+ asymptotic to Y cX if X is near-standard
in the domain of

An elementary study of the two solutions 1+ of (24) shows that for D b and
D c, these solutions are well defined on an open interval containing (-oc, 0] and
[0, +c), respectively.

For D b, Y_ (X) =_ bX is an obvious solution, and 17+ (X) > bX =_

_
(X), for X

positive and large enough, thus for all X E T)Y+, by uniqueness of solutions (Fig. 7(b)).
Moreover, as for large values of Y > 0, dY/dX > 0, solutions of (24) "above" the
obvious solution Y_ have to be defined down to X -cx). So, in particular, +(0)
is defined and ]7+ (0) > ]Y_ (0). Now, still for D b, that is, d- B, using that Y+(0)
and ]7+ (0) are standard, one has

F_(o) ?_(o) << ?+(o) F+(o)

and thus y_ (0) < +(0).
One uses an analog way of reasoning for d C (Fig. 7(c)), that is,^D c,

observing here that Y+(X) =_ cX is now an obvious solution of (24), and that Y+ <
So, for d- C, y_ (0) > +(0), which shows the corollary, as explained above.

Remark. A consequence of Corollary 3.2 is that there exists, for (24) a value
D(= d) for which the unique river asymptotic to bX at X -cx, and the unique
river asymptotic, for example, to aX at X +cx), are equal. Figure 8 shows a
numerical computation of that value. We would be highly interested in an analytical
method to determine this value.

3.2. Exiting a critical point’s halo. In Theorem 3.1 we considered the ques-
tion of the image, on a convenient regularizing blowup of any preresonant slow so-
lution. The example considered in Corollary 3.2 can also be used to illustrate the
inverse problem, which will be solved below with Theorem 3.4: to the contrary of
the canard behaviour of a solution of (23), the "ordinary" behaviour of a preresonant
solution that enters, say, for x < 0 in the scope of the regularizing microscope, is
to stay infinitely close, on the blowup, to a repelling river (at X -x)). This river
solution may also be (see, for example, the left-hand side of Fig. 8) a river at X +x)

but attracting now, so belonging to a one-parameter family of rivers, all with same
asymptotic expansion at X +x). Such a slow solution crosses the halo of the critical
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FIG. 8. Numerical computation of the standard part of the canard value dc for equation (23), in
the case (a,b,c) (-1,-0.1, 1). The behaviour at X +cx) ("descending" or "ascending" arrow)
of the river at X -o of type (b, 1) "left-entering arrow") changes very quickly with the value of
d, displayed in the lower left corner.

point and then follows, for x > 0, an attracting branch 99+ [0,x+] ---. JR, of type
(k+, r+), where (k+, r+) is precisely the type of the considered river at X +cx.

Once more, we assume that (x0, Y0) (0, 0), but that 99 is defined on [0, x+] this
time, and is attracting (thus nonpreresonant). There is of course an analogous result
for any standard (x0, Y0), and also any repelling branch defined on some "left-interval"

THEOREM 3.4. Let k O, r > O, x+ > 0 be standard numbers, and 99 [0, x+] --]R be any attracting (k, r)-branch at (0, O) of the slow curve of equation (1); put so ::
1/(1-r+#r(fo)). Assume that (rf0)(-1, k) O, and that (1) is a regular deformation
for the growth-type of the branch 99 of the simplified equation

Denote by P(X, Y) the polynomial such that the shadow of the blowup of (1) by the
regularizing microscope

(25) x e8X, y eTMY

is equal to

dY
(26)

dX
P(X, Y).

Under these assumptions, (26) has an attracting river I7. (a, +cx3) of type (k, r)
atX=+.

Let be any maximal solution of (1), and let Y(X) "= e-,oy(e,oX) be its image
by the regularizing microscope (25). Let Xo >> a be limited, and define xo eXo.

(1) If 7(Xo) - (Xo), then for any X near-standard in ]a, +c[ and yor z :=
eX, (x) is defined and satisfies

-,o(,ox) (= y(x))
_
?(x).

(2) For all x e [O,x+] such that x O, if x/ is unlimited, then (x)
k( +

(3) For any appreciable x E]O,x+], (x)
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(b)

(e) (f) (g)

FIG. 9. The passage through the halo of the critical point of (27). (a) and (g): e 1, the
initial scale; (b): e

_
0 and e/e3s

_
0; (c): 83s e, one puts r/= 81/3; (c)-(e): the microscopes

of Theorem 3.1 in the case 0 > r (= -1); (e)-(g): the microscopes of Theorem 3.4 applied to the
positive branch y x.

Proof. By Corollary 2.3, we have rP(X, Y) rf0. By Proposition 1.2, we have
rP(1, k) rf0(1, k) 0, and, as the branch qo is attracting, (rf0)(1, k) < 0. Thus
by the rivers existence theorem, there exists an attracting river
of type (k, r). The short-shadow lemma implies that the solution Y of blowup of (1)
by theregulari^zing microscope (25) is defined for all X near-standard in ]a, +cx)[, and
that Y(X)

_
Y(X); hence assertion (3.4).

Assertions (2) and (3) are obtained by reasoning with the same microscopes as
in the proof of Theorem 3.1; the existence of the slow solution up to x+ follows from
the attractivity of the slow curve at each of these scales.

3.3. Singular deformations. We shall raise the question of equations with sin-
gular deformations for some branches of the slow curve on an example, and more pre-
cisely on the example of (11) which we already used to introduce that notion. This
will also give us the oportunity to sketch how to deal with slow curves at some x0 with
branches of type (k, r), with r < 0. For the sake of simplicity, we do not consider here
this question in the general case (that is, only relevant fo(x, y) that are polynomials
in ya).

Recall that (11) is equation

+ +

for which the term e(a + bx) is a singular deformation for the branch y x2 for any
standard a 0. This branch being preresonant for x < 0, we shall, more precisely,
be interested in the behaviour of any preresonant solution with initial condition
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(x_, y_) such that x_ is appreciable and negative and y_
___

x2_. The branch y x2

being attracting, (x) is defined and y(x)
___
x2 for all x such that x_ <_ x << 0, and

thus, by Fehrele’s principle, for some x
___

0. As soon as x
___

0, we study using the
"zoom" (microscope with strengh varying with s)

(28) X x, Y y.

Let Y8 be the image of by this microscope; thus it is a solution of equation

(29)
dY -1-8[3(y X2)(X sy) 4- (a 4- bX)]
dX

As long as s << 1/2, and more precisely as long as e/ea
_

0, (29) is slow-fast, with slow
curve X(Y- X), which is attracting for X < 0 (Fig. 9). Using the same reasoning
as in the proof of Theorem 3.1, we see that for all these values of s and all appreciable
X < O, Fs(X) X2 and thus -2(X) X2

Increasing the strengh of the zoom, that is, increasing s such that the ratio 38
becomes appreciable, say equal to 1, that is s 1/2, then 1/3 is a solution of

dY
X(Y X2) + a + l(bX Y(Y X2)),(30)

with / := 1/3; this is still a slow-fast equation, but a change occured in the slow
curve (Fig. 9(c)): it’s no longer a parabola, but the curve X(Y X2) + a 0, which,
as a # 0, is now only asymptotic to the parabola {Y X2} at X -; but at
X 0, it is asymptotic to Y -a/X. This part of the slow cuwe has to be seen as
a (negative) branch o of type (a,-1) at (0, 0), which means asymptotic to alXI, with

Notice that now the term lbX is a regular deformation term with respect to
the preresonant branch , of type (a,-1), for the simplified equation l(dY/dX)
X(Y X2) + a, for which the "microscope" (it is indeed a microscope with respect
to X, but it is a macroscope with respect to Y)

-1/2(31) /1/2X X, / Y=Y

changes (30) into a regular perturbation for the polynomial differential equation with
rivers

(32) dY _y2 4- XY + a,
dX

which exhibits in particular a river r_ of type -a/X at X -cx3. Observe now that
in Theorem 3.1, we assumed that r, the growth type of the branch, is positive; this
was done for the sake of simplicity, and also for the sake a generality with respect to
the equation (which was assumed to be C and not only a polynomial), a negative
growth type at x0 making no sense in the C case. One checks easily that we only
used that r # 0 (and thus kr # 0). So we come to the same conclusion here and see
that for limited X sufficiently negative,

(x) (x),

where Y1/3 denotes the image of the solution Y1/3 on the blowup using the microscope
(31).
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FIG. 10. The blowup of equation (27) by the regularizing microscope (31) for some negative
and some positive value of the parameter a.

It is easy to study the behaviour of the rivers of (32) (see Fig. 10). One shows in
particular that for a > 0, the river r_ at X -oo is also a river at X +oc, but
attracting and of type (1, 1) this time.

The time has come to express the microscope we obtained by the two successive
microscopes we applied, namely, x 1/3X, y 2/3y, and X 2/3X, Y -l/3y,
as r/- 1/3. Finally, we have

x e1/2X, y 1/2Y

we merely resulted in the regularizing microscope relative to the branch of type (1, 1)
(with respect to which the complete equation (27) is a regular deformation of the
simplified equation). So we can apply Theorem 3.4 for X > 0, and we get (Fig. 9(e)-
9(g)) that for a > 0 (standard), the solution stays slow for x > 0, and follows the
attracting curve y x.

Let us observe that for a < 0 (standard), Fig. 10(b) suggests what the behaviour
of y will be for x >> 0: when X increases, r_ decreases faster than any linear function
and thus, coming back to the initial scale, jumps towards y unlimited negative.So
we can deduce that will assume, for some a

___
0, intermediate behaviours, and

especially that for any limited b, there exists some a(b) such that a(b),b is a canard
of (27).

This example shows how to reduce a singular deformation problem: r being chosen
with respect to the preresonant branch qo followed by the considered solution, one
increases gradually the value of s in the zoom (28)" for small values of s > 0, at that
scale the solution follows the slow curve equal to the growth type of qa. For some
smallest standard value Sl(< so, unless the deformation would just be regular), one
or several terms in the deformation get the same size order as those of f0: Proposition
1.2 shows that such terms can only rise from those fp such that 1 < p < 1 + so(r- 1).
One gets a new slow-fast equation ("e" becomes "rf’), the standard part of which
being henceforth a polynomial, and the slow curve being an algebraic curve, which
may exhibit new critical points and which may once more be analysed in branches at
these critical points, but also branches at X +cx, or Y -t-x) (r < 0). Once the
critical points with finite abscissa have been found (this is the only difficult operation),
one can study theses branches with convenient Newton polygons. If the slow curve
at the initial scale exhibits a preresonant branch of type (k, r) for +(x x0) > 0, the
slow curve of the blowup will exhibit a branch of type (k, r) at X +x3 such that
the solution will follow up to some new critical point of finite abscissa and finite or
infinite ordinate: it suffices to reapply the same process; as already mentioned, the
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Theorems 3.1 and 3.4 apply in both cases, and this makes it possible to "follow" the
considered solution, at least when no canard situations occur, which would imply an
additional canard study. We do not doubt that this process will finally result (if no
nonzero occuring function is infinitely flat at some of the critical points, which will not
happen if the functions are assumed to be analytic) in a regularizing blowup, but it
would of course be interesting to solve this question in an effective manner (symbolic
machine computations). We will not consider here this purely algebraic question that
involves only the equation, our goal being to show the role played by rivers in the
behaviour of the slow solutions.

4. Appendix. Let us briefly sketch the nonstandard tools involved in this paper.
The vocabulary of infinitesimals had gradually been forsaken by most mathe-

maticians because of the contradictions that this terminology seemed to introduce.
To overcome these contradictions, logicians like LSwenheim and Skolem introduced so-
called "nonstandard models," mathematical constructions that would, for example,
add "infinitely large elements" to the integers. Abraham Robinson extended these
techniques in order to build efficient nonstandard models that contain all of what
is needed by mathematical analysis (Banach spaces, measure spaces, etc.) He also
pointed out that his construction should indicate how to use safely the infinitesimal
terminology within the usual mathematical sets, like R, the main idea being not to
apply blindly classical results to "external sets" like the set of standard integers. It
is Nelson that achieved this program, in his October 1977 paper in the Bulletin of
the American Mathematics Society that indicates what to do (and what not to do)
using that terminology. Actually, Nelson’s Internal Set Theory introduces just one
new word, standard, and gives the rules for correct use of it.

We use Nelson’s approach (and thus the usual real line, not some elaborate model);
here is how it works. Every classical object is standard or not" we just need tools to
determine which is which. Any uniquely defined object (possibly using other objects
that have already been shown to be standard) is standard. So , 0, 1, , sin, , 0()
are standard. An equivalent statement, called transfer, asserts that classical-type
theorems are true if and only if they are true for standard elements. Things become
more interesting with the theorem asserting that any infinite set contains nonstandard
elements (infinite means, as usual, in one-one correspondence with one of its proper
subsets). So N has nonstandard elements, and any nonstandard integer, say w, is
larger than any standard one. So we have an infinitely large number w. Taking its
inverse (in Q or ]), we get a nonzero infinitesimal l/w, i.e., I1 is smaller than 1/n
for all standard n > 0. A number is limited if its absolute value is smaller than some
standard number (one should keep the word "finite" for questions of cardinality: the
set (1,..., w} c N is finite, but its cardinal is infinitely large, or better: unlimited).
It is appreciable if it is neither infinitesimal nor unlimited. Here are two notations:
(pronounce zerobar) will always denote an infinitesimal and a limited number, but
two occurences of are not necessarily equal, and analogously for . Please notice
the difference between the empty-set symbol } and this symbol . We write x y if
and only if x-y is infinitesimal, and, to the contrary, x << y if and only if x-y is
not infinitesimal.

As ] is complete, any limited real number is infinitely close to a standard one,
called its standard part, and denoted by l. This extends easily to any standard
finite-dimensional Banach space B. For any standard C c_ B, if l E C, we say that

is near-standard in C. If " c_ B has all its limited points near-standard in C, it
is infinitely close to C. If - is a curve (think of a trajectory), we also say that
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follows C. If, moreover, C is standard and any of its standard points is infinitely
close to some point of 7, then C is called the shadow of % and we write 7 C
(actually, on any standard compact subset, it is a standard part for the Haussdorf
metric). A standard function f0 is the shadow of the function f if their graphs are
also. We use this terminology for differential equations, just identifying the equation
y’ f(x, y) with the function f. Given a differential equation y’ f(x, y) and its
shadow y f(x, y), both assumed to be locally Lipschitz, the short-shadow lemma [9,
Thm. 8.2.2] indicates the relationship existing between the shadow of some segments
of solution of the initial equation and a standard solution of the shadow equation.
The segment should be short in the sense that the difference between two elements in
its domain has to be limited. The lemma also gives existence results for solutions of
the initial equation from existence assumptions on the shadow equation.

To make it possible to assume that e > 0 is a fixed infinitesimal is a key point
in the use of nonstandard analysis to singular perturbation theory. For example,
dealing with the question of existence, the fact that solutions have their values in
a (finite-dimensional and thus) locally compact space, one can refer to the prolon-
gation theorem, which ensures that the maximal solution leaves any closed subset
of the domain of the equation; it might be more cumbersome to deal with an (ad
hoc) infinite-dimensional space (of R2-valued functions, defined for e E (0, s0)). A
still more important reason is that it makes it easier to let other parameters vary.
Expansions involving e may enter "by themselves" for a number a, as, for example,
for the necessary value a 1 e e2 + e2 of some parameter (for the existence
of canards [3]).

A number a has an s-shadow expansion, that we shall write a a,en, if
(an)n>o is a standard sequence of numbers and for any standard n, a ao-t-ale -...-t-
huen+en (this formal expansion usually does not converge for any nonzero value of
A function f has an s-shadow expansion, write f fnen, if (fn)n>o is a standard
sequence of functions on some domain D, and for any standard n, and any x near-
standard in D, f(x) fo(x) -t- fl (x)e +... + fn (x)en + en. The expansion is regular
if the functions fn are Coo, and for any standard p, f(P) f(np)en. For example, if
F is standard and (oo with respect to (x, e) and if e > 0 is some infinitesimal, then
Taylor’s theorem shows that for f(x) :-- F(x, e), one has .f F( (., e)en/n !. But
there exist useful examples which are not of that kind, for example, f(x) (x, e, a),
(I) E (:oo standard, and a is equal to the sum of the smallest term of some diverging
expansion, as for the canard values of the Van der Pol equation [3]. If f has a regular
s-shadow expansion, and y is a slow solution of ey f(x, y) that follows a branch
of the slow curve (f(x, y) 0} with no critical point, then has also an s-shadow
expansion, and this expansion is the same for all slow solutions following the same
branch [8].

It is possible to deal with external sets, provided one takes care not to apply
(blindly) classical theorems to them. We say that a set (i.e., a subcollection defined
using the extended language of some classical set) is external, if some classical result is
wrong for it. The set 8N of standard integers is external (it is bounded by w but has
no least upper-bound), and so is the principal galaxy o.fR, the set of all limited real
numbers (the previous example could be deduced from it just by intersecting it with
the standard set N), or the c-galaxy x0 +aG of any x0 for any ( 0. One has specific
results for external sets, which can be used as permanence principles (or overspill
principles). The most obvious one is the "Cauchy principle" (named after Cauchy’s
original statement on continuity of the limit of a sequence of continuous functions)
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that just states that an external set is not internal. So, an internal property cannot
hold only on an external set (otherwise this statement would define the external set,
and there would be a contradiction in classical mathematics) and the property must
overspill to other points. An external set is a halo if it is the intersection on all

1standard indices of an internal family of sets (think of hal (0) := [8N[--, ]), and
it is a galaxy if it is the union on all standard indices of such a family (think of
G "= JsN[-n, n]). So the external domain where a function is limited or appreciable
is a galaxy, and the external domain where it is infinitesimal or unlimited is a halo.
Fehrele’s principle states that no halo is a galaxy, so, for example, two functions
cannot be infinitely close to each other only on a galaxy. This is a generalization of
an easy but nice result called Robinson’s lemma. The typical use of this permanence
result is when it is necessary to overspill an "up to an infinitesimal" estimate from
all limited values of the variable up to some infinitely large ones: the domain where
this type of estimate holds is a halo, whereas the external set of limited numbers is a
galaxy; so the halo must be strictly larger than this galaxy.

We refer to [9] for proofs, further results, and bibliography.

REFERENCES

[1] R. C. ACKERBERG AND R. E. O’MALLEY, Boundary layer problems exhibiting resonance,
Stud. Appl. Math., 49 (1970), pp. 277-295.

[2] E. BENOIT, Loupes variables, in Analyse Non Standard et Representation du Rel, M. Diener
and C. Lobry, eds., Editions CNRS/OPU, 1984, pp. 93-102.

[3] E. BENOIT, J. L. CALLOW, F. DIENER, AND M. DIENER, Chasse au canard, Collectanea
Mathematica, Barcelone, 31 (1981), pp. 37-119.

[4] F. BLAIS, Fleuves ggndralisds, Ph.D. thesis, Universit Paris 7, 1989.
[5] J. L. CALLOW, Bifurcation du portrait de phase pour les gquations diffdrentielles lingaires du

second ordre ayant pour type l’gquation d’Hermite, Ph.D. thesis, d’Etat 125/TE-13, IRMA,
7, rue R. Descartes, F67084 Strasbourg Cedex, 1981.

[6] S. CANDELPERGHER, J. C. NOSMAS, AND F. PHAM, Approche de la rdsurgence, Hermann,
Paris, 1992.

[7] F. DIENER, Fleuves et varidtds centrales, in Singularits des quations diffrentielles, Dijon
1985, Astrisque 150-151, Socit Mathmatique de France, 1987, pp. 59-66.

[8] F. DIENER AND M. DIENErt, Some asymptotic results in ordinary differential equation, in
Non Standard Analysis and its Applications, N. Cutland, ed., Cambridge University Press,
London, 1988, pp. 282-297.

[9] F. DIENER AND G. REEB, Analyse Non Standard, Hermann, Paris, 1989.
[10] M. DIENER, Canards et bifurcations, in Outils et modules mathmatiques pour l’automatique,

l’analyse des systmes et le traitement du signal, tome 3, I. D. Landau, ed., Editions du
CNRS, 1983, pp. 315-328.

[11] M. DIENER AND G. REEB, Champs polynCmiaux: nouvelles trajectoires remarquables, Bull.
Soc. Math. Belgique, 38 (1987), pp. 131-150.

[12] J. DIEUDONN], Calcul Infinitdsimal, Hermann, Paris, 1980.
[13] J. ECALLE, Les fonctions rdsurgentes, tomes 1,2,3, prpublication, Publications mathmatiques

d’Orsay, Universit de Paris Sud, Dpartement de Mathmatiques, bat. 425, F91425 Orsay,
1981-1985.

[14] N. KOPELL, A geometric approach to boundary layer problems exhibiting resonance, SIAM J.
Appl: Math., 37 (1979), pp. 436-458.

[15] S. LEFSCHETZ, Algebraic Geometry, Princeton University Press, Princeton, NJ, 1953.
[16] E. F. MISHCHENKO AND N. K. Rosov, Differential Equations with Small Parameters and

Relaxation Oscillations, Plenum Press, New York, 1980.
[17] J. P. RAMIS, Les sdries k-sommables et leurs applications, Springer Lecture Notes in Physics,

126, 1980.
[18] Y. SIBUYA, A theorem concerning uniform simplification at a transition point and the problem

of resonance, SIAM J. Math. Anal., 12 (1981), pp. 653-668.
[19] I. P. VAN DEN BERG, Nonstandard Asymptotic Analysis, col. 1249, Lecture Notes in Mathe-

matics, Springer-Verlag, New York, 1987.



REGULARIZING MICROSCOPES AND RIVERS 173

[20] I. P. VAN DEN BERG, On solutions of polynomial growth of ordinary differential equations, J.
Differential Equations, 81 (1989), pp. 368-402.

[21] W. WASOW, Linear Turning Point Theory, Springer-Verlag, New York, 1985.



SIAM J. MATH. ANAL.
Vol. 25, No. i, pp. 174-178, January 1994

()1994 Society for Industrial and Applied Mathematics
O06

A NEW STANDARD ISOMETRY OF DEVELOPABLE SURFACES IN
CAD/CAM*

ERWIN KREYSZIG

Abstract. This paper discusses a recent exact method by Clements and Leon [Marine Tech.,
18 (1981), pp. 227-233] for the isometric mapping of developable surfaces into the plane, as needed
in computer-aided design and manufacturing (CAD/CAM), and some practical shortcomings of this
method. A new exact method for that purpose is then presented that is free of those deficiencies.
Of equal practical importance is the fact that, whereas the method by Clements and Leon requires
the numerical solution of a second-order nonlinear ordinary differential equation (or of an equivalent
first-order system), the present method involves only the evaluation of two single integrals.

Key words, developable surface, isometric mapping into the plane
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1. Introduction. Computer-aided design and manufacturing (CAD/CAM),
robotics, computer graphics, and pattern recognition are among the fields that provide
various, novel, and practical problems and applications of the differential-geometric
theory of curves and surfaces in space [1], [6]. Software reduction calls for standard-
ization to a relatively small number of well-documented portable codes corresponding
to fast and efficient algorithms. With respect to curves this means a preference for
cubic splines, Bezier curves (named after P. Bezier, of the French Renault Automobile
Company), or B-splines, instead of the host of special algebraic and transcendental
curves explored during the 18th and 19th centuries. With respect to surfaces the situ-
ation is similar, although more complex. For a simple introduction into these matters,
see [6].

In construction work, if shape and mechanical stability permit it, one often
chooses (portions of) developable surfaces because then the prescribed design surface
S can be obtained by cutting a suitable portion S* from plane material and bending
S* to give it the form of S. Bending is an isometry, a length-preserving mapping
[4], and standardization here means to design, once and for all, standard isometric
mappings S --. S* and corresponding software applicable to any of the usual practical
problems as they arise in ship building, where large steel plates are to be cut, in roof
constructions, in airfoil design, and in numerous other tasks; see the references in [2]
and [3].

Two not quite satisfactory approximation methods for setting up an isometry
S --. S* into the plane are mentioned in [3]. The paper [3] itself seems to contain the
earliest method for that purpose based on an exact differential-geometric theory. In
2 we outline the basics of this method. In 3 we show that it is essentially local and
discuss its theoretical and practical limitations. In 4 we present a new method that is
free of those limitations. Moreover, our method is numerically much simpler because,
instead of the numerical solution of a nonlinear second-order differential equation
(or an equivalent first-order system) required in [3], it involves only the (generally
numerical) evaluation of two single integrals. A proof of isometry of the mapping
given by the algorithm in 4 is provided in the last two sections.

*Received by the editors October 10, 1992; accepted for publication January 11, 1993.
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2. Clements-Leon method [3]. An isometry is a geodesic mapping; hence it
maps every geodesic on a developable surface S into a straight line in a plane, called
the pq-plane. Accordingly, it is natural to determine on a given developable surface

S" x(s, t) y(s) + tz(s),

a geodesic G: t (s), and map G into a convenient straight line in the pq-plane, say,
into a straight-line segment 0 < p < P on the p-axis.

Theoretically, this is simple. The essential formulas are as follows. First we have

G: R(s) x(s, (s)) y(s) + z(s).

The second derivative with respect to s is

" y" + "z + 2t-z +

G is geodesic on S if ag 0, thus ". w 0, where w fi and f is a normal
vector of S along G (cf. [4, p. 155]). We thus obtain for (s) the nonlinear differential
equation

("z + 2)z + ’z" + y"). w O.

Except for the notation in [3], this equation is written in the form

or as an equivalent first-order system of two differential equations, as usual. For details
on differentiability conditions, etc., we refer to [3]. This is the theory. Practically,
this equation or system is now solved numerically, subject to two suitable initial
conditions by which the geodesic G is uniquely determined. Then, using conformality
of an isometry, one constructs the plane image S* of S by means of the images of the
generators of S, which are straight-line segments of the same length as their inverse
images on S. These are the essential ideas in [3].

3. Restrictions of the method in [3]. In the method just described, one must
tacitly impose the condition that on S there exists at least one geodesic that has a
point in common with each generator on S. Furthermore, in choosing initial conditions
as mentioned in 2, one must be skillful in order to obtain a geodesic of that kind and
resulting from it an isometric image of the entire given surface S; also, such a geodesic
must not meet an edge of regression or any other singularity that S may have.

However, that condition tacitly assumed need not hold even in very simple cases.
For instance, think of the surface of a straight circular cone whose plane image (ob-
tained after cutting along a generator) has at the image of the apex an angle
Accordingly, in this sense the method is local, and it may be necessary to proceed
"piecewise," that is, work with portions of several geodesics; this appears to be a
detour. Remarks at the beginning of 4 on p. 970 in [3] seem to indicate that the
authors were aware of those practical difficulties.

In the next section we present a method that gives a differential geometrically
exact standard mapping that is global and makes direct use of the given representation
of S in the sense that the auxiliary construction of a geodesic is avoided, and the
integration of two single integrals is all that is needed numerically, as was mentioned
before.
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4. Global standard isometry of a developable surface into the plane. Given
a developable surface

(1) S: x(s, t) y(s) + tz(s) [tl(S) _< t _< t2(s), a _< s _< b],

where

3 3

(2) z(s) aj(s)vj(s), aj(s) 1, 3(s) 0,
j--1 j=l

{Vl, v2, v3} is the trihedron (cf. [4, p. 36] and [5, p. 469]), of the curve C: y(s) with
arc length s and curvature (s) > 0.

Note that 3(s) 0 is no restriction of the geometric shape of S. Geometrically,
it means that the representation of S is chosen so that S has no singularities along C,
and calls for a change of the representation if it is violated somewhere (or everywhere)
along C.

ALGORITHM ISOM(S, H(e)). For a developable surface S given by (1) and (2),
this algorithm computes an isometric image S* in the pq-plane given by (9).

Input. Developable surface S given by (1), (2), partition H(e) of [a, b] fine enough
so that the integration rule chosen (e.g., Simpson’s rule) will give values (5) and (7),
whose absolute errors do not exceed a given e > 0.

Output. Isometric image S* of S given by (9) in the pq-plane.
(i) Calculate the curvature a(s) of C, a unit normal vector n of S along C,

1
(3) n(s)

ivlxz
v xz (a <_ s _< b),

and the geodesic curvature ag of C on S,

(4) g v3. n (a

_
s

_
b).

(ii) Evaluate the integral

8

(5) L(s)- aa(u) du Is e H(e)].

(iii) Compute

(6) v (s) sin L(s) v (s) cos L(s)

(iv) Evaluate the integral

s

(7) y*(s)- v(a) da Is e H(e)].

(v) Compute

(8) Z*(8) OlV(8) -- (1 021)1/2v(8) e
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(vi) Compute the isometric image S* of S given by

(9) x*(s, t) y*(s) + tz*(s) [tl(s) <_ t _< t2(s), s e II(e)].

End.

5. Auxiliary formulas for the isometry proof. For easy reference, we con-
tinue the equation numbering. From (6),

(10) Ivl I1 1, v. v: o.

From this and (7),

(11) lY*’I 1;

hence s is the arc length of the image C* "y* (s) of C. Also, by (8),

(12)

For the unit normal vector n of S along C we get, by (1) and (2),

Xs XXt Yl XZ C2V3 O3V2(la) Ixxl I’,’xzl (1 a)l/2

From this we get by the first Frenet formula (cf. [4, pp. 41, 155])

(14) ; lY’ Y" nl (v x:v2)" n :v3" n (1 --012) 1/2"

From (6) we also have

(15) v’-- agv, v’= -agv.

6. Proof that S and S* are isometric. We have an isometry if and only if
corresponding coefficients of the first fundamental forms of S and S* are equal [4,
p. 176]). With the usual notation E x8 .xs, F x .xt, G xt -x, we have for S
by (1), (2), and z’.z 0,

E 1 + 2ty’. z’ + t2z’- z’, F Yl "Z, G 1.

Similarly for S* by (9), (11), (12),

E* 1 + 2ty*’- z*’ + t2z*’. z*’ F* v z*, G* 1

Accordingly, we have to show that

(16) v. Z* Vl "Z,

(17) vT. z*’ v. z’,
(18) z*’. z*’ z’. z’.

Now (16) follows from (2) and (8):
(19) v "Z* =CI --Vl "Z.



178 El:tWIN KREYSZIG

We prove (17). Differentiating (19), we first have

and obtain (17) by proving that the first terms on both sides are equal. Now by (15),
the first term on the left equals agV-z*, which equals ag(1- a2)i/2 by (8) and (10),
and this equals (2a by (14). But the first term on the right equals av2. z by the first
Frenet formula, hence (2a by (2).

We prove (18). From 3(s) 0 in (2) we have Icl(s)l < 1; hence vl and z are
linearly independent, so that the developability condition Iz z’vll- 0 (cf. [4, p. 182])
implies that

z’ ilvl +/z, thus 0 z. z’ =/lcl +/

(with l and/2 depending on s), as well as

(20)

By Lagrange’s identity and (S), (10), and (12),

x..*l 1-CZl2 ? O,

so that v and z* are linearly independent and we can write

(with/ and depending on s), as well as, by (8) and (10),

(21) vi. z,, =/* -I- 2Cgl (1 (21).

But VI" Z’--- V" z’t by (17), so that (20) and (21) imply that f fl, and then
/ f2. Together,

Z 1V1 "- f2Z,
and (18) now follows because of (10) and (12). This proves isometry.
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EXISTENCE OF A HOMOCLINIC ORBIT OF THE
LORENZ SYSTEM BY PRECISE SHOOTING*

BRIAN HASSARDt AND JIANHE ZHANG

Abstract. A proof of the existence of a homoclinic orbit of the Lorenz system is given, based
on shooting using precise numerical integrations. This makes rigorous an argument given by Sparrow
[Appl. Math. Sci. 41, Springer-Verlag, New York, 1982], and improves greatly on the accuracy of
the estimate of the value R* for which a homoclinic orbit exists, in the Hastings-Troy proof [Bull.
Amer. Math. Soc., 27 (1992), pp. 128-131, and J. Diff. Eqns., 1993, to appear].
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1. Introduction. The Lorenz system [5]
(I.I) x’ s(y- x),
(1.2) y’ (R- z)x y,

(1.3) z xy qz,

is often cited as a simple ordinary differential system which exhibits complex dy-
namical behavior, including chaos. However, remarkably little of this behavior has
been actually proven to exist. Our knowledge of the more interesting phenomena in
the system, derives from traditional numerical integrations lacking rigorous control of
truncation and roundoff error.

Only recently has even existence of a homoclinic orbit for the system been proven.
Hastings and Troy [2], [3] show for each (s, q) in some neighborhood of (10,1), there
is an R in the range (1,1000) for which (1.1) has a homoclinic orbit.

Here we give a proof which is essentially a rigorous version of the numerical
shooting argument in Sparrow [6] that a homoclinic orbit exists. The numerical part
of our proof uses a precise numerical integrator which produces true error bounds.
As in [2] and [3], the existence of a homoclinic orbit is inferred as a consequence of
properties of the just two computed orbits (shots). As in [6], the estimate of a value
of R for which a homoclinic orbit exists is sharpened by additional shooting.

Each orbit we compute has one of the following properties.
Property P. As t --, -c, (x, y, z)T --+ (0, O, O)T. Also, there exist numbers T1 <

Sl < tl such that

Z’> 0 Oil (--00, TI),

=0,
y/<0 on [T1,81],

=o,
y < 0 on (s,t],
x > 0 on (-oo, tl).

*Received by the editors July 27, 1992; accepted for publication February 12, 1993.
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Property Q. As t -oc, (x, y, Z)T (0, 0, 0)T. There exists a T such that x’ > 0
on (-c, T1). Also, the orbit (x, y, z)T does not have Property P.

In 2, we show how the existence of orbits having Properties P and Q leads to
the existence of a homoclinic orbit. We incorporate more information about orbits
into Property P than in the hypotheses of [2, Lemma 2.2] so that we can separate a
central argument (Lemma 2.1) from the body (Lemma 2.2) of the proof, and organize
the proofs around the concept of sequences of orbits having Property P.

In 3 and 4 we construct orbits with Properties P and Q. On (-x), 0], orbits
are approximated by polynomials in ea, where ,3 is the positive eigenvalue of the
Jacobian at (0, 0, 0)T. Initial conditions for the numerical integrations derive from
these approximations at t 0. The origin of t is defined such that on the time
interval (-cx), 0], the orbits are in neighborhood of (0, 0, 0)T sufficiently small that
local theory (Lemma 3.4) applies to show existence and to construct highly accurate
approximations. High accuracy at t 0 is necessary to compensate for the large loss
of precision during the integrations for t _> 0.

In 4, we describe precise numerical integrations of using an algorithm due to
Aberth [1]. The actual code we used is based on Aberth’s C++ program called
"difsys.cc," which generates precise solutions of initial value problems of ordinary
differential systems for which the component functions are elementary. In 4 we first
describe the modifications we had to make to Aberth’s algorithm to achieve our goals,
and then we present the results in the form of Lemma 4.1. Finally, we state Theorem
4.2.

2. Conditions for existence of a homoclinic orbit. We fix q > 0, s > 0 and
restrict our attention to some interval [R, Rb] of R values, Ra > 1. The Jacobian
matrix for (1.1)-(1.3) at the origin has two negative and one positive eigenvalues. The
unstable manifold at the origin has components +(R), "/-(R), where locally x > 0
on -+, x < 0 on --. We will be concerned only with -+.

We let p+(R) (v/q(R 1), v/q(R 1),R 1)T denote the stationary point
in the positive octant. Let p(t; R) (x(t; R), y(t; R), z(t; R))T denote a family of
orbits of the Lorenz system, one for each R IRa, Rb], jointly smooth in t and R,
known to exist on the interval (-oo, 0], and such that lim-_o p(t; R) (0, 0, 0)T and
x’(t, R) > 0 on (-x), 0]. Such orbits will be constructed in 3. Then p(.; R) e /+(R).
It is well known [5, Appendix C] that for fixed parameters q,R,s, there is a region V,
the interior of an ellipse, which contains the origin and is a (forward) invariant set
for the flow. Because of the invariant region, each orbit p(t; R) on (-, 0] may be
continued to the entire line (-oc, oc). Furthermore, the partial derivatives of x, y,
and z with respect to t of any fixed order, are bounded for all t and bounds which are
uniform in R may be constructed.

The main task in establishing the existence of a homoclinic orbit is to show that
for the sequence {p(.; R)) of orbits with Property P constructed in Lemma 2.2, the
sequence (t,j } is unbounded. This will be done using the following lemma.

LEMMA 2.1. Suppose 0 < q < 2s and 1 < Ra < R < Rb. Let Rj (Ra, Rb)
and suppose each orbit p(.;R) (x(.;Rj),y(.;Rj),z(.;Rj))T has Property P. Let
T,j < S,j < t,j be from Property P such that X’(T,j;Rj) O, y(s,j;Rj) 0 and
x(t,j; Rj) O. If the sequences (T,}, (S15}, (t,j} have finite limits T1, Sl, t, then
the orbit (x(.; R), y(.; R), z(.; R)) also has Property P.

The basic existence result is then Lemma 2.2.
LEMMA 2.2. Suppose 0 < q < 2s and 1 < R < Rb. Suppose that for R Rb,

there is an orbit with Property P and for R Ra there is an orbit with Property Q.
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Suppose further that for all R E [Ra, Rb], p+(R) is linearly stable. Then there is a
value R*, Ra < R* < Rb for which there is an orbit p(.; R*) (x, y, z)T with the
following properties.

As t -- :l=oc, (x, y, z)T -- (0, O, O)T. Also, there exist T1, Sl,--Oc < TI < S < OC

such that

x’ > o on (-, r),
z’ < 0 on

y’ < 0 on [r, s],
() o,
y < 0 on (si,
x>0 on (-,).

The remainder of this section gives the proofs.

Proof of Lemma 2.1. As T, s, tl are the limits of {T,j}, {S,j}, {t,j}, it follows
from Property P that

T1

__
81

__
tl,

’>0 on (-, T1),
x’<_0 on(rl,t],
X(tl) =0,
y’ _< 0 on [7"1, 81],
y(sl) 0,
y _< 0 on (81, tl],
x _> 0 on (-cx3, tl),

where x(t) x(t; R) and y(t) y(t; R).
To establish that p(.; R) has Property P, we only need to show

()
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(J)
(k)

T1 #81
Sl 7 tl,

x#0 on (--cx:),tl),
x’ 0 on (--OO, T1),
y’ 0 on (T1, 81),
x’# 0 on (Tl,tl),
(1) 0,
y # 0 on (81,tl),
’(s) # 0,
y(tl) # 0,

’(t) # o.



182 BRIAN HA$SARD AND JIANHE ZHANG

We first derive an inequality at T which shows p(.; R) is nontrivial and will be
useful below. Let Q (t) z(t; Rj) (x(t; R)2/2s). Then

( q ) x(t Rj)2Q qz(t; Rj + 1 -s
Q + qQ =2 (1- 2-)x(t;R)x’(t;R),

O() --2 (1- 8) eq(t-’r)x(T;Rj)xt(T;nj)dT’

and from Property P for p(.; Rj), Q(Tl,) > 0. Thus Z’(TX,; R) Q(Ti,) > O.
From (1.1), y(Ti,j; R:i) X(Ti,j; R:i) so from (1.3), x(rl,; Re) > qz(rl,; Re). By
P, y(Ti,j;R:i) < 0 so from (1.2) (Rj z(T,j;R:i)- 1)x(Ti5;R:i < 0 which implies
Z(Ti,j; Rj) > Rj 1. Then X2(T15; Rj) > q(R 1). In the limit j --, cx,

X(T1;R) y(Ti;R) > (q(R- 1))1/2 > 0.

We now establish (a)-(k) in order.
(a) If T1 sl, then y(Ti)= y(si)= 0, contradicting (2.1). Therefore, T < sl.

(b) If sl tl, then X(tl) y(t) 0 and (1.1), (1.2) imply x(t) y(t) 0 for
all t, contradicting (2.1). Therefore, sl < tx.

(c) Suppose there is a to < tl such that x(to) 0. By (2.1), X(Ti) # 0 SO either

t0 < T1 or to > T1. If t0 < rx, then as x’(t) > 0 on (-oo, TO], ft_oo x’(t)dt x(to) 0
and x’ is continuous, it follows that x’(t) 0 on (-o0, to]. Then x(t) 0 on (-oo, to]
and (1.1),(1.2)imply x(t)= y(t)= 0 for all t, contradicting (2.1).

If TX < tO < tl, then as x’(t) < 0 on (rx,tl), f.too_ x’(t)dt x(ti) 0 and x’ is

co ti uous, it fonows that x’(t) 0 on [t0, ix]. Then (1.1),(1.2) imply x(t) y(t) 0
for all t, contradicting (2.1).

It follows that x > 0 on (-oo, tx).
(d) Suppose there is a T0 < r such that x’(ro) O.
We claim that x"(0) 0. For, if x"(0) # 0, x’(t) changes sign at T0 and this

is impossible since x’ > 0 on (-oo, r). We claim further that x’"(ro) > O. For, if
X’"(TO) < 0, then x’(t) < 0 for t near r0; again, this is impossible.

So now x’(ro) X"(rO) 0 and X’"(TO) > O. Equation (1.1) gives y(ro) X(TO),
(1.1)’ gives y’(ro) 0, (1.1)" gives y"(ro) X’"(TO)/S > O, and (1.2) then implies
(R- Z(TO) 1)X(T0) 0. But from (c), X(TO) > 0 and so Z(TO) n- 1. From (1.2)’,
y"(TO) --X(To)Z’(TO) > 0 which implies Z’(TO) <_ O.

Let Q z (x2/2s). Then as above Q’(To) (1 ) fr_ 2eq(t_r)X(T)X,(T)dT.
Since X(TO) > O, X’(t) > 0 for at least some t < TO. From (c), x(t) > 0 on (-oc, TO],
and so Q’(To) > 0. But then Z’(TO) Q’(TO) > 0, and so we have a contradiction.

It follows that x’ > 0 on (-cx), T1).
(e) Suppose there is a a2, T < a2 < s such that y’(a2) 0. We claim that

y"(a2) 0. For if y"(a2) # 0, y’(t) changes sign at a2 which is impossible since y’ _< 0

We also claim that y(a2) > 0. For if y(a2) fs y’(T)dT 0, then, since y’ _< 0
on IT1, Sl] it follows that y’(t) 0 for all t e [a2, Sl], so then y(t) 0 on [a2, Sl]. Then
(1.2) and (c) imply z(t) R on [a2, sl], and (1.3) gives -qR 0, a contradiction.

So now y’(a2) y"(a2) 0 and y(a2) > 0. From (1.2), y’(a2) (R-
0. From (c), > 0 so < R. From



HOMOCLINIC ORBIT OF THE LORENZ SYSTEM 183

(R- z)x’ xz’ 0 and it follows that z’(a2) <_ O. From (1.3)’, z" / qz’ x’y + xy’,
and so for all t e (a2, si), eaz’(t) eqz’(a2) / f. ea(x’y / xy’)dT <_ O. Therefore
z(si) <_ z(a2) < R. But at si, y’(si) (R- z)x <_ O, so z(si) _> R a contradiction.

It follows that y < 0 on (T1, sl).
(f) Suppose there is a ’2 e (Ti,ti) such that X’(T2)- O.
If T2 e (Ti,Si), then by the same argument as in (d), x"(T2) 0. Then from

(1.1)’, y’(T2) 0 contradicting (e).
If T2 e [Si,ti), y(T2) _< 0. From (1.1) and (c), y(T2) X(T2) > 0, a contradiction.
If T2 tl, then (1.1), (1.2) imply x(t) y(t) 0 for all t, contradicting (2.1).
It follows that x < 0 on (T1, tl).
(g) Suppose y’(Ti) O. Then from (1.1)’, X"(Ti) O.
We claim that X(Ti) O. For otherwise x does not change sign at T1, which we

know happens by (d) and (f).
So now X’(T1) X"(T1) X’"(Ti) 0. From (1.1)", y"(tl) 0 as well.

Then from (1.2)’, Z’(T1) 0. But letting Q be as in (d), z’(T1) Q’(T1) (1
2s)f 2eq(*-)X(T)X’(T)dT > 0 a contradiction.

Since we have shown that y’(Ti) = O, and from (e) y’(t) < 0 for t near T1, t > T1,

it follows that y’(Ti) < O.
(h) Suppose there is a point s2, Sl < s2 < t such that y(s2) 0.
We claim that y’(s2) 0 and y"(s2) _< 0. For otherwise y changes sign at s2,

contradicting y _< 0 on (sl, tl).
So now y(s2)- y’(s2)= 0 and y"(s2) <_ 0. From (1.2), (R-z(s2))x(s2)- O. By

(c), x(s2) > 0 so z(s2) R. From (1.2)’, y"(s2) -z’(s2)x(s2) <_ 0 and so z’(s2) _> 0.
But from (1.3), z’(s2) -qz(s2) -qR < 0, a contradiction.

It follows that y < 0 on (sl, tl).
(i) Suppose that y’(s)= O.
We claim that y"(Sl) 0. For if y"(si) < 0, then y’(t) > 0 for t near sl, t < Sl

contradicting (e). If y"(si) > 0, then y(t) > 0 for t near sl, t > sl contradicting (h).
So now y(si) y’(si) y"(si) 0. From (1.2), (R- z(si))x(si) O. By (c),

x(s) > 0, so z(s) R. Then from (1.2)’, z’(sl) 0. From (1.3), z’(sl) -qz(sl)
0, so z(s) 0, a contradiction.

It follows that y’(si) < O.
(j) If y(ti) O, then since x(ti) O, (1.1), (1.2) give x(t) y(t) 0 for all t

contradicting (2.1). Therefore y(ti) = O.
It follows that y(ti) < O.
(k) We have x’(t) s(y(t)- x(t)) sy(t) < 0 from (j).
Proof of Lemma 2.2. First we construct a family of orbits p(t; R), R [Ra, Rb].

Take J 1 in the hypotheses of Lemma 3.4. Then choose r/ > 0 small enough so
that the conditions of Lemma 3.4 are satisfied and furthermore 0 < x(0; R) < y(0; R)
and z(0; R) < R- 1 for all R [R, Rb] so the conditions of Lemma 3.5 are satisfied.
Then by Lemmas 3.4 and 3.5, there exists a family of orbits p(t; R), t (-oc, 0] such
that limt--o p(t; R) 0 and x’(0; R) > 0 on (-cx), 0]. Furthermore p(t; R) is jointly
smooth in t and R.

By uniqueness of the unstable manifold, the hypothesized orbit for R Rb differs
from p(.; Rb) only by a phase shift, so p(.; Rb) has Property P. Similarly, p(.; Ra) has
Property Q.

If an orbit p(.; R),R > 1 has Property P, then we claim that all orbits p(.; p)
for p in some neighborhood of R also have Property P. One establishes this claim
by first using the implicit function theorem and x"(T(R);R) sy’(TI(R);R) < O,
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y’(sl(R);R) < 0 and x’(t(R);R) < 0 to show the existence of T(p), s(p), and
t(p) such that X’(T(p); p) y(s(p); p)
T (p) > 0 and we may restrict our attention to the bounded set [0, t (R) + 1] IRa, Rb].
We omit further details.

Let

R* inf{R, R < R < Rb such that p(.; R) h Property P}.
Then p(.; R*) does not have Property P. If R* Ra this is immediate. If R* > R

and p(.; R*) h Property P, then so do p(.; p) for p sufficiently close to R*,p < R*
contradicting the definition of R*.

Let {R} be decreeing towards R* and such that each p(.; R)h Property P. Let
(T,j}, {Si,j}, and
x(tis;Rj) 0. By construction, x(t;Rj) > 0 on (-,0] and so 0 < T,j < s,j < t,j
for each j.

We now claim (t,j} is unbounded. For, if (t,j} is bounded, so are (T,j } and
{s,j and we may extrt convergent subsequences {i,k }, (Tl,k }, (81,k, d define
t, T, Sl the limits. By Lemma 2.1, the orbit for R R* would then have Property
P, a contradiction.

So now (t,j
We claim that (T,,
over a subsequence of {j} such that T,k, , the orbit p(.; R*) h the property
that x is nondecreing for all t. Since 0 < x(0; R*), p(.; R*) is nontrivial and the
only possibility is that limp(t; R*) p+(R*). By hypothesis, for all R [Ra, Rb],
p+(R) is a linearly stable stationy point. If p(.; R*) is a heteroclinic connection
between (0, 0, 0)T and p+(R*) and x(t; R*) > 0 for all t, then for all R sufficiently
close to R*, p(.; R) is a heteroclinic connection between (0, 0, 0)T and p+(R), and
x(t; R) > 0 for all t. Then for all sufficiently large k p(.; Rk,) does not have Property
P. This contradicts the definition of R*.

So now {T15’ is bounded. Let {T,j,,} be a subsequence such that

T lim T,,,

exists. As x’ (t, R*) limj,, x’(; Rj,,), x’() 0 for t > T. So x($, R*) is monotone
when t > T which implies limp(t, R*) p exists and is an equilibrum point.
As x(.; R*) 0, the only possibilities are p p+(R*) and p (0, 0, 0)T. If
p p+(R*), then p(.; R*) is a heteroclinic connection between (0, 0, 0)T and p+(R*)
which contradicts the definition of R* by the same argument above. Therefore
limp(t, R*) (0, O, O)T, that is, p(.; R*) is a homoclinic orbit.

We now claim {s,j,, } is bounded. For if not, let {s,k,, } be a subsequence such
that s,k,, , then y’(t,R*) limk,, y’(t, Rk,,) 0 for t > T. On the other
hand, y’= (z-R*)x-y (z-R*-l)xwhent > T. omlimp(t,R*) (0,0,0)T,
z < R* 1 when t is large. So one can find large t such that y(t) > 0, which is a
contradiction.

What remains to be shown are:

’ 0 on (-,r),

’ 0 on (v, ),
y’0 on (r,s],
y 0 on (s,),
0 on (-,).
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These inequalities are established the same way as in the proof of Lemma 2.1.

3. Local approximation of the unstable manifold. Our objective in this
section is to construct highly accurate approximations to solutions p(t) of (1.1)-(1.3)
with the property limt__._ p(t) (0, 0, 0)T. The construction also shows existence.
The first step is a coordinate transformation.

Let s’ s- 1 and d ((s’)2 + 4sR)1/2. The eigenvalues of the Jacobian ma-
trix for (1.1) at the origin are then 1 -q < 0, 2 ((-(s + 1)- d)/2) < 0, and
A3 ((-(s + 1) / d)/2) > 0. Let h denote the matrix whose columns are the eigen-
vectors (0,0,1)T, (1, c2,0)T, and (1, c3,0)T corresponding to A1,A2, and A3. Here
c2 ((s’-d)/2s) < 0 and C3 ((8’+ d)/2s) > 0. Let Cl s/d > 0. Setting
(x,y,z)T AT, (1.1)-(1.3) becomes

dwl

dt
dw3
dt

,1Wl "{- fl ,1Wl -- (C2W2 -- C3W3)(W2 -- W3),A2W2 -{- f2 A2W2 - ClWl (W2 - W3),

,3W3 -- f3 ,3W3 --ClWl (W2 "-W3).

We shall find solutions of (3.1) with the property limt--o w (0, 0, 0)T, by solving
the system of integral equations

(3.2)

To start, we define some functionals.
DEFINITION 3.1. For bounded continuous R3-valued functions u(t), v(t) on (-c, 0]

and for real /, let/(u, v) (/1,/2,/3)T (u) and (u; /) denote the functionals

(3.3)

/l(U, v)(t) e’Xl($-r)(C2U2(T) -I- C3U3(T))(V2(T) + V3(T))dT,

(, l(t) ,-’1(-((- + (,-)-,

/3(U, V)(t) eX3(t-’)ell (T)(V2(T) 2t- V3(T))dT,

(3.4) () Z(, ),

(3.5) (u; ) (0, 0,)r + ().

The system (3.2) then becomes simply

(3.6) (; ).
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DEFINITION 3.2. Let W (0, 0, e3t)T, and for each J >_ 2, let

I,=0(3.7) WJ(t) WJ-l(t)- j! Og

We use WJ for some fixed J as the approximation to the unstable manifold for (3.1)
at the origin. Our objective in the remainder of this section is to establish the error
bound in Lemma 3.4. (Ug defined by U1 W, UJ (UJ-; r) for 2 <_ j < J,
has similar approximation properties to WJ but is impractical here since Ug is a
polynomial of degree 2J-1 in r.)

LEMMA 3.1. For each J >_ 1, the component functions wg,i 1,2,3 of WJ

have the form
J j

j=l k=l

where e3 and the coelCficients Wijk are constants given recursively by (3.9),
(3.10), and (3.12) below.

Proof. The components of W are of the form (3.8): explicitly,

(3.9) Wlli W211 0 and W311 1.

For J >_ 2, assume for induction that WJ-1 has components of the form (3.8).
From (3.1) the components of f(WJ-l) are then

2J-2 j

U .tijk
j=l k=l

where for 1 <_ i <_ 3, 1 <_ j M 2J- 2, and 1 <_ k <_ j,

(3.10)

and 1 _< j’, j", k’, k" _< J- 1 in the summations and fi;1 0 when no terms are
present. From (3.7), (3.4), and (3.2),

J

W/ W/-1 -[-J f eXi(t-T) E ekA3rf/kldT
J J-1

W/-1 + ?}JEk)3 LJk
k=2

i-- 1,2,

0 J

k=2

J J-1f3JkW3J-1
__

?;]J Z ekAa )3t)k)3
k=2
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Replacing e3 with in (3.11) shows that the functions WJ are of the form (3.8),
where the new coefficients are

1<i<2, l<_k<J,WiJk kA3 Ai
J J-1

W3J1 k)3 )3
k--2

W3Jk JJ--kl 2 < k < J.
kA3 3

This completes the induction.
It is easy to show that the components of (WJ; ) are of the general form

2J j

j=l

The purpose of the following two lemmas is to show that in fact ik Wijk for
1 < j < J and 1 < k < j. The "O(r/J+l) reasoning is simply a quick way to achieve
this result. The actual bounding argument does not appear until Lemma 3.4.

LEMMA 3.2. For each J > 2, (WJ-1; T]) WJ -- O(JT1) for anyfixed t < O.
Proof. For J 2 this is true since W2 (W1;r]). Consider J _> 3. For each

2 < j < J, since WJ- Wg- + 0(]),

(WJ-1) t(WJ-1 ..J[- O(T]J), WJ-1 -- O(T]J)) (WJ-l, WJ-l) ...[- O(Jq-1)
(w-) + o(+),

SO

Now

o
I,,:o(W-)=

o
o, I,,:o (w’-).

J J GgJ
c(WJ-1;T]) WJ o(WJ-l) +W1 WJ 9(WJ-l)

j[ (OT])J Iv/=0 qO(WJ-l)"
j=2

Since Wg- O(r/) the linear term in the Taylor expansion of qo(Wg-) about r/= 0
vanishes, and (WJ-1; ]) WJ 0(]J+l as desired.

LEMMA 3.3. For each J > 2,(WJ; r/) Wg + 0(J+) for any fixed t < O, and
the components of (WJ; r/) are given by (3.14)-(3.15) below.

Proof. Since WJ WJ-t + O(rlJ),

(w;)=(w- + o(); ) w +Z(w- + o(),w- + o())
w1 - (wJ-l, wJ-l) - o(?J+l) )(wJ-1; ]) - o(J+l)

SO

(w;)-w (w-;)-w + o(+)= o(+)
follows from Lemma 3.2.
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From (3.1) and (3.8) the components of f(WJ) are of the form

2J j

where for 1 _< i _< 3, 1 _< j _< 2J and 1 <_ k <_ j, fik is given by the right sides
of (3.10) but with 1 <_ j’,j",k’,k" < J in the summations. Using (3.2)-(3.7) and
(w;)=w + 0(+),

2J J

j=l cx:) k=l

kAa Ai
j--J+l k--1

i 1, 2,

kA3 3
j--J+1 k--1

Setting eXa in (3.13) gives

(3.14)
2J j

w/ +
j----J+l k--1

1_<i<_3,

where for J + 1 _< j _< 2J,

(3.15)

1 __< i __< 2,1 <_k<_j,
kA3 Ai

k----2

)3Jjk f3k 2 < k < J.
k3 A3’

Definition of norms. For u e R3, we write lul [u + Is21 + Is31, and for
continuous, R3-valued functions u(t) on (-cx), 0] we write Ilull- supt<o

LEMMA 3.4. Fix J >_ 1. Let p > 0 be such that 0 < K(p) < 1/2, where K(p)
2p((c3/11) + (c/IA21) + (c/A3)). Choose 10 > 0 sufficiently small so that for all
I1 - 0, the conditions IIwll

_
2 and lie(w; )- wll

_
4 are satisfied, where w

WJ(t, ). Then the sequence wn )(wn-1; ?), n-- 1, 2,..., converges uniformly in
t and ? to a continuous, bounded solution w(t) of the integral equation w (w;
Moreover, for each t <_ 0 and Iyl <- o,

(3.16)
3 2J j

Iw(t)- wO(tll < (1 g(o))-1 Z Ir/lj klikl’
i=1 j=J+l k=l
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where ex3t and the coefficients ik are given by (3.15).
Proof. If u, v E R3 obey lul _< p and Ivl _< p, then since Ic21 < c3,

Ifl(U) fl(V) 1(l$2 -}- U3)(C2U2 -- C3U3 C2V2 C3V3) + (U2 "" U3 V2 V3)(C2V2 + C3V3)I
<__ ]UlC3IU V] + ]U VIC3IV <__ 2c3pIu

and

If:() f()l Ifa(,) fa()l -< l(u: + ,a a) + ( )( + )1
_< c(lulllu vl / lu vllvl) _< 2plu vl.

Using these inequalities (3.2) and (3.4), if u(t) and v(t) are continuous R3-valued
functions on (-oc, 0] and obey Ilull _< p, Ilvll _< p, then for each t _< 0

2c3p

2clp

2clp
[3() 3(v)l <_ w-ll vii,

so
II() (v)ll K(p)llu ,11.

By hypothesis IIw011 < 2 and wl -w011 < 4 so Ilwlll < IIw011 + Ilw1 -w011
Then IIw2- will < K(p)l]wI -w011 < which implies IIw211 < [Iwlll + s <

Assume for induction that I111 _< o(1 -(+1)) for o _< _< ,. Then

I1"+’ "11 I1() ("-’)11 _< K(p)llw w--ill
<K(p)"llw(t) w(t)ll <

and so I1-/ II
_

p(1 2-(-+2)) completing the induction. Therefore I1" II < p fo
all n. For any pair m _> n,

llwm W" II llwk/ Wk
k--n k--n

2-(k+2)p < 2-(-+)p,

so the sequence is Cauchy uniformly for t _< 0 and I/I _< v/0. Define w as the limit of
the sequence. Then w(t) is bounded, continuous in t and v/, and

n n

Ilzo"+l o11 _< ’ Ilzo+l o’ll <_ K(p)llzo o11 < (1 K(p))-lllzo oOll
k=0 k=0

SO

(3.17) PIIw- 11 _< (1- K(p))-llw -w011 _< .
Since Wn+l (wn; p), I1"11 --< P and I111 _< I111 + I1 11 -< p,

i1o (o; o)ll _< I1o w"+lll + I1(o"; n) ()11 - I1o o"+’ II + K(p)llw" oll



190 BRIAN HASSARD AND JIANHE ZHANG

from which w (w; y). Immediately, w solves (3.1), p- Aw solves (1.1)-(1.3) and

lim p(t) V(tm_ w(t)) (0, O, O)T.

Now from (3.14),

2J j

o=,(wg;r/)_W/J= E rfiEkcg 1<i<3(3.18) w --w Ok,
j=J+l k=l

where e)’3 and the coefficients Ok are given by (3.15). The bound

(3.19)
3 2J j

=1 j=J+l k=l

then follows using (3.17). [3

To apply Lemma 3.4, J is chosen and the coefficients WOk 1 <_ i <_ 3, 1 <_ j <_ J,
l_<k_<jandik, 1_<i<_3, J+l_<j_<2J, l_<k_<jarecomputed. Thenyis
chosen, and the expressions

3 J j

Bo EE Irll:i E ]Wok[’
i=1 j=l k=l

3 2J j

i=1 j=J+l k=l

axe computed. These bound [[wl[ and [[wI -wll, respectively. Then for p
max(2B0, 4B1), g(p) is evaluated. If g(p) >_ 1/2, it is necessaxy to choose a smaller r/.
Assuming K(p) < 1/2, the expressions

J j

(o)
j=l k=l

1<i<3

axe evaluated, and then

W/j B1w,(O) e (0)-
1 K(p)’ WJ(o) +

B ] 1 <i<3.
1 K(p) J

For example, if s 10, R 15, and q 38-, one finds that A -2.666667,
A2 -18.548, ,3 7.548, Cl ----0.3832, c2 -0.8548, and c3 1.7548, the numeric
values in this example being precise in the sense that the absolute errors do not exceed- unit in the last decimal place shown. Then for J 2,2

w (0.0988r/22, O, z/)T

(w; r/) w0 4- (0, 0.000919r/33, 0.00251r/3(1 3))T.
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Choosing , we find that IIwll <_ B0 0.10098815 and lit -w011 < B1
10.0000059367. Then for p max(2B0,4B1) 0.2019763, K(p) 0.2947 <

so Lemma 3.4 applies. Now w(0) (0.000988,0,0.1)T, and w(0) obeys IT(0)-
w0(0)l _< B/(1 g(p)) <_ 0.0000084171, from which x(0) w2(0) + w3(0) e
[0.0999, 0.1001], y(0) c2w2(0) / c3w3(0) e [0.1754, 0.1756] and z(0) w (0)

[0.000 ,
Lemma 3.4 shows existence of solutions p(t) (x, y,z)T h(R)w of (1.1)-(1.3),

defined on (-x), 0] and such that lim_._o p(t) O. Then, thanks to the invariant
set V, the solutions p(t) may be continued to (-cx), x)). To have Property P or Q,
the solutions must also satisfy x > 0 for t < T, where X(T1) 0. By choosing
sufficiently small positive, we can arrange that x > 0 on (-cx, 0] as in the following
lemma, which implies that any T such that X(T) 0 must be positive.

LEMMA 3.5. Let p(t) (x(t),y(t),z(t))T, t e (-(x), 0] be a solution of(1.1)-(1.3)
such that 0 < x(O) < y(O), z(t) < R- 1 on (-oc, 0] and x(t) -- 0 as t --. -oc. Then
x’ > 0 on (-, 0].

Proof. From (1.1), x’(O) s(y(O) x(O)) > O, so x’ > 0 for t < 0 near O.
Suppose for contradiction that there exist point(s) T < 0 at which X’(T) O. At

any such point, x(T) O, for if X(T) 0 the solution of (1.1) and (1.2) would be
just x(t) y(t) 0 for all t and inconsistent with x(0) < y(0). Therefore x"(T)
sy’(T) SX(T)(R- 1 Z(r)) O, sgn(x(T)) sgn(xt’(T)) 0, and x’ changes sign at
T. Let

< 0}.

Then x’ changes sign at T* and is of one sign (positive) on (T*, 0). Since X"(T*) 0
and x’(t) > 0 for t > -* near T*, necessarily X"(T*) > 0 and so X(T*) > 0. For
t < T* near T*, x’(t) < 0. Now x’(t) must change sign on (-cx, T*), for otherwise x(t)
would be monotone decreasing on (-, T*), inconsistent with limt-._o x(t) 0 and
x(r*) > 0. Let

T** sup{t < T*, x’(t) 0}.

Then x’ is of one sign (negative) on (T**, T*) and changes sign at T**. Necessarily
X"(T**) < 0, which implies X(T**) < 0. This is a contradiction, since one cannot have
X(T**) < O, X(T*) > 0, and x’(t) < 0 on (T**, T*).

We have shown that x’ has no zeros on (-c, 0]. Since x’(0) > 0, it follows that
x’ > 0 on (-, 0].

4. The solutions for t > 0. In [1], Aberth describes an algorithm for computing
the solutions of initial value problems "precisely." The algorithm is a Taylor series
method using interval arithmetic, and applies to ordinary differential systems in which
the functions defining the derivatives are elementary. In [1], algorithms and programs
are given for first- and second-order systems. The generalization to systems of n first-
order equations is more recent and is coded as program difsys.cc; see the discussion.
Modifications of difsys were required to obtain the information needed for present
purposes. The basic task in difsys to advance the solution to tk, tkTh and determine
bounds for x(tk,), y(t,), z(t,). Before a trial interval [tk, t + h] is accepted as
"bounding interval," an associated containment region is constructed. The first two
modifications we made to the algorithm were as follows:

M" reject a trial interval unless the containment region guarantees
at least one of x, x is of one sign on the interval, and
at least one of y, y is of one sign on the interval, and
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at least one of z, z is of one sign on the interval.

i2" reject a trial interval unless the containment region guarantees
at least one of x, x" is of one sign on the interval, and
at least one of y, y" is of one sign on the interval, and
at least one of z, z" is of one sign on the interval.

We also added code to compute intervals I D x(tk)x(tk,), J D y(tk)y(tk,),
K D Z(tk)Z(tk,), I D x’ (tk)X’ (tk,), J D y’ (tk)y’ (tk,),and K D z’ (tk)z’ (tk,). The
last two modifications are

M3: if I < 0, print a message "x changes sign,"
if J < 0, print a message "y changes sign,"
if K < 0, print a message "z changes sign,"
if I, J or K overlaps 0, print a message that this happens.

Ma: if I < 0, print a message "x’ changes sign,"
if J < 0, print a message "y’ changes sign,"
if K < 0, print a message "z’ changes sign,"
if I, J or K overlaps 0, print a message that this happens.

Here I > 0 (respectively, < 0) means every point in I is positive (respectively,
negative), and "I overlaps zero" means 0 e I.

Suppose that the modified code has accepted a bounding interval Irk, tk,] and has
successfully computed an approximate solution on this interval, and no messages from
M3 appear. Then we claim that x(t) is either strictly positive or strictly negative on

Irk, tk’]. For, as M3 issued no message, neither I < 0 nor I overlaps zero, so I > 0.
Therefore, x(tk)x(tk,) > 0 and x does not vanish at either endpoint. Since the interval
Irk, tk,] passed the test M1, the containment region guarantees that at least one of x, x’
is of one sign on the interval. If x is of one sign, then sgn(x(t)) sgn(x(tk)) 0 for all
t E [tk, tk,] and we are done. If x’ is of one sign, so then x(t) is monotonic (increasing
or decreasing) from x(tk) to x(tk,), where x(tk) and x(tk,) are of the same sign, and
so again sgn(x(t)) sgn(x(tk)) for all t e Irk, tk,]. Similarly if no messages from M3
appear, y(t) and z(t) are strictly positive or negative on Irk, tk,].

If the message "x changes sign" appears, then x(tk)x(tk,) < 0 so x(tk) and x(tk,)
are of opposite signs and x(t) has at least one zero in the interval. In this case, since the
interval passed the test M1, necessarily x’ is of one sign on the interval and it follows
that x(t) changes sign at exactly one point, an interior point, of the interval. Messages
"y changes sign" and "z changes sign" are similarly interpreted. If no messages from
Ma appear for a bounding interval [tk, tk,], by a similar argument x’ (t), y’(t) and z’ (t)
are each of one sign on the interval. If a message "x’ changes sign" appears, then x
is strictly monotonic on the interval and has a zero at an interior point. Messages
"y’ changes sign" and "z’ changes sign" are interpreted similarly. If any messages
that I, J, K, I, J or K overlap 0 should appear, it is necessary to repeat the
computation at a higher precision.

We now state the numerical results as follows.
LEMMA 4.1. For each set of values s, q, R in Table 1, the Lorenz system has

an orbit p(t) with the Property Q, and .for each set of values s, q, R in Table 2, the
Lorenz system has an orbit p(t) with Property P.
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TABLE 1

Orbits with Property Q.

R 13.926 (exact)
s 10 (exact)

8q-
J--25

r/- 0.1 (exact)
B0 0.10101874785080090852561365779491980762459271357300
B1 2.408204904263048501757000E- 51

x(0) in 0.10000101387916306034307402007221470577302262
y(0) in 0.1712964441229470378484705897787410542299221
z(0) in 0.00101205806115328023910366159554912883232786
n-- 40
y changes sign on the interval 0.6938476563 to 0.6943359375
x changes sign on the interval 0.7558593750 to 0.7578125000
z changes sign on the interval 0.8242187500 to 0.8251953125
y changes sign on the interval 0.9521484375 to 0.9560546875
y changes sign on the interval 1.0224609375 to 1.0263671875
y changes sign on the interval 1.4863281250 to 1.4873046875
x changes sign on the interval 1.5744628906 to 1.5747070313

I 1.6 (exact)

R- 13.9265 (exact)
s 10 (exact)

8q--
J--25

r/---- 0.1 (exact)
B0 0.10101873551056010840559137742027929504345305451900

B1 2.4065991909594552011740119000E- 51

x(0) in 0.100001013830960354945278654625074601199213577394
y(0) in 0.17129842358345975564593357177092041637153684
z(0) in 0.001012046083589028516630187386761869868147368
n=25
y changes sign on the interval 0.6938476563 to 0.6943359375
x changes sign on the interval 0.7558593750 to 0.7578125000
z changes sign on the interval 0.8242187500 to 0.8251953125
y changes sign on the interval 0.9521484375 to 0.9560546875
y changes sign on the interval 1.0224609375 to 1.0263671875
y changes sign on the interval 1.5902099609 to 1.5903320313
x changes sign on the interval 1.6719360352 to 1.6719970703

f 1.72 (exact)

Proof. For each triple (s, q,R) shown in Tables 1 and 2,1 we chose J and and
computed intervals (0), (0), 2(0) guaranteed by Lemma 3.4 to contain a point x(0),
y(0), z(0) of a trajectory of the Lorenz system such that x(t) --. 0 as t --. -oc. This
was done with a short program in C+/ using the Aberth-Schaefer interval arithmetic
package. Input data consists of the parameters q, R, s, the integer J, r] w3(0) > 0,
and an integer determining the precision of the arithmetic. Output consists of the
information, whether or not r/ was chosen sufficiently small for the hypotheses of

1The notation "" in the tables indicates intervals having midpoint of the given decimal number
and half-width one unit of the last decimal place. The absolute error in decimal values given does
not exceed 1/2 unit in the last decimal place.
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TABLE 2

Orbits with Property P.

R- 13.93 (exact)
s 10 (exact)

8q -J 25
0.1 (exact)

B0 0.10101864915078526087165201466934523185017094722900

Sl 2.3953909886544034317548524000E 51

x(0) in 0.100001013493656816759885982974650444100994598921
y(0) in 0.17131227893846698671597596429068023867274433
z(0) in 0.00101196226158061216784055167835988349168981
n--25
y changes sign on the interval 0.6938476563 to 0.6943359375
x changes sign on the interval 0.7558593750 to 0.7578125000
z changes sign on the interval 0.8242187500 to 0.8251953125
y changes sign on the interval 0.9521484375 to 0.9560546875
y changes sign on the interval 1.0224609375 to 1.0263671875
x changes sign on the interval 1.4384765625 to 1.4404296875
y changes sign on the interval 1.4511718750 to 1.4521484375

tf 1.46 (exact)

R---- 13.927 (exact)
s 10 (exact)

8q=
J--25
y 0.1 (exact)
B0 0.10101872317110199349682497404003229580910620678400

B1 2.4049946147446155737298037000E- 51

x(0) in 0.100001013782761771967668473175065710675729714162
y(0) in 0.17130040301294877808616205243979664937742171
z(0) in 0.001012034106772830955410514200813992406995641
n--25
y changes sign on the interval 0.6938476563 to 0.6943359375
x changes sign on the interval 0.7558593750 to 0.7578125000
z changes sign on the interval 0.8242187500 to 0.8251953125
y changes sign on the interval 0.9521484375 to 0.9560546875
y changes sign on the interval 1.0224609375 to 1.0263671875
x changes sign on the interval 1.5346679688 to 1.5351562500

f 1.54 (exact)

Lemma 3.4 to be satisfied, and if they are, the initial condition intervals (0), (0), 2(0)
and bounds Bo, B1 on IIw011 and IIw1 -wll. All this data is shown in the tables.
Examining (0) and (0), since x(0) E (0) and y(0) E (0) it follows that 0 < x(0) <
y(0). Since Iz(t)l Iw(t)l, it follows that Iz(t)l < IIP(t)ll <- P max(2B0, dB)
2B0 < R- 1 for all t < 0. From Lemma 3.5 we conclude that x(t) > 0 on (-oc, 0],
which implies x(t) > 0 on (-cx, 0].

Using Aberth’s code difsys with modifications M1 through Ma described above,
we computed trajectories of the Lorenz system for t > 0, taking (0), (0), 2(0) as
interval-valued initial conditions. The integrations were carried out until either

(1) the sign change message showed that the orbit had Property P;
(2) the sign change message showed that the orbit had Property Q;
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(3) the computation failed due to determine whether the orbit had Property P
or Q,

Data corresponding to successful computations was then entered in the Tables 1
and 2.

We now state our result concerning a homoclinic orbit for (1.1).
THEOREM 4.2. For s 10, q and some R*, Ra < R. < Rb, where Ra

13.9265 is the maximum of the R values in Table 1 and Rb 13.927 is the minimum
of the values in Table 2, the Lorenz system has an orbit p(t) such that limt_,_o p(t)
lim-.o p(t) (0, O, O)T, and there are numbers T1 < Sl such that

x’ > 0 on ),
< o,

< 0 on

y’<0 on[T,S],

=o,
y < 0 on

x>0

Proof. It is easily verified that p+(R) is linearly stable for all R E IRa, Rb]. The
proof then follows immediately from Lemmas 2.2 and 4.1.

5. Discussion. The present methods do not obtain an approximation to the
homoclinic orbit valid on (-oc, cx)); to do this, one could approximate trajectories in
the stable manifold much as in 3.

We expect that some details of the "homoclinic explosion" in the Lorenz system
could be established rigorously by methods similar to those used here.

The present work is ostensibly numerical, while [2] and [3] are analytical. How-
ever, this distinction is blurry. Hastings and Troy use calculator computations, and
allow margins in their bounds to account for possible roundoff errors. They approxi-
mate the unstable manifold, and shoot, generating bounds on the trajectories. Here
we do the same, except that we use an interval-arithmetic package and methods of
precise numerical analysis to obtain the bounds automatically.

The condition in Lemma 2.2 that p+(R) is linearly stable could be dropped if we
adopted part of the argument in [2,3]. We retain the condition because it simplifies
the argument and holds for the present parameter values.

Together with Hastings and Troy [4] we have recently demonstrated the existence
of an infinite set of solutions of (1.1) with certain properties of chaos, for R 76,
s 10, q 9. The verification of condition A in [4] used the present methods.

Aberth has made the Aberth-Schaefer interval arithmetic package, including
the code difsys.cc, publicly available by anonymous ftp from math.tamu.edu, as file
pub/range/range,tar.Z.

Acknowledgments. We wish to thank S. P. Hastings for suggesting the prob-
lem, O. Aberth for his most useful interval analysis codes, and both for helpful dis-
cussions.
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THE ADDITION FORMULA FOR CONTINUOUS q-LEGENDRE
POLYNOMIALS AND ASSOCIATED SPHERICAL ELEMENTS ON
THE SU(2) QUANTUM GROUP RELATED TO ASKEY-WILSON

POLYNOMIALS*

H. T. KOELINK

Abstract. The known interpretation of a two-parameter family of Askey-Wilson polynomials as
spherical elements on the SU(2) quantum group is extended to an interpretation of a three-parameter
(one discrete parameter) family of Askey-Wilson polynomials as associated spherical elements on the
SU(2) quantum group. An abstract addition formula, i.e., an expression involving noncommuting
variables, for the two-parameter class of Askey-Wilson polynomials is obtained by this interpreta-
tion. Specialization gives an abstract addition formula for the continuous q-Legendre polynomials
from which the ordinary Rahman-Verma addition formula for continuous q-Legendre polynomials is
obtained.

Key words, quantum group, SU(2), associated spherical elements, Askey-Wilson polynomials,
continuous q-Legendre polynomials, addition formula

AMS subject classifications. 33A65, 33A75, 22E70

1. Introduction. The interpretation of special functions of q-hypergeometric
type on quantum groups, cf. [8] for a survey, started with the interpretation of the
little q-Jacobi polynomials as matrix elements of irreducible unitary representations
of the quantum group SUq (2); see Vaksman and Soibelman [15], Masuda et al. [11],
[12], and Koornwinder [7]. The Schur orthogonality relations for the quantum group
SUq(2) are equivalent to the orthogonality relations for the little q-Jacobi polynomials.
Koornwinder [9] then used this quantum group interpretation to obtain an addition
formula for the little q-Legendre polynomials which was not known until then. Later
Koornwinder [8], [10] gave an interpretation of a two-parameter family of Askey-
Wilson polynomials on the quantum group SUq(2). For a suitable choice of parameters
we get a quantum group interpretation of the continuous q-Legendre polynomials for
which an addition formula has been proved analytically by Rahman and Verma [14].
The main goal of this paper is to show that this addition formula can also be proved
by use of the quantum group SUq(2).

This paper is closely related to Koornwinder’s paper [10], and we assume the
reader is familiar with 2-5 of [10]. In 2 we start with the introduction of so-called
associated (a, T)-spherical elements in the quantized algebra 4q of polynomials on

SU(2). These elements are invariant under the left action of some fixed element of
the quantized universal enveloping algebra L/q, and they transform in some nice ways
under the right action of another fixed element of/q. It is proved that an associated
(a, T)-spherical element multiplied in .4q from the right by a (a, T)-spherical element,
cf. [8] and [10], is again an associated (a, T)-spherical element of the same sort. Then
we can write an associated (a, )-spherical element as some sort of minimal associated
(a, T)-spherical element times a polynomial in p,, the generator of the algebra of
(a, T)-spherical elements on SUq(2). For some suitable choice of associated (a, T)-
spherical elements these polynomials yield systems of orthogonal polynomials.

*Received by the editors August 8, 1990; accepted for publication February 10, 1993.
Departement of Mathematics, Catholic University of Leuven, Celestijnenlaan 200B, B-3001

Heverlee, Belgium.
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In 3 we determine these polynomials, which turn out to be Askey-Wilson poly-
nomials of two continuous and one discrete parameter. This interpretation of Askey-
Wilson polynomials on SUq(2) is the second main result of this paper. The Haar
functional and the Schur orthogonality relations are used to identify the polynomi-
als mentioned in the previous paragraph as these Askey-Wilson polynomials. In this
section we also show how to obtain an abstract addition formula, i.e., an identity
involving noncommuting variables for a two-parameter class of Askey-Wilson polyno-
mials by application of the comultiplication on such an Askey-Wilson polynomial in
pa,r. Actually, we obtain an expansion in terms of associated (a, T)-spherical elements
and thus in terms of Askey-Wilson polynomials of two continuous and one discrete
parameter.

The difficult part is to obtain an addition formula in commuting variables from
this abstract addition formula, and until now we can only do this for the special case of
the continuous q-Legendre polynomial. In 4 we show how it can be done, by exploiting
the fact that the abstract addition formula is essentially a development in associated
(a, T)-spherical elements. Apart from this, only one-dimensional representations of the
algebra jtq are used, which contrast with the quantum group theoretic proof of the
addition formula for the little q-Legendre polynomials (cf. [9]), where only infinite-
dimensional representations of the algebra jiq are used. For the continuous q-Legendre
polynomials the addition formula has already been proved analytically by Rahman and
Verma [14], where it occurs as a special case of the addition formula for the continuous
q-ultraspherical polynomials. Section 5 is devoted to the limit case q T 1 of the proof
presented in 4. The proof reduces to evaluation of functions on SU(2) x SU(2), which
is used in [16, Chap. 3.4] to prove the addition formula for Legendre polynomials from
a group theoretic point of view.

In this paper a lot of constants have to be calculated, and the reader is urged to
skip these straightforward, but sometimes tedious calculations at first reading.

The results contained in 2 and 3 have also been obtained by Noumi and Mimachi
in a slightly different but more general setting. At the end of each section we compare
our work with the results of their announcement [13].

Notation: Z+ denotes the nonnegative integers (0, 1, 2, 3,...}.
2. Associated (a, T)-spherical elements on SUq(2). In this section associ-

ated (a, T)-spherical elements on SUq(2) are defined. These elements can be expressed
explicitly in terms of the matrix elements tm,n of the irreducible unitary representa-
tions of SUq(2) using dual q-Krawtchouk polynomials. Next we prove that all asso-
ciated (a, T)-spherical elements can be expressed as some minimal associated (a, T)-
element times a polynomial in pa,. These polynomials form a system of orthogonal
polynomials with respect to some moment functional.

Recall from [10, 4] the definitions

q-a qa
X,, iq1/2 B zq-C (A D) E lq,

q-1 _q
aER,

and
pa,-r =1/2 (c2 + 52 + q./2 + q-1/2 + i(q-a qa)(qS,./+ 0)

i(q-r q’)(/3 + q’yo) + (q-" q,)(q-r q-).y),
as well as that for all polynomials p we have

X,, .p(p,,r) 0 p(p,,,r).X-.
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DEFINITION 2.1. An element b E 4q is an associated (a, T)-spherical element if
there exists C so that

(2.1) Xa .b O, b.Xr Ab.D.

For ) 0 we obtain the (a, T)-spherical elements as defined by Koornwinder
[8], and we will first investigate the relation between (a, T)-spherical elements and
associated (a, T)-spherical elements.

PROPOSITION 2.2. Suppose b .ha satisfies (2.1), and let a jtq be a (a, T)-
spherical element. Then ba satisfies (2.1) with the same ).

Proof. Because of [10, eq. (3.10), Lem. 3.1] and (2.1) we find

X.(ba) (A.b)(Xa.a) + (Xa.b)(D.a) O.

Similarly we find

(ba).Xr (b.A)(a.X) + (b.X)(a.D) A(b.D)(a.D),

and this equals A(ba).D because of [10, eq. (3.10)l and A(D)
PROPOSITION 2.3. Ifb fltq is an associated (a, T)-spherical element with A R,

then b*b is a (a, T)-spherical element.
Proof. To prove this proposition we will first consider X.b* and b*.X. To do

this we need the duality between the Hopf .-algebras Aq and Hq. In particular, we
have (cf. [10, eq. (3.6)])

(2.2)

It easily follows from [10, eqs. (3.3) and (3.4)1 that S(X)* -X and S(A)* D.
If we write

h(b) E 5(1) (R) b(2)’
(b)

then we have by [10, eq. (3.8)1 (2.2), and (2.1),

(2.3)
(b) (b)

b(,.)) O.
(b)

Similarly we find

b*.Xr (b.Xr)* -’ (b.D)* --E (D, b(t)}b2
(b)-E(A, bt))b2 --b*.A.

(b)

Now we are able to prove the proposition. Using [10, eq. (3.10)], (2.1), and (2.3),
we have

X.(b*b) (A.b*)(X.b) + (X.b*)(n.b) O,
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and similarly, using (2.4) instead of (2.3), we obtain

(b*b).XT (b*.A)(b.XT) + (b*.X)(b.D) (A- A)(b*.A)(b.D).

This yields zero for A
In a moment we will see that there are no nonzero-associated (a, T)-spherical

elements with nonreal A in (2.1), so Proposition 2.3 applies to all associated (a, T)-
spherical elements on SUq(2).

Now [10, eqs. (3.18) and (3.19)] shows that Xa. and .X preserve the linear span
of the matrix elements tin,m, n, m {-1,..., 1}, and hence it is sufficient to look for
associated (a, T)-spherical elements b of the form

In this case (2.1) is equivalent to (cf. [10, Lem. 3.4])

(2.5) tt(X) Z /nmem 0 Vn, tt(X’A) Z -nmen ")/nmen
m=--l n----l n----l

since (XA)* XTA. From [10, Lem. 4.6] we know that ker(t(X)) has dimension
zero if + 1/2 Z+, while for Z+ tl(X) it has a one-dimensional null space spanned

.-,/2,o withby Em=-t u m,:m

(2.6)
, imq-(l+)mqm/2 (q-2+2.,q-21,_q-2-21/2 21/2 32 q-a, 0

q2, q2c,
(q; q)+,(q; u -,

The eigenvalues and eigenvectors of t (XA), Z+, have also been determined
in [8] and [10, Tam. 4.3 and Lem. 4.4]. The spectrum of tl(XrA), e Z+, is simple
and consists of 21 + 1 points

q-2j+r q- qT
(2.7) J

q2j- +
j -l, I.q- -q

So the eigenspaces of t (XA) are one-dimensional, and the corresponding eigenvectors
are given in terms of dual q-Krawtchouk polynomials (cf. [10, Whm. 4.3]),

n----l n----l

with

(q2; q2)n
Rn(q-2-2_q2-2-2-r; q2-,’, 21 q2),

where Rn is defined in [10, eq. (2.17)]. Note that for <_ m spectrum(tt(XTA)) c
spectrum(t’(XA)).

These results prove the following proposition.
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PROPOSITION 2.4. For E 1/2 + Z+ the space of associated (a, T)-spherical
elements in span (ttmn} is zero. If Z+, then must be of the form Aj for
j e (-1,... ,1}, and the space of associated (a, T)-spherical elements in span(tnm}
corresponding to )tj is one-dimensional and spanned by

q--Cm Pl--n Aj
n,m=--I

Note that Proposition 2.4 implies that all possible A’s in (2.1) are real for nonzero-
associated (a, T)-spherical elements; hence Proposition 2.3 applies to all associated
(a, T)-spherical elements.

We will renormalize the element spanning the one-dimensional space of associated
(a, T)-spherical elements in span{ttnm} corresponding to ,kj by

nm----l

with a(T)= C5(T)p_(A;1), so that

(2.10) Z aJ"" ,i ,n,
(T)an (T) aj (T)ai’n(T).

n=--l n=--I

From [10, eq. (2.18)] it immediately follows that

(2.11)

Ct.J(.r)=q_(,+j) [ 21 ]1/2 ((_qa,+2-,-;q-2),+.)1/2+ j q (-q-;q)+

x
1 + q-a-2

(q2; q2-

=q-
+ j , 1 + q-- (-q-; q)+(-q+; q)_

he sociaged (, )-spherical elemeng b}(, ), j 0, can be relaed go (,)
in a very simple manner. o see his we st wih an arbitrary polynomial sr of
degree r, and we consider (, r)s(p,,). Now [6, hm. .4] or [18, hm. .1] (el.
[10, Prop. a.g]) implies thag we can write

(2.12) (a, T)sr(pa,.) y bk,
k--IJ-rl

where bk span{tkn,,:n,m -k,...,k}. However, by Proposition 2.2, this is an
associated (a, T)-spherical element with replaced by Aj in (2.1), and so every bk in
(2.12) must be an associated (a, T)-spherical element because Xa. and .X preserve
span{tin,m}. Hence bk 0 for k < j by Proposition 2.4. Rewriting (2.12) as

k--j
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we see that we are left with r+ 1 constants ck depending on the polynomial sr of degree
r. Application of the one-dimensional representation r/2 shows that the mapping

sr H sr(p,) is injective.
PROPOSITION 2.5. There exist two systems of orthogonal polynomials p_j, q_j

of degree j so that .for j >_ 0 we have

and

Proof. The previous remarks prove that for some polynomial pt_j of degree 1- j
we have

(2.13)

To prove that the polynomials pn form a system of orthogonal polynomials we need the
Hair functional h; cf. [17, 4]. For the quantum group SUq(2) the Schur orthogonality
relations [17, Thm. 5.7] have been calculated explicitly (cf. [7, 5] and [10, (3.21)]):

(2.14) h((tm,n)*tkr,s) 5kjSm,Sn,sq2q-m)
1 q2

1 q2(2/+1)

Now (2.9) and (2.14) imply the orthogonality of the associated (a, T)-spherical elements
b}(a, ’) with respect to the Hair functional,

> 0,
lk,
l=k.

Because of Proposition 2.3 [8, Thm. 8.2], [10, Prop. 4.7] b(a, T)*b(a, T) P(p,)
for some nonzero polynomial Pj of degree smaller or equal to j. Now (2.13) implies

--0
h(p---]-j(pa,-)P(pa,-)pk-j(pa,-)) > O,

lk,
k,

since pa, is selfadjoint. Using the explicit form for the Hair functional acting on a
polynomial in p,r [8, Thm. 8.4], [10, Thm. 5.3] we find that the polynomials pt_j
form a system of orthogonal polynomials for the positive-definite moment functional
:j (cf. [2, Chap. 1]) defined by

j[xn] xnPj(x)dma,b,c,d;q.(X) < C,

where dma,b,c,d; q2(X) denotes the orthogonality measure for the Askey-Wilson poly-
nomials pn(x; a, b, c, d q2) with a -aa++l, b -q-a-+l, c q-+l, and
d q’-a+l.

The statements for the polynomials q_ are proved analogously. D
Remark. In their announcement [13], Noumi and Mimachi obtain results using a

similar approach. For a matrix

g=(ac a eSU(2) R>0
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subject to lal 2 -Icl2q2k # 0 for all k E Z, they define

O(g) cql/2B + a-dq-I/2C la12 Icl2 (A D) e
q_q-1

Note that for c- i we get O(.g) Xr with q lal 2. For two such matrices g, g2

they obtain matrix elements m,n(gl, g2) in Jtq satisfying

O(gl).)Jm,n(gl,
g2) An(g2)A.,(g, g2),,(g, g2). (g2) A,(g),(gl, g2).A,

where An(g2), Am(g) are eigenvalues of tl(DO(g2)), tl(DO(g)) similar in form to Aj
in (2.7). So their results are more general, since they also take the action from the left
into consideration. However, Definition 2.1 does not fit into (2.15) since O(g)D XrA
for all g. But from (2.3) and (2.4) it is easily seen that b* fits into (2.15), whenever b
is an associated (a, T)-spherical element and g and g2 are chosen properly.

3. Associated (a, T)-spherical elements related to Askey-Wilson poly-
nomials. As we saw in the previous section there is a natural way to relate associated
(a, T)-spherical elements to systems of orthogonal polynomials, and in this section we
will show that these polynomials are Askey-Wilson polynomials by investigating the
moment functional defined in the proof of Proposition 2.5. These Askey-Wilson poly-
nomials will have two continuous and one discrete parameter. Application of the co-
multiplication on a (a, T)-sphericM element in span{tn,m} yields an abstract addition
formula for a two-parameter class of Askey-Wilson polynomials involving the Askey-
Wilson polynomials of two continuous and one discrete variable. From this result
an expansion for this two-parameter class of Askey-Wilson polynomials of argument
cos( + ) is obtained.

To find the polynomials pn and qm as described in Proposition 2.5, we investigate
the corresponding moment functional. In order to do this, we need to know for which
polynomials Pj, Qj we have b(a, T)*b(a, T) Pj(p,,,-) and bj(a, T)*bj(a, T)
Qj(pa,r). The easiest way is to apply a one-dimensional .-representation of Aq to
these equalities and the following lemma gives the heart of the solution. Although this
lemma is not stated in its most elegant way, it has the right form for the applications
later in this section.

LEMMA 3.1. For arbitrary real a, T we have

(q-"-’r+Xei; q2).(-q-r+"+"e; q2). ei’q’:iq1/2:i(’i+") (q2; q2)2

X 302 O, q-4:
q2, q2

1/2 q-q-(j+a)nq
).-n (q2; q
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Proof. Recall from [1, eq. (1.15)] and [10, 2] the definition of the Askey-Wilson
polynomials

pn(y;a,b,c, d q) a-,(ab, ac, ad;q)na3 (q-n’abcdq’-l’az’a/z )ab, ac, ad
q’ q

where y 1/2 (z + z-1), and let us consider the following generating function for the
Askey-Wilson polynomials (cf. [5, eq. (1.9)])"

( ) ( )el qlt ez
n=o (ab, dc, q; q)n Ol ab

q’ zt Ol cd
q’ t/z

with y- 1/2(z / z-).
To obtain a generating function for the dual q-Krawtchouk polynomials from (3.2)

we put a iq-1/2(N+a), b c O, d --iql/2(a-g), and z iqX-1/2(g+a) for N E N
and x 0, 1,..., N. For 0 < n < N and these choices of a, b, c, and d we get

pn(y;a,b,c, d lq i--nq(N+)(q-N;q)nRn(q-Z --qz-N-;q,N q).

Note that ad q-N, a/z q- for N E N, x 0, 1,... ,N implies p(y; a,b,c,d
q) 0 for n > N. So for these values of a, b, c, d and z the left-hand side of (3.2)
reduces to a finite sum involving dual q-Krawtchouk polynomials, whereas the right-
hand side yields a product of two 0’s, which can be summed using the q-binomial
theorem; cf. [4, eq. (1.3.14)]. Hence,

(3.3)

N

i-nq(N+a)
(q-N; q)n

Rn(q_ qz-N-a; qa N q)tn
n=0

(q;q)n

(itq-1/2(N+a); q) l(a_N)=(-ztq q)-z-

In this generating function for the dual q-Krawtchouk polynomials we specialize
x j, N 2j and replace q by q2 and n by j- n. Finally, put t iq2j+2+Xei to
obtain the last statement of the lemma. The first statement follows from the last by
replacing q and a by -q- and -a.

Recall the definition of aidj (T) given immediately after (2.10). It easily follows
from [10, eq. (2.17)] that

a-(T) CJ,-J(T)iJ-nq(J-n)rq1/2 (j-n)(j-n-1) ((qa:/; q-2)j_n )(q2; q2):i_

since the dual q-Krawtchouk polynomial reduces to 1. However, in the other extreme
case we can evaluate the dual q-Krawtchouk polynomial as well. In this case the

32 occurring in [10, eq. (2.17)] is actually a 21, since q-hi appears as upper and
lower parameter. This 21 can be summed by the q-Chu-Vandermonde formula [4,
eq. (1.5.3)]. This yields Rj_n(q-aJ -q-2; q2, 2jlq2) (_q-2)j-n. Hence we find

(3.5) aJ (T) CJ,J(T)iJ-nq-(j-n)T(--1)J-nq1/2 (j-n)(j-n-1) ( (q4j; q-2)j-n )(q2; q2)j_

By 7r/2 we denote the one-dimensional ,-representation as defined in [10, eq. (3.22)]
for 0 R. From [7, Thm. 5.3 or p. 108] and [10, eq. (3.23)] it follows that 7r12(tJn,m)
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5nine-in. Application of r/2 on (a, T) and bj(a, T) reduces the double sum in

(2.9) to a single sum of the type considered in Lemma 3.1. Thus we have shown that

(3.6) r/2 (b (a, T)) CJ,J (T)q- 1/2j(j+l)q-jiJ (q2; q2).1/2
e-iJO(_q-a-+leie; q2)j(qa-+leiO; q2)j

and

(3.7) ./,((o, )) c,-()q-1/2(+’)q-#i (q,; q)-1/2
x e-i:iO(-q+r+leiO; q2)(qr-(’+lei; q2)j.

From (3.6) and (3.7) it follows immediately that

Dj(_q--r+leie, _q-#-+le-ie q#-r+leiO q#-r+le-iO; q2)j

and

(3.9)
Q(oO) $/.(((,)).(, ))

D_j(_qa++leiO _qa+r+le-iO q-a++leiO q-a+-+le-iO; q2)j

for nonzero constants Dj, j E Z. Now we can give an interpretation of a subclass of
Askey-Wilson polynomials (cf. (3.1)) on the quantum group SUq(2).

THEOREM 3.2. For j >_ 0 we have

b_j(a, T) --Cj(a, T)bj(a, T)
X p_j(pa,; qa++l+2j, _q----+l, q--+l, q--+l+2j q2)

and

P-j(Pa,; q++l, _q-a-r+l+2j, q-+l+2j, q-+l q2)

with

-1/2 (qa, -2-1 C’-J(T)C_j(a, T) q(3-+J2-t)it-Jqa(J-t)(qat; q-2)2(t_j q )- CJ,-J(T)
_1 --1 Cl’J(T)CJ(a, T) q1/2(J-+J-)i-Jq(J-O(qa; q 2)2if_j)(qa; q-2)_j C,J(T)"

Proof. Let us consider general Askey-Wilson polynomials p, (x; a, b, c, dlq). These
polynomials form a system of orthogonal polynomials with respect to the orthogonality
measure dma,b,c,d;q(X), which consists of an absolutely continuous part on [-1,1]
and possibly a finite number of discrete mass points off [-1, 1]; see [1, Thm. 2.5]
and [4, 7.5]. A straightforward calculation shows that the orthogonality measure
dmaq,b,c,dq; q(X) is equivalent to b(x)dma,b,c,d; q(X), where

b(+-)2
(ay, ay-1, dy, dy-1; q)j.
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Apart from the constant the theorem now follows from the proof of Proposition 2.5,
(3.8), (3.9), and the fact that the Askey-Wilson polynomial is symmetric in its pa-
rameters; cf. [1, p. 6].

The fact that the constant is correct remains to be proved. Apply 7r/2 to the
second formula of the theorem and compare the coefficients of e-ie on both sides.
The coefficient of e-ae in the left-hand side is

(3.10) ,_/2,., q-U2 i
(+a)q/2q-

(q2; u ]21

To calculate the coefficient of e-ie in the right-hand side we need the coefficient of
e-’J in r$/2((a,T)) which is (3.10) with/ replaced by j, and the coefficient of
e-(-) of

p_(cos O; q++, -q--++,q-+l+, q-+l Iq)
2-j (q2t++2; q2)t_(cos O)t-j + lower-order terms

(cf. [1, p. 5]), which is (q++;q)_ (q; q-)_. Comparing these coefficients
yields C(a, T). The other constant can be calculated similarly.

In order to formulate the next theorem we have to introduce a map O: jtq --, Jtq,
which is defined on the generators by

1/2O(a)=q-1/2a, O()=q7, 0(7) q- , =q1/2
and extended go Jt as an antilinear multiplicative map. I is easily checked gha O
preserves the commuagion relations [10, eq. (3.1)] of ,4, so it is well defined.

Now we consider the image of a magrix element tn,m under O. First we consider
the matrix elements t,,=t,,(a,,7, ) as polynomials in a, f, 7, and i. From [7,
Thm. 5.3] we not only know that these polynomials have real coefficients, but it also
gives

% tn,m(q-1/2a, q1/27, q-,q1/2 qmttn,m(a, 7,,).
Proposition 4.1 of [7], which states that interchanging and 7 in tt,,m is the same
as interchanging m and n, now yields O(ttn,m) qmttm,n. Using this information and
(2.9) gives

(3.11) O(b(a, T)) E lm/2"a^"J" tn n (T)ttm,n.

THEOREM 3.3 (abstract addition formula). The following identity in jtq (R)

is valid:

E A(l,--j)O(bj(T, T))pt_j(O(p,); q2+l+2j, _q-2r+l, q, q+2jlq2

(R) bj (a, T)pt-j(p,; q+++2j, _q--+l, q-+l, q-++l+2j Iq2

+ A(1, O)pl(O(pv,r); q2z+l, _q-2z+l, q, qlq2)
(R) Pt(Pa,r; qa+r+, _q--a--r+, qa--r+, q--++ Iq2)

+E d(1,j)O(b(T, T))pt-j(O(p,); q2+, _q-2++2j, q+2j, qlq2)
j=l

(R) b(cr, T)pt-j(pa,r; qa+r+l, _q-a-r+l+2j, qa-r+l+2j, q-,+-+ Iq),
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where the constants A(1, j) are defined for j >_ 0 by

( ’--)-" (q+; q)
A(1,j) qJ-

(qa; q-2)_j

207

( ",a--)-’,r (q2t+2; q2)t
A(l, -j) qi-t caj (qa; q-)_

Proof. Application of the comultiplication on the (a, T)-spherical element con-
tained in the span{tn,m} yields

(3.12)

by [10, Thin. 5.2, Prop. 4.71, [10, eq. (a.la)], (2.9), (2.i0), and (a.ll). In (3.12) we use
Theorem 3.2 and (2.6).

Of course we would like to have an addition formula in commuting variables, so
t to this identity in Aq (R) Jiq It is easily checked thatlet us apply r/2 (R) r/2

(3.13)

In view of (3.6) and (3.7) it remains to calculate r/2(O(bj(a r))). From the defi-

nition of O we see that for a E Aq with r/2(a -,k ct:eik we have r/2(O(a))
,k -cgq-keik" This proves
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Now (3.13), (3.14), (3.6), (3.7), and Theorem 3.3 imply the following formula:

p(cos(0 + ); qa+r+l, _q-a-r+1, qa-r+, q-a+r+lq2)

(q-leiO+qe-iO )Pl-j 2
q2v+l+2j, _q-2v+l, q, ql+2jlq2

p_j (cos; qa+++2, _q-a-r+1, q-r+, q-+r++2j]q2)

+ B(1, O)P’ (q-lei + qe-’
2

q2r+l, _q-2r+l, q, qlq2

p(cos; q++, _q-a-+, qa--r+l, q--a+r+l]q2)

+
j--1

X pl_j 2
q2r+l, _q-2r+l+2j ql+2j

X pl_j(cos 0; q+r+l, _q--r+l+2j, q-r+l+2j,

where for j _> 0,
(q2/+2; q2)l

B(1,j) =qJ-t
(qat; q-2)_
(q2t+2; q2)t

B(1,-j) =qJ- (qat; q-2)_j [Ct’-J(’)[2"

The value for the B(l,j) immediately follows from Theorem 3.3, (3.14), (3.6), (3.7),
and the following observation:

,a ’,r (q2; q2)2jqq(a+-).1_

Remark. In their announcement [13] Noumi and Mimachi obtained a result similar
to Theorem 3.2 in their Theorem 3 for an element m,n(gl, g2) (cf. remark at the end
of the previous section). m,n(gl, g2) is expressed as an Askey-Wilson polynomial
times a minimal element with respect to j, which still satisfies (2.15).

The formula (3.15) can be obtained from their Theorem 4 by putting z ei,
w qei, s u q, t q, and replacing q by q2. The extra parameter u in their

Theorem 4 can also be easily obtained in this context if we replace ar’ (T)a (r) in

(3.12) by a’3 (#)k (#) for some # e 1. This also generalizes Theorem 3.3, which
can be obtained from Noumi and Mimachi’s paper by combining their Theorem 3 and
Proposition 2c) for m n 0.

4. The addition formula for the continuous q-Legendre polynomials. In
Theorem 3.3 we obtained an abstract addition formula for a two-parameter family of
Askey-Wilson polynomials. In this section we consider the case a T 0, so that we
obtain an abstract addition formula for the continuous q-Legendre polynomials. The
continuous q-Legendre polynomial is a special case of the continuous q-ultraspherical
polynomial for which Rahman and Verma obtained an addition formula; cf. [14]. We
show how to prove the result of Rahman and Verma [14, eq. (1.24)], [4, Ex. 8.11]
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with a ql/a from our abstract addition formula using the fact that the right-hand
side of (4.6) consists of associated (0, 0)-spherical elements. Finally, we note that the
method we use is quite different from Koornwinder’s as used in [9] to obtain an addi-
tion formula for the little q-Legendre polynomials, since we only use one-dimensional
representations of jlq, whereas Koornwinder uses infinite-dimensional representations.
Koornwinder’s result is also mentioned in [4, Ex. 7.41].

Formulas (4.1)-(4.5) are just restatements of the results obtained in the previous
sections. The calculations involved are straightforward but tedious, so the reader is
invited to skip these at first reading.

From [1, eqs. (4.20) and (4.2)] we see that
(a.1)
-(; q+,-q, q, q+ q) -(; q,-q+,q+, q q)

(qaj+a; qa)_j(qa; qa)_j
C_j(x; q2+aj qa),

(qaj+2; q2)_j
where C(x;q) denotes a continuous q-ultrpherical polynomial defined by

(q-n, qn2,i/2iO,l/2-iO)C(x; q)

with x cose; cf. [1, 4]. Note that C,J(0) C,-J(0) (see (2.11)), and if we put for
j0,

def. ( (q2; q4)l(qSl; q-a)l )-q/
(_q; q) b(0, 0)

(.)
=q](’-) [l +J]- Ct_(po,o;qZ+a qa),

l-j qa
by Theorem 3.2 and (4.1); then we have

/() /()= (_q;q)

((q2; qa)j)x
(qa; qa)j

q-j/2e-ijO(q2e2iO; qa)j

and

(4.4)
/.(o()) /(o()) =4 (_q,; q,),

(q; q) q/e_i.O(eOx
(;)

;)

by (3.6), (3.7), and (3.14). Use (4.2) in (3.12) to obtain the abstract addition formula
for the continuous q-Legendre polynomial:
(4.5)
c(a(p); q q)

qC(O(p); q q) (R) c(p; q q)

qt-./ [/+J]-i2j q
+

j--1

(O()Ct-.i(O(p); q2+aj qa) (R) bC_(p; q+,’

+ O(b)C,_(O(p);q+ q) (R) bLC,_(p;q+ q)),
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where p po,o 1/2(a2 + q-lfl2 + q.y2 + 52) p,. Application of 7r/2 (R) id on (4.5)
yields

(4.)
(pO; q2

(q-lei+qe-iqtCt
2

q2 q4 Ct (p; q2 q4)

Z q.-j [/+J] -11 ( l+qaJ )1/2((q2;qa)J) 1/2

2j qa - (_q2;q2)2j (qa;+ qj/2e-JO(e2O;

(q-leiO+qe-iOc_ ;q+ q ( + )c_(p;q+ q),

where pe (r/2 @ id) o A(p) (eiea2 + q-leie2 + qe-ie2 + e-i52) (p0),. The
formula (4.6) will be our stating point for the proof of the addition formula for the
continuous q-Legendre polynomials.

Put X Xo iql/2B- iq-/2C Hq, then we have by [10, eq. (3.9)] (2.1),
(2.7), (4.1), Proposition 2.5, and Theorem 3.2,

( + lc-(o;+ l.(xl - ( + c-(o;q_ -q

Consequently,

k-1

(4.7)
( + bj)C_j(p; q2+aj q4). H (1 qai((q q-)2(XA)2 + 2) + qSi)

i--0

(q-aj, qaj; qa)k( + bj)Ct_j(p; q2+aj qa).

Let us define
(4.8)

Y Z qak
yI,k--- (1 qa,((q q-)2(XA)2 + 2) + qS’)(e’O+’’+"l’, ei+i-’; qa)k

k=O
(q4, q2, e2iO, q2e2io; qa)k

Although Y is not defined as an element of the quantized, universal enveloping algebra
Hq, we will see that the action of Y on (4.6) from the right is well defined. For the
right-hand side this follows directly from (4.7) and for the left-hand side we use a
similar argument, which is worked out in more detail in the proof of Proposition 4.2.

If we first apply .Y to the right-hand side of (4.6) and next r then we find by/2,
(4.8), (4.7), and (4.3),

q’Ct (q-le’ + qe-i
2

;q2 Iq4 Cl(cos99;q2 Iq4)

[l+j]-I iTqaJ (q2;qa)je_iJOe_iJ(e2iO+Z qt-j
2j q4 (_q2; q2)2j (q4; q4)j

;qa)j(q2e2i; qa)j
(4.) =

(q-lei+qe-’C_
2

;q+a qa C_(coso; q+a qa)

X 4993 ( q-4d q4j eiO+i+i eiO+i-i
q2, e2io, q2e2i

;q4, q4
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This 43 series is an Askey-Wilson polynomial without any factors, which we will
denote by iSj (cos; ei+i, q2e-i-i, eie-i, q2e-ie+i q4).

THEOREM 4.1. We have

Remark. If we replace ei by qe, then we obtain the addition formula of Rah-
man and Verma [14, eq. (1.24)] for a ql/4 with q replaced by q4. The general
Rahman-Verma addition formula for the continuous q-ultraspherical polynomials, [14,
eq. (1.24)], can also be obtained from Theorem 4.1, as suggested by Askey. Application
of the divided difference operator 5q, defined in [1, eq. (5.3)] on the result contained
in Theorem 4.1 yields the addition formula for the continuous q-ultraspherical polyno-
mials C(cos; q2+4k[qa) for all k E Z+ by [1, eq. (5.6)]. Since the Rahman-Verma
addition formula for the continuous q-ultraspherical polynomials Ct(cos; q) is a
rational expression in 1/2, the addition formula follows for all values of f by analytic
continuation.

The theorem is proved if we could show that

(Ct(pO;q2 qa).y) Ct(cos;q2 qa) V e Z+,71"/2

or equivalently,

(4.10) (f(pe).y)=f(cos) Vpolynomialsf,rv/2

or equivalently,

(4.11) (ft(pO).y) ft(cos) V e Z+7rv/z

for some basis f of the space of polynomials. By (4.8) the left-hand side of (4.11) is
an expansion in the polynomials

cos - (ei(+)ei, ei(+)e-i; qa)t.

So it is natural to choose these polynomials as a basis for the space of polynomials,
and then condition (4.11) is equivalent to

7r/2 (1 2ei(O+)qaJp + e2i(+)q8j) .Y ei, e-i;
\j=0

for all Z+. Now this is a direct consequence of (4.8) and the following proposition.
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PROPOSITION 4.2. For the polynomial

l--1

f(cos) (ei(e+’)+i, ei(a+’)-i; qa) H(1 2ei(a+’)qaJ cos + e2i(e+)qSJ),
j=O

we have

/2 f(pO). (1 qai((q q-)2(XA)2 + 2) / qSi)

5kq-ak(q2, qa, e20, q2e2i,; qa)k"

To prove this proposition we need two lemmas. The first one is straightforward,
using the definitions in [10, 3].

LEMMA 4.3. For X iql/2B iq-I/2C E blq we have

c2.(XA) i(1 + q2)c, c2.(XA)2 (1 + q2)(c2 q-l,2), c2.A

2.(XA) i(1 + q2)6, 2.(XA)2 (1 + q2)(f12 q-li2), fl2.A,
,),2.(XA _iq-i(1 + q2),,/, ,),2.(XA)2 (1 + q2)(q-2,),2 q-lc2), 72.AI q-l,2,

(2.(XA) _iq-i(1 + q2)(, 52.(XA)2 (1 + q2)(q-2(2 q-l2), 52.Al q-152,

and

(o).XA iq-.2 io2, (5).XA iq-52 i2, (,,/a).A .0, (5).A .
COROLLARY 4.4.

r (2pO.A2pXAA2rXAA2s) e-i(o+)q-2-2(p+s)(l+q2)(1-qape2ia)(1-q2+ae2i).o/2

LEMMA 4.5. For all l, n Z+ and all a, b, c, d C, we have

r/2 ((aa2 + bf2 + c72 + d52)t.(XA)2"+) O.

Proof. For 0 this follows directly from e(XA) 0, and we proceed by induc-
tion with respect to 1. Since

(4.12) A(XA) A2 (R) XA + XA (R) 1,

we find that a general term A(XA)2=+ is of the form Z (R) (XA)m, where Z consists
of 2n + 1 m terms XA intermingled with terms A2. If m is odd, then

r ((a2 + b2 + c-2 + d52)t- (XA)m) 0o/2

by the induction hypothesis. If m is even, then Z contains an odd number of XA,
and by Lemma 4.3 and [10, eq. (3.22)] we find

((ao2 _. bfl2 + c./2 + d62).Z) 0.

Now [10, eq. (3.10)] provides for the induction step.
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Proof of Proposition 4.2. For any polynomial r of degree we have by [6, Thm. 3.4],

r(p) @span(tn,m In, m -k,-k + 1,..., k}.
k=0

It follows from 2 that we can write

r’(o) E zj, zj.(xa)2 zj.
j=0 \ q--q

Consequently,

1 4
r/2 rt(pO). (l_qai((q_q-t)2(XA)2+2)+qSi) E(q-aj qaj;q

\i=o j=o

and this equals 0 for k > l, which proves the proposition in case k > 1.
Next we will consider the case k < 1. We will show that for all k and with k <

we have

(4.13) ,/ \f,(P).(XA)2k] O.

To do this we use induction with respect to k. If k 0, then

7r,a/2 ft(p (1, e2i(+’); qa)t 0

for _> 1 > k 0. Now we assume (4.13) true for all l, k with > k and k < n. Since

(4.14) A(XA)2n Aan (R) (XA)2 + terms of the form Z (R) (XA)p, p <_ 2n- 1,

[10, (3.10)], Lemma 4.5 and the induction hypothesis imply, for > n,

Now .Aan is a homomorphism of Aq, and so the first term in this product is

l--1

1-I (1 ei(+)q4j(qanei(+) + q-4ne-i(+) + e2i(+)q8j) O.
j=n

The case k remains to be considered. Put

At -Tr,a/2 ft(p). (1 q4i((q q-1)2(XA)2 + 2) + qSi)

=(-1)t(q q-1)21q2l(l-1)Tr (ft(p) (XA)21)/2
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where we used (4.13). If we work out (4.14) a bit more we find

A(XA)2 =A4 (R) (XA)2 + E A2vXAA2rXAA28 (R) (XA)2(-I)
p-Fr+s--2(l-1)

+ terms of the form Z (R) (XA)=, n < 1

+ terms of the form Z (R) (XA)+,
and thus by [10, eq. (3.10)], Lemma 4.5, and the part of the proposition already proved,
we find

At (-1)(q q-X)2q2(t-)
1x /2 ((1- 2ei(+)q4(l-1)p0 + e2i(+>qS(l-D) "Aal) /21 (f/_l(p0).(XA)21)

qt(t-)(q q-)UAt_

v/ ((1- 2e(a+V)qa(-)pe + e(a+v)qS(-)).AXAAUXAA).

In order to rewrite this equation a recurrence relation for At we use

(-1)(q q-)qU(-)(iA)t
l--1

(1 qai((q q-)u(XA) + 2) + qSi)
i=0

+ (__l)l(q__q_l)u(l_l)qUl(l_l) (1-q- i-q)1-q-
-21+ 1-q (XA)(-

+ lower-order germs

to obtain
(4.15)

A A-I [_q4(/-1)1./u ((1 2ei(a+V)qa(t-)pa + ei(a+)qS(t-)).Aat)

x
1-q- -21+ l-q

+ (q q_i)2qS(t-1)ei(O+) 1 (2pO.A2PXAA2rXAA2s)]/2
p+r+s=2(l--1)

To me this recurrence relation more explicit some calculations have to be made.
First note that

2ei(O+)qa(t-t)pO e2i(o+)qS(t-i)((1 + (1

The sum in (4.15) can be evaluated using Corolly 4.4, where we obtain

0 2p 2r 2sqa(t-t)ei(+) l (2p .A XAA XAA/2
p+r+s=2(l--1)

(1 + q-2) [qat(1 2/q-at+2 + (2/- 1)q-at) + qat-2e2i(+)(1 2/qat-2 + (2/- 1)qat)
(1 q2)2

e20 -4- q2e2i’ (1 qa/-2
(1 --q2)(1
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Plugging these two identities into (4.15) gives an explicit recurrence relation:

A q-4(1 q4/)(1 q4/-2)(1 q41-4e2ie)(1 q4l-2e2i)Al_l
q-41 (q2, q4, e2iO, q2e2i; q4) Ao.

Since Ao 1, the proof of the proposition is complete.
Remark. The map

used to obtain Theorem 4.1 from (4.5), is not injective.

5. The limit case q T 1. In the previous section the addition formula for the
continuous q-Legendre polynomials was derived from the abstract addition formula
(4.5) by use of the map r/2 (R) zr/2 o .Y. For q T 1 the abstract addition formula (4.5)
can be regarded as an identity for functions on SL(2, C) x SL(2, C), and we will show

1in this section that r/2 (R) zr/2 o .Y reduces to evaluation at some suitable element of

SL(2, C) x SL(2, C), which brings us back to the group theoretic proof of the addition
formula for Legendre polynomials as presented in [16, Chap. 3.4].

We regard Jr1 as the commutative algebra of functions on SL(2, C), which are
polynomials in the coordinate elements a, f}, -, and i. In particular, the comultipli-
cation A of A1 is given by the group multiplication on SL(2, (2) as follows:

(5.1) (Af)(g,h) f(gh) V f e A V g, h e SL(2,

The one-dimensional representation r/2: Jh =-+ (3 corresponds to evaluation of func-
tions at a diagonal element of SL(2, C):

71"0/2(f) f 0 e-i0/2
V f e .A1.

To take the limit in/gq we replace A by e((q-1)/2)H and let q " 1; then/Aq tends to
the universal enveloping algebra 11([(2, C)) with generators H, B, and C and relations

[H, B] 2B, [H, C] -2C, [B, C] H.

Then the right action of/gq on jtq corresponds to the action of the universal enveloping
algebra 1([(2, C)) on functions on SL(2, () by right invariant differential operators.

First we consider the action of Y from the right as q --+ 1. Note that XA -- XiB- iC for q T 1, which we identify with 0i 0) E [(2, (2). Taking termwise limits in
(4.8) formally yields

r de___f limY=2Fl(f(/2,-/2 cos-cos0cosg+sin0sino)qT1 1/2 2 sin 0 sin 9

where the hypergeometric function is defined by

x
n!(c)n xk’

C
k--O

(a)n a(a 4- 1)... (a 4- n 1).
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Pick z so that

(5.3) cos 2z
cos 0 cos cos

sin sin o

then (cf. [3, 2.8(11)])

1 cos 2y
cos ay

2

eiay -}- e--iay

implies that formally

eiz + e-iz:
(5.4) Y lim Y

qT1 2

So (4.8) is a q-analogue of (5.4) in combination with (5.3).
From (5.4) it follows that the action of the analogue of .Y on an element

is given by

l( ((co z(5.5) (f’Y)(g)
sin z cos z

g + f sin z cos z
g

for g E SL(2, C), which could have been defined without using the universal enveloping
algebra 11([(2, (2)). The transition of (4.6) to (4.9) corresponds to the fact that if

f A1 satisfies

((cosz-sinz) ) ejz SL(2, C)sin z cos z
g f(g)’ g

then (f.)(g) cos(jz)f(g).
The previous paragraph and (5.2) give a clear understanding of the action of the

analogue of r/2 (R) r/2 o .Y on the right-hand side of (4.5) for q T 1. For the left-
hand side we consider the action of the analogue of r/2 (R) r/2 o .Y on an element

A(f) e ,4 (R) j[. From (5.1), (5.2), and (5.5) it follows that this action is given by

1( (ei(+o)/2coszf ei(-O)/2 sin z -ei(-)/2sinz) +f( ei(+)/2csz
e-i(O+)/2 cos z --ei(-)/2 sin z ei(O-)/2sinz))e-i(+)/2 cos z

If f is any polynomial in p 1/2(a2 + f2 + .2 + 62), say / p(p), we can give an
explicit expression for this action. Since evaluation is a homomorphism of jr1 and
because of the quadratic terms 72 and/2 in p we find that the action of the analogue

1of r/2 (R) 7r/2 o .Y on A(p(p)) is just

(5.6)
i(+O)/2 COS zP(P) ei(-O)/2 sin z

-ei(-)/2 sin z ) p(cos)e-(0+)/2 cos z

where z and are related by (5.3). So (5.6) is easily proved, whereas its analogue
(4.10) requires a lengthy proof.

Acknowledgment. The author wishes to express his gratitude to Tom Koorn-
winder for his support and suggestions.
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BASIC HYPERGEOMETRIC FUNCTIONS AND THE BOREL-WEIL
CONSTRUCTION FOR Uq(3)*

M. A. LOHEtt AND L. C. BIEDENHARNt

Abstract. The Borel-Weil construction of the irreducible unitary representations of the quan-
tum group Uq(3) is investigated. The representation functions are calculated explicitly and found
to be expressible in terms of basic hypergeometric functions; the form of these basis functions ver-
ifies previous general results. It is shown that several identities satisfied by basic hypergeometric
functions, including a special case of Watson’s formula, are implied by properties of the quantum
group.

Key words, quantum group, basic hypergeometric functions, irreducible representations, Borel-
Weil construction

AMS subject classifications. 33A70, 20G45

1. Introduction. Quantum groups have achieved significance in recent years as
algebraic structures, which have appeared in several areas of both mathematics and
physics including, for example, knot theory, gauge theories, and statistical mechani-
cal models. Quantum groups are Hopf algebras which are neither commutative nor
co-commutative; alternatively, we can regard them as deformations of the universal
enveloping algebra of an underlying Lie group, so that in the limit in which the de-
formation parameter q approaches 1 we regain the Lie algebra. Various aspects of
quantum groups, including the fundamental theory and applications to physics, are
investigated in [1] (where further references may be found), and for general discussions
we mention [2]-[4].

Of particular interest are the irreducible representations (irreps) of quantum
groups (for generic real q), for it is through these that the quantum group mani-
fests itself in physical applications. The explicit construction of all representations of
SUq(2), the simplest of the quantum groups, can be carried out in several different
ways, one of which is to express the generators in terms of finite difference operators
acting in the space of homogeneous polynomials of some fixed degree [5]. For q --+ 1
one regains the familiar harmonic oscillator representation of SU(2), in which the
generators are realized as differential operators, or equivalently, can be expressed in
terms of boson creation and annihilation operators. This construction is, unfortu-
nately, difficult to generalize to Uq(n) in such a way as to obtain all representations.

There is, however, another method of constructing representations of SUq(2) that
does admit a relatively simple generalization to arbitrary n, the Borel-Weil (BW)
construction [6]. This method, which allows us to construct (for generic real q) all
unitary irreps of Uq(n), is recursive in that one assumes that all irreps of the subgroup
Uq(n- 1) U(1) have already been constructed and is explicit to the extent that the
basis vectors spanning an irreducible representation space for Uq(n) are expressed
in terms of those for the subgroup Uq(n- 1) U(1). For n 2 this construction
is straightforward and appears, in [6]. Our aim in this paper is to provide explicit
details of the BW construction, and its q-extension, for the case n 3; this is of
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interest for several reasons. First, it is only for n >_ 3 that several complexities of
the quantum group appear, such as the Serre relations, which define the quantum
group (see 2), and the explicit realizations show how these relations are satisfied.
Second, it will be seen that q-extensions of classical functions appear naturally in the
BW construction, and that general results for the form of the basis vectors imply
identities among these functions. This is true even for the simplest case n 2, where
we use the q-exponential function to construct q-BW states, with addition properties
being related to co-multiplication in SUq(2). For the case n 3, terminating basic
hypergeometric functions, q-analogs of 6F5 functions arise in our calculations of the
q-BW basis states, and we reduce these to 32 functions by using a special case of the
q-analog of Whipple’s transformation (Watson’s formula), which reduces a 87 basic
hypergeometric function to a a3 function. Moreover, since we know from general
considerations [6] that the final form of the basis vector must involve a 32 function
(which is related to a q-Clebsch-Gordan coefficient), we have in effect proved the
special case of Watson’s formula by using quantum group properties.

It is, of course, well known that many properties of special functions can be
understood as group theoretical properties of basis vectors for irreps of Lie groups (see,
for example, Vilenkin [7] and [8]-[10]). It is now clear, however, that quantum groups
underlie properties of q-extensions to special functions in a similar way; examples
of this are the q-Clebsch-Gordan and q-Racah coefficients of SUq(2), which can be
expressed as 32 and a3 functions, and for which properties such as the symmetries
and orthogonality relations are implied by the structure of the quantum group [11],
[12]. Some of these properties were, of course, derived well before the formulation of
quantum groups (by Askey and Wilson [13]), but it is through the quantum group
that one achieves a unifying perspective.

The plan of the paper is to first outline in 2 some basic facts about the quan-
tum groups Uq(2) and Uq(3), also including a discussion on q-extensions to classical
functions such as the q-exponential function, basic hypergeometric functions, and
properties of the finite difference operator. Next, in 3, we show how the BW con-
struction is applied to U(2) and its quantum deformation Uq(2), and then in 4 we
explicitly calculate the BW basis states for n 3. This calculation serves more than
to merely rederive a certain form for these states, found from previous considerations
[6]; the method used here is direct and the explicit calculation demonstrates that
hypergeometric functions appear as coefficients of basis vectors. The general form of
the basis states therefore implies the existence of identities and transformations that
must be satisfied by the hypergeometric functions, including a transformation due to
Whipple. In 5 we formulate q-BW states (using slightly different conventions than
those of [6]) and show that the Uq(3) algebra is satisfied by the realization of the
quantum group generators. Finally, in 6, we present the explicit calculation of the
q-BW states, in which the basic hypergeometric functions appear.

2. Quantum groups and q-extensions. The relations which define the quan-
tum group Uq(n) have been given by several authors [2], [3], [15]. In the case of
n 2 there are four generators, denoted Eij(i,j 1,2), satisfying the commutation
relations

(2.1)
[Ell, E12] E12,

[E22, E12] -E12,

[Eli, E21] -E21,

[E22,-21] -i21,
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and

(2.2) [El2, E21]
q1/2(Ell-E.2) q-1/2(EII-E2:)

q. --q-

where q is a positive real number. We will frequently use the notation

qn/2 q-n
(2.3)

In] q _q-
q(n-1)/2 + q(n-3)/2 "4-’’’ q-(n-1)/2,

where n is an integer, but we extend this notation so that n can also be an operator;
hence (2.2) may be written [E12, E21] JEll- E22]. For q -o 1 we have [hi -- n, and
so in this limit (2.1) and (2.2) reduce to the usual commutation relations for U(2).

The quantum group Ua(3 is generated by the elements {e,, f, hi i 1, 2}, which
satisfy the following equations:

[h,, hl 0,

(2.4)

where

[ei, fj] 5i [2hi],

1, i-j,

-1/2, i= j +
0, otherwise,

together with the U(1) element ha, which commutes with the other generators. As in
[6] we will use the notation

El2- el, E21- fl, E23- e2, E32 f2,

1(Ell2 E22) hi, 1/2(E22 E33) h2, Ell + E22 + E33 h3.
In addition, the definition of quantum group Uq(3) includes the following Serre rela-
tions:

E122E23 -[2]E12E23E12 -J- E23E2 0,
(2.6)

E12E3 [2]E23E12E23 T E12E223 O,

and the conjugate relations

E221 E32 [2]E21S32E21 -- S32El O,
(2.7)

+ O.

In general, Uq(n) has the structure of a Hopf algebra with comultiplication A: Uq(n)
Uq(n) (R) Uq(n) which is defined for the elements {ei, fi, hi} by

A(hi) hi (R) I + I (R) hi,

(2.s) A(ei) ei (R) q-h/2 + qh/2 (R) ei,

A(fi) fi (R) q-h/2 + qh/2 (R)
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The definition of a Hopf algebra also requires the concepts of a co-unit e and antipode
% which are readily defined for the quantum group:

e(1) 1, e(ei) e(fi) e(hi) O,

9/(ei) =-q-1/2ei, /(fi)=-q1/2 fi, "/(hi)=-hi.

It is well known that we can construct representations of U(n) in which the
generators are realized as differential operators acting on polynomials in complex
variables [5]-[7] or, equivalently, we can express this construction in the language
of boson creation and annihilation operators a, 5 acting on a vacuum state 10), and
satisfying [5, a] 1 (see [16]). In order to construct representations in a similar way
for the quantum groups, we introduce q-boson operators [17], [18] aq and ha, satisfying

(2.9) aqaq q1/2 aqaq q-
where N (the number operator) satisfies

[N, aq] aq,
(2.10)

IN, aq] -5q.

The q-boson vacuum 10) satisfies gql0) 0, and basis states are constructed by allow-
ing q-boson operators to act on the vacuum 10). Equivalently, we can realize q-boson
operators as finite difference operators by defining, for suitable functions f(z),

(2.11a) aqf(z) zf(z),

aqf(z) Dqf(z) =_
f(zq1/2) f(zq-1/2)

z(q1/2 -q-1/2)

(2.11b) N f(z) z
Of(z)
Oz

The last equation implies that q-- f(z) f(zq-1/2) and the relations (2.9) and (2.10)
can then be verified. Evidently, Dq acts as a finite difference operator and for q -- 1
becomes differentiation O/Oz; we can regard the properties of Dq as comprising a
"q-calculus."

It follows from (2.11) that

(2.12) Dqzn [n]zn-l,

where [n] is defined by (2.3). Let us define the q-exponential function expq by

0 zn
(2.13) expq(z) [n]!’

n--0

where In]! [nl[n 1].-. [1]. Then as a result of (2.12),

(2.14) Dq expq(Az) A expq(Az),
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where A is a constant, or an operator independent of z. The q-exponential is a q-
analog of the classical exponential function, although as such it is not unique; however,
it is invariant under q q-1. The finite difference operator Dq and q-extensions to
classical functions are not new to quantum groups; they were studied some time
ago by Jackson [19] and the subject has been developed extensively by Askey [13],
Andrews [20], and also by Milne [21] and Koornwinder [22]. Many of the results of
this q-calculus have been derived by Feinsilver [23] using operator methods, in which
operators satisfying (2.9) (or an equivalent relation) are postulated and q-identities
are developed from algebraic considerations (see also Cigler [24]).

The q-exponential and the operators aq, q appear in the BW construction of
Uq(n) states, and several further properties will be used extensively there, in particular
the following operator equations:

(2.151 aqq --[N], qaq -IN + 1]

(these equations imply (2.9) directly and, with certain assumptions, can be derived
from them).

Apart from the q-exponential function, we will use another q-extension of classical
functions, the basic hypergeometric function, which can be defined in the following
way: Let

(2.161
1,

(a; q)n
(1 a)(1 aq)... (1 aqn-1), n>0,

where n is an integer, then the basic hypergeometric function p+lCp is defined by

We can express the symbol (a; q)n in terms of the notation (2.3) by means of the
formula

(2.18) (a; q)n (qa; q)n (1 q)=q(=+2a--3)([a])n,

where we have put a--qa and

(2.19) ([a])n [a][a + 11.-. [a + n 1].

We can therefore write v+lCv in the form

( qO, q, q,,+
P+qCP

qfhq#. .q#r,
;q,z

n:0
.([-n :’: ([p])

(2.20/

P-I-1 (p q-. q-’
q-1, zq,

where

p+l p

(2.21) a Eai- Eft,- 1.
i=1 i=1
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For q- 1 this function reduces to

l"’’(p+l
(2.22) p+lFp z

1 "p
For the case a -2 and z q the function p+lCp is called balanced or Saalschiitzian.
If one of the numerator parameters al...ap+l is a negative integer -m the series
terminates, and in this case any one of the denominator parameters 1"’" p can
also be negative, provided it is less than -m. Basic hypergeometric functions occur
naturally within quantum group structures, for example, the q-Clebsch-Gordan and
q-Racah coefficients can be expressed in terms of 32 and a3 functions, respectively
[11], [12]. Basic hypergeometric functions were first introduced by Heine [25] and a
recent exposition of their properties has been presented by Gasper and Rahman [26].

Finally, let us mention the q-binomial theorem, from which an addition theorem
can be derived for the q-exponential function. An elegant formulation can be written
in terms of quantum coordinates a, b, which satisfy

(2.23) ba q ab,

and then the q-binomial theorem states, for positive integers n,

(a + b)n qJ(n-J)/2[n]!a:ibn-J

which can be proved by induction on n. (For a discussion of this theorem and applica-
tions using q-calculus see Feinsilver [23].) We will interpret the quantum coordinates
a, b as operators to be constructed from quantum group generators.

3. The BW construction for U(2) and Uq(2). The Borel-Weil (BW) con-
struction of irreducible representations of the unitary groups was originally formu-
lated in differential geometric terms as the construction of a line bundle over the
homogeneous space U(n)\(V(n- 1) x V(1)), in which the fiber carries an irreducible
representation of U(n- 1) x U(1) with sections that are holomorphic functions in
the homogeneous space. An algebraic version of this construction can be formulated
in the framework of vector coherent states (LeBlanc and Biedenharn [14]), and this
procedure can be generalized directly to quantum groups [6], unlike the fiber bundle
construction for which too little is known of nonplanar quantum manifolds.

Let us outline the construction of vector coherent states, which we refer to as BW
states. These are described in more detail in [14]; BW states are formed from the
subset of Gel’fand-Weyl basis vectors annihilated by the raising operators Ein, i
1,..., n- 1 of U(n). This subset is therefore given by

(3.1) {[(#)}} _= {l(m)n)’Ein[(m),} O,i 1,...,n- 1},
where [(m)n) is a basis vector in the irrep space of U(n) labelled by [toni
[mln,... ,mnn] and (m)n is an n-rowed Gel’fand-Weyl pattern. The linear space
spanned by the vectors {[(#))} carries the irrep

(3.2) [l,n--1, 2,n--1,..., n--l,n--1] @ [mnn],
where #,-1 m, i 1,..., n 1, which is of the subgroup U(n 1) x U(1). The
BW states are vector-valued holomorphic functions defined by

(3.3)
(,)
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n-1where z. E 2i=1 ziEin, and {zi} is a set of (n- 1) complex variables used as
coordinates for the co-set space V(n)\(V(n- 1) x V(1)); these complex variables {zi}
can be identified with boson creation operators {a} acting on the vacuum [0), as
mentioned in 2. The sum in (3.3) is over all Gel’fand-Weyl patterns (#) carrying the
irrep of V(n- 1) x U(1) shown in (3.2).

The basis [(m)n)SW carries the V(n) irrep [mn], with the group action defined
by

(u)

where g E U(n). This group action can be generalized to the quantum group, provided
it is formulated in terms of the Lie algebra; the BW state realization F(Eij) of a
generator Eij of U(n) acts on the BW states according to

(u)

It can be shown [14] that the basis vectors [(m),)sw take the form

,[mn-1] (),(,)’(,)(,’)(m._,) (#’)
(R) (#)

where
(i) the numerical constant g depends only on the U(n) irrep labels [mn] and the

U(n- 1) irrep labels Iron-l], according to the formula

k[mn-i]]
\i=1

(Pi,n-l Pnn)!

where pi _= mij + j i;
(ii) the Wigner-Clebsch-Gordan coefficient Cii: effects the tensor coupling: [w 6]

[ b](iii) The irrep vector (,)) is homogeneous and holomorphic in the boson oper-
ators (z} acting on the vacuum with the U(n- 1) irrep labels [w, 0.-. 0], where

(iv) the U(n- 1) irrep labels of the fiber vector ][,l) are given by #i,n_l mi,()
for i 1,2,... ,n- 1. (These fiber vectors are actually tensored with a fixed U(1)
vector carrying the irrep [m] but this is suppressed to avoid complication.)

Let us illustrate this construction and the rather complicated result (3.6) by
writing the U(2) BW states explicitly, and deriving the form (3.6) for this case. It
is then straightforward to determine the extension to the quantum group. The U(2)
BW states are defined by

(3.9)
m12 m22 /mll BW

/

/ m12 m22
m12

exp(aE12) m2mm22 )J0) (R) m12 m22 \
/m12
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where we have used the definition (3.1) in which the summation over the patterns
(#) has one term only, and where we have also used the operator notation in which a
boson operator a acts on 10). Using the known matrix elements of E12,

(3.10) m12mllm22 > v/(m12 mll)(mll + 1 m22) m12 m22
mll + 1

and orthonormality of the Gel’fand-Weyl basis vectors, we find

m12 22
mll BW (/Ttll /rt22)! <(7rt12 7/’t11)!

0> @ m12 m22 \
/m12

where the factors correspond to those shown in (3.6), i.e., the K-factor and the boson
polynomial.

Now let us extend this construction to the quantum group Uq(2), defining the
q-BW states by

(3.12)
m12 m22 / / m12 m22

mll q,BW m12
expq(aqE12)

/
m12 m22 \

/m12

where the q-boson operator and the q-exponential are defined in (2.9), (2.10), and
(2.13), respectively. These states may be evaluated directly from the matrix elements
of El2:

(3.13) El2 m12mllm22 ) v/[m12 m11][7711
__

1 ?T,22
m12 m22
mll/ 1

and we obtain a straightforward analog of (3.11):

(3.14)
m12 m22 ) --([m12-m22]!) 1/2

mll q,BW [mll m22]!
q)mx9. --roll

v/[m12 m11]!
Io)(R) m12m12m22 >.

From the definition of the q-BW states and the action of the algebra given in (3.2),
we can calculate the q-BW realization F(Eij) of the generators Eij, as summarized
in the following two lemmas.

LEMMA 3.1. The realization F(Eij) of the Uq(2) generators acting on the basis
I(m)>q,SW is given by

(3.15b)

(3.15c)

(3.15d)

F(E11) Ell N,

F(E22) E22 -4- N,

r(E) aq,

F(E21) aq[Ell E22 - N],

where N is the number operator for the q-bosons, satisfying (2.10).
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Proof. By using the commutation relations (2.1) we find

[Ell- N, aqE2] 0 [E22 + N, aqE2],

from which we obtain (E-N) expq(aqE2) 01 expq(aaE2)E O , which in turn
implies (3.15a), and similarly implies (3.15b). Equation (3.15c) follows upon using
the q-boson form of (2.14). To obtain (3.15d) we need the relation

(3.17) E2E2 E2E2 [EI E22 n + 1][n]E2-, n e Z

which is proved by induction on n (the proof uses the identity

[a] [b + c] [b] [a + c] [a b] [c]

for a-- E -E22- n, b- n, c 1). From (3.17),

(3.19) expq(aqE2)E2 I0 (E21 - aq[El E22 N]) expq(aqE12) O

follows, and now we use the fact that the state I(#)) (shown specifically in (3.12)) is
of highest weight in U(1), i.e., ((#)IE2 0 in order to obtain (3.15d).

LEMMA 3.2. The map r: g -. Uq(g), where g is a generator of Uq(2), given by
(3.15), is an isomorphism of the algebra Uq (2).

Proof. The commutation relations (2.1) follow immediately, except

(3.20) r(E2 )l r(E22)] [E I E22 2N],

which follows from (2.15) and the identity (3.18) for a E- E22- N, b N,
c= 1. [:]

4. Explicit BW states for U(3). For U(3) the BW states defined by (3.1)
take the form

(4.1)
m13 m23 m33 \

m12 m22
mll BW

Em((m); z)
m

where the coefficients are the matrix elements

m13 m23 m33 \
m13 m23
m

m13 m23 m33
(4.2) Em((m); z) m13 m23

m
exp(zE3 + z2E23)

m13 m23 m33 \
12 m22

mll

where (m) denotes the array (mij). We now verify the form (3.6) of these states
by explicit calculation, proceeding by determining first the matrix elements in (4.2).
This we do by writing the exponential in (4.2) as a product of two exponential factors
(using the addition theorem for exponentials), each of which is expanded as an infinite
series; however, only one term of each series contributes due to orthonormality of the
Gel’fand-Weyl basis. We therefore require the matrix elements of E13 and E23, to
arbitrary powers, in the Gel’fand-Weyl basis, and then express (4.2) as a sum. We
find that this can be written in terms of a hypergeometric 6F5 function. Next we use
an identity due to Whipple that expresses the 6F5 function in terms of a 3F2 function,
which in turn can be expressed as a Clebsch-Gordan coefficient. This calculation leads
us directly to the final form (3.6) that we seek; the fact that the final answer must be
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of this form in fact implies the existence of Whipple’s identity, as well as symmetries
of the hypergeometric functions, as noted in the Introduction.

For n 3, (3.6) reads

(4.3)

m13 m23 m33 \
m12 m22

roll BW

(_1)m22-m23 I(m13 m33 nt-1)!(m23 m33)!](m12 m33 + 1)!(m22 m33)!

where

(4.4)

zF-,,(_)+,-
v/(m ml)!( +m

’rtlm2ml--m2
m13 m23 m33 \

m13 m23
m

w m13 + m23 m12 -/Yt22

jl i (m13- m23), j2 1/2 w, j i m12 -Tlrt22)

-1 - 1/2 (-1 +-), - -1 -- + 1/2 .
Here we have also substituted from (3.7) for the explicit K-factor, namely,

(4.5) K([m3]
2 (Pi3--P33--1)’[m2]] (Pi2 P33)!

i:1

and have included the phase factor (-1) (see [14, eq. (2.16)]), where

b([]) b([0,--w]) b([m2])

(4.6) (([m13, m23]) (([0,-w]) (([m12, m22])

m22 m23.

We now provide details of the calculations, together with properties of the hyperge-
ometric functions used in order to obtain precisely the form (4.3). Apart from its
intrinsic interest, this calculation serves as a guide for establishing similar results for
the quantum group case.

In order to evaluate the matrix elements (4.2) we first require the matrix elements
of El3 and E23 in the Gel’fand-Weyl basis. Explicit formulas for matrix elements in
U(n), first found by Gel’fand and Zetlin [27], are given by Baird and Biedenharn [28],
and for the particular case n 3 and for E23 these reduce to

(4.7)

m13 m23 m33
m12 m22

mll
E23

(m12 m22 -{- 1)(m12 ?T22) J m12 1 m22
mll

. r(mll_m22.l)(m13_m22+2)(m23_m22_l)(m22_m33)11/2 / m13 m23 m33

[ J(m12m22 -" -) ’-12 - .7]_ "i-)" m12 m22 1
roll
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By repeated application of E23 we obtain the general form

(4.8)
m13 m23 m33

m12 m22
mll

n / m13 m23 m33,A(m) m12 r m: + r n
r=0 /11

where (m) is the array (m12 m22 and the coefficients Arn are to be determined. This
\ roll /

can be done by deriving a recurrence relation for Arn using (4.7). We find

(4.9)

A+1

[(ml2--mll--r4- 1)(m13- m12 4- r)(m12 m23 r 4-1)(m12 m33 r 4- 2) ]Ar-I (m12 m22 4- n 2r 4- 3)(m12 m22 4- n 2r + 2)

+ An [(mtl m22 + n r + 1)(mr3 m22 + n r + 2)
(m12 m22 + n 2r + 2)

(m23 m22 + n r + 1)(m22 m33 n 4- r)](m12 -m22 4- n- 2r + 1)

with A 1. Let us merely state the solution of these recurrence relations, as verified
by direct substitution:

(4.10)

n!(ml2 m22 r)!
r!(n r)!(m12 m22 + n r + 1)!

X [ (mll m22 4- n r)!(m23 m22 4- n r)!(m22 m33)!
(roll m22)!(m23 m22)!(m22 m33 n 4-

(m12 m11)!(m12 m23)!(m12 33 4- 1)!(mr3 m12 4- r)!
(7T’12 11 r)!(TT12 Fn,23 r)!(TT12 33 7" 4- I)!(13 Trt12)!

(/13 m22 4-/, r 4- 1)!(/12 --/22 4- 1)(12 --/22 4- , 2r + 1)](m13 m22 4- 1)!

We also need to evaluate the matrix elements of (El3)t, for arbitrary integers , but
in this case we require the action of (E13) only on those states for which m12
m13, m22 m23. Since Et3 [E12, E23], the matrix elements of E13 are easily found
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from those of E23, given in (4.7), and those of E12 in (3.10), to give

(4.11)

m13 m23 m33
m13 m23

mll
E13

/(m13 m33 +1)(mll m23) m13 m23 m33

(m13 m23 + 1) m13 1 m23
roll 1

(m23 m33)(m13 mll -- 1) / m13 ?n23 m33

(m13--m23-) \
m13 m23--1

mll 1

From this follows the general form:

(4.12)
m13 m23 m33

m13 m23
mll

t / m13 m23 m33
(E:3)t ZB(m) m13 8 m23 t - 8

8=0 mll

where (m) is the array (13 23 for some coefficients B. As before, we derive a
k roll /

recurrence relation for B8, using (4.11):

(4.13)

Bs+1

(m13 m23 + 2S + 3)(m13 m23 + 2S + 2)

Ss [(/13 -/23 -{- t -8 + 2)(t -8 -[- 1)(m23 -/33 e -I- 8)(/13 mll -[- t -8 -[- 1)]:( ia + e + + e + g
with B 1. The solution, which again is verified by direct substitution, is

(4.14)

B
X r (m13 m33 + 1)!(roll m23)[(m13 m23 s)[(ml3 roll +

l8!(- 8)!(m13 m23 -t- -k- 1 8)[(m13 m33 -t- 1 8)!(mll m23 8)!

(m23 m33)!(m13 m23 4- 2s + 1) ] :

(m13 mll)!(m23 m33 t --F 8)!

We can now evaluate Em((m); z) by expanding the exponentials, giving

(4.15)
E,((m);z)

m13 m23 m33
m13 m23

t,n m

ZlZ2 (E13)i(E23)ng.! n!

m13 m23 m33 \
m12 m22

mll
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ml3 8, m23 -[- 8/x Arn m-
m13 m23 m33 \

m12 m22 /mll

Since the Gel’fand-Weyl states are orthonormal, we can eliminate three of the
four summations, namely, the sums over g, n, r. We must have

(4.16) r m13 m12 s,

w m -[- mll

where w m13 -b m23 m12 m22. The matrix element now takes the form

(4.17)

Next, we collect all the factors as given in (4.10) and (4.14) in order to obtain the
resulting matrix elements

(4.18)
vo--m-[-mEm((m); z) zF ml,

z2 (_)re--roll
(77/.13 m33 -[- 1)!(m23 Trt,33)!(mll m22)!(m23

(-22 -)!(-2 -aa + 1)!(-2 -1)!(-2 -2)!(-13 -2)!

where R(s) is a product of all those terms containing s-dependent factors, and may
be written as

(4.19) (-)s(1 q- a/2)s(a)s(b)s(c)s(d)s(e)sR(s) s!(a/2)s(a b + 1)s(a c -b 1)s(a d + 1)s(a e -b 1)s’

where

a m + m23 m13 m 1, b m m,

(4.20) c m12 m13, d m23 m,

e m22 m13 1,
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and where it can be seen that all square roots have combined to give a rational function
of the basis state labels.

The function obtained by summing the terms R(s) over s can be identified as a
generalized hypergeometic function with argument -1:

(a.)

R() F ( 1 / a/2
s \ a/2

a b c d e )a-b+1 a-c+1 a-d+1 a-e+1
-1

This function can be expressed in a simpler form by means of a special case of
Whipple’s transformation, which itself transforms a terminating well-poised 7F6 into
a Saalschiitzian aF3 (see Bailey [29, 4.3]). This transformation is derived by Bailey
(4.4, eq. (2)), and reads

6F ( l + a/2 a b c d
a/2 a-b+1 a-c+1 a-d+ l a-e+1

(-a- 1)_ / l+a-b-d c
(-1)c (/z---e: )_-c 3F2\1 +a-b 1 +a-d]’

where we have used the fact that -c m13 m12 is a positive integer.
We now obtain from (4.17),

(4.23)
E,,,((m);z)

w--mTm11z--mll Z2 (--)--mll’’m12--13 (13 23)(13 mll)
(m m11)(w m + 11)

(m13 m33 + 1)(m23 m33)(m11 m22)(m23 m22)(m12 m22 + 1)
(m12 m33 + 1)(m22 m33)l(m13 m22( :1 23)

(m12 m23)!(m13 ml2)!(m mll)!(w -- roll

x 3F2(m-m13 7722-m13-1 m12-m13).m23-m13 mll -m13

We expect this expression, from consideration of the general form (3.6), to be propor-
tional to the Clebsch-Gordan coefficient that couples the following states:

o
roll m

m13 m23 \
/m

m12 m22 \
/mll

The Clebsch-Gordan coefficient that performs this coupling is tjlj2j where
mlm2ml+m2

(4.25)
jl-- 1/2(?T13- m23), j2-- 1/2w, j-- 1/2(m12- m22),

ml m- 1/2(m13 -+- 723), m2 mll m + 1/2w.
A standard expression for the Clebsch-Gordan coefficient is given by the van der

Waerden form, which can be expressed as an 3F2 function as follows (see, for example,
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(4.26)
lm2ml--m2

[(m12 m22 + l)(m12 m33)!(m23 m22)!(m m23)!(m mll)!
(m13 m22 -+- 1)!(m13 m)!(w + mll m)!

1

(m:2 + m m:3 m23)!(m:2 + m m:3 m::)!

3F2 ( m12 m13 m-me3 w mll + m )m12 m13 m23 -}- rn + 1 m12 roll -}- m rnl3 + 1

where we used the definitions given in (4.25). The 3F2 function in (4.23) is not in the
form (4.26); however, there is a direct transformation between the two forms, which
appears in Bailey [29, p. 85] and may be written

(--e)!(--f)!(a + c- e)!(a + c- f)!

+c- f + l a+c-e+

where c is a negative integer (the parameters a, b, e, f here differ from those defined
in (4.20)). Now, if we substitute into (4.27) for the parameters according to

a m m13

C 12 m13

b m22 m13 1,

e m23 m13, f roll m13,

then we transform the 3F2 function in (4.23) into the form (4.26) for the Clebsch-
Gordan coefficient, and consequently express the BW state in precisely the required
form (4.3).

5. The BW realization of Uq(3). It is known [31], [32] that (for generic real
q) all unitary irreps of the quantum groups Uq(n) are finite-dimensional and in one-
to-one correspondence with those of U(n). Similarly, the basis states are in one-to-one
correspondence with the Gel’fand-Weyl basis states for the unitary groups, and so the
same set of labels (m) can be used to label the quantum group states. In constructing
q-BW states, analogous to (4.1) and (4.2) for U(3), we need to determine only the
appropriate q-extension of the exponential factor and its argument in (4.2). The
algebra (2.4) for Uq(3) is specified in terms of elements corresponding to the simple
roots, namely, E12 and E23, and we require an appropriate definition of E:3 in order
to generalize (4.2). We choose, as in [6],

(5.1) El3 q-E22/2(E12E23 q-1/2 E23E12);

then, as a consequence of the defining relations (2.4) and (2.6), we have

(5.2) [El3, E23] 0 [El3, El2].
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(In fact these relations are equivalent to the Serre relations (2.6).) Similarly, we choose
the operator E31 according to

Ea qF/(EaE q1/2EEa.),(.3)

which satisfies

(.a) [E31 E21 0 [E31 E32].

We can now define the Uq(3) BW states by

/13 /23 m33 \
(5.5) m m

mll q,BW

sq((); a)l 0) (R)
m

m13 m23 m33 \
m13 m23
m

where

(5.6)
m13 m23 m33 m13 m23 m33 \

Eqm((m); aq) m3 m23 expq(aE3) expq(aqE23) m2 m22
m mll

and where the q-exponential is defined in (2.13). The product of exponentials can be
combined using a q-addition formula, which is obtained with the help of the q-binomial
theorem (2.24), which we may write as

(5.7) expq(aE13) expq(aE23) O expq (q-N/2aE13 + qN’/2aE23) I0).

An outline of the proof of this formula is as follows. Define the operators a, b by

(5.8) a q-N2/2a, b qN’/2aq,

where N1, N2 are the number operators for the q-boson operators a, aq, respectively.
Then ba qab, and we may apply the q-binomial theorem (2.24) to each of the series
expansions of the q-exponentials on the left-hand side of (5.7) to obtain the right-hand
side after applying the number operators to the vacuum 10 ).

We have now defined q-analogs of the BW states for n 3, and we next establish
the n 3 version of Lemma 3.1, i.e., we calculate the realization F(Ej) of the Uq(3)
generators and verify that these operators satisfy the algebra of Uq(3). The results
are summarized in the following lemmas.

LEMMA 5.1. The realization F(Eij) of the Uq(3) generators acting on the basis
(m) q,ZW i8 give by

F(EI) El N1,
r(E) E N,
F(E33) E33 + N + N2,
r(E3) a,

(5.9) F(E23) a,
r(E) qN2/2EI2 q(E.+l)/2 a t,
F(E) q-N1/2E2i q-(El+l)/2 a a,
F(E32) q-E33/2aE2 + aq[E22 E33 N1 N2],

,.,E33/2aqW21I(E31) / 2 + a[E11 E33 N1 N2].
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-q expq(aEi3) 0Proof. The expressions for F(E13), i 1, 2 are immediate since a

expq(aE3)E3 10 (i 1, 2), as indicated in (2.14), and [E.a, E23] 0. The expres-
sions for F(Eii), i 1, 2, 3 follow in the same way as for Uq (2), using

and

[E N, a[E3] 0 [E N, aE231

[E33 + N1 + N2, aE13] 0 [E33 + N1 + N2, aq2E23].

Next, we require the formula

n/2 n q(E22+l)/2 , -’,n-1(5.10) E3E12 q E12E3 In] -13"23

which is proved by induction on n. From it follows

expq(aE23)E2 E12qg./2 expq(aE23)q-g./2 q(E..+D/2-,,3u2’q expq(aE23).
We multiply this operator equation on the right by expq(aE3), replace E13
exp2(aqE23) by 5 expq(aE23), and let the result act on the vacuum to give the
required expression for F(E2). Similarly, beginning with the formula

(5.11) Eln3E21 q-n/2E21E’3 q-(E1+l)/2[n]E23E’-1,

we obtain F(E21). In order to calculate F(E32), we first prove

(5.12) En3E32 qn/2E32E3 + q-Eaa/2[n]Ei2E’-
by induction on n. Hence

expq(a[Ei3)E32 E32q/2 expq(aEi3)q-N/2 + q-E:’/2Ei2a[ expq(a[Ei3).

Next we use

exr,a(aqE)E= (E= + a[E= E Nl)ex,(aIE),
which follows from

(5.13) EE EE + [E2 E n + I][]E-.
By combining these formulas, we get F(E32) as required, and F(E3) is obtained by
using (5.3).

LEMMA 5.2. The map F: g - Uq(g), where g is a generator of Uq(3), given by
(5.9), is an isomorphism of the algebra Uq(3).

Proof. We first check that the definition (5.1) of E13 is preserved under the
mapping F, i.e., we verify

(5.14) F(E13) q-F(E:.)/2 (F(E12)F(E23) q-1/2F(E23)F(EI2)),
and this follows directly upon using the definition (2.9) for the q-boson operator a.
It is also immediate that

(5.15) [r(Ex3), F(E:3)] 0 [r(Ea), r(Ex)].
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We also find

(5.16)
[r(E),r(E2x)] q-(Nl-g)/2[E12 E21] q(E..-EI)/2 q-q

ala2,
q-qa2al]

[r(E) r(E)],

as required, and

(5.17)
a2a2
-q q[E22 E33 N N2]- af[E22 E33 N N2 + 11
[E22 E33 N1 2N2],

again as required, where we used (2.15) and (3.18) with a- E22- E33- N1- N2, b-
N2, c l. []

6. Explicit BW states for Uq(3). In this section we undertake the q-analog
of the calculation in 4 in order to obtain the Uq(3) BW states explicitly, in a form
analogous to (3.6). For this we require various identities satisfied by basic hypergeo-
metric functions, which arise naturally within the calculation. Whereas the required
matrix elements can be written in terms of 6F5 functions for V(3) (see (4.21)), we
find that for Uq(3) they can be expressed as a certain limit of basic hypergeometric
functions s7, which are then reduced to 32 functions by using known identities.
These 32 functions can in turn be transformed into a standard form recognizable as
q-Clebsch-Gordan coefficients, enabling us to express the q-BW states as a product of
a Kq-factor and a sum over a polynomial in aqi, a, with a q-Clebsch-Gordan coupling,
tensored with the Gel’fand-Weyl states.

The q-nW states are defined by (5.5) and (5.6), and our first task is to evaluate
the matrix elements in (5.6). The matrix elements of the simple roots El2, E23 of the
Uq(3) algebra are identical to those of U(3), but with the parentheses in (3.10) and
(4.7) replaced by the square brackets defined in (2.3); compare, for example, (3:10)
and (3.13). For general n a proof has been provided by Ueno et al. [33]. Hence we
can calculate the matrix elements of E3 from those of E2, E23 by using (5.1), and
we find that

(6.1)

E13
m13 m23 m33 \

m12 22

!

q_,./2./[m3 m2][m2 m23 + 11[m12 m33 + 2][m + 1 m22]
V + e] +

m13 m23 m33 \
m12+l m22
m + 1

q_(m,+l)/21 [m13 m22 + 1][m23 m22][m22 + 1 m33][m12 m11]
[m12 m22 + 1][m12 m22]

m13 m23 m33 \
m12 m22 1

roll -- 1
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From the matrix elements for E23 and E13 we can calculate the coefficients An(m)
and B(m), which are defined as in (4.8) and (4.12), respectively. We do this by
obtaining recurrence relations analogous to (4.9) and (4.13), and for A the only
change is to replace parentheses (...) by brackets [...] to obtain the solution analogous
to (4.10), and the recurrence relations are satisfied upon using the identity (3.18). The
coefficients B involve explicit q-factors, as is apparent from the matrix elements (6.1),
and satisfy

(6.2)
B+: Bs_: (m2s-e+8-)/2

([s][m13-m23-s-[- l][m13-m33-s T 2][mll -m23- s T l]) :

[rata m23 + 2s -t- 3] Imp3 m23 + 2s + 2]

The solution is

[m23 m33 t + s][m13 mll + t s + 1]) :

[m:s m2s + 28 + 1]

(6.3)
Bs q-(-s)(m,s-s)/2q-S(m2s-D/2q-/2(_)+s[]!

[m13 7733 -- 1]![mll m23]![m13 m23 81![m13 mll -- 81!
X

[8]![- 8]![m13 m23 - + 1 8][m13 m33 + 1 s][mll m23 8]
[923 m33]![m13 m23 --- 28 -- 11[m13 mill![m23 m33 + 8]!

which is verified by direct substitution, using (3.18) with a
g-s+2, c=-s.

The matrix element E((m); aq) is therefore given by the q-analog of (4.18) (i.e.,
replace (...) by [...]), together with the multiplicative q-factor

(6.4) q- (+)/2--(m13+1)(m--ml )/2,
which comes from the coefficient B in (6.3), and where a is defined in (4.20). The
terms involving the summation s, analogous to R(s) given in (4.19), are

[a T 2s]([a])s([b])s([c])s([)s([e])s(-1)Sq-s(a+s)/2
(6.5) R(s) [s]l[a]([1 T a b])s([1 T a c])s([1
where a, b, c, d, e are given by (4.20).

The function s R(s) is the q-analog of the 6F5 function appearing in (4.21), and
is most conveniently expressed the limit of s7 function, specifically

(6.)

s

( a 1+a/2 lTa/2 b c d e Nq ,q ,_q ,q ,q ,q ,q ,q- q2aT2TN
Nlim S7 qa/2, _qa/2, ql+a-b, ql+a-c, ql+a-d, ql+a-e, ql+a+g q, qb+c+d+e

lim
[a + 2s]([a])s([b])([c])([)s([e])s([-N])s

+ a + + d]).([1 + + +
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where we used the definition (2.20) of a basic hypergeometric function, and the identity

(q+a/2; q)s(_qi+a/2; q)s qS [a + 2s](6.7) (qa/2;q)(_qa/2;q) [a]

The limit N -, oc in (6.6) is taken using

lim
([-N]) (_)Sq-(+)/2 (q > 1).(6.8)

N--,o ([1 + a + N])8

Although 8 R(s) can be expressed in a certain way as a 76 function, the form (6.6)
is appropriate for our purposes because we can now use a formula due to Watson
[34] that reduces a terminating, very well-poised s7 series to a terminating balanced
a3 series, and is the q-analog of Whipple’s formula, which transforms a well-poised
7F6 into a Saalschiitzian 4F3. By using this formula we can reduce R(s) to a 32
function, which is identifiable with a q-Clebsch-Gordan coefficient. Watson’s formula
states (see Bailey [29, p. 69] or Gasper and Rahman [26, p. 35])

(6.9)

( qa, q+a/2, _q+a/2 qb, qC, qd, q, q-N q2a+2+N)87 qa/2, _qa/2, q+a-b,q-a-c, q+a-a, q+--,q+a+N q’qb++,i+e
(ql+a; q)N(ql+’-d-e; q)N ( qd qe qi+a-b-c q-N )(ql+a-d; q)g(ql+a-e; q)g 43 ql+a-b ql+a-c qe+d-a--g

q’ q

In Bailey’s notation we have replaced a by qa, c by qb, d by qC, e by qd, f by qe, and
g by q-N, where N is a positive integer. In our notation Watson’s formula reads

[a + 2s]([al)s([b])s(ic])s([d])s([e]),([-Nl)s
[l!b]([1 + b])([1 + a c])s([1 + a d1)8([1 + a e]ls([1 + a + N])

(6.10)
([1 -t- a])N([1 + a c- e])N
([1 + a C])N([1 + a e])N

([1 + a b )s([c])s([e])s([-N])8x E Is]!([1 + a b])s([1 a o)s([c + e a N])s"
8

Watson used this formula to prove the Rogers-Ramanujan identities, by taking suit-
able limits of the parameters; it also implies a general summation formula due to
Jackson (see Gasper and Rahman [26, 2.6 and 2.7]).

We now let N cx) in (6.10) and the left-hand side reduces, according to (6.6),
to 8 R(s), while the multiplicative factors on the right-hand side become

[-a- 1]![a- c]! (q > 1)(6.11) (_)eq-eC/2
[a c e]![-a + e 1]!

(in which positivity of the factorial arguments follows from the definitions of a, c, e in
(4.20) and the inequalities satisfied by the Gel’fand-Weyl labels mij). We also use
the limit

lim
[a- N]s q(-,)/2 (q > 1)(6.12)

N-. [- N]s



238 M.A. LOHE AND L. C. BIEDENHARN

and hence find

[-a 1]![a c]!R(s) (_)eq-eC/2
[a c e]![-a + e 11!

([1 T a b- d])s([c])s([e])sq-s(e+c-a)/2

s [s]!([1 + a b])s([1 +-which is the desired expression relating )-’]8 R(s) to a 32 function.
Upon combining all terms, the matrix element Eqm((m); aq) is now found to be

(6.14)

ktl
m

q-(m.-ma)(m.-ma-1)/2q-(ma+l)(m-m)/2

X

[- m + ]![- -]![- -=]![-:
[m maa]![m maa + 1]![ma m]![m m]![m

We wish to identify the 32 function with that appearing in the q-Clebsch-Gordan
coefficients; a standard form for these coefficients, the q analog of the van der Waerden
form (4.26), has been calculated in [11], and can be expressed in terms of 32 functions
as follows [12].

(6.15)
jl,2, (m,ml+m2q(jl Tj2--j)(jl-}-j2-[-j-}-l /4-[-(jlm2--j2ml /2
qmlm2m

( [2j + 1][j. + ml]![j2- m2]![j + m]![j- m]! )x
[j + j + j + l]![j + j j]![j j + jl![j + j j.]![j + mg.l![j m]!

x ([j j2 -4- ml --I- l])jl-m ([j jl m2 -4- l])j2+m2

( )X 32
qj-j2+ml+l qj-jl-m2+l

q’ q

We identify the parameters jl, j2, j, ml, m2 as in (4.25), and we seek to express the
coefficients in the form shown in (6.14); in order to do this we require the following
transformation [13, eq. (1.30)], [26, eq. (3.2.2)]"

( q-n ) ozn(5/o;q)n ( q-n o 7/(6.16) 34)2
7 i ;q’ q

(5; q)n 34)2
7 zql-n/ ;q’ flq/5

where n is a positive integer. Putting a qa, qb, "7 qe, ql, we can write
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this as

(6.17)
-.(o+-,--s+)/([,]) ([]) ([_,]).E q

[]([])([]])

q-an/2 ([f a])n q-s(b-’f)/2([a])s([e
(Isl).

([f a])n([e a]) q-sb/2([a])s([a 4- b 4- 1 n e

([el)n([f])n
n E [(--’-- 1 n S])s([a + 1 :

where we used the identity a second time in the last step. Hence we have

(6.18)

qa qb q-n
32 qe ql q-1 q-1

(If al)n([e a])n ( qa qa+b+l-n-e-I q-n
([e,])n([f])n 32 qa+l--n--e qa+l--n--.f

This relation is the q-analog of (4.27), with c -n and, with the parameters identified
as in (4.28), enables us to express the 32 function in (6.14) in terms of the 32 function
in (6.15), i.e., we can now explicitly identify the q-Clebsch-Gordan coefficients in the
matrix elements Eqm((m); aq). Upon collecting all factors, we find that

(6.19)

m13 m23 m33 \
m12 i7/.22

roll q,BW

([m3l
m

(a)m-m"(--a)w+m’’-m(-)=---==g \[m]] j[. ...]![ + .1.

X qtt/4q-l.mlm2m2_l_m2
m13 m23 m33 \

m13 i7/,23

m

where the Kq-factor is given by

(6.20) Kq([m3]’2[m2]]
and

[m13 m33 + i]![m23 m33]!
[m12 m33 -4- 1]![m22 m33]!

(6.21)

--(m13 T/12)(m13 T/’t22 "- 1) (3m13 m23 -- 2)(m T/11 -- w(m13This form for the general Uq(3) basis vector is a special case of general results
we have obtained [6] for the form of the BW basis vectors for Uq(n). The origin
of the various factors is explained in [6]; however, as discussed in the Introduction,
our calculation here explicitly shows how the theory of special functions and their q-
analogs is interwoven with properties of the representations of the classical Lie groups
and their q-analogs, the quantum groups.
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DEDICATION

This special issue of the SIAM Journal on Mathematical Analysis is dedicated to
our dear friends Richard A. Askey on the occasion of his sixtieth birthday on June 4,
1993, and Frank W. J. Olver on the upcoming occasion of his seventieth birthday on
December 15, 1994.

Frank Olver was the Managing Editor of this journal from its inception in 1970
until the end of 1974, and he has been on its Editorial Board ever since. He was on
the Editorial Boards for the SIAM Journal on Numerical Analysis (1964-69), NBS
Journal of Research (1966-78) and the Springer-Verlag series Handbook.for Automatic
Computation (1959-73). In addition, he has been an Associate Editor for Mathematics
o.f Computation since 1984, and in 1992 he joined the Editorial Board for the new
journal Methods and Applications of Analysis.

According to his son Peter, Frank’s mathematical career started in World War II
while he was working for the British Nautical Almanac Office, just after he received his
bachelor’s degree from the University of London. One day he had finished whatever
he was doing and was wandering in the room. He paused behind one of his coworkers
who was carefully adding up an infinite series. Frank’s eyes widened when he looked
at the series and he suddenly remarked "You know, that series diverges!" The other
fellow momentarily turned around to say "Yes, that’s right..." and then resumed
his calculation. Of course, the series was an asymptotic one, and Frank’s curiosity
on how one could sum a divergent series led directly to his eventual mathematical
career. To illustrate Frank’s meticulous and rather unusual proofreading technique,
Peter contributed the following anecdote. Frank was and is one of the most careful
proofreaders of mathematics ever. For his book, he proofread every formula backwards
(!) so as not to be lulled into skipping errors. Late at night at home you could hear
him mutter unintelligible (to his kids) things like "... zero, zero, equals, equals, x,
x, 3, 3, plus, plus ". He proofread not only the galley proofs and the page proofs
this way, but even when the final typeset manuscript was shipped from England to
the United States, he spent a day in New York looking for a few final corrections. He
once even offered Peter several dollars for any typographical error he could find in his
book--more for mathematical ones. Peter has yet to collect a single dollar for this
despite having asked a number of friends and colleagues!

Among Frank’s most significant contributions are his example of a convergent
series expansion which has twice itself as its own ,asymptotic expansion (published
in Vol. 1 of this journal, pp. 533-534), rigorous exponential improvement of asymp-
totic expansions derived from Laplace integrals or ordinary differential equations, error
bounds for a great variety of asymptotic expansions, a numerical algorithm for second-
order difference equations, a new method for the evaluation of zeros of solutions of
second-order differential equations and the development of a new system of computer
arithmetic. His book, Asymptotics and Special Functions, published in 1974 and
translated into Russian in 1978 (shorter version) and 1990 (full version), is considered
to be the classic source on these topics. For additional comments on Frank’s contri-
butions to mathematics, see the 1990 book Asymptotic and Computational Analysis,
edited by R. Wong, which contains the proceedings of the International Symposium
on Asymptotic and Computational Analysis that was held in honor of Frank Olver
on the occasion of his sixty-fifth birthday. Although Frank received the rank of Pro-
fessor Emeritus in 1992 at the University of Maryland (in the Institute for Physical
Science and Technology and the Mathematics Department), he has not retired from

vii
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his research or editorial work, and he continues to make important contributions to
asymptotics, numerical analysis, and special functions.

In asymptotics, it is often not the final result but the method used to obtain the
result that is the most important. This is why one will not find many well-known
theorems in books on asymptotics, but instead will find methods such as Laplace’s
method, the principle of stationary phase, the method of steepest descent, saddle-
point method, and so forth in almost every book on the subject. What makes Frank’s
work stand out from others is that Frank not only can come up with powerful methods
but he can also formulate the final result into precise and general theorems which can
be applied directly to a wide variety of problems. This is certainly evidenced in his
earlier work on the construction of globally valid uniform asymptotic solutions to
ordinary differential equations, and in his recent work on the exponentially-improved
asymptotic solutions of ordinary differential equations. Frank is so thorough that
when he finishes his investigation, there may be very little left for someone else to
continue.

Dick Askey has been on the Editorial Board of this journal since its first issue in
1970. He is the Szeg5 Professor at the University of Wisconsin in Madison and an
Honorary Fellow of the Indian Academy of Sciences. He was a Guggenheim Fellow
(1969-70) and Vice President of the American Mathematical Society (1986-87). Dur-
ing the spring of 1992 he gave the Turin lectures in Budapest. Dick has constantly
been on the look-out for areas of research in science generally (not just in mathemat-
ics) where special functions might play a significant role. As a result he has interacted
with physicists, statisticians, engineers, and others in important ways so that work
on special functions has become widely visible.

His research during the 1960s and early 1970s concentrated primarily on har-
monic analysis and classical orthogonal polynomials, related positivity questions and
inequalities. Perhaps the best testimony to the power and importance of this work
lies in the fact that one of the inequalities in a joint paper with one of us (G. G.)
(see American J. Math., 98 (1976), p. 713, Theorem 3) plays a central role in Louis
de Branges’ original proof of the celebrated Bieberbach Conjecture.

In 1974, Dick presented ten lectures at a C.B.M.S. Regional Conference Lecture
Series at the Virginia Polytechnic Institute which were published in his book Orthog-
onal Polynomials and Special Functions. This book helped lead to a renewed interest
in orthogonal polynomials, a subject area which was more or less dormant during the
1950s and 1960s, but has been one of the liveliest areas in classical analysis ever since.
Starting in the late 1960s Dick managed to get together a large group of graduate
and postdoctoral students at the University of Wisconsin in Madison, many of whom
ended up as internationally recognized specialists in various areas of special functions
and orthogonal polynomials. In the late 1970s his work expanded to include those
special functions allied with combinatorics and number theory. Recent developments
in quantum groups have shown that the same functions arise there. For example,
these studies led to the embedding of the "6- j symbols" of physics into the theory of
orthogonal polynomials. He unearthed and extended beautiful results of L. J. Rogers;
this led to new families of orthogonal polynomials known as the Askey-Wilson poly-
nomials and the "sieved" polynomials. He has also vigorously participated in the
renaissance of interest in Ramanujan. In particular, he has been a leader in applying
some of Ramanujan’s integrals to work in hypergeometric and basic hypergeometric
series.

Although Dick proudly and jokingly classifies himself as one of the last breed of
18th-century mathematicians, he is, in fact, very much a 21st-century mathematician.
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He helped to keep classical analysis alive and interacting with modern mathematics.
He has pursued excellence in every aspect of mathematics, including teaching, libraries
and history, and has given never ending encouragement and support to younger col-
leagues, including those in crises (political, economic, personal, and scientific). Many
of us feel that he is a bridge between the great classical analysts such as Hardy, Lit-
tlewood, Ramanujan, PSlya, and SzegS, just to name a few, and future mathematics
and related areas.

Dick is also well known for his unique mathematical vocabulary which includes
"marvellous" (way before Billy Crystal) and "preposterous" so that very few of his
letters or recommendations and referee reports can remain truly anonymous. His
observation that "a ten minute nap in a colloquium is equivalent to one hour of a
good night’s sleep" has been put to practice and validated by each of us.

We wish the very best to Dick and Frank in their future personal and professional
endeavors.

George Andrews
George Gasper
Mourad Ismail
Paul Nevai

N.B. Due to restrictions beyond our control, it was impossible to include in this
issue all of the papers dedicated to Dick and Frank that were accepted for publication;
the papers listed below will appear in future issues of this journal.

1. Mizan Rahman and Sergei K. Suslov,"Barnes and Ramanujan-type integrals
on the q-linear lattice."

2. Bo Gao, Donald J. Newman, and V. V. Popov, "Convex approximation by
rational functions."
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A HYPERGEOMETRIC ANALYSIS OF THE GENUS SERIES FOR A
CLASS OF 2-CELL EMBEDDINGS IN ORIENTABLE SURFACES*

G. E. ANDREWSt, D. M. JACKSONt, AND T. I. VISENTIN

Abstract. The genus series for dipoles is used to determine an explicit expression for the
number of dipoles of given genus with a given number of edges. The approach uses a hypergeometric
argument, which may assist with other classes of maps such as vertex-regular maps. Such maps are
of importance in combinatorial theory and appear to have application to two-dimensional quantum
gravity.

Key words, hypergeometric function, 2-cell embedding, rooted map, integral representation,
genus series
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1. Introduction. A dipole is a map on two vertices of the same degree, with
loops allowed. It is a generalization of a map consisting of a multiple edge, whose
vertices necessarily have the same degree. In a loose sense, dipoles are the next class
of maps in order of complexity beyond the one-vertex maps (called monopoles), and
dipoles with no loops have been an object of study in topological graph theory [6]. A
k-pole is a map (loops and multiple edges allowed) on k vertices of the same degree.
The set of all k-poles is the set of vertex-regular maps. The study of poles may
therefore lead indirectly to information about important subclasses of regular maps,
namely, quadrangulations and triangulations. The former occur, for example, in the
4-model of two-dimensional quantum gravity [7].

The genus series for a class of maps is the generating series for the number of
such maps with respect to genus and the number of edges. The genus series for
dipoles (technically, they are rooted) has been given by Jackson [9], using integral
representations of sums of characters of the symmetric group. If u (Ul, u2,...) is
a partition of 2n, let Pv lenote PvlP2..., where Pk Akl +"" + AklV and N is a
positive integer. Let V(A) be the Vandermonde determinant in A1,... ,AN, and let

Ixn] f(x) denote the coefficient of xn in the formal power series f. Let rag(n), dg(n)
be the numbers of monopoles and dipoles, respectively, of genus g on n edges. Then

ma(n) [u’+x-UalA[2.1(u),
1

d,(n) -[un-u"] (A[..] (u)- An](u))
where

A(N) fvv e-1/2traceM2 1-Ik_>l (traceMk)a dM

fVN e-- 1/2 traceM dM
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/N-l2n NV2())e_p2pd),
and aj is the number of occurrences of j in the partition v. Here rN is the vector
space, of dimension N2 over R, of all N N Hermitian complex matrices and dM
denotes Lesbesgue measure. The integrands with respect to dM are invariant under
adjoint action of the unitary group, and diagonalization under this action gives the
transformed integral in dA. The constant that appears is related to the volume of the
unitary group.

In determining dg(u), it is necessary first to carry out the integration to exhibit
A(N) as a polynomial in N, and then replace N formally by the indeterminate u.
This is shown in the cases of monopoles [8] and dipoles [9], in the following two results.

THEOREM 1.1. The number of monopoles o] genus g on n edges is

THEOREM 1.2 The number o.f dipoles of genus g with n edges is

.--2j--I

)( )
r--O

r ,

As seen in these results, this procedure typically leads to a representation of A(u)
with respect to bases for the ring of formal power series other than the standard
(monomial) basis, and this may be inconvenient for subsequent work.

The approach through integral representations can be applied to other classes of
maps, and it is of interest to determine whether any more detailed information can
be obtained about the exact number of maps. We carry out this task for dipoles in
particular and, in doing so, demonstrate the type of hypergeometric arguments that
we believe to be of general value in this context. The key appears to lie in representing
the genus series with respect to a basis in which its degree and its parity are manifestly
apparent. We call such a form degree respecting and parity respecting. We show how
series can be resolved with respect to a natural basis of odd series that is attuned
to hypergeometric series. It can be shown by a combinatorial argument that the
representation of the genus series for monopoles and dipoles given in Theorems 1.1
and 1.2 and is degree respecting but not parity respecting.

The necessary background of results is given below, but the reader is referred
to [10] and [11 for basic definitions about maps since these are not given here.
Throughout, we use the usual hypergeometric convention that the Pochhammer sym-
bol is (x)k x(x + 1)(x / 2)... (x + k- 1).

Because of the embedding theorem (see, for example, [10]), the question addressed
here can be expressed in terms of permutations alone. In this context, we seek the
number of permutations in 2n symbols, with k cycles, which are expressible as the
product of a prescribed permutation with two n-cycles and a fixed point free involu-
tion. The reader who is unfamiliar with maps may prefer to think of the question in
these terms. We prove the following theorem about dipoles.
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THEOREM 1.3. The number of dipoles of genus g > 0 with 2m edges and 2m + 1
edges is, respectively,

(i) (2g q- 1)! g -b 1 (L1/2g])

(ii)
2L](-)J (2-1)

2

()+ + 1) +

whe r(x) and s(x) are polynomials of degrees at most [](3g- 1)J and [gJ,
spectively, in x. Moreover, the polynomials ra(x) and s(x) are given explicitly
in (11) d (12).

2. Pity respecting form for the series for odd dipoles. We begin by
presenting the genus series for dipoles in a form that is both degee respecting and
eibits its pity.

Let E, A, I be the successor operator, the forwd difference operator, d the
identity operator defined on the ring of polynomials by El(x) f(x + 1), Af(x)
(E- I)f(x) f(x + 1) f(x), d If(x) f(x). Since E d I commute, then for
M 0,

(3)
M

./=0

The following lemma concerns the representation of a polynomial of odd degree
with respect to a convenient basis of upper factorial polynomials of odd degree. We
extend it slightly later. It is precisely the central difference operator expansion given
by Steffensen [12, p. 13, eq. (19)] in the case of odd polynomials.

LEMMA 2.1. Let f(x) be an odd polynomial of degree at most 2n- 1. Then

f(x)=& (2jq-1)!

The next result is used later, .’and illustrates the use of this 4evice to derive the
representation of the sort described above. It is equivalent to a result appearing in
[1] and [2] in connection with one of the Bailey-type sums.

LEMMA 2.2.

(u:a)_ (--Unq-a)_ n- 2j- 1
n + 1 (u j)2j+l

a--j (2j+l)!

Proof. From Lemma 2.1,

/,_ 21(_1)k (2mk-b 1){ (m-k-be)_
k--O

n n

----(m-be)2Fin [ --2m--1 --m--a+n_m_a 1]
(--ran+a) [ --2m--1 --m+a+l ]+ 2FI -re+a-n+ 1

1

2a-n+ l ( a-m )a-n n-2m-1
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by the Chu-Vandermonde theorem, giving the result.
COROLLARY 2.3.

r=0
r \ 2m+l / .= (2i+1)!

m-j4-J( i j ) (u i)2+l.

Proof. Let S(m, j) denote the left-hand side. Then

\2m + 1] + E
2m- 2j -u +

r=0
r \ 2m+1] 2m+l

so S is an odd polynomial in u. Then, by doubling S and using Lemma 2.2,

so

j-m+1
j-m

c d
l+a-c l+a-d 1],

where b j A, d -m + j + 1/2, and the result follows by Dougall’s theorem.
A referee noted that Corollary 2.3 follows from the identity

2F [ -2k -x
-N 2] =3F2[-k x-N -x

-iN -1/2(N- 1)

connecting Krawtchouk polynomials of even degree with Hahn polynomials. This
entails applying the linear transformation formula to our 2Ft (-1) to obtain a 2Ft(1/2),
reversing the resulting series to obtain a 2F (2), and observing by standard arguments
that the above identity holds for all real N, rather than just integral N. Corollary 3.1
follows in the same way from the analogous formula for Krawtchouk polynomials of
odd degree.

It is useful to observe that Steffensen’s expansion is a natural method for expand-
ing an odd polynomial into a series involving rising factorials such that the oddness
is evident term-by-term, and has the merit of being applicable generally to the above
type of problems.

The next result is given in Bailey (see [3, p. 12, eq. (1)], with a -n).

[ -n b c
3F2 1] (e b)’

3F2 [ -n b f c

(e)------ 1-n+b-e f
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Thus, from (4),

lim aF2
-n b c

e--,--n f n3F2 1 +b f 1] (b)j(c)j

=o j!(f)

We may now give a parity and degree respecting expression for the dipole gener-
ating series.

THEOREM 2.4. Let n 2m + 1. Then the number of dipoles of genus g on n
edges is

Proof. From Theorem 1.2 and Corollary 2.3,_
(_)()()()da(n) (n- 1)! [u

=0 (2i+1)!
=0=0

i-j 2k

Now

m-k
m jr,,-,- (,_) (})

:4i-’(?) lira ,F2 [ 1/2 -m+k -i
e--.-m+k e 1]

Substituting this into the sum over k we have

1]

since the sum over k is equal to (2,-r), and this gives the result. B
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3. Parity respecting form for the series for even dipoles. We follow the
approach of the previous section to give a parity respecting form for the genus series
for dipoles on an even number of edges. To do this, we need the following corollary,
which corresponds to Corollary 2.3.

COROLLARY 3.1.

E 2m-2j- 1 u+j+r

r=0
r 2m

m--1 4i-JU (m j --1) (u i)2i+l"+ +

Proof. Replace m by m / j and then i by i + j in the enunciation to obtain the
restatement

21(2mr- 1)(u2:J-r=o / 2j ]
rn-1 4u (m l) (u i j)2i+2j+l,E (2i-t-2j+l)!(i+j+l) i
i=0

or, equivalently,

(6)

u -2m+l u+j+l
2m+ 2j u- 2m-j + 1

u (u+j [ -m+l l+j-u3 u+j+l
j T 1 \2j + 113F2 j T j + 2

The proof is complete once this is established.
But

(8)

1]

Equation (9) appears in [15]. Then with a 1 2m, b u + j + 1, a 2u 2m + 2
(so - a 2u + 1),

2F1[ 1-2m u+j+l ]u-2m-j+l
-1

(2u-2m+2)._l [ +j+l(- 2m- j + 1)._F
-m + 1 -m + 1/2
u-m+l u-m+

Thus, from (6), we must establish that

( u+j )(2u-2m+2)2m-1 3F2[ u+j+l -m+l -m+1/2
2m+2j (u- 2m j +1)2_l u-m+1 u m + -u u -m+l l+j-u u+j+l 1

--j+l 2j+l j+ j+2

1]
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We now use Sheppard’s [14] transformation. This is a generalization of the Pfaff-
Saalschutz formula. It is not explicitly stated in [3], but is given without attribution
in [4, p. 1681.

(10)

so

3F2 [ -n b c ]e f
1=

3F2 [ -- b
-n+b- f + 1

-n+b+c+ 1-e- f
-n+b-e+ 1 1],

3F2[ -m+l u+j+l l+j-u
j+2

1

(j + 1/2 u j)m-l(j + 1 u j)m-1
(j + +

.3F2[ -m+l u+j+l -m+1/2 ]u-m+l u-m+ 1

The identity to be proved is therefore equivalent to

( +j)(--2u+l)2m-2( u+j (2u-2m+2)2m_ u u

k2m + 2j] (- 2m- j + 1)2m-1 j + 1 2j + 1 (2j + 3)2m+2
But both sides e equM to

+
(2m + 2j)[(u j 1)[(2u 2m + 1)[’

d this therefore establishes the result.
We may now give a pityd deee respecting expression for the dipole gener-

ating series.
THEOREM 3.2. Let n 2m. Then the number o] dipoles of genus g on n ges is

m--1

d(n) (2i + 1)(i + 1)
i=0

m-i-1

(_1) 1 (m-i-1)(2m-k-1)
k=o

2k + 1 k m

Proof. From Theorem 1.2 and from Corollary 3.1,

m-1(2/) m-1 4i-J (m-j-1)(u_i)2i+ldg(n) (n- 1)![u’-2g] Z u 0 (2i + 1)!(i + 1) z-3

2k
k=0

From (5), with slight modification,
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where

Ak’n 4-m+l (m- ll (2m- 2k
(m- k- 1)!2

so

-m+k+l 1/2 -m+i+l
3F2 3 -m+ 1

d.(.) (2.- u(u-i)2+ "- (2:) (2m) (m-1)Ak,,"(2i / 1)!(i / 1) o 2k i
O--<_ <_m

But

since

m!(m- h- 1)!
z !(_ ),(_

__
1)!_o

The result follows.

4. The sphere and the torus. As an example of the use. of Theorems 2.4
and 3.2, we consider dipoles on the sphere and the toms. In the odd case, when
g 0, there is a single term to consider and this gives

d0(2m / 1)

When g 1, we note that (u m)2m+ u2m+ m(m + 1)(2m -t- 1)u2m-1 +...,
so

dl(2m + 1)--m(m-t-1)(2m +

+ 1/2(2m+ 1)m2(2:) (:)(-i)r (2mm-r)
r=o 2r + 1

5 m(2m + 1)(3m- 2).

In the even case

1 l(2mm-1)(2m 1)!m a



HYPERGEOMETRIC ANALYSIS OF THE GENUS SERIES 251

and

The number of terms to be considered in the summation increases with genus.

5. The number of dipoles. We are in a position to prove Theorem 1.3 and
to obtain full structural information about the polynomials rg(m) and sg(m). The
following result is needed (the proof is sketched in [13, pp. 234-236]).

PROPOSITION 5.1. Let (u j)2j+l J (j)u2i4"1=oI Then, for 0 < k <_ j,

"-(J) ’ k + (j k + )+(j),
A=I

where ak,x is independent of j and f,(j) is a polynomial in j of degree k- 1.
J /,2i+1/iProof. Let re(J) be defined by (u- j)2j+x ’]i=o (j). It is readily seen

that the/(j) axe determined by/(j) 1,#o(j) (-1)jt, and for 0 < i < j,
#i(j) Ii-l(j- 1)- j2#i(j_ 1). In Riordan’s notation [13, p. 213], x[hI x(x
21-n 1)(x + 1/2n 2)... (x + 1/2n n + 1), so x[2j+2] x(x + j)(x + j 1)... (x j)

x"2J+2 t(2j + 2, k)xk, when u2i+2and x[2j+2]
z.=o =o m() u(u-j)+

,2j+2 t(2j + 2, k)u and so #i(j) t(2j + 2, 2i + 2) Now [13, pp. 234-236] 4kt(n, n-k=O

2k) t’]j=l czk,j(2k+j), where the ak,j are rational numbers. Therefore, #j-k(j)
t(2j + 2, 2j 2k + 2) 4-k ’]x=k cz,x x2+XJ’/2j+2 Thus #j_(j) is a polynomial in j of
degree 3k and has (2j 2k + 2)2s+ as a factor, so #j-k(j) (2j- 2k +
where [k(j) is a polynomial in j of degree at most k- 1.

The #(j) are more or less the divided central differences of zero. The odd and
even cases seem to be different, and We treat them separately.

Proof of Theorem 1.3(ii). From Theorem 2.4 with g > 0 and n 2m + 1,

(2=)
m 1 (7)d(n) n! [un-2g] (2i + 1)! Ix(i)u2A+14i-m
i=o A=o

k=o
2k+ 1

(=)hi (2m"m-’(m-i)-2i + 1)’
4-’(:) 2k(-1)k+1 (:)

i=o k=O

=4(27 1)2 (7) (2m + 1)

(-1)-(m i)a4-’ (2m i+ 2),__xmt(m

O<k<i<_g
k!(i- k)!(2k + 1) (. i)!(. k)!
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where

Bt:,i,z(m) ft_i(m i)(2m 2i + 2)2i-k-(m + 1 i)i (2m 2g + 2)2z-2i+.(, + 1)_( +

If Bk,i,g(m) is a polynomial in m, then its degree is at most [-g], and consequently,

(11)
2[] (g- 1)J

8g(m) (-1)kg[41-i Bk,i,g(m)(2g + 1)! -" k!(i k)’(2k + 1)
O<k<i<g

would produce sg(m) as a polynomial of degree at most [gJ. All that now re-
mains is to prove the assertion that Bk,i,g(m) is indeed a polynomial. Since (2a)k
2(a)k1/2(+l)j (a + 1/2)[1/2kj, we have

Bk,i,g(m) fg-i(m i)(m i + 1)22g-k(m + 1

(m g + 1)[1/2(z_)j (m g + )[1/2(__)j
(m g + 1)g_ (m g q- )L(g-1)J

Now k _< g, so (m g + )[1/2(2_k_Dj/(m g + )[1/20-DJ is a polynomial in m, and
since [1/2(2g- k)J >_ g- k, (m g + 1)[1/2(2a_k)j/(m g + 1)a-k is a polynomial in m.
This establishes the assertion, and thereby completes the proof. [:]

We note that (11) gives an explicit expression for the polynomial sg(m).
Proof of Theorem 1.3(i). From Theorem 3.2 with g > 0 and n 2m,

(2=)
m- (u-i)2i+ 4i_m(m-1)dg(n) n! [un-2g-1] E (2i + 1)’(i + 1) i
i-o

m-i-xE 2k+1(-1)t: (m-i-I)k (2m-k-l)m
k=O

=2
2 1 n

(2i+1)’(i+1) i
i=g----i

1)
=0

2k+1 k m

(2m 2i 1)’(m- i)
i=O

(-1)k ()(2m-k-1)
=o 2k + 1 re

(2L-1)2 ( m )g+ 1
(g+ 1)[
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where

(12)

Now ra(m) is a polynomial in m because g- i <_ [1/2(2g- k + 1)J, since 0 _< k <_ i and
also L1/2(2g- k)J _< [1/2gJ. Therefore, by inspection, ra(m) is a polynomial of degree at
most [1/2(3g- 1)J.

We note that (12) gives an explicit expression for the polynomial rg(m).
6. Parity respecting forms for monopoles. We conclude by returning to

monopoles and show that they can be treated in a similar way. It is readily seen by
symbolic computation that the polynomial

Z n 2/_1

k=
k-1

has parity n + 1 mod 2 and is, by Theorem 1.1, up to a numerical factor, the genus
series for monopoles. We transform this polynomial to a basis that exhibits the correct
parity, and then determine explicit expressions for the number of monopoles.

LEMMA 6.1.

2m+( u )(%-1-)21 2 __m j-I-l
4j (.) (u-j)2j+(2j-I-

(i)
k=0 j=0

(ii) + z +k=0 j=0

Proof. (i) The left-hand side is

2m + 2 u- 2m- 1

2m+2 2F1 u-2m-1

2m+2 (U-------1)-m+l 3F2
--m
’--m u-m + -( u ) (2u)!(u- 2m- 2)! (-m-1)m(-m- 1/2)m

2m+2 (2u-2m-1)!(u-1)!" (u-m)m(u-m-l-1/2)m

.3F2[ -m u/i -u/i ]2 _3 1 by (10)
2

u23F2 [ -m u + l -u + l
_3 1
2

I] by (9)
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and this is equivalent to the result.
(ii) The proof is similar.
Explicit expressions for the numbers of monopoles are given in the next result.
THEOREM 6.2. Let Cn (2nn), the nth Catalan number. Then, for g > O,

(+)’ (.)(i) (2+ 1) c+(2 + 1) .=
c+(-a+)+(),

(ii) mg(2m) (2m)!(2m 2g + 1)!. #o’= 4-2(m j + 1) g_j(m j)

c,(- +
where ag(m) is a polynomial in m of degree g- 1 and pg(m) is a polynomial in m o]
degree g.

Proof. (i) From Theorem 1.1 and Lemma 6.1,

ma(2m. + 1) C2m+ (2m + 2)! .ru2m+-2] 4J (u j)2j+
+ / 1 ( + 11,

C2m+1
(2m +

4

[+-] (v + )’
j=0 /=0

om Proposition 5.1,

C2m+ (2m + 2)’ 4
4 (2j ; 2)

c+( a+)+ a- _( i),

and this gives the result.
(ii) From Theorem 1.1 and Lemma 6.1,

(4m)! [/,2m-l-l-2g] 4J J
ma(2m) 4m(2m)! Z (2j 4- 1)! Z #’

=0

From Proposition 5.1,

(,)! ._ ( + 1)!

,()! .- ( +)_(m )- (m + 1)_( )(2m)(2m- 29 + 1)

c(- + ),o(),
and this gives the result.



HYPERGEOMETRIC ANALYSIS OF THE GENUS SERIES 255

REFERENCES

[1] G. E. ANDREWS AND W. H. BURGE, Determinant identities, Pacific J. Math., 158 (1993),
pp. 1-14.

[2] G. E. ANDREWS, Plane partitions V: The T.S.S.C.P.P. conjecture, J. Combinatorial Theory
(A), to appear.

[3] W. N. BAILEY, Generzlize_ Hypergeonet/c qer’/es, Cambridge University Press, Cambridge,
1935; reprinted by Hafner, New York, 1964.

[4] A. ERDILYI AND M. WEBER, On the finite difference analog of Rodrigues’s formula, Amer.
Math. Monthly, 59 (1952), pp. 163-168.

[5] J. L. GROSS AND T. W. TUCKER, San Antonio AMS Meeting, 1987, private communication.
[6] J. L. GROSS, D. P. ROBBINS, AND T. W. TUCKER, Genus distributions for bouquets of circles,

J. Combin. Theory set. B, 47 (1989), pp. 292-306.
[7] C. ITZYKSON AND J-M. DROUFFE, Statistical Field Theory, Vol. 2, Cambridge University

Press, Cambridge, 1989.
[8] D. M. JACKSON, Counting cycles in permutations by group characters, uith an application to

a topological problem, Trans. Amer. Math. Soc., 299 (1987), pp. 785-801.
[9] , On the integral representation for the genus series for 2-cell embeddings, Trans. Amer.

Math. Soc., to appear.
[10] D. M. JACKSON AND T. I. VISENTIN, A character theoretic approach to embeddings of rooted

maps in an orientable surface ofgiven genus, Trans. Amer. Math. Soc., 322 (1990), pp. 343-
363.

[11] , Character theory and rooted maps in an orientable surface of given genus: face coloured
maps, Trans. Amer. Math. Soc., 322 (1990), pp. 365-376.

[12] J. F. STEFFENSON, Interpolation, Chelsea, New York, 1950.
[13] J. RIORDAN, Combinatorial Identities, John Wiley, New York, 1968.
[14] W. F. SHEPPARD, Summation of the coecients of some terminating hypergeometric series,

Proc. London Math. Soc. (2), 10 (1912), pp. 469-478.
[15] F. J. W. WHIPPLE On series allied to the hypergeometric series ith argument -1, Proc.

London Math. Soc. (2), 30 (1930), pp. 81-94.



SIAM J. MATH. ANAL.
Vol. 25, No. 2, pp. 256-273, March 1994

() 1994 Society for Industrial and Applied Mathematics
002

ON CONNECTION COEFFICIENTS FOR q-DIFFERENCE SYSTEMS
OF A-TYPE JACKSON INTEGRALS*

KAZUHIKO AOMOTOf

Abstract. General Jackson integrals are formulated. Two different kinds of special Jackson
integrals are defined. The explicit relation formulae among them are obtained by the use of theta
rational functions.

Key words, connection coefficient, q-difference equation, Jackson integral

1. Introduction. The well-known Ramanujan’s l,l-sum formula shows that
the Jackson integral

(1.1)
o

t_1 (t)oo
dqt= (l-q) q’ (qn)

,oolq (q#t)o
n=--oo

(qa+n)

is equal to the value

-20(q+1)O(qa+-2) fit:_: (t)o dqt,O(qa+9-1)O(q) Jo (qgt)o

where 0(x) denotes the Jacobi elliptic theta function (x)oo(q/x)oo(q)oo. The equality
(1.1) (1.2) can be explained by saying that in a sense the countable set [0,]q
is homologous to scalar times of the q-interval [0, 1]q with regard to the functions

t‘ (t)oo/(qt)oo, where the scalar factor

()a-2 0(q+l)O(qa+_2:)
O(qa+9-DO(qg)

is a pseudoconstant, i.e., a constant from the viewpoint of q-difference in the param-
eters a,/, .

Let (t) be a q-analog multiplicative function on an n-dimensional algebraic torus
x (c*)-

(:.3)

Cm-}-n2where we fix (xl,..., Xm) e (c*)m and (Cl,. an,/1, ,/m, "i,j, "’i,j) e
(x) denotes the infinite product 0(1- xq). (x) denotes (x)/(xqk) for
kZ.

In this note we consider a general Jackson inteal for and give the connection
formula for it a line combination of a finite number of the fundamental ones giving
special ymptotics for aj + (see Theorem in 4). We also give the holonomic

*Received by the editors March 12, 1992; accepted for publication (in revised form) June 11,
1993.

fDepartment of Mathematics, Nagoya University, Nagoya 461-01, Japan.
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q-difference equations in the parameters uj qa and xk, which are satisfied by all
Jackson integrals for (see (3.6) and (3.7)).

A holonomic q-difference system has finite-dimensional solutions over the field of
pseudoconstants (see [A3]). Given a basis of solutions for the system there arises a
problem of expressing a particular solution as a linear combination of them. This
problem is generally called a connection problem.

We denote by X the subgroup of X isomorphic to Zn, consisting of the elements
1,qX (qUx,...,q,) X for X ’j= vjXj,Vj Z, {Xj}I<_j<_n being a canonical

basis of X. In the sequel we put

(1.4) 7j,i=l-Ti,j and 7j,i=l-7,j fori<j

so that we have 7, + 7j, 1 for any pair i j.
We do not postulate any further essential condition for 7i,j. In the case where

7i, 7, 7,j 7, and where 7- 7 are positive integers, and if reduces to a
polynomial, relevant integrals have been investigated in [A6], [K1], and [K2]. But in
that case there is no connection problem in our sense.

For an .arbitrary permutation a of the n figures {1,2,... ,n}, i.e., a E Sn (the
symmetric group of nth degree) we put the operations on the function (t) (tla, 7)
depending on t, a, and 7:

a(tl,-) (a-x(tlc,-)),

where a-(tl,) (1,) is defined as

(1.6)

for

tj ta(j)

k<
()<(u)

(7(),() %(),()).

For a canonical system of generators {ar}l<<n of Sn, with the relations ar2 1 and
arar+lar ar+larar+, at(tic, 7) ([,) given by j t,& c for j r,
r+l, and r tr+l, ’r+l tr,r Or+l -r,r+l--%,r+l, Or+l Orq-7,,r+l
respectively. Remark that &r + &+l a + a+l.

The following associativity holds:

(1.7) a’a(tl, /) a’(a(I’)(tl, /)

for any two elements a,a’ e Sn, i.e., a-a’-(tl,) a-x(a’-x(t[a, /)). Indeed, to
prove (1.7) it is sufficient to show it for a’ a only. In this special case ((a-lar)(t))h

>h (7ta(k),a(h) %(k),a(h)) ifequals ha(h)
a(h) r, r + 1, d equals
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or

(7’(),() %(),()),

according to whether a(h) r or r + 1. Hence (1.7) holds for a’ at. The functions

(1.8)

are pseudoconstants, i.e.,

(1.9) QxUa Ua(t) for any X E X,

where QXf(t) Q:... Q-f(t) denotes the shift operator f(qXt) by the element X.
Qj denotes the partial q-difference operator on the jth coordinate tj. In particular,

(1.10) Uar(t)

More generMly, Ua (t) ,c be expressed

(t)’’-’ O(q’,t/t)(1.11) U(t)

To prove (1.11) we first remark that {U(t)}aes, satisfy the cocycle condition

(1.12) (,) (,),

because

We denote the right-hand side of (1.11) by Ua(t). We must prove that Ua(t) coincides
with O(t). When a ar it is obvious from (1.10). We prove (1.11) by induction
on the length of the reduced _prod_uct expression of a by the generators at. So we
have only to verify (1.12) for U, Ua(t) with a’- at. In this case, first suppose that
a-l(h)- r and a-l(k)= r + 1 for h < k. Then

(1.13)

t )"-, 0 (q,’t/th)
O (qi,.,t/t)

which is obviously equal to O#,(t).a’O#r (t). The case where h > k can be verified sim-
ilarly. If a’ has a shorter length_ than a, by induction hy_pothesis, O’s(t) and a’(t)
coincide with U,(t) and a’U# (t), respectively. Hence U(t) coincides with U(t).
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2. Jackson integrals and c-stable cycles. We now want to define a-stable
(or a-unstable) cycles giving special asymptotics of Jackson integrals for

We assume the following condition, ().
((:) For an arbitrary sequence of (r + 1) different figures io, il,... ,it, the sum

Co,i --*..-- cir,0 Z, where c,j denote -y, or 7,j for i, j _> 1 and c0,j 1 + logq xk
or --fk + logq xk, respectively (we then put c,0 -logq x or 1 + f logq x).

This condition implies that (I) has only simple poles of normal crossings. It is
essential in our subsequent argument.

We denote by [0,O]q the countable subset of X, the X-orbit of a point
X’[0, cX)]q {qX. IX e X}. Then the Jackson integral of a function f on X over
[0, cX]q is ,by definition equal to

dqtn(2.1) (t)5 (1- q) Z l(qX" ) for dqt---A A... A
,oo]q xEX tl tn

provided it exists (see [A2], [A3], and [G1] for various versions of Jackson integrals).
We are now considering the integral (2.1) for f(t) (I)(t):

(2.2) J- ] (I)(t)&.
J[0

Since Ua(t) is a pseudoconstant, as an immediate consequence of (2.2), we get
the following.

LEMMA 1.

(2.3) [0
provided both sides are convergent.

In fact, the right-hand side of (2.3) equals Ua()-I a(I)(qX) U()-xex Ua(qX)(qx) ex (I)(qX) since U(qx) U(.x
We are going to define two kinds of special cycles Yr and Y, which are countable

subsets of [0, cx]q by particular choices of associated with certain forests F in graph
theoretical sense.

DEFINITION 1. We consider a graph F with the following properties. We denote
by V(F) and E(F) the sets of vertices of F and edges of F, respectively. (i) The
vertices of F consist of the variables tj, 1 _< j _< n, and parameters xk, 1 <_ k <_ m.
They are all labelled, i.e., F is a labelled graph. (ii) F has n edges. (iii) F has
neither loops nor proper circuits, i.e., F is a forest that is not necessarily connected.
(iv) Each connected component T of F has only one vertex in {x,...,Xm}, i.e.,
V(T) {x,... ,Xm} consists of only one element. We call each of the vertices in
V(F) {Xl,..., Xm} a root of F. We have called these graphs "admissible" in [A2].

It is known, thanks to the matrix tree theorem (see [M3]), that the number of
such forests F is equal to a m(m + n)n-1.

Each connected component of T of F is a tree and has a natural distance function
between two vertices of T. For a vertex tj of F, we denote by tp(), 0

_
p(j)

_
n,

the unique vertex of F neighboring tj and having a shorter distance by one from a
root in the same connected component of T of F such that tj T. We call tp(j) the
predecessor of tj. to denotes a root itself.

If p(j) < j holds for all vertices tj, we call F, Yr, or Y standard.
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t --3:.0

2 2
tO--E.1

j= 1,2 j = 1, 2

(standard)

(standard)

t0=Xl-
t O=X2 *------
(standard)

FIG. 1

t0=Xl-.- I

t0=x2* 2

(standard)

For example, when m 2 and n 2, equals 8. A complete list is given in
Fig. 1.

DEFINITION 2. Given an admissible graph F, we define a countable subset Yr (or
Y) in X consisting of the points t E X satisfying the following properties:

(i)
q#,(), q-,()+l q-,()+2, (or q-(),,q-’()J-1 q--(),-2 ..);

(ii) to qxk V(F) f {Xl,... ,Xm} (or to q-xk) for some k, 1 _< k _< m.
Likewise we denote by } (v/i,..., v/n) the point of X satisfying the following

properties:
(i)’ }j/v/v(j)= q,.() (or q-.(),).
(ii)’ /0 qxk (or q-axk) for some k.
We call this point /the base point of r, Yr, and Y.
An admissible graph F denoted by rn and the corresponding countable sets Yr

and Y{ are uniquely determined by its base point /. We may denote Yr and Y by Yn
and Yn*, respectively, or more simply by (/). () is the subset of [0, /oo]q. We call the
set (/) Yn (or Y) a-stable (or a-unstable) cycle. There are exactly m(m + n)n-1
(x-stable cycles (or a-unstable cycles).

Now we want to define a regularization of the cycles [0,oo]q. Assume that
Jl/P(jl) q-(#,),#l,... ,J/p(jr) --q-(#r)’# so that 0(q’Yp(l),ljl/O(jl))
O(q(#),#j/p(r)) 0 for jl > P(jl),... ,jr > P(jr). From the genericity of fk and
-/i, stated in condition (C), we can choose the local coordinates T8 t./tp(.), 1 <_
s _< n, of X at t . A function

(2.4) f($)

has the residue at t along T q--(#),#,...T q--(#),# as follows:

’(1)r
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for a function g(t) holomorphic at , where 8’(1) _(q)3 (see [G21 for a general
definition of residues). This will be denoted by reg f(). For r 0, reg f() reduces
to

When (r/> is standard and a-stable, the Jackson integral of @ over <r) is well
defined provided it is summable, because is holomorphic along (r/>. We have

seeing that @ vanishes on the complement [0, ](X:)]q (]/" If (/ is not standard, then
there exists a permutation a E Sn such that a-l<r/> is standard. We formally have

(2.7)

where we denote & (tla-l(a,’)). a-l(r/) is also standard for c(tJc,/) when

f_,(n) &(tla, 7) is well defined. But U(r/)- has no meaning because the function

U-l(t) has poles on (r/). By replacing U-I(r/) by the residue of U-I(t) at t r/as in
(2.5), we have the regularization of (2.6):

(2.8) g f. ,a,= f ,,(tl, ). [rg u(n)-].

This is also equivalent to taking residues with respect to the variables ’1,..., rr and
then doing Jackson integrals with respect to the remaining coordinates ’r+l,...,

LEMMA 2. Equation (2.8) can be represented by a contour integral avoiding poles
of . In this sense the corresponding cycle will be denoted by reg <r):

(2.9)

g

resux,...,u,
tl "tn,O]q r+ n uez

/ [rg U(n)-],
whe we take the sidues at T1 q-7Ox>.x-,...,Tr q-%0">,a,-’. denotes
the pot (.+1/.+1),..., ./.)) e (C*)"-’.

In ft this c be proved by successive applications of the following lemma on a
on,dimensional Jkson inteal.

LEMMA 3.

O(txqX)
(t)dqt(2.1o) s =-, ,

[O(txqx) ](1-a) " =-’-" o(t)

z- O(qX) o t-x(t)dat"o,() ,_,=
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In particular, when (y) is a standard a-unstable cycle, r equals n and we can take
as a the permutation

/1,2,...,n )(TO
n,n 1,...,1

The terminologies of a-stable and a-unstable cycles may be justified by the fol-
lowing proposition (see [A2] and [A3]).

and fixed such that E Z+PROPOSITION 1. We put aj aj + Nw .for aj wj w
In case of a stable cycle (), there exists a (T e Sn such that (T-I(w) is standard. If
N e Z+ tends to +cx), then (2.8) or (2.9) has an asymptotic expansion

(2.11)

reg /,) &=(1 _q)n. a)(yla,^/)(1 +O (---))
1

where R+(r/)(:fi O) does not depend on a. In particular, if (rl) is itself standard, then

(2.12) f(,) (I) (1- q)"(ola,’)(1+O (---)).
Similarly, in case of an a-unstable cycle (l), for N

1
reg )(I)& ...n"R_(y)(1+O ()),

where R_(y)(# O) does not depend on a.
In other words a-stable (or a-unstable) cycles correspond to the simplest asymp-

totic expansions for aj --. +o (or -c).
It has been proved in [A2] and [A3] that the a-stable (or a-unstable) cycles give

a dual basis of the de Rham cohomology Hn(X, O, Vq) associated with the Jackson
integrals (2.2). The dimension of Hn(-, O, Vq) is equal to m(m + n)n-1.

So an arbitrary cycle [0,cx)]q can be described as a linear combination of the
m(m + n)n-la-stable cycles reg Yr (or a-unstable cycles reg Y{) over the field of
pseudoconstants in the parameters Uh,/3, 7j,k, and e

,too]q g (Yr)

(2.15)
()

for some pseudoconstants cr and c.
We evaluate cr and c explicitly in 4.
3. Holonomic q-difference equations. The notion of holonomic q-difference

equationsh been investigated in [A1], [i2], [A3], and IS]. In IF] it h been discussed
in relation to scalled R-matrices and quantum KZ equations. Here we want to
explicitly give the holonomic system satisfied by (2.2) in the parameters uj and xk.
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We denote by (j(1 <_ j <_ n), and (,+j(1 _< j <_ m) the q-shift operators for
functions of (u,x) (Ul,..., un;xl,... ,Xm) induced by the displacements u --, uq
and xk --, xkq, respectively. Then we have Qj(t) u(t) and

Now

j=l

n

(3.1) QX(I)(t)--b(t)(t), X vjXj e X,

where b(t)is represenged xb(t)/b(t) for ux ..., such ha b(t) and

b(t) e Lauren polynomials in

d o(t/) <o(tq+/)_, respeegively. We
Laen polomial -xb(t) in t:

k=l uO u<0

Then we get QX((t)(t)) bx(t)(t QX(t) b(t)(t). Since

(3.3) o (t)(t) o OX((t)(t))’

we have

(.) ! ()Q-;() l ()+() o.
[o

For an bitry Laurent polomi f() in , the equality f(z,..., ,)&(t)
f(tz,..., ,)&() holds. Hence by the definition of Jkson inteals, (3.4) is equivalent
to the equations

(3.5) Q-Xb()J uXb ()J 0

for y X X. Since the set {X, 1 j g n) consists of primitive corner vec-
tors spning rational polyhedr cones of the f in the theory of torus embeddings
(see [O] for the definition) sociated with equation (3.5), (3.5) is equilent to the
following system of q-difference equations:

(3.6) (Q;b;,) ()J ujb, ()J O, 1 j n.

(See [i3] for more details.) In the se way we have

{ }fi 0.
j=l j=l

One c prove ha he system q-difference equations (3.6) and (3.7) in he
rameers uj and are holonomic in he sense ha ghey have only finidimensional
solugions over he field of pseudoconsans in uj and . Inf is dimension is equal
o m(m+n)"-, which coincides wih he dimension of H"(, , V) (see Theorem 2
in [A3]).
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4. Main result. We denote by n(, r/la) the function in the parameters j, yj,
u, and/3k, which is expressed by

(4.1) n(, r/la)----- (1- q)n H
aj (q)3O (,,aj+...+a,+zr.,.

where we put o r/o 1. This can be seen to be a pseudoconstant.
We can now state our main theorem.

THEOREM. For a generic E X, we have

for certain pseudoconstants ([0, cx)lq "reg (/))v, where <1) ranges over the set of all
a-unstable cycles. I 01) is standard, then ([0, ]q" (/)) equals the pseudoconstant
n(, nla, 9/) defined by the sum

(4.3) =(, nl,) =(,nl). v(0u(n).
aES,

In case o] a nonstandard a-unstable cycle (), there exists a p e Sn such that p-Z
is standard and a-unstable. We then have

(4.4) -<.)).u.()-g [v.(.)]([0, (:K)]q reg ()). (0-1[0, O]q
-(,.l, 7)u.(0-g [u(n)],

where

g <u) op)-<,)
do(I)&/[reg U,ot, (r/) 11

by definition. n(, r/la, ’7) is quasi-symmetric, i.e.,

(4.6)

reg (r/) is not unique and depends on the choice of an element p Sn such
that p-1 (y) is standard. We may choose as p the unique element having a minimal
expression in terms of the generators al,a2,..., an.

n(, r/la, 7) can also be written as the quotient of theta polynomials:

n(, r/la, /) H(, r/la -)

where

(4.s) II o
j=l o<_k<j<n

15t:<:ign
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satisfies the quasi skew-symmetric property" aG(, rlla, 7) sgn a.G(, rllc, /)Ua()-1
Ua(r/) for a e Sn. H(, r/Is 7) is skew-symmetric:

aH((, rlla, 7) sgn a H((, rlla, 7).

From (4.3), H((, r/Ic 7) can be expressed as an alternating sum

(410) H(, ’q{c, 7) crE(, 7{a, 7)sgn a,
aES.

(4.11)

LEMMA 4. As a function of and l in X, H(j,r/la,7) is divided out by the
product

II
j----I O<_k<j<_n

in the ring of O-polynomials on X x X.
Proof. In fact, as a function of (, 7) on X X, C(,) G(, vl, 7), and

H(,) H(, Ola,-y) have the quasi-periodic properties for the q-shift operators
Or(), 0r(Y) induced by the shifts r -+ rq and ’/r -+ yrq, respectively.

(4.12)
[Qr()G(, r)/G(, 7)] [Qr(sC)H(, 7)]/H(,

q-n+,-,,.+A,.. H
k----1

(4.13)
[Qr(r/)G(, r/)]/G(, r/) [Qr(r/)H(, r/)]/H(, r/)

q-n-r+2+a+A’r n 2 2

for Ar El_<k<r /k,r q- Er<k<_n Yr,k and A El<_k<r ’r,k -" Er<k<_n k,r, in

view of (1.4). Furthermore, H(,r/{c,7) vanishes if 2/r/2 1/r/1. This can be
seen as follows. First we see that -ala’E(, rllc, 7) + a’E(, rllc, ) vanishes for any
a’ e Sn. Indeed, if a’(r) 1 and a’(s) 2 for some r, s such that Ir- s > 1, then
ala’E(, rlla, 7) and a’E(, rlla, 7) both vanish because the factor 0(q(2r/1/lr/2)) or
O(q(lrl2/2rll)) appears in both. Otherwise we may suppose that a’(r) 1 and a’(r+
1) 2. We put a’ ’(c) &. Then & c1 + ,<< (71,,() -1,,()),&+1

ad(k)>r+l
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respectively.
Hence,

(4.14)

-’l,a,(k)) and -r 1,r/1

--(1- q)"(q) H j
j-1

j--1

H O(q&/’"/&=/l"’’’,-
0

2_i--k,
(kj)(r-l,r+l) or (r,r+2)

f 20(q&+"’+&"+11v-1/(v-1}1))O(q&=+’+’"+&+121/(1}2))
?2 0 (qC=/.../n/1) 0 (qar+/.../cn/l)

O(qr+,/.../n/l
0

27r_1
0
\ 1r/2 ]

O(qSr+...+Sn+l )O(q(r+2+...+&,+l

since Crl ()r (r+l -F 71,2 /1,2, ql (5)r+1 (r -F /1,2- "1,2, and al(&)j &j oth-
erwise. Hence (4.14) and S(, U[a, ) vanish for 1/,1 2/2. Because S(,
is symmetric in (, v]lc /), it also vanishes if j/vii k/k for every j k and must
be divided out by the factor O(qj,k/(k)). Hence the lemma follows.

Remark. Assume that y is standard. If Fn (see Definition 2) is a tree and if the
vertices of F, are totally ordered, then Ua(y) vanishes for all a different from the
identity. Hence n(, {c, 7) reduces to en(, Ylc, /) itself. On the other hand, if
every edge of F, has a root in its ends, then all the terms a@u(, 1(), a E Sn, appear.

To obtain a similar formula to (4.2) with regards to the c-stable cycles Yr in place
of Y, we also consider the multiplicative function

(4.15)
n n m- (qtx)o
:1 --1k--1

q ./o

for (i --(J i m -{- Zl<_i<j(’,j --"i,j) -}- Zj<k<_n(--’,k -- /j,k) and

/i*, ",. Then (I)(t) and (I)*($-1) satisfy the same q-difference equations:

(4.16) QX(t)/(t) (Q-X*(t-1))/*(t-1), for x e x.
In fact the relation

(4.17) () v0()*(-)
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holds for the pseudoconstant

(Remark that %,s +%,r 1 for r s.) Hence, as in Lemma 1, we have the following.
LEMMA 5.

(4.19) [0 (I)(t)& U0()f[0 (I)’(t).
,o]q ,-O]q

(r/) is an c-stable (or unstable) cycle for (I) according to whether (--1) is an (-unstable

(or stable) cycle for q)*. Hence the following.
PROPOSITION 2. For an arbitrary c-stable cycle (rl) for ,

(4.20) ([0,(3]q "reg ()) ([0,-loo]q "reg (-l))q).Uo()U0()-l.

In particular, if (0) is standard, then (-1) becomes a standard a-unstable cycle and
we have

(4.21) ([0, (X)]q (T])). /n(-1, --110* ’*)U0()U0()-1.

By using these formulae and the theorem, one can also compute connection coef-
ficients for all a-stable cycles.

5. Proof of main result. For n 1, (I) reduces to

(5.1)
m (tl/Xk)oo( t?x H (tlqf/)o"
k=l

In this case the following lemma, due to Mimachi, will play a central role in the sequel
(for similar calculus see [M1] and [M2]).

LEMMA 6.

(5.2) 1(1,/11)-- 1(,/11)

(1

where 1 rnges over the set {xq-O,... ,,q-O}.
Proof. Using Lemma 3, we can express J as

O(qa’+l) t=-oZ res tl=lqe O(tl/l)tl
j=l

(tlq/3/xJ)

The right-hand side equals
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where the integral part is, by definition, equal to

yres t,=Ca-% (lt) i.e., reg (1) Z_fj z:i

This means Lemma 6.
Now we are going to prove the theorem.

Proof o:f the theorem. By the change of variables tl ’1, tj Vl’j for j > 2,
(2.2) is rewritten as

where (I)1 denotes

(5.6) t?’+’"+a=" n
k=l <<= (tl’q

l<k<m

We fix ’2,..., ’n for the moment and integrate (5.5) with respect to tl over the one-
dimensional set [0, lcX]q. As a result of Lemma 1,

d tl]j }
lXkq--k

Since the function (5.2) of 1 and 1 is pseudoconstant and since ’ ranges over the set
jq/1 for vj 0, :i:l, +2,..., none of the coefficients in the right-hand side depend
on either j, i.e., - may be replaced by /1, respectively. By another change of
variables, tl tl and tj t17:i for j > 2, J can be expressed as

n

r=l
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where

We denote by Wr ar-1...a:. W:, where W is the subgroup of Sn consisting of
elements leaving the number 1 fixed, and by (r) the (n-l) tuple (,..., r-, r+,...,
for e X. r will denote the (n- 1)-difference form

(_l)r_:. dqt____l A’" A dqtr’ A dqtr+. A’" A dqt___n.
tl tr--1 tr+l tn

Now we start from evaluating J. t Ylq-, 1 Z, being fixed, by an induction
hypothesis we have

,()m/oo] g (n())q

where (?(1)) ranges over the set of all a-unstable cycles for the function ) restricted
to the variables t2,..., tn. As for Jr for r _> 2, tr rq- being fixed, Lemma 1
shows similarly that

.]/{o,(")n,./,.l,

Va_,...al ()-1 f O’r--1""" 0"1(t1,),
;[0(5.11)

(0-:

al( "&r,at-1

where (y(r)) rges over the set ofl a-unstable cycles for restricted to the iables
ti,...,tr--i,tr+l,...,tn. Retook that we have used the ft that qr-1 ...aid(t) c
be expressed

(5.12)
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and O(q,u) $(qJ,u-1) since 7r,j +’Y,r 1 for j # r. Equations (5.8), (5.10), and
(5.11) imply (4.2). Assume now that (r) is standard. Then <r/(r)) is also standard for
the function at-1 ate(t). Hence by induction hypothesis we have

Hence the coefficient of the integral of (I) over the cycle reg (/) contributed in Jr
equals

(5.14)

(1-q)n(q)3n (_r)
Otl-’’’gt-Otn 0 (qalT’"TtnTlr/r)

o O (q.+...+.+l) O(qr/rlr)

Uerr-l’"rl()-i Z r--l’’’l {n-l(cr)’r/r’o(r)l)
aW

"Ua((r)r/r)-- ga(,(r)) } gar_l...al ()

(1 q)n(q) an(,l)Ua()-lua(n),
aW

because of (4.1) and the cocycle condition for Ua(t):

(5.15) (Tr--1""" crlUa(t)" UITr_l...tT1 (t) Ua_x...aa(t).

Hence (5.8) and (5.14) imply (4.3). The theorem has thus been proved.

6. Examples.
(1) n 1. The formula (5.2) has already been given in [M1] and [A4].
(2) n 2. There are four kinds of admissible graphs:

( 1
1 < r < m (standard),(i) xrq- *--

2

l<r<m,(ii) xrq- *----"--’1

(iii) xrq_f2 1 < r < m (standard),

(iv)
xrq-f* 11,\xsq- ,.. 2

1 _< r, s < m (standard).

We put "y ’1,2 and V’ Y1,2, respectively. The corresponding (-stable (or
s-unstable) cycles (/) are given as follows:
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(6.1)

(iv) 1 qxr, 2 qxs (or 1 q-xr,2 q-’xs).
Moreover, we have

0 (qal+a2+ll/,1) 0

J
by the use of the three-term equation for theta functions. Indeed the three-term
equation gives the following equality (see [H1]).

LEMMA 7. For an arbitrary A E C,

(6.2)

Hence
(i) ([0, oo]q reg (r/)),

(q)

O qCl+oo.+11/1)O(qc:-b?-t- 2/1
O(ql//]1)O(q1"1’’)’’2/1 )

since
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(ii) ([0, OO]q reg </>)#

(q)3oo0(qC, -I-a -I- 12/?}2 0(qCZ’ T-t-21/2)O(q’7’2/1)O(qI

(qC -I-c2 -I- 0(qC -I-’7’ --’)’-I- 1 (q2/W2 0(q2/1)(q2--’)"1/2)’

by taking the residue of (, /la, 7) for r} ql-7’

(iii) and (iv) ([0, c]q" (}))v 2(, v/Is, 7),

which is well defined in view of (6.1).
It is also interesting to consider the case where q 1. A similar formula to our

theorem may be possible in view of the result obtained in [G3].
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GROUP THEORETICAL INTERPRETATIONS OF SPECIAL
FUNCTION IDENTITIES: TWO EXAMPLES*

L. C. BIEDENHARN? AND A. K. (IFT(I$

Abstract. Two examples, taken from quantum physics, are used to illustrate how group the-
oretical concepts afford an intuitive understanding of relationships between certain special function
identities.

Key words, special functions, symmetry groups, quintal angular momentum group SU(2),
group representations, Kronecker product (Wigner product law), group contraction

AMS subject classifications. 33C10, 33C45, 33C55

1. Introduction. The applications of symmetry techniques using group theory
have been an important source of special functions [1], [2], and it is only to be expected
that quantum physicsmwith its current strong emphasis on symmetrywhas similarly
contributed greatly to the supply of special functions [3]. Results in special function
theory which stem from group theory are usually rather particular and often lack the
generality of analytic results. This situation is characteristic of the group-theoretic
approach to special functions [1]. Despite this particularity, results of the group
theoretic approach nevertheless have a certain coherence, clarity, and intuitiveness
that the .analytic approach lacks.

In this contribution we will discuss two examples of the way in which group
theoretic concepts can lead to a more transparent and intuitive understanding of cer-
tain special function identities and their interrelationships. Both examples are taken
from quantum physics and both involve special functions arising from applications of
angular momentum techniques. Our first example--the relationship of Gaunt’s inte-
gral [4] to Sharp’s integral [5]is not new and is possibly well known. Gaunt’s integral
(see (2.10a) below) involves special functions of the quintal angular momentum group
SU(2), whereas Sharp’s integral (see (2.19)) involves special functions of the Euclidean
group E(2) of the plane. The latter group is a contraction of the former (see 3), and
it is this asymptotic relationship that we will emphasize and discuss as interrelating
the two integrals.

The second example, which we believe is new, concerns integrals involving spe-
cial functions of the four-dimensional rotation group SO(4) (see (4.10)) and of its
contracted group, the Euclidean group in three-space E(3). This latter group is of
evident importance in nonrelativistic quantum physics and, in fact, the results we will
discuss arose from a recent investigation [6], [7] of the muon-catalyzed fusion process
[8], [9].

The interrelationship between the special functions of a symmetry group and those
of its contracted (asymptotic) groups is a general feature and can be applied system-
atically. In our concluding remarks we conjecture the extension of this procedure to
quantum groups [10], [11] and their q-analog special functions.

2. First example: Gaunt’s integral and Sharp’s integral. Angular mo-
mentum in quantum physics involves the symmetry group SU(2), whose generators
are the three angular momentum operators (J1, J2, J3} obeying the commutation
rules:
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Fizik BSliimii, Ankara University Fen Fakiiltesi, 06100 Tandogan, Ankara, Turkey.
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where ejk +1 for (positive/negative) permutations of 1, 2, 3, and is zero otherwise.
In the standard way [12] one constructs eigenbases (quantal states) for the repre-

sentations--ket vectors denoted Ijm)--having sharp total angular momentum j(2j E
Z+) and z-component Jz m(-j <_ m <_ j, 2m Z,j- m Z). The irreducible
representations (irreps) are denoted by 9(J)(g),g e SU(2), with matrix elements:
(jm’lT)()(g)ljm =_ T!,m(t,,’) where a,f, and - are the Euler angles of the
rotation g. The rotation operator matrix elements are special functions, the Jacobi
polynomials [12].

The group-theoretical approach to special functions has several characteristic gen-
eral features [1], [2], [3]. For compact groups, the Peter-Weyl theorem shows that
matrix elements of the irreducible representation matrices supply a complete set of
orthonormal special .functions over the group manifold. Similarly, it is characteristic
of the group theoretic approach that the product law for the group gl o g2 g12, when
applied to the group representations :D(gl):D(g2) :D(g12), yields an addition theorem
for the special functions of the group.

A closely related further characteristic of the group theoretic approach--in a cer-
tain sense dual to the product law--is the Kronecker product [3] for matrix elements of
representations involving the same group element. This general structure is at present
well defined only for multiplicity-free groups [13] or for groups having a canonical res-
olution of the multiplicity [14]. For angular momentum theory this Kronecker product
relation is called the Wigner product law [12]"

J1 J2(2.2) DMI,M (g)DM,,M (g) E
Ja,Ma M

JJ.J8 ’.JJ2J DJ (g)M.M"MMM M

In this result, the terms ’MM.M3 are the Wigner-Clebsch-Gordan coefficients [15],
which, as group objects, affect the reduction of the direct (Kronecker) product of the
irreps J1 and J2 into the irreps J3. Considered as special functions, the Wiguer-
Clebsch-Gordan coefficients are 3F2 generalized hypergeometric functions with the
specific relation [12]:

[(2c 1)(a a)l(a a)l(b /)(b )l(c+7)(c 7)l] 1/2. =6+,- / 4- 4-

(2.3) (--1)a+b+’+l A(abc)3F2 [(-,.-,3- 1)
Here the parameters (61,62, 63) are any permutation of

(2.4) (a + b + , b + c + "l, a + a +c+’7),

except that 61 is required to be the smallest integer in this set; the parameters
(el, e2, e3) are any permutation of

(a+ a,b+ a + T,C+T).

The triangle coeOcient A(abc) (which is a special function in its own right in angular
momentum theory [12]) is given by

A(abc) [(a + b- c)!(a(aTbTc+l)!-b+ c)!(-a + b+ c)!]
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By using the orthonormality relations, we can invert (2.2) and obtain a general
integral relation for a triple product of SU(2) special functions:

(2.7) dg Ma.a DMM M[ 2J3 + 1 MM2Ma MMM["

This result is a special function identity relating an integral over a product of
three Jacobi functions to a product of two 3F2 special functions.

Gaunt’s integral [4] was obtained in the early days of quantum mechanics and
involves a special case of this general result, (2.7). For integral angular momenta,
denoted by (orbital angular momenta), the representation functions are related to
the spherical harmonics Ym() by

(2.8) Ym(8) =- (8o]lm) [ 21 + 1 ]t 4 D’(80)"

Specializing further to m 0 relates the representation functions to the Legendre
polynomials

(2.9) Do,o(O00) =/(cos 0).

Gaunt’s integral is an integral over three Legendre polynomials:

(2.10a) Ioaunt sin 0dS/ (cos 0)P2 (cos 0)/3 (cos 0),

which, using (2.7) and (2.9), can be expressed as

(2.10b) Ioaunt 2/3 -}- 1 \’000 /

A more general result is easily obtained from (2.7), using (2.8) rather than (2.9).
This is the generalized Gaunt integral:

0

r

0
2r

[ (2l l)(212 l) ] 2

lll21 .Cllll(;g OOO MIM2M3"

Now let us turn to Sharp’s integral. This integral involves representation functions
of the Euclidean group in two dimensions E(2). This (noncompact) group has three
generators: two translation operators Tt, T2} and a rotation operator M acting in
the (1, 2) plane. The commutation relations for these three generators are

(2.12)

The group theoretic results are analogous to the previous case: one constructs
the representations (which include as special functions the Bessel functions of integer
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order), and uses the E2 analog of the Kronecker product law to construct a general
threefold Bessel function integral.

The representations :D(g) in which we are interested are labeled by one real pa-
rameter p, physically the magnitude of the (nonvanishing) momentum (0
The irreps T)(v)(g) have the matrix elements [5]

(2.13) m,m’ e Z,

where the basis ket-vectors Ira) are eigenfunctions of the rotation operator M(M --m, m e Z). In (2.13), the group element g is a translation, parametrized by (r, 0)
using polar coordinates, and a rotation by the angle (.

The construction of the Kronecker product law for the E(2) group involves a
typical difficulty that occurs for many groups: the existence of multiplicity in the
reduction of the Kronecker product [5], [13]. The analog of the Wigner-Clebsch-
Gordan coefficients for a nonmultiplicity-free group is not well defined unless there
exists a canonical resolution of the multiplicity [14]. For the Euclidean group E(2) the
multiplicity is at most 2, and a canonical resolution exists [5]. This resolution adjoins
a discrete operation, reflection in the x-axis, yielding the extended Euclidean group
E(2). Denoting the involutary operation by I, we have the additional commutation
relations:

(2.14) IM--MI, ITI=TII, IT2--T2I.

The irreducible representations (irreps) are now specified by two labels: p (as before)
and e =t=1. The irreps 7)(v,)(g) have the same matrix elements as in (2.13) for group
elements in E(2), and the additional relation

(2.15) (-1)m+5,

for the involution I. The extra irrep label e distinguishes between the two occurrences
of the E(2) irreps labelled by p in the reduction of the Kronecker product.

The analog of the Wigner-Clebsch-Gordan (WCG) coefficients for the extended
Euclidean group E(2)’ have the form [5]

(2.16)

C11P22Pa323
5I

V/87rA(PlP2P3)
ei(m2"ra-mar2) + (--1)1+2+ae-i(m2Ta-ma’r2))

where A(plp2P3) is the area of the triangle formed by the three momenta pi > 0 and
the Ti are the exterior angles of this triangle,

(2.17) "rl + "r2 + "r3 0 mod 2’.

If the three momenta do not form a triangle, the coefficient above vanishes, or
equivalently, we may define the area of the triangle as infinite.

The general integral [5] for the product of three irreps of the E(2)’ group--
specialized to have nonzero momenta--is the E(2)’ analog of (2.7) and has the form

(2.18) D(P22) (,pl lp22p33 .plelP2$2P3$3
TTI9T29Tt3 "Vltl "lvt2"vt3
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0. For this specialSharp’s integral is that special case of (2.18) for which mi
case, the WCG coefficient ((2.16) with m 0) vanishes unless el + e2 + e3 --- 0
mod 2.

Using (2.13) and (2.16) in the general relation equation (2.18) and noting the
restriction ml --0, we obtain Sharp’s integral:

ml + m2 + m3
cos(mlT2 m2T1)

r drJml (pr)Jm. (p2r)Jm3 (p3r)
2rA(pp2P3)

if 0.

Sharp pointed out [5] that the integral (2.19) does not appear in the standard
compilations by Watson [16] or by Sateman/Erd(!lyi [17].

3. The contraction relationship. The two intes above, the generalized
Gaunt inteal in (2.11) and Shp’s inteal in (2.19), have eh been obtained by
a straightforward application of stdd oup techniques, and e in consequence
simil results differing only in the specific oup used. Our objective, however, is
not simply to see that the inteals e analogous but to showroom outheoretic
conceptshow the pticul structures c be understood in such a way that one

inteal c be directly derived om the other.
To do this, let us recall that in physics it is not inequent that a given theory is

subsumed in a lger theory such that the elier theory may be recovered a limit.
Thus, for example, nonrelativistic physics (Neonian relativity) is contained in Ein-
steini relativity (the physics of special relativity) such that Neoni relativity
is recovered in the limit that the velocity of light (c) becomes infinite. Expressed in

outheoretic terms [lS], [19], the Poinc oup of Einsteini relativistic symm
try contracts to the Galile oup of Neoni relativistic symmet in the limit
where the pareter c .

A similar relationship exists for the oup SU(2), which contrts to E(2). This
limit is intuitively understdable the limit in which the twsphere S2 (the spe
of spherical harmonics) h a "lge" rius so that, locally at a specific point, the
neighborhood looks flat, becoming the Euclide twple in the limit.

To be more precise let us consider the generators of the SU(2) oup: J, J2, J3,
d the commutation rules (2.1):

(3.1) [J, J2] iJ3, [J2, J3] iJ1, and [J3, J] iJ2.

Multiply J1 and J2 in (3.1) by e so as to obtain

(3.2) [J, eJ2] i2J3, [J2, J3] iJ, and [J3, eJ] iJ2.

Let J and J2 become large, and let approach zero, such that eJi is finite:

(3.3) eJ1 - T, eJ2 - T2,

and redefine T3 to be M. We find that in this contraction limit, the commutation
relations become

(3.4) ITs, T2] 0, [M, T] iT2, [M, T2] -iTs,

which are precisely the commutation relations of E(2), (2.12).
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It is important to note that the contraction process is not necessarily smooth,
and the contraction limit can be, and often is, singular. As a result, the importance
of the contraction process--considered as a systematic procedure--lies primarily in
the qualitative insights it affords into the existence, and properties, of asymptotic
relationships between special functions.

Let us now apply these ideas to the SU(2) --, E(2) contraction limit. Applied to
the representation matrices, the contraction limit is the relation [5]

((.lira m’lV()(a-

where in the limit j runs over integral values, withj p (the momentum) fixed. This
relation is the well-known asymptotic relation of the Bessel function as a limit of Jacobi
polynomials. Accordingly, we can conclude that the contraction limit of the integrand
of the generalized Gaunt integral over three spherical harmonics yields the integrand
of Sharp’s integral over three Bessel functions, noting that the orthonormality of
both sets of representation matrices determines in each case a well-defined absolute
normalization (which is group dependent).

The contraction limit of the two sets of WCG coefficients is a somewhat less
straightforward matter because of the multiplicity problem for E(2), which requires
the use of the extended Euclidean group E(2). It is not difficult to adjoin the in-
volution I to the group SU(2). (Note that the group volume is doubled in going
from SU(2) to SU(2), affecting the normalization of the representation functions.)
As expected, E(2) is the contraction limit of SU(2), but the problem is that this
limit is singular. In particular, for SU(2), there exists a parity rule1 in SU(2) such
that 1 + s2 + 3 0 mod 2. This parity rule is broken for E(2) in the (singular)
contraction limit.

In the specific case at hand (the generalized Gaunt integral and Sharp’s integral)
this problem is avoided, since in these two cases the integrals involve representation
functions with m m m 0, a condition that enforces the parity rule even
for E(2). For this special case finds the following the contraction limit of the WCG
coefficients:

(3.6) (Cpl:lp2:2p3:3 .pl:lp2:2p3:3 contraction (’ 1/23 f’l23’,- mlm2m3 v0 0 0 / E(2)’ limit \-mlm2m3 vO00 ] SU(2)’

It follows that the contraction limit carries the generalized Gaunt integral identity into
Sharp’s integral identity. This result was first shown by Sharp [5].

4. Second example: S0(4) and E(3). Let us now consider the rotation group
in four dimensions: SO(4). This group has six generators, f and/, which obey the
commutation relations:

(4.1a-c) [Li, Lj] ieijkLk, [Li, K] iSijkKk, and [Ki, Kj] ieijkLk.

The irreps (for this presentation of the group) are labeled by two invariant operators
which may be taken to be Z1 f2 +/2 + 1 and Z2 --- f./. For the orbital irreps
in which we are most interested these two invariants assume the eigenvalues 271 -n2, (n 1, 2...) and Z2 --* 0. The corresponding irreps are labelled :D(n,)(g).

To see this, note that the reflection I in the x-axis combines with a rotation by r around the
x-axis to yield a central reflection (parity).
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It is a fortunate group theoretical "accident" that under the substitution L
.7 + -,/ 3- J- the commutation relations (4.1) take the form

3 ii(i 1, 2) with [?-,] O.

Thus we see that SO(4) is locally the direct product, SU(2) SU(2), of two com-
muting SU(2) groups. This has the important consequence that SO(4) is multiplicity-
free and possesses a well-defined Kronecker product law. This basic result is the key
to our special function considerations [20], [21].

The general irrep of SO(4), using the realization given in (4.2), may be denoted by
/)[l,j2](g), where the labels jl, j2 specify the two SU(2) invariants of the two SU(2)
groups. (Note that we use square brackets for these labels to distinguish this choice
of invariants from 2"1, Z2 shown earlier.) Here g denotes a generic group element in
SU(2) SU(2). Matrix elements of the irrep T[lJ21 are denoted by

(4.3) [Jlj2]j’m’l[:hj2 (g) [Jlj2]jm -- j’m’;jmkt

where the basis ket-vectors [[3"lj2]jm) are direct product ket-vectors from SU(2)
SU(2) coupled to angular momentum j with z-component m. These SO(4) irrep
matrices are accorlingly vector-coupled SU(2) SU(2) rotation matrices [20], [21],

The Kronecker product law for this group [20], [21] has the form

(4.4)
’D.[J.-:] t. [/-/:] (,/

’m ;jm ktt! ’k t ;kt ,;]

In this result, (4.4), we have used the Wigner-Clebsch-Gordan coefficients for the
SO(4) group [20], which are given explicitly by a special function that is the sum of
products of five 3F2 functions:

The sum in (4.5) can be put in the more explicit form

[(2/1 + 1)(2/2 + 1)(2j + 1)(2k + 1)] 1/2 kt k2
(4.6a) J}k .t

where the term in brackets {... } is an angular momentum special function known as
the 9- j symbol having the definition
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(4.6b)

{d
h

(e + f d x)!(c + f j x)! (b 4- e i y)!(h 4- j i y)!
(b 4- c a 4- z)!

(a + d- h z)!(a + c- b- z)!
(a 4- d 4- j i y z)!

(d -4- i b- f + x + y)!(b f a 4- j 4- x 4- z)!’

where the triangle function A(abc) is given in (2.6).
Using the orthonormality of the irrep matrices, just as in 2, we find an interesting

general result for the product of three SO(4) special functions:

Our interest here is in a special case of (4.7) corresponding to representation
matrices which are the spherical harmonics in four dimensions. To obtain this, one
specializes/g[lJ2](g) to have the SU(2) SU(2) invariants jl j2 j, which implies
for the realization given by (4.1) that the invariant Z1 (2j4-1)2--so that n 2j4-1--
and 22 0. The corresponding irrep, Dploo(g), will be related to the spherical
harmonic Y,Im(X, O, o) in four dimensions (se (4.8a) below). The group element g
will be specified by the angles (X, , o), which are the polar angles for a point on the
surface of the sphere S3, with x2 4- y2 4- z2 / t2 1 and t cos X, z sin X cos , y
sinX sin sin o, x sin X sin O cos o. All this is in exact analogy with the previous
discussion for the spherical harmonics Ym(8, o) in three dimensions.

The spherical harmonics Ynlm(X,O, o) factorize [20] and [22] into the product of
a Gegenbauer polynomial in X and the usual SO(3) spherical harmonic

where

(4.8b) Fn(X) rr(n + + 1) (/!) (2i sin ,Ig’.l+l (COSA.! "n--l--1

The function .I+1
1 (COS X) in (3.8b) is the special function known as the Gegenbauer

polynomial defined in the standard way [17].
For completeness, let us note that the spherical harmonics Ynm(X, O, o) are or-

thogonal and normalized by

(4.9) sin2 xdx sin OdO doYg,vm,(X O, o)Ynm(X, 8, o) 6’r, 6 6’’.
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Introducing these special functions into the general integral, (4.7), we obtain

(a)

_-( llml 12m 13m3

where the coefficient C[...] is defined in (4.5) and both g and the differential @
e defined implicitly in (4.9). Equation (4.10) is the four-dimensional og of the
generalized Gaunt inteal of (2.11).

Using (4.8) this result can be put in the form of inteal over three Gegenbauer
polynomials, (eluating the inteal over the SO(3) spherical hmonics by (2.11)),
but this explicit result is not necessy for our present purpose.

Remark. The SO(4) spherical hmonic inte, (4.10), implies the restriction
(see (4.6a)) that the peters in two of the three columns of the 9- j symbol e
identil. The 9- j symbol h the general symmetry [12] that under the exchange
of two columns the symbol is multiplied by the ftor: (-1), where S sum of the
nine peters in the 9- j symbol. Thus we see that for two identic columns, we
must have (-1)s +1 in order to obtain a nonzero vue. This implies that inteal
in (4.10) is nonzero only for 11 + 12 + 13 0 mod 2. For (4.10) this restriction on the
SO(4) WCG coefficient (the right-hand side of (4.10)) is extly the same restriction

implied by the SO(3) spheric hmonic inteM of the leK-hd side of (4.10).
ttta which similly [12] requires 11+/2+/3 0This inteal involves the coefficient 000

mod 2.
Now let us turn to the Euclide oup in threspe, E(3). ther th pr

ceeding to develop the E(3) analogs to the SO(4) results directly om the E3 oup
itself, let us use the contrition method, applied to the limit SO(4) E(3), more
intuitive d illuminating.

The S0(4) E(3) contrition limit preserves the diagonal SO(3) oup, d
hence es the realization of the commutation relations in (4.1) (where generates
the diagonal SO(3) suboup). These relations e

(4.11a-c) [Li, Lj] iijtLk, [L, K] ijKk, and [Ki, K]

To obtain the contraction limit we multiply (4.1b,c) by 2 on both sides; let --. 0
and Ki --, o, such that cK --, T finite (momentum) operator. We obtain in this
limit the commutation relations

(4.12a-c) [Li, Lj] ijtLk, [Li, Tj] ijTk, [Ti, Tj] O,

which show that E(3) has the structure of a semidirect product group E(3)
___

T3@S03, with the three-dimensional translation subgroup (T3) normal.
Consider now the SO(4) irreps T(n,) (g) corresponding to the four-dimensional

spherical harmonics (cf. (4.8a)). The contraction limit corresponds to taking the
radius p (x2 + y2 + z2 + t2) 1/2 of a sphere in four dimensions to be "large," and con-
sidering the neighborhood about the "origin": x y z 0 with t p. Rotations
Rt, Rt, Rtz thus become, for p large, translations of this neighborhood, which in
the limit becomes planar. For the representation matrix (4.8a), the contraction keeps
(0, ) fixed. The contraction takes the eigenvalue n of the invariant 251 f2 +/2 + 1
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to become large (corresponding to/ becoming large in obtaining (4.12)). The limit
eK3 --* T3 finite is achieved by defining the rotation operator e-i/(3 --. e-irT3,
the translation operator with eigenvalue e-irk, (k ne momentum eigenvalue of
T3, r displacement). Thus the angle 2: in (4.8a) is small, given by X re, with
e --. 0. The required asymptotic limit of (4.8a) is found [20], [22] to be

(4.12) nlim i(4r)1/2j(kr)Ym(O).

Put differently, the contraction limit involving the Gegenbauer polynomials is the
limit

(4.13) limo ,]
with the Gegenbauer polynomials entering through (4.8b). The special functions
of E(3) in (4.14) are the spherical Bessel functions, j(kr), using the conventional
notation. (It should be noted that these functions are real.)

There is one more detail before we can establish the contraction limit of the
left-hand side of (4.10). This concerns the differential dg, which in (4.10) has the
value

dg sin2 xdx sindd.

Since the angle X is small (X e-r with e -, 0) we see that sin2 xdx -* e3r2dr, and
the limits of integration become 0 and oo.

We now use the asymptotic limit given by (4.13) for the left-hand side of (4.10),
and note that the e3 in dg combines with the terms nln2n3--introduced from using
(4.13)--to give kk2k3, that is, nie kl. This establishes that the contraction limit
of the left-hand side of (4.10) is given by

(4.14)

where the terms in the second bracket (...) use (2.11) to evaluate the ($O(3)) spher-
ical harmonic integral.

Let us now consider the contraction limit for the SO(4) WCG coefficients, ap-
pearing as the right-hand side of (4.10) and defined in (4.5). This limit will yield new
angular special functions, and it is helpful to introduce these functions first and then
show that they appear as the contraction limit of (4.5).

These new angular functions were first defined in the context of angular correla-
tion theory [23] for nuclear radiations (for example, gamma rays). The appropriate
angle functions for discussing the angular correlation of, say, two gamma rays are
the Legendre functions of the planar angle defined by the two gamma ray directions,
a rotational invariant. The new functions in question are the appropriate angular
functions for correlations involving the three rotationally invariant angles defined by
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three observed directions. Specifically, we have the definition [12], [24]

+ +
(4.15)

where ]i are unit vectors of the directions measured with respect to a fixed, but
arbitrary, coordinate frame. Despite the appearance of the (quantal) SO(3) WCG
coefficient in (4.16) this is a classical result, for the WCG coefficients appear here as
the coefficients of a general vector algebra. For example, the Plll function is just the
rotationally invariant, antisymmetric combination of three vectors, 1 ]2 x k3 (to
within a constant).

The special functions defined by (4.16) are real (the factor in i is determined by
time reversal invariance in quantum mechanics in order to effect this). Moreover,
these functions have the symmetry property

(4.16)

when (i’j’k’) is an odd permutation of (ijk). Note that the normalization is chosen
such that P000 1.

We are now in a position to examine the contraction limit of the coefficients (4.5)
appearing on the right-hand side of (4.10).

For this limit we find

(4.18)

contraction il3-h_, [(2a + 1)(2b + 1) (2c + 1)] 1/2 b b 12
limit 0c c 13

where the contraction limit and the two alternatives are explained as follows. First
note that the (9-j) coefficient appearing in (4.18) has the restriction that two columns
are identical. As discussed in the remark above, this implies that 11 + lu +13 0 mod 2
in order to obtain a nonzero value for the (9-j) symbol. Exactly the same restriction
also applies, from (4.17), to the /la(a) on the right-hand side of (4.18). To
understand the meaning of this restriction, recall our example where Plll= (constant)
]1 "2 3. Since in this example (-1)+l+a -1, Plll vanishes, which implies that
the three unit vectors ]1, ]2, ]3 are coplanar. This is the meaning of the restriction
on the 9- j symbol appearing in (4.18). More precisely, the contraction limit takes
the three parameters, a, b, and c large (say, a a’/e, b b’/e, c c’/ with a’, b’, c’
constant as e --* 0 such that a, b, and c--which form an angular momentum triangle
(a condition stemming from (4.5))---continue to form a finite scaled triangle in the
limit, with sides a’, b’, c’. We express this as the statement: the finite scaled variables
a’, b’, c’ form a triangle, with the unit vectors , , accordingly being coplanar. Note
that the angles appearing explicitly in/2(h$6) are invariant to this scaling and
hence well defined.

If the parameters a, b, c in (4.18) do not form a triangle, then both sides of (4.18)
vanish.
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We can now determine the contraction limit of the right-hand side of (4.10). Using
(4.6a) and (4.18) we find

These results, (4.15), and (4.19) establish the contraction limit of the two sides,
independent of (4.10). Equating the two results, and cancelling common factors, we
obtain an identity for the special functions of the contracted group, E(3)

--1-’’-f123 Pl (1g23)(4.20) 4klk2k3 r2drjll(klr)j2(k2r)j(k3r (2/3 T 1) -voo 0 2

for 1 -- 2 "" 3 0 mod 2, with kl, k2, and k3 in (4.20) forming a (nondegenerate)
triangle.

If the three parameters kl, k2, and k3 in (4.20) form a degenerate triangle (having
vanishing area), the result given above must be modified. The contraction limit, as
we have noted before, can be singular, and, in fact is singular for a degenerate triangle
in the present case. A more careful investigation shows that, for the degenerate case,
there is a factor of 1/2 appearing on the right side of (4.19). (Since the degenerate case
implicitly appears in the inversion of (4.4) into (4.7) there is a subtle factor of 2 which
renormalizes the limit of the right-hand side of (4.10) also.)

Combining these various cases for the final result we obtain

(4.21a) 4klk2k3 r2drjlx (klr)jl2(k2r)jl(k3r) (213 + I) -1/2lll21svO0 0
a. P/l/,ts (k123)

for l -+- 12 + 13 -- 0 rood 2, with A defined by

(4.21b)

1 if klk2k3 forms a triangle,

if klk2k3 forms a degenerate triangle,

if not.

The identity given in (4.20) was first established by direct integration, without
the use of group theory, by Jackson and Maximon [25]. The fact that this identity is
the contraction limit of the S0(4) identity (4.10)with the interpretation (4.18), for
the 9-j contraction limit--is, we believe, new.

5. Concluding remarks. Within the last few years there has been an almost
explosive growth of interest (and new results) from the discovery of a group theoretic
basis for q-analog special functions, based on the concept of a quantum group [10], [11].
Quantum groups are not actually groups, but rather Hopf algebras, usually of infinite
dimension, which are deformations of the universal enveloping algebras of classical
Lie groups. Although technically mislabeled, quantum groups do share many group-
like properties. The limit q --. 1, in which a genuine classical group is attained, is
reminiscent of the quantum -- classical limit, which in a sense also justifies the name.

Quantum groups, in particular, permit the construction of unitary irreps (and
thereby q-analog special functions), product laws, and the construction (for a suitable
classical group) of the q-analog of the Wigner-Clebsch-Gordan coefficients. Thus we
see that essentially all of the necessary tools are available for a q-analog version of the
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results presented above. It seems evident that such relations must exist, extending to
the corresponding q-analog special function identities, the intuitive interrelationships
of the contraction limit (which also exists for quantum groups).

It would be interesting to verify whether or not these conjectured q-analog rela-
tions actually exist.

Acknowledgment. It is our hope that this contribution to Dick Askey will be of
interest not only to him, but also to his many friends and students who have benefitted
by his extensive knowledge, highly developed skills, and many contributions to special
function theory over the years.
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ASYMPTOTIC APPROXIMATIONS FOR SYMMETRIC ELLIPTIC
INTEGRALS*
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Abstract. Symmetric elliptic integrals, which have been used as replacements for Legendre’s

integrals in recent integral tables and computer codes, axe homogeneous functions of three or four
variables. When some of the variables are much larger than the others, this paper presents asymptotic
approximations with error bounds. In most cases they are derived from a uniform approximation to
the integrand. As an application the symmetric elliptic integrals of the first, second, and third kinds
are proved to be linearly independent with respect to coefficients that axe rational functions.

Key words, elliptic integral, asymptotic approximation, inequalities, hypergeometric R-function

AMS subject classifications, primary 33A25, 41A60, 26D15; secondary 33A30, 26D20

1. Introduction. A recent table of elliptic integrals [9]-[13] uses symmetric
standard integrals instead of Legendre’s integrals because permutation symmetry
makes it possible to unify many of the formulas in previous tables. Fortran codes
for numerical computation of the symmetric integrals, which are homogeneous func-
tions of three or four variables, can be found in several major software libraries as well
as in the supplements to [9] and [10]. For analytical purposes it is desirable to know
how the homogeneous functions behave when some of the variables are much larger
than the others. For all such cases we list in 2 asymptotic approximations (some-
times two or three approximations of different accuracy), always with error bounds.
Proofs are discussed in 3. In most cases the approximations are obtained by re-
placing the integrand by a uniform approximation. Many of the results found by a
different method in [16] have been improved by sharpening the error bounds or by
finding bounds for incomplete elliptic integrals that are still useful for the complete
integrals, which are then not listed separately. Cases not considered in [16] include
two for a completely symmetric integral of the second kind and two for a symmetric
integral of the third kind in which two variables are much larger than the other two.

We assume that z, y, z are nonnegative and that at most one of them is 0. The
symmetric integral of the first kind,

(1) RF(X, y, z) - [(t + x)(t + y)(t + z)]-l/2dt,

is homogeneous of degree -1/2 in x, y, z and satisfies RF(x,x,x) x-1/2. The sym-
metric integral of the third kind,

(2) Rj(,,,)= - [(t+)(t+)(t+)]-/(t+)-t, >0,

is homogeneous of degree -/2 in , , ,p and sagisfies Rj(X,,X,,X,,) Z-/2. If
p z, Rj reduces to an ingegral of ghe second kind,

(3) R(,,) Rj(,,,) - [(t+)(t+)]-/(t+)-/t, > o,
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which is symmetric in x and y only. If two variables of RF are equal, the integral
becomes an elementary function,

1
(t + x)-/2(t + y)-dt, > 0(4) Rc(, ) R(,,)

If x < y, it is an inverse trigonometric function,

() Rc(, ) (- )-/cco(/)/,
and if x > y, it is an inverse hyperbolic function,

(6) Rv(x, y) (x y)-/2arccosh(x/y)/2 (x y)-/2 In xf + V y.

If the second argument of Rc is negative, the Cauchy principal value is [18, eq. (4.8)]

(7) n(,-) n(x + , ), > o.

If the fouh ment of Rj is negative, the Cauchy principal lue is given by [18,
u. (4.)]

(y -{- p)Rj(x, y, z,--p) (q y)Rj(x, y, z, q) 3RF(X, y, z)

(8) +3( z )/ Rc(xz + pq, pq), p > O,
xz +pq

where q-y (z- y)(y- x)/(y + p). If we permute the values of x,y,z so that
(z- y)(y- x) >_ O, then q _> y > 0.

A completely symmetric integral of the second kind is not as convenient as RD
for use in tables because its representation by a single integral is more complicated
[7, eq. (9.1-9)]:

(9) nG(, , ) [(t + )(t + )(t + z)]-/ + . + t dt.
t+x t+y t+z

It is symmetric and homogeneous of degree 1/2 in x, y, z, and it satisfies RG(x, x, x)
x/2. It has a nice representation by a double integral that expresses the surface area
of an ellipsoid [7, eq. (9.4-6)]. It is related to RD and RF by (58) and by

(10) RG(x, y, z) "-x(y -[-- Z)RD(y, Z, X) -b y(z -{- X)RD(Z, X, y) + z(x zt- y)l::lD(X, y, z),
(11) R(x,y,O) xy[RD(O,x,y) + RD(O,y,x)].

(12)

(13)

(4)

(15)

Legendre’s complete elliptic integrals K and E are given by

g(k) ---/F(0, 1 k2,1),
E(k) 2RG(0, 1 k2,1)

1 k2

-----[RD(0, 1 k2,1) + RD(0, 1, 1 k2)],
k2

g(k) E(k) --RD(0, 1 k2, 1),

E(k) (1 k2)g(k) k2(1 k2) RD(O, 1, 1 k2).
3
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Approximations and inequalities for K, E, and some combinations thereof are given
in [1]-[3]. If the error terms in (30), (31), and (53) are omitted, the approximations
reduce to the leading terms of well-known series expansions of K and E for k near 1
[15, p. 54] [4, eqs. 900.06, 900.10]. If the series for K is truncated after any number of
terms, simple bounds for the relative error are given in [14, eq. (1.17)]. A generalization
of this series to RF(x,y,z) with x,y << z is given in [14, eqs. (1.14)-(1.16)], again
with simple bounds for the relative error of truncation.

The various functions designated by R with a letter subscript are special cases of
the multivariate hypergeometric R-function,

R-a(bl,...,bn; Zl,...,Zn),

which is symmetric in the indices 1,..., n and is homogeneous of degree -a in the
variables zx,... ,zn. Best regarded as the Dirichlet average of x-a [7, 5.9], it is
a symmetric variant of the function known as Lauricella’s FD. By the method of
Mellin transforms, series expansions that converge rapidly if some of the z’s are much
larger than the others and if the parameters satisfy Ei__l bi > a > 0 are obtained
in [8, eqs. (4.16)-(4.19)]. Thus the leading terms of these series provide asymptotic
approximations for all except Ra among the functions

(16) nF(x,y,z) R_1/2(1/2, 1/2, 1/2; x,y,z), Rc(x,y) R_1/2(1/2,1; x,y),

n_](1/2 1/2 ’,1; x,y,z,p), RD(x,y,z) R_(1/2, 1/2, ; x,y,z),

(18) Ra(x,y,z) n1/2(1/2, 1/2, 1/2; x,y,z).
However, error bounds for the approximations are more easily derived by the methods
of the present paper. Another function that is used repeatedly in obtaining error
bounds is [7, Ex. 9.8-5]

(19) R_I(1, 1/2, 1; x, y, z) [(t + x)(t -1- y)]-l/2(t q- z)-ldt

(20) 2Re((-+ z)2, (/r
_

/-)2Z)"
In 4 the asymptotic approximations are applied to show that RF(x,y,z),

RD(X, y, z), Rj(x, y, z, p), and (xyz)-1/2 are linearly independent with respect to
coefficients that are rational functions of x, y, z, and p. The appendix contains some
elementary inequalities that are used in obtaining error bounds.

The results in this paper provide upper and lower approximations that approach
the elliptic integrals as selected ratios of the variables approach zero. Approxima-
tions that approach the integrals as all variables approach a common value have been
found by other methods. For example, the theory of hypergeometric mean values
yields upper and lower algebraic approximations for all the integrals in this paper [5,
Thm. 2], while truncation of Taylor series about the arithmetic mean of the variables
gives approximations with errors that may be positive or negative. Successive applica-
tions of the duplication theorem for RE, making its three variables approach equality,
provide ascending and descending sequences of successively sharper (and successively
more complicated) algebraic approximations to RE and Re [6]. Transcendental ap-
proximations that approach RE when only two of its variables approach equality are
furnished by

(yh-z) < RF(x,y,z) < Rc(x, x/), yz O,(21) Re x,
2
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which follows from (71). The inequalities can be sharpened by first using Landen or
Gauss transformations of RE [7, 9.5] to make y and z approach equality. If x 0,
the Gauss transformation reduces to replacing and vf by their arithmetic and
geometric means, and each Re-function becomes 7r/2 divided by the square root of
its second argument. Therefore, in the complete case the procedure reduces to the
algorithm of the arithmetic-geometric mean [7, eqs. (6.10-6), (9.2-3)] and provides
ascending and descending sequences of algebraic approximations, of which leading
members are shown in (33).

2. Results. We assume throughout that x, y, and z are nonnegative and that
at most one of them is 0. The last argument of Re, RD, and Rj is assumed to be
positive (see (7) and (8)).

C1. Re(x, y) with x << y.

(22) Rc(x,y)
2/- y 4y3/2’

where 1/(1 -{- X/-/y) _< O _< 1 with equalities if and only if x 0.
C2. Rc(x, y) with y << x. Two approximations of different accuracies are

1( 4x y 0ix)(23) Rc(x,y)-- ln--T In--
y 2x y y

(24)
1 [( y) 4x y 3y2

y 2x 4x(2x y)

where 1 < 9i < 4 for i- 1, 2. The first approximation implies

1 4x
(25) Rv(x,y) < 2v/(1 y/2x) ln--.y

F1. RF(x, y, z) with x, y << z.
max(x, y}/z. Then

Let a (x + y)/2, g v/, and p

1(u,
aTg z

where

g In 2z
1-g/z a+g

a 8z
ln

1 a/2z a + g

The upper bound implies

1 8z
(27) RE(X, y, z) < In

2V(1 a/2z) a -t- g"

A sharper lower bound and a higher-order approximation are given by

2a g 3(3a2 g2)r2
2z - 16z2 J
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where

z ln(1/O) 1 8z
< ri < lnlnaa <

1-p 1-a/2z a+g i= 1,2.

By (12) this implies (since 4k2 < 4- k’2 if k2 < 1)

4 k’2 O1(30) K(k) In + 4- k’’-g In k-7

(k’2) 4k’2 9k’4

(31) 1+ ln, 4 16(4-k’2)
In 02

k’

where 0 < k’ vl k2 and 1 < 0i < 4 for i 1, 2.
F2. RE(X, y, z) with z << x, y. Let a (x + y)/2 and g -. Then

(32) RF(x, y, z) RF(x, y, O) + rzO
g 4g3/2

where 1/(1 + x-) < 0 < a/g. Note that RF(x,y,O) r/2AGM(v, v/), where
AGM denotes Gauss’s arithmetic-geometric mean [7, eqs. (6.10-6), (9.2-3)], and hence

1 i 2 2 2RF(x (2)1/41(33) < < <--,a+g v/(a+g)/2+vf r ag+g2 Vf
with equalities if and only if x y.

D1. RD(X, y, z) with x, y << z. Let a (x + y)/2 and g vf. Then

(34) RD(x, y, z)
3 ( 8z 0 2z )2Z3/2 hi 2 + In

a+g z a+g

where

g
<0<

3a
1 -glz 2(1 -a/z)"

D2. RD(X, y, z) with z << x, y. Let a (x + y)/2 and g ’-. Then

(35) U,
3 (1_ _V/)

where

a
1 -4 _z <0<_"

A higher-order approximation is

(36) RD(x,y,z)
292(1 + )’

where

<0<
3a

2g(1 +
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An approximation of still higher order is

(37) RD(x,y,z)
3 6

xy
R(,, O) +

where we have used (11) and where

(38)

where

(39)

where

J1.
xz + yz)/ Then

(40)

where

g3

I+X/
<8< 3--

RD(X, y, z) with y,z << x. Let a- (y + z)/2 and g x-2. Then

1 2x 2z 1- 8x
In < r < In

1 g/x a / g g + z 1 a/2x a + g"

RD(X, y, z) with x << y,z. Let a (y + z)/2 and g xfl. Then

l:lD(X, y, z) RD(O, y, z) +- -1 + ---
l+v << +

Rj(x,y,z,p) with x,y,z << p. Let a (x+y+z)/3 and b (,/2)(xy+

3r
(-1 + r),Rj(x, y, z, p) RF(x, y, z) + 2p3,/2

In the complete case a sharper result is

(41) Rj(x, y, 0, p) 1 + 1

where _< 8 _< (x + y)/2, with equalities if and only if x y.
J2. Rj(x, y, z, p) with p << x, y, z. Let g (xyz)I/3, 3h-1 x-1 -t-y-1 -{- z-1,

and A -{- +-. Note that g is the geometric mean and h is the harmonic
mean; whence g _> h with equality if and only if x y z. Then

(42) Rj(x,y,z,p)
2-

ln---2+r,p
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where

g 3p In --ln < r < 2(g-p’ p"

A higher-order approximation is

3 4xyz 3pr
(3) n(,,,) 2 +2n( + , + , z + , ) +,
where

3 h2 Ing < r < In
g-p p h-p p

The second term in the approximation is independent of p but is otherwise as compli-
cated as the function being approximated. The same is true of an even more accurate
approximation [16, Thm. 11] in which the error is of order p instead of plnp and the
leading term involves

J3. Rj(x, y, z, p) with x, y << z, p. Let a-- (x -t--y)/2 and g-- x/-. Then

(44) Rj(x, y, z,p)
2v/p

In a / g 2Re 1, - + P- In a 4g
where

1 -g/p

J4. Rj(x, y, z,p) with z,p << x, y.
y/3p(p + 2z)/2, and d- (z .-{- 2p)/3. Then

a

Let a (x + y)/2, g vr, b

R(, U, ,) _3Re(z,)
g

(45)
3 [Rv(z, g)

p
Re(z p)]g p -where 1 _< <_ a/g with equalities if and only if x y. Since z << g, Re(z, g) can be

estimated from (22). In the complete case (45) reduces to

(4o) R(,, 0,)
_@ v+ V/’

with as before. A higher-order approximation is

(4) (,, z,) 3_c(,) G(,, 0) +
g xy

where we have used (11) and where

J5.

(48)

3rO
2xy

v 3a x/
<0<

l+x 2g 1+"
Rj(x, y, z,p) with x << y, z,p. Let a (y + z)/2 and g x/’Y. Then

Rj(x,y,z,p) Rj(O,y,z,p) + 1 +gp
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where

J6.

(49)

a+g<<-I+X/ g P

Rj(x,y,z,p) with y,z,p << x. Let a (y + z)/2 and g x/’" Then

3[ r]nj(x,y,z,p) -- ne((g +p)2,2(a + g)p)

where
1

In
2x 2PRe((g 1+), 2( + )) < <

x-g a+g x x-a/2
In the complete case this reduces to

3
Re(p, z)

3s
(50) R(, 0, ,) 4X3/2

where

(51)

where

8x
a+g

1 16xIn 4Xz -2V/’Rc(P’Z) < s <
1 z/4x In--z

Ro(x, y, z) with x, y << z. Let a (x + y)/2 and g -. Then

a+gln 2z 4a
+2g+2g- <r<(3a-g) ln
2z a

2 a+g a+g --In the right-hand inequality it is assumed that 5a < z. A sharper result for the
complete case is

(52) RG(O, y, z) --- + ----Y (ln 16z
1+

ys)y

where

31nZ 1 ( 16z 13)-<s< In
4 y 1 -y/z y 6

By (13) this follows from

(53) E(k)=l+-- ln7-+
where 0 < k’ vZl k2 << 1 and

31nl 1 (413)g 7<r< k(l+k) lnk-7-1-
G2. no(x, y,z) with z << x, y. Let a (x + y)/2 and g v@-. Then

(54) RG(X, y, z) RG(X, y, O) +
where

1 ( 4V) (2)l/a 1
I-- << <

r ag + g2 vf
with equality if and only if x y.
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3. Proofs. Most of the results in 2 are obtained by replacing an integrand f
by an approximation f, writing f f f fa + f(f- fa), and finding upper and lower
bounds for f(f- f). All integrals axe taken over the positive real line. The function
f is usually chosen to be a uniform approximation fa fi + fo fro, where fi is
an approximation in the inner region, fo is an approximation in the outer region,
and fm is an approximation in the overlap, or matching, region. For instance, if
f(t) [(t -- X)(t -- y)(t -" Z)] -1]2, with x, y << z, we get f by neglecting t compared
to z, fo by neglecting x and y compared to t, and fm by doing both. A first example
of this process is the proof of Lemma 1.

LEMMA 1. If x >_ O, y >_ O, and 0 < x -}- y << z, then

dt 1
In 2z

(55)
v/(t + x)(t + y)(t + z) z- O a +’

where vf g 0 <_ a (x + y)/2 with equalities if and only if x y.
Proof. Let

1 1
f(t)

V/(t + )(t + y)(t + z)’ (t)
+ +

1 1
fo(t) t(t + z)’ fro(t) z--"

Taking fa fi - fo- fro, we find

f.(t)dt=lln

2z
z a+g

and

f fa z(t + z) t V/(g + x)(g + y)

Inequality (64) in the appendix implies

f fa zv/(t + X)(t + y)(t + z)’
g < 0 < a,

and thus

f-- fa -I- (f fa) fa -I- f-- fa=ln 0
z 1-O/z z-O a+g

As a second example, in which Lemma 1 is used, consider RF(X, y, z) with x, y
<< z. Let

1 1
f(t) v/(t + x)(t + y)(t + z)’ f(t)

v/(t + x)(t + y)z’
1 1

fro(t) vft.fo(t)
tx/t + z

Taking f fi + fo fro, we find (with a and g the same as before)

1 8z
Io()d .+a
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and

Inequalities (61) and (64)imply

ag
<f_f<

2v/Z(t + x)(t + y)(t + z) v/(t + )(t + )(t + z)"
Hence, by Lemma 1,

g
in

2z / a/ a/2z/2V(z g) a + g zz 1 al2z
where the last inequality follows from the next to last. We complete the proof of (26)
by noting that

2RF(x,y,z) f $ fy + f(y-- y).

Equations (28) and (29) are obtained from [14, eqs. (2.15), (3.25)] with w
To derive (32) we construct fa J + fo- f as usual and find bounds for f(f- fa)
by using (60) and (65). To simplify the upper bound we note that RE(X, y,z)
RE(X, y, 0) and use (33).

Equations (22), (23), (24), and (25) follow from (32), (26), (29), and (27), respec-
tively, by replacing x by y, replacing z by x, and simplifying.

Among the approximations for RD, we need discuss only (35) and (37) since (34),
(36), (38), and (39) follow from (44), (47), (49), and (48), respectively, by putting
p z and simplifying. To prove (35) we let

f(t)
1

fi(t)
i

"/(; -I- X)(; -1" y)(t -1" Z)3/2’ ff(t "l" Z)3/2’

choose fa fi, and apply (65) to get

t at
g(t + g)(t + z)3/2

< f f < g2 V/(t _[_ X)(t W y)(t W z)3/2’
1 g z < fa f < g2/t.+ z(t + g)g(g- z)x/t + Z t + g t + z

2
Rc(,) < (f f) < -Rc(z, ).g--z

Use of (22) completes the proof. Approximation (37) follows from applying (39) to
two terms on the right side of

(56) RD(2B, y, Z) 3(yz)-1/2 RD(Z, , y) RD(Z, y, X),

an identity that comes from [7, eqs. (5.9-5) and (6.8-15)].
In discussing approximations for Rj, we define

v/(t + )(t + u)(t + z)(t + v)
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and construct fi, fo, and fm for each case in the manner described at the beginning
of this section. For example, if x, y,z << p, then fi is obtained by neglecting t
compared to p. Unless otherwise stated, we define fa fi + fo fro, take f fa as an
approximation to f f, and find bounds for f(f fa) by using the inequalities in the
appendix.

To prove (40) we use (69). To prove (41) we use (64) and note that f(f- fa)
(O/p) f f. Before discussing (42), we consider (43), in which the error bounds are easily
found by using (70). Finding f fa requires an integration by parts and a formula of
which we omit the proof,

(57)

where A x/5 / + vfY-L To have a simpler approximation (42), we define
fa f + fo -fm and f + fa fro, where fo has been replaced by

+
Then

and an upper bound for f(f-a) is found by using v/(t + x)(t + y)(t + z) >_ (t+g)3/2
and (63). To find a lower bound, we note that f- fa > 0, whence

f -qba= f fa-l- fo- fa > fo- fs.

A lower bound for f(fo- f) follows from (73).
The straightforward proof of (44) uses (64), (67), and Lemma 1. For the ele-

mentary approximation (45) we choose f fi and use (66). For the more accurate
approximation (47) we take fa fi + fo- fm and evaluate f fa by integrating by
parts. The error bounds follow from (66) and (69) with two variables equated. To
find the error bounds for (48), we use (68), (60), and (71) to prove

( g) ’1
< 2gpx (f f") < q"

x/t’ q-"Z(t q- g)"

After integration, (22) is used to complete the proof. In the case of (49), where
f(fo- f,) is infinite, we choose fa f and evaluate f fa by (20). It follows from
(61) that

1

+ + + x(t + p) < fa f < + + +

where we have replaced t/(t q-p) by 1 in the upper bound and x/(x- p) by 1 in the
lower bound. We then use (20), (55), and (27).
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The function RG can be expressed in terms of RF and RD by (17) and [7, Table
9.3-1]:

1
(z )( )(,,) +Y(s) (,, z) (,,)

Applying (26) and (34), we obtain (51). The error bounds have been substantially
simplified by using the numerical value of In 2 and assuming 5a < z in the upper
bound. It is not hard to obtain (53) from a well-known infinite series [15, p. 54] for
E(k) by using the inequality

3 k,2 1 k’2) (1 k’2) -1/2 l/k, 0 < k’ < 1,1 - <: 2F1(5, ;2; <

for the hypergeometric function 2F1. Unfortunately (58) does not lead to simple error
bounds for (54). Instead, we define f(z) R((x, y, z) and find from [7, eqs. (5.9-9),
(6.8-6)] that

1 fo0 tdt
f’(z)

V/(; -- X)(; - y)(; - Z)3/2"

Since this is a strictly decreasing function of z, the mean value theorem yields f(z)
f(O) - zf() where

f’() < ’() < f’(0) 1/4R(, , 0).

By (71) and (5) we see that

1 [.oo tdt 1
f’(z) >_

(t -}- a)(t -}- z)3/2 4(a z)[-V T aRc(z, a)].

Use of (33) and (22) completes the proof of (54).
4. Application to linear independence. In [7, Thm. 9.2-1] it is shown that

RE(X, y, z), RG(x, y, z), an integral of the third kind called Rg(x, y,z,p), and the
algebraic function (xyz)-/2 are linearly independent with respect to coefficients that
are rational functions of x, y, z, p. It then follows [7, 9.2] that every elliptic integral
can be expressed in terms of RE, RG, RH, and elementary functions. From (58) and
a known relation expressing RH in terms of Rj and RE, we may conclude that every
elliptic integral can be expressed in terms of RE, RD, Rj, and elementary functions.
To reach the same conclusion without invoking RG and RH, we shall use the results
of this paper to prove the linear independence of RF, RD, Rj, and (xyz)-/2 with
respect to coefficients that are rational functions.

THEOREM 1. The functions RE(X, y, z), RD(X, y, z), Rj(x, y, z, p), and (xyz)-1/2
are linearly independent with respect to coejficients that are rational functions of
x, y, z, and p.

Proof. Let (, f, T, and 5 be rational functions of x, y, z, and p. We need to prove
that

(59)

if and only if a,/, , and 5 are identically 0. We may assume that these coefficients
are polynomials since we can multiply all terms by the denominator of any rational
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function. As p --, 0, (42) shows that Rj(x, y,z,p) involves lnp, whereas all other
quantities are polynomials in p, whence _= 0. As z --. oo we have

(-- azm(l + O(I/z)), "( + o(/)),

where m and n are nonnegative integers and a and b are polynomials in x, y, and p.
Using (26) and (34) and multiplying all terms by 2z3/2, we find

azm+l[ln 8z (lz)] [+ 0 + 3bz’ In 8z
a+g a+g

2 + O (1-z)] +26(xy)-i/2z=--O.

Cancellation of the leading terms in In z requires azm+l + 3bzn =_ O, implying that
n m + 1 and a -3b and leaving

O(zm In z) 6bzm+l + 2 (xy)-l/2z =_ O.

Because the second term is of different order from the first and does not have a square
root in common with the third, it follows that b 0, whence also a 0. Since the
leading terms of the polynomials a and are identically 0, so too are a and . Finally,
with only one term remaining in (59), we have 0. []

It is an open question whether Theorem 1 is still true if the coefficients are alge-
braic functions instead of rational functions. However, polynomial coefficients suffice
(see the first paragraph of [7, 9.2]) to prove that every elliptic integral can be ex-
pressed in terms of RE, RD, Rj, and elementary functions.

Appendix: Elementary inequalities. Assuming x, y, z, and t are positive,
we list and prove some inequalities that are used in this paper to obtain error bounds:

x 1 1 x
(60) 2(+) v v’+ 2v’+

t 1 1 t
<() 2v(t + ) < / /t + v’t +

I I Ox 3
(62) t’3/2"- (t’ + x)3/2 t’3/2(t’ + x)’

1 < < ,
1 1 Ot’ 3

(63)
X3/2 (t’ -- X)3/2 X3/2(t’ -+- X)’

1 < 0 <
2

In the next five inequalities let a (x + y)/2 and g Vf-. Inequalities become
equalities in (64), (65), and (66) if and only if x y.

1 1
(64) 0g a,

t v/( + )(t + ) tv/( + )(t + )’

(65)
t’ < 1 1 < at.

(t + 1 v’(t + :)(t + ,1 v’(t + )(t + )’
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or, alternatively,

(66)
1 1 Ot

v/{ + )( + ) a(t + a)’
a

1<_0_<-,

(67)
1 1 Ot

4 4t + (t + ) /(t + )’ l<O<l+Y2x’

(68)
1 1 Ot

#(t + )(t + u)(t + ) gzv/(t + x)(t + y)’
a+g_
g z

Finally we have

b 1
(69) t3/2(t + b) < t3/2 v/(t + )(t + )(t + )

3a
< 2t3/2(t + a)’

where a (x + y + z)/3 and b V/3(xy + xz + yz)/2, and

t 1
(70) g3/2(t + g) <

V’(t + )(t + u)(t + )
3t

< 293/2(t + h)’

where g-- (xyz)1/3 and 3h-1

To prove (60) we write

1 1 t+x-vt
vq v’t+ v/t( + 1 v/t(t + )(4t + + vq)

and replace the last denominator factor by either 2v/ or 2V’t + x. Interchange of t
and x leads from (60) to (61). To prove (62) let y V/1 + x/t and write

$3/2(t+x) ( 1 1 )__ y2 (1) 1
X t312 (t-I-X)3/2 y2_ 1

1- 1 + y(y + 1)’

which increases from 1 to 3/2 as t increases from 0 to oo and y decreases from cx) to
1. Interchange of t and x leads from (62) to (63).

If the left side of (64) is put over a common denominator, it suffices to observe
that

(71) t + g <_ v/(t + x)(t + y)

_
t + a.

The left inequality is enough to prove the left inequality in (65). To prove the right
inequality in (65), we define

and note that (t) tends to a/g as t --. 0 and to 1 as t --. cx. Differentiation shows
that decreases monotonically, because

t2 4(t 2t- X)(t -- y))’ --(ta -}- g2) .. [(ta 2t- g2)2 t2(a2 g2)]1/2
_

O,
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with equality if and only if x y. Because of (71), (65) implies (66).
Equation (67) is proved by solving for and using (61). Likewise, (68) is proved

by solving for

t
(0 +

and using the result just established that 1 _< (t) _< a/g.
To prove (69) we use Maclaurin’s inequality [17, TAm. 52] to find that

t3 + 2bt2 + 4b2t/3 < (t + x)(t + y)(t + z) <_ (t + a)3,

and hence

(72) + < + + + <_ +

Inequality (69) follows from this and (62).
The proof of (70) uses Maclaurin’s inequality and the inequality of arithmetic and

geometric means to get

t+g<_ [(t+x)(t+y)(t+z)] 1/3-- [(l+-t) (1+g xyz x - 7
with equalities if and only if x y z, whence

(73) (t + g)3/2 <_ /’(t + x)(t + y)(t + z) <_ ()3/2 (t T h)3/2.

Two applications of (63) complete the proof of (70).
Acknowledgment. We thank Arthur Gautesen for suggesting the use of uni-

form approximations.
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UNIFORM AIRY-TYPE EXPANSIONS OF INTEGRALS*

A. B. OLDE DAALHUIS AND N. M. TEMME:

Abstract. A new method for representing the remainder and coefficients in Airy-type expan-
sions of integrals is given. The quantities are written in terms of Cauchy-type integrals and are
natural generalizations of integral representations of Taylor coefficients and remainders of analytic
functions. The new approach gives a general method for extending the domain of the saddle-point
parameter to unbounded domains. As a side result the conditions under which the Airy-type asymp-
totic expansion has a double asymptotic property become clear. An example relating to Laguerre
polynomials is worked out in detail. How to apply the method to other types of uniform expansions,
for example, to an expansion with Bessel functions as approximants, is explained. In this case the
domain of vlidity can be extended to unbounded domains and the double asymptotic property can
be established as well.

Key words, uniform asymptotic expansions of integrals, Airy approximation, Bessel function,
Laguerre polynomial, Bessel approximation
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1. Introduction. Many problems in mathematical physics and special functions
lead to integral representations of the form

(I.I) F(z, o) Jfc ezY(")g(x)dx’
where C is a contour in the complex plane, z is a large parameter, and f and g are
analytic functions on a neighborhood of C. In Airy-type expansions f depends on
a parameter a, the saddle-point parameter, that describes the location of the saddle
points. For a critical value of a, say, a 0, two saddle points coalesce with each
other. With the cubic transformation x - w, given by

(1.2) f(x, () 1/2w3 b2w + c

and suggested by Chester, Friedman, and Ursell [3], an asymptotic expansion for large
values of z in terms of Airy functions can be obtained, this expansion being uniformly
valid with respect to ( as a ranges over a connected set containing the critical value 0
in its interior. The parameters b and c are determined explicitly from the requirement
that the transformation (1.2) is analytic on a neighborhood of the two saddle points.
Transformation (1.2) yields the standard form

(i.3)
1 f eZ(}w3_b2W)ho(w)dw,

27i

where
dx

ho(w) g(x(w))--w
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The phase function has two saddle points at w +/-b. In the transformed integral (1.3)
we call b the saddle-point parameter. The integral (1.3) has a turning-point character:
the behavior changes strongly when b varies from real to imaginary values. When
b 0, the saddle points coalesce at w 0.

The method for obtaining the Airy-type expansion, based on an integration-by-
parts method, is introduced for a different class of integrals in Bleistein [1]. It is
described for the Airy case in Bleistein and Handelsman [2, 9.2], in Olver [10, 9.12,
9.13], and in Wong [19, 7.5].

The purpose of the paper is to present a new method for representing the remain-
der (and the coefficients) in Airy-type expansions. Two new aspects with respect to
the saddle-point parameter are introduced in this way.

(i) A general method is described for extending the domain of this parameter to
unbounded domains, by taking into account the singularities of the integrand function
(especially the distance between the singularities and the relevant saddle point). The
extension is possible since the order estimates of the remainder include information
on the behavior of the remainder as the saddle-point parameter tends to infinity.

(ii) The method clearly describes the condition needed for the double asymptotic
property of the expansion. That is, under certain conditions, the roles of the large
parameter and the saddle-point parameter may be interchanged in describing the
asymptotic phenomena. For instance, our analysis shows that the Airy-type expansion
of the Laguerre polynomials given in [7] does not have the double asymptotic property,
although the domain of uniform validity is indeed unbounded, as is claimed in [7].

Our method is based on a new class of rational functions with which the re-
mainders in the expansions can be represented in a manner that is analogous to the
representation of the remainder in the Taylor series of an analytic function. The ra-
tional functions do not depend on the integrand function and can be used as a general
tool in treating uniform Airy-type expansions. The method is mainly of theoretical
interest and delivers only order estimates for the remainders. In 8 we describe a
method for obtaining strict error bounds for remainders of Airy-type expansions.

Our methods are not restricted to Airy-type expansions. In 7 we consider some
other types of uniform expansions. In particular, a uniform expansion in terms of
Bessel functions is considered. In this case the extension of the domain can be ob-
tained, as can the double asymptotic property.

2. Related and earlier results. Airy-type expansions occur in the asymp-
totic theory of differential equations, for instance in turning-point problems; see [10,
chap. 11]. In this case the estimation of remainders in terms of realistic and strict
error bounds is well developed. Moreover, Olver extended the domains of the large pa-
rameter and the analogue of the saddle-point parameter to large areas in the complex
plane.

The situation for integrals is quite different. Although the uniform Airy-type
expansions have been extensively studied, a general theory for obtaining computable
strict and realistic error bounds is still missing. This problem is more difficult than that
for the case of differential equations. In transforming a given integral to a standard
form by means of a mapping x - w as in (1.2), a mapping a -. b is implicitly
introduced. Because of these two mappings, the function ho(w) in (1.3) may be difficult
to handle. In corresponding problems in differential equations only the mapping
b (or a related one) has to be considered. Another point is that in the theory of
differential equations several techniques for bounding the remainders exist, but these
techniques cannot be translated to the treatment of remainders of expansions obtained
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through integrals. An example is Olver’s method that is based on bounding the
remainders by using Volterra integral equations.

In [3] the analytical properties of the mapping (1.2) are considered locally around
the relevant saddle points; in Friedman [8] another proof is given. Levinson [9] gives
a fundamental mapping theorem that generalizes the mapping (1.2) considerably; see
also [19, 7.6]. In Qu and Wong [11] an iterative method is used for proving the local
analytic property of mappings that are more complicated than those defined by (1.2)
(there is a pole in the neighborhood of the coalescing saddle points). The transfor-
mation (1.2) is discussed in terms of conformal mappings on unbounded domains for
special cases; for instance, in Copson [4] for an integral defining the Bessel function
J,(z), in [10] for the Anger function (a function related to the Bessel function), and
in [7] for integrals defining the Laguerre polynomials.

Recent examples of the construction of strict bounds in uniform asymptotic ex-
pansions of integrals are presented in Shivakumar and Wong [12] and in Frenzen [5]
for Legendre-function expansions and in Frenzen and Wong [6] for Jacobi polynomials.
The expansions are not of the compound type that follows from the Bleistein method,
and a restricted number of terms in the expansions are considered. Another approach
is given in Ursell [17] for Legendre functions, where uniform bounds are obtained by
applying the maximum-modulus theorem. Ursell’s method does not give sharp com-
putable estimates of the remainders, and extension of the bounded domain of z to
an unbounded domain is indicated without proof. In Ursell [18] the Airy-type expan-
sion is discussed by using the maximum-modulus principle for complex values of the
saddle-point parameter. The possibility of extending the validity to unbounded do-
mains is mentioned again. Earlier, in Ursell [16], the Airy-type expansion is compared
with the steepest-descent expansion, giving a continuation to unbounded domains.
Qualitative results are obtained for the coefficient functions and the remainders; the
Bleistein sequence is not used.

In the Anger function example in [10] the region of the saddle-point parameter
is extended to an unbounded real domain by giving order estimates of the remainder.
Olver’s technique is based on estimating remainders of Taylor series. The expansion
is not of the Bleistein type but is obtained by expanding the integrand function at a
saddle point inside the interval of integration. The analysis shows that the distance
between singular points of the integrand function and that saddle point plays a crucial
role, although the singularities are not mentioned explicitly.

In the treatment of Laguerre polynomials in [7] order estimates for the remainders
are also given, and there is a claim of uniform validity with respect to the saddle-point
parameter in an unbounded real domain. The claim does not follow from investigating
the singularities of the integrand function. In the present paper we take into account
the singularities, and we show that the claim is indeed correct.

Soni and Soni [14] give new representations of the coefficients and remainders of
Airy-type expansions; these representations are based on an expansion of the integrand
function in terms of a class of polynomials. The paper is a continuation of earlier
papers by $oni and Sleeman [13] and Soni and Temme [15]. The coefficients and
remainder are written as contour integrals of the integrand function and rational
functions related with the polynomials. New order estimates of the remainder have
been derived for a finite domain of the saddle-point parameter.

3. Uniform Airy-type expansion. Let

1 /1: w3-b2w) (w)dw,F(z, b) ez(- ho
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where ho(w) is an analytic function on a neighborhood of/, with L a suitable contour
that begins at ooexp(-1/2ri) and ends at ooexp(ri). When b E [0, oc) we take the
steepest-descent contour through b, which is given by {w z + iy E C y2
3z -3b} (see Fig. 3.1), such that Im(1/2w3 -bw) 0 and 1/2w -b2w attains its
maximum on at b.

FIG. 3.1. Steepest-descent curve L: when b [0, oo).

When b e [0, icx) we take {w x q-iy e C I3yx2 (y +/- ib)2(y q= 2ib)), the
steepest-descent contour through +/-b (see Fig. 3.2).

FIG. 3.2. Steepest-descent curve when b E [0, ioo).

It is not necessary to restrict our analysis to these contours of integration, but using
these steepest-descent contours makes the following calculations less complicated.

We use Bleistein’s method for obtaining an asymptotic expansion, defining gn(w),
hn+l(W), n 0, 1, 2,..., by writing

(3.2)
hn(w) on + nW + (W2 b2)gn(w),

d
hn+l (W) Wgn(W),

with an, n following from substitution of w +/-b. If we use (3.2) in (3.1) and
integrate n times by parts, we obtain

n--1 n--1

(3.3) F(z,b) Ai(z2/3b2) (--1)kkz-k-1/a--Ai(z2/3b2)
k=0 k=0

where

(3.4) n (-1)nz-n-r- eZ(1/2w3-bw)hn(w)dw
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and where Ai(z) is the Airy function and Ai’(z) is its derivative. The functions hn(w)
share, by inheritance, the analytic properties of h0 on the same neighborhood of .

Estimates of lenl, for large values of z and for Ibl bounded, given in the literature
are usually of the form

nMT/ Nnlenl <- z 3 n(b)lAi(z2/3b2)l / zn+2/3n(b)l’(z2/3b2)l’
where Mn and Nn depend on n and where n, /n are related to the coefficients in
(3.2). Furthermore,

(3.6)
{ Ai (u)

Ai (u) [Ai2(u +Bi(u)]/
, { Ai’(u)
Ai (u) [Ai,2(u) + Bi,2(u)] 1/2

if u>_ 0,
ifu

ifu >_ 0,
ifu < 0.

A proof of an estimate like (3.5) is given in [7], with

n(b) ( 1 if0<b<, {1 if0<b<,
lanl ifb>, /n(b)= i/n ifb>,

where is a fixed positive number.
Notice that the influence of large Ibl in (3.5) is not clear. We assume that the

function h0 of (3.1) depends on the saddle-point parameter b. Usually this is a con-
sequence of the transformation to the standard form (3.1) by the mapping defined in
(1.2). Also, when h0 does not depend on b, all functions hn obtained by recursion
from (3.2) do depend on b.

For bounded Ibl an estimate like (3.5) holds for rather mild conditions on h0.
However, for obtaining uniformly valid estimates when b runs through an unbounded
interval, we need more information on h0. In the following sections we obtain estimates
of Ihn(w)l by formulating conditions on h0 on discs with centers 4-5. These discs have
radius p(b), which indeed may be a function of b.

For obtaining estimates of en of (3.4) holding in unbounded b-intervals, we now
introduce a new class of rational functions.

4. Intermezzo: A new class of rational functions. We introduce a class of
rational functions that satisfy the following theorem.

THEOREM 4.1. Let

1
(4.1.a) Ro(u, w, b) ,

U--W

(4.1.b) Rn+ (u, w, b) u2 b2 du (u, w, b) n 0,1,2,...,

where u, w, b E C, u w, u2 b2. Let hn(w) be defined by the recursive scheme (3.2),
with ho(w) a given analytic function in a domain G. Then we have

h(w) Rn(u, w, b)ho(u)du,

where is a simple closed contour in G that encircles the points w and 4-b.
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Proof.

27ri
Rn(u, w, b)ho(u)du.

In * we use the fact that the rational function R(u, w, b)(aa- //a-u) is O(u-2)
as lul --. cx) and that all the poles of this function are inside (. Thus the integral
of this function along ( vanishes (use the transformation u -, u-, which is well
defined at u o and yields an integral with no singularities inside the contour of
integration). [:]

COROLLARY 4.2. Let Aa(u,b), Ba(u,b) be defined by the recursion in (4.1.b),
with initial values

u 1
(4.3) Ao(u, b) u2 b2 Bo(u, b) u2 b2

Then for n O, 1, 2,..., the coecients aa, /a of (3.2) can be written as

(4.4) aa Aa(u,b)ho(u)du, a Ba(u, b)ho(u)du,

where is a simple closed contour in G that encircles the points =l=b.
We observe that the rational functions defined by (4.1) are independent of the

function h0 and that representation (4.2) can be considered as the analogue of the
Cauchy integral defining the remainder of a Taylor series. An estimate of ha, the
integrand function of (3.4), will be obtained as in Cauchy’s inequality for bounding
the coefficients of a Taylor series.

By induction with respect to n, it follows that Rn has an expansion of the form

(4.5) Rn(u,w,b) ZZ (u_w)a+-i-J(u2_b2)a+i’
n= 1,2,...,

i=o j=o

with ka, rain(i, n- 1 -i) and where Ci do not depend on u, w, and b.
We conclude this section by giving estimates for Rn and for integrals of this

function; these can be proved easily with (4.5).
(i) Let w e C such that Iw b[ O(b) as b --, o, and let r be a simple closed

contour that encircles b and w. Then for n 1, 2,...,

1 9fr Rn(u, w, b)du O(b-3a)
2i
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(ii) Let b e C and ft(b) {(u, w) e C2 lu b p(b), Iw b <_ 1/2P(b)}, such
that p(b) O(tbl) as b --, oo, where -1/2 < 0 _< 1. Then we can assign numbers An
independent of b, such that

sup IRa (u, w,
(u,w)e(b)

5. Extension of the domain of validity. In this section we prove that, under
certain circumstances, expansion (3.3) holds uniformly with respect to the saddle-point
parameter b in unbounded domains.

For defining the radius p(b) of the discs mentioned at the end of 3, we first define

(5.1) po(b) min(lw +/- b w is a singularity of ho(w)}

and we assume that, for large Ibl, we have po(b) >_ 8olbl, where the constants 80 and
satisfy 0 > 0, > -1/2. This is the essential assumption on ho(w) in the neighborhood
of the saddle points.

Now we take p(b) <_ po(b) such that p(b) 8lbl as b --, oo, where the constant
i > 0. We take _< 1 as large as possible, and we drop the restriction _< 1 after
Theorem 5.2. Notice that we concentrate on estimates with Ibl --* o and that we do
not give details for b in compacta.

Next we introduce upper bounds for the ha(w), n -0, 1, 2, Thus let

(5.2) ha sup

Notice that ho(w) is analytic on Iw +/- b < p(b); thus h0 is finite.
For obtaining estimates of ha in terms of h0 let r be a circle around +/-b with

radius p(b) and let Iw = b <_ 1/2P(b). We require g 1 to ensure that both saddle
points are not inside the circle F. This is possible by choosing 8 appropriately. Then,
if we use (4.6), we have

ha(w) Ro(u, w, b)hn(u)du

27il R1 (u, w, b)ha- (u)du R(u, w, b)(a- +/a-u)du

--(4.6) / R(u,w,b)ha_(u)du + hn-O(b-3)

--(4.6) Rn(, w, b)ho(u)du + ha-O(b-3) +... T hoO(b-3a)

as b --. c. So by induction and (4.7) we have proved the following theorem.
THEOREM 5.1. Let ha, n O, 1, 2,..., be the upper bound of ha(w), defined in

(5.2). Then we have the estimate

ha <_ Calb]-(l+2e)aho as b--

where Ca does not depend on b.
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Now we shall prove that en can be bounded as follows:

(5.4) Inl <_ Cn(Ibl + 1)-(l+2)nhoz-n-1/3Ai(z2/3b2),
with a slightly different Cn that does not depend on b and z.

In order to use the preceding estimates, we split up the contour into and
". In the case that b e [0,) we te ’ {w e w- b] p(b)}, d in the
ce that b e [0, i) we te ’ {w e [w b p(b)}. We define " ’d introduce the corresponding inteals:

1 eZ(}wS_bw)hn(w)dw,
1 . _b)e,, (--1)nZ-n ez( hn(w)dw

In the AppendN we formulate conditions on ho(w) such that when 0 > -] the
estimate of ]enl:,, is exponentially smMl comped with the estimate of [el,
z uniformly with respect to b.

The proof of (5.4) for lge b is divided into sepate ces: (i) b e [0,) and (ii)
b e [0, i). We first consider ce (i). With (5.3) we have

1 [ _b)n, Cnz-nb-(l+2)nho ez( dw

Cnz-n-1/3[b-(+2a)hoAi(z2/3b2).

In ce (ii) we ite w x + iy d we define (y > 0 there ests
x R x + iy }. Simple transformations give

where

f(Y) 2(2y ib)21y 3y
g(Y) iy- + ib(y + ib) i 3y

3y2 y- 2ib

Note that the functions have real arguments and that g(y) > O. Thus with (5.3) we
have

i
ez(lwa-bw)hn(w)dw

1 f e_(u+,).y(u)(1 + g(y))(Ih,(w)l + Ih.()l)dy< 2-’
+

<_ Clbl-(X+zo),ho
v/zb/i

,’,, 7rl/2Ctnlbl-(l+2O)nhoz-1/3Ai(z2/3b2),



312 A. B. OLDE DAALHUIS AND N. M. TEMME

as z -- cx. In * we have used the relation Ai(x) 71"-1/2(-x)-1/4 as x --(X); see
[10, p. 395].

In the Appendix we prove that

I,l:.

_
Cne-X(z-t)lblZa+Xoz-n-4/3l(Z2/3b2),

where the positive Cn, ), and # do not depend on b and z and where Ibl _> c > 0.
These estimates show that (5.4) is valid. Thus we have proved the following theorem.

THEOREM 5.2. Let F(z, b) be of the form (3.1), where ho(w) satisfies the condi-
tions mentioned in the beginning of this section and in the Appendix. Then we have
(3.3) as a uniform asymptotic expansion for F(z,b), where (5.4) is an estimate for
lenl as z --. cx uniformly with respect to b E [0, c) t.J [0, icx) and where ho is given in

Now we drop the restriction 0 _< 1. In the case that > 1, the analysis that leads
to Theorem 5.2 is much easier; every time 1 + 20 occurs it can be replaced with the
larger factor 30.

Remark 1. With the conditions of Theorem 5.2 it follows that expansion (3.3) has
a double asymptotic property: the roles of b and z can be interchanged. The double
asymptotic property is lost in the example considered in 6.

Remark 2. An estimate like (5.4) has been derived in [10, p. 360] for a particular
example. There the estimate for the remainder of an expansion of the Anger function
A_ ( sech a) reads

en(a, )= (1 + )-(n+l)y-(n+l)qin(y])O(1),

where Qin(z) is a special function, 3/2 a- tanha, and 0 -1/4. This estimate
holds as y --* x) uniformly with respect to a E [0, o) or [0, cx). Indeed, the value
0 -1/4 is related to the distance between the relevant saddle point and the nearest
singularities of the integrand function, which is of order -l/a as

6. Laguerre polynomials: A boundary case. In this section we show that,
in certain circumstances, the condition 0 > -1/2 of Theorem 5.2 can be replaced with
0 -1/2. We demonstrate this feature by considering a recent expansion for the
Laguerre polynomials.

First we summarize the main steps for obtaining an Airy-type expansion of the
Laguerre polynomials. More details are given in [7] and [19]. Laguerre polynomials
have the following integral representation:

(6.1)
1 f(l/) al(--1)N2ae-Zt/2L()(zt)-
+o

ezl(’O(1 x2)--dx’

where the contour of integration begins and ends at +cx and encircles I in the positive
direction and where

(6.2) f(x,t)=- ln 1 x

and z 4N + 2a + 2, c > -1, and t > 1. Again, we use the transformation

(6.3) f(X, t) 1/2W3 b2w.
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The x-saddle points +/-V/1- 1/t should correspond with +/-b. It follows that

b3 (x/t2 -t-arccoshx/)
With transformation (6.3) we have for (6.1)

1 iwa-b2w) (w)dw,(--1)N2ae-z/2L()(zt) ez( ho

where

(6.6) ho(w) (1 x2)" dx
2
(1 x2)- (w2 b2)

1 t(1 X2)

and is given in Fig. 3.1. Again, using (3.2) in (6.5), we obtain

n-1

(--1)N2ae-zt/2L) (zt) Ai(z2/3b2) E(--1)kckz-k-1/3
k--O

n-1

Ai(/b) Z(-1)k--/a +

where e, is as in (3.4).
To apply the analysis of 5, we locate the relevant singular points of ho(w). Let

xo y/1- lit be the positive x-saddle point when t > 1. The point xo is mapped
to w(xo) b by the mapping given in (6.3), when the logarithmic function takes its
principal value. However, the points x0 at other sheets of the Riemann surface of the
log function are singular points of the mapping (6.3). Then the phase of 1 x0 is, for
instance, 2r. When b 0 the singularities w S+ nearest to b satisfy S+/-=I3 +/- 1/27ri,
whereas

(6.8) S+ b =l= rb as b --. o

Thus po(b) of (5.1) is of order b-l2 as b --. o.
As before, we want to split up into and ", and define enid,, enid,, similar to

(5.5). So define ’ (w E Iw-bl g 6b), where the constants and 0 satisfy i > 0
and -1/2 < 0 <_ 1, in order that the estimate of lenle, is exponentially small compared
with the estimate of lenin, as z --. cx) uniformly with respect to b. We choose 0 close

to-1/2 fixed.
Let F0 be a closed contour which encircles such that

length ra O(ba), distance(Fe, ’) cb-1/2 as b --, c

and such that ho(w) is analytic on I(r0), where I(r0) is the closure of the interior of
F0. Then straightforward calculations give that

(6.9) sup ]h0(w)l < Cob(+1/2)"lho(b)] as b-. cx),
weI(ro)
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where Co does not depend on b. Further calculations, similar to those in 5 yield, for
n= 1,2,...,

(6.10) sup Ihn(w)l

_
Cnb(+1/2)(a+l)lho(b)l as b--. o,

ex(r0)

where, here and below, Cn denotes a generic quantity that does not depend on b and
z. Notice that, in contrast to (5.3), the power of b is positive and does not depend on
n. These estimates yield

(6.11) {e",nl,,::, Cnz-n-U3bC-Da+(-1/2)Ai(z2/3b2).

In (6.11) we used

ho(b) t
In the Appendix we prove that

(t- 1)1/4t3/4"

(6.12) <- CnZ-n-4/3e-XCz-2)ba+ Iho(b)lAi(z/3b2),

where the positive Cn and A do not depend on b and z. It follows that we can assign
numbers Ca, independent of z and b, such that

(6.13) Cnz-n-ll3(b + 1)(o-Da+(o-1/2)Ai(z2/3b2),

as z --, oo uniformly with respect to b E [0, cx)). A similar approach can be used for
b e [0, i7.], where 0 < 7. < (7)1/3, 7" fixed.

We can compare this estimate with the estimate given in [7] and [19], which is of
the form (3.5). First, we notice that (6.13) is not in the form of the first neglected
terms of expansion (6.7). But with (6.10) it easily follows that the first neglected terms
can be estimated by the right-hand side of (6.13). Regardless, (6.13) clearly shows why
expansion (6.7) holds uniformly with respect to b in an unbounded domain. Secondly,
in (6.13) the influence of b is more transparent than in the right-hand side of (3.5).

7. Other uniform expansions generated by the Bleistein method. In
this section we show that the methods used for the Airy-type expansions are quite
general and can be applied to other uniform expansions of integrals of the form

(7.1) Jfc eZlOr’b)h(x)dx

with coinciding saddle points and singularities. In this section we work out an example
of uniform expansions in terms of Bessel functions. In [7] such an expansion of the
Laguerre polynomials is given. Let

1 /(o+)F(z,A) -i_o w-"-lh(w)e1/2Z(w-A2/)dw’

where the contour of integration begins and ends at -x) and encircles the origin in
the positive direction. We assume that ho(w) is analytic on a neighborhood of the
contour of integration, and we let z > O, iA > O, and a > -1. Notice that +iA are
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FIG. 7.1. Steepest-descent curve for integral (7.2).

the saddle points of the integral. We choose the contour of integration through these
saddle points, and the steepest-descent path looks like Fig. 7.1.

The recursion in connection with integral (7.2) is

(7.3)
h,(w) , + ’ + 1 + ,(w),

d
[W_O_ign(W)],hn+l (W) W(’q"I-w

and if we integrate n times by parts, we obtain the expansion

where

1 /(+’
ea (-1)a

.,-o,:,

w-’-:ha(w)e1/2"(-A2/)dw

and where J,(z) and Ja+l(Z) are Bessel functions of the first kind. Since zA is purely
imaginary, modified Bessel functions occur in the expansion.

The class of rational functions generated by (7.3) is recursively defined by

(7.6)

1
Qo(u,w,A) ,

U--W

-I (c+lQa+x (u, w, A)
i + A2/u2 u d)+"d-u Qa, n 0,1,2,

By induction with respect to n it follows that Qa has an expansion of the form

n-1 a-i Cij(A2/u2)(7.7) Qa(u,w,A) ZZ (u_w)a+:-,-ju,+J(1 + A2/u2),+,
n= 1,2,...,

i=0 j=0

where the CO do not depend on u, w, and A.
Again, we concentrate on the influence of A on the expansion (7.4), especially

when AI is large.
If F is a simple closed contour that encircles iA and w and with -iA in its exterior,

then we can prove, just as for (4.6), that

(7.8)
1 Jfr2r--- Qn(u, w,A)du O(IAI -,) as IAI .
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As before, we want to split up into/Y and :". We assume that, for large IAI, the
distance from the singularities of ho(w) to the saddle points +iA is at least
where the constants , satisfy 8 > 0, 1/2 < 0 _< 1. Consequently, we take
{w e Iw- iA[ <_ 1/2IA[} and " - ’ such that the estimate of
exponentially small compared with the estimate of lenin, as z --, o uniformly with
respect to iA [c, o), where c > 0 fixed. In fact, we need a growth condition on
ho(w) on a prescribed neighborhood of ", which is similar to the condition mentioned
in the Appendix.

If we set f(A) {(u, w) e C2 lu- iA IAI, Iw- iA <_ 1/2lAl}, we can
prove

(7.9) sup IQ,(u, w,A)[ < ClAl(-2o)-o,
(,)a(A)

where Cn does not depend on A. Finally, we define

h0 sup
Iw:J=iAl <_ (1/2)61AI

With (7.8), (7.9), and straightforward calculations similar to those leading to (5.3),
we obtain, for n 1, 2,...,

(7.11) sup Ih,(w)l <_ CnlAI(-:)nho as IA ---, o,,
I-AI< /2)IAI

where C does not depend on A. With the aid of these estimates we obtain as the
main result of this section

(7.12) le,l <_ Cn(IAI + 1)(-2)’-’hoz-nlJ,(zA)l
as z --. o uniformly with respect to iA [0, oo), where Cn does not depend on A and
Z.

In the case that 0 > 1 we can use the same analysis that leads to (7.12), but every
time 1 20 occurs it has to be replaced with -0.

A similar approach is possible for real values of A.

8. Strict upper bounds of the remainder. In this section we assume that
we have quantitative information on the functions h,(w) and that we can construct
upper bounds for the remainders en of (3.4). The simplest case is that we know
that Ih,(w)l is bounded on . If b >_ 0, an upper bound for en can be easily ex-
pressed in terms of this bound and of the Airy function Ai(z2/3b2). When b2 < 0
(the oscillatory case), the bound can be expressed in terms of the modulus function

[Ai2(z2/3b2) + Si2(z2/3b2)] /2 (see also (3.6)).
When the maximal value of Ih,.,(w)l occurs at w w0, with w0 far away from the

saddle point w b, the upper bound obtained in this way may be quite inaccurate.
The fact is that the main contributions to the integral (3.4) come from a small neigh-
borhood of b, especially when z is large. To obtain realistic upper bounds of lenl we
describe a different approach in which we also allow unbounded functions ha(w). We
concentrate on the case b > 0.

The contour can be parameterized by writing w x + iy, 3x2 y2 3b2. By
using this and integrating with respect to y, the integral (3.1) can be written in the
form

e-zb3
(a.1) e, (-1), -, e-*(lH,()
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where

and

+ gY + b3, + ]H

1dx -y

When h0 1 and n 0 we obtain the real representation for the Airy function:

.]zb3 [2(8.2) Ai(z] b2)
ze-

J- e-Z(U) dy.
27r o

To bound er. we assume that for fixed b the function Hr.(y) is majorized by

(8.3) [Hr.(y)[ <_ Mne’’4(), -oo < y < oo,

where Mr, and at. are nonnegative numbers that may depend on b. Observe that, in
fact, only the even part of the function Hr. (y) needs to be bounded in this way; when
hr.(w) is a real function, the even part of Hr.(y) equals the imaginary part. The best
strategy is to start with Mr. and to define it slightly larger than IHr.(O)l Ihr.(b)l
(when this quantity vanishes a minor modification is needed), say, Mr. 1.251hr.(b)].
Next we determine the smallest number at. that satisfies the upper bound in (8.3).
When Ihr.(w)l is bounded on and assumes its maximal value on at w w0
xo + iyo, one may take Mr, IHn (Y0)I and an 0. However, as mentioned previously,
when y0 is not close to zero, the resulting bound may be unrealistic. When an > O,
the argument of the exponential function in the right-hand side of (8.3) is unbounded;
thus we accept unbounded functions Ihn(w)l. Observe that far away from the origin
the estimate (8.3) may be very rough, but there the contribution to the integral (8.1)
is negligible, especially when z is large.

Using (8.3) in (8.1) (when z > on), we obtain with (8.2) the estimate

(8.4) lenl <_ Ur.z-r*(z an)-Ai ((z ar.)]b2) e-], z > at., b >_ O.

The factor Mn contains the information on the parameter b; especially, it contains the
information on whether or not the expansion holds uniformly on unbounded b-domains
and has the double asymptotic property.

This bound is computable when the function ha(w), w f is computable. Rep-
resentation (4.2) may be helpful in computing ha(w). We expect that the bound in
(8.4) is realistic for a wide class of functions ho(w).

When the function ha(w) grows too fast with b, the number an may be an un-
bounded function of b. In that case the bound in (8.4) loses its uniform character. For
example, when ho(w) exp(-wZb2) it is easily verified that the minimal value of 0
tn t -0

When b E [0, ic) a similar approach is possible by majorizing the function hn(w)
on the contour of Fig. 3.2. The analysis and the resulting bounds are slightly more
complicated. Details will not be given.

9. An example. We consider the function

1 f w_ dw,(9.1) F(z, b) eZ(i b:w) 1
w-b-1
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where b E [0, oo) and is the steepest-descent contour shown in Fig. 3.1. F(z, b) can
be written as an integral of the Airy function, that is,

F(z, b) e(b+l) --e1/2 z(b+l)3 q- z- e(b+l)tAi(tz-} ) dt zb2.

In this example we have ho(w, b) 1/(w- b- 1). Thus the quantities introduced in

(5.1) and (5.2) are as follows: po(b) 1, 0 0, and h0 2. It is easily verified that

-1 -1
h(w) (2b + 1)(w- b- 1)’ h(b) 2b + 1’

b2 + 4b + 2- (b + 1)w h2(b) -2h2(w) 2
(2b + 1)3(w- b- 1)3’

Further calculations show that

F(z, b) Ai(z2/3b2)aoz-X/3 hi(zZ/3b2)oz-2/a +

(a) z-I/3 Ai’(zZ/ab2,(o(9.2)
Ai(z/ab) ao

z

with

(9.3)

3b+ 2

(2b + 1)3.

b+l 1
a0"- f0"-2b+ 1’ 2b+ 1’

2b2 + 2b + 1 b2 + b
a=- (2b+1)3 /=-2(25+1)3,

-4
3b3 + 5b2 + 3b + 1 6b2 + 10b + 5

a2-- (2b+1)5 /2--2 (2b+1)5

We can determine the numbers Mn, an occurring in (8.3), but already for this sim-
ple example optimal values have to be computed numerically. Analytical bounds
of ImHn(y) are easily obtained, however. For example, we have (recall that x
J(1/3)y2 + b)

ImHo(y) im [(i + yy) 1 ] b2 (b+ i)x
x+iy-b-1 =x[(x-b-1)2+3x2-362] x_>b

(changing to x gives better formulas). When b _> 1/2 we have IimH0(y)l _< Ih0(b)l;
when b E [0, 1/2) the maximal value of IImH0(y)l is slightly larger than Iho(b)l. Similar
results hold for n 1,2, where the critical b-values are b 1/2,b (v/ 1)/6 0.27,
respectively. It follows that in this example the remainders can be estimated in terms
of the first neglected terms of the asymptotic expansion (note that hn(b) an + bln):

1

(9.4)
levi -< Ih(b)lz-a/3hi(z2/3b2)’ b > -,
Is2] < ]h2(b)lz-7/3Ai(z2/3b2), b > .vrq-x

These estimates may be compared with the order estimates (5.4) obtained from less
qualitative information on the functions hn(w).

Appendix. We formulate conditions on ho(w) such that the estimate of lenin,,
is exponentially small compared with the estimate of lenin, as z -- cx) uniformly with

respect to b. We take , ’, ", p(b), , O, enlz.,, nl=,,, and n as in 5. Define

)1.T(w, b,p, q, r) rlw-qe(]-+
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We assume that ho(w) is an analytic function on a neighborhood f0(b) of ", such
that for every w E a disc with center w and radius T is contained in f0(b), where
r > 0 and p, q >_ 0 do not depend on b and w. Note that, since w E , 7 may be
exponentially small as Iwl --* oo. Furthermore, we assume that there are constants
a _> 0 and Co > 0 such that

(A.I) Ih0(w)l _< Co’ole-’r(’3-bw+ab)l Vw e fo(b) U , b [0,

Thus we allow functions ho(w) to be exponentially large as Iwl
We define recursively neighborhoods fn(b) of: for n 0, 1, 2, Let fn+l (b)

be those w lln(b) such that the disc with center w and radius 2-(n+l)T is contained
in n(b).

Next, let w fn(b) and let r be the circle with center w and radius 2-T. The
following two weak asymptotic estimates are simply proved with (4.5):

(A.2) 27ri r Rn(u, w, b)umdu

(A.3) sup IP(u, w, b)l O(le-((’+x)P+1/2)(i’-b’+ab)l)
uEr

as Ibl-* oo uniformly with respect to w e fn(b) and m e {0, 1}.
Now we can estimate hn(w) on fn(b).

=(A.2) i Rn(u, w, b)ho(u)du --b (n-1 q-"" "- ho)O(le-h’+b-el)
--’(A.3) & (5.3)

Thus with (5.3) we have proved that

(A.4) Ih.(w)l <_

for all w e fn(b) t.J . and b e [0, oo) U [0, ioo).
For b > c > 0 it is not difficult to prove that " {V/(1/3)y2 + bZ+iyllYl >_ a,bO}

for a certain positive 8 that does not depend on b. With the notation of 8 we have

e- zb3
e, r., (-1)’ z " 27ri

e-z(u) [Hn(y)+ Hn(-y)] dy.
b
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We choose z >np + 2 + a and estimate

With similar estimates for b E [ic, ic) we have proved

(A.5)

where the constants and Cn do not depend on b and z.
Remark. For the boundary case that has been handled in 6 it is not difficult

to prove that p a 0, and (6.10) shows that in (A.4), h0 can be replaced by
(b+1)(e+1/2)(a+) ]h0(b)l, and further calculations show that in (A.5) h0 can be replaced
by ]ho(b)l.
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UNIFORM ASYMPTOTIC SOLUTIONS OF SECOND-ORDER
LINEAR DIFFERENTIAL EQUATIONS HAVING A SIMPLE POLE

AND A COALESCING TURNING POINT IN THE
COMPLEX PLANE*

T. M. DUNSTERf

Abstract. The asymptotic behavior, as a parameter u oo, of solutions of second-order linear
differential equations having a simple pole and a coalescing turning point is considered. Uniform
asymptotic approximations are constructed in terms of Whittaker’s confluent hypergeometric func-
tions, which are uniformly valid in a complex domain that includes both the pole and the turning
point. Explicit error bounds for the difference between the approximations and the exact solutions
are established. These results extend previous real-variable results of F. W. J. Olver and J. J. Nestor
to the complex plane.

Key words, turning point theory, differential equations in the complex plane
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1. Introduction. In this paper we seek asymptotic solutions, as u - c, of
second-order linear differential equations of the form

(1.1)
d2w
dz-- {1/2f(a, z) -t- g(a, z) }-w,

where u and a are real parameters and the independent variable z lies in some complex
domain D (which may be unbounded). The particular case we shall consider is where
f(a,z) has a simple zero located on the nonnegative real z-axis at z zt(a), with
.f(a,z) having no other zeros in D. We assume that (z- zt(a))-l.f(a,z) is either real
and negative on the positive real axis (we shall call this case I) or real and positive on
the positive real axis (case II). These two cases are considered separately in 2 and
4, respectively.

The position z zt(a) of the turning point of the equation is assumed to be a
continuous real function of a, which tends to z 0 as a approaches a critical value,
say, a0 At the point z 0 we assume that f(a, z) has a simple pole, except in the
critical case a a0 when the turning point coalesces with the pole. By an appropriate
scaling, we may assume without loss of generality that a0 0. We shall then examine
(1.1) for a lying in some closed interval 0, A (with A a fixed positive number).

Both the pole and the turning point are to lie in D, and both f(a, z) and g(a, z)
are to be holomorphic in D and continuous functions of a and z, simultaneously,
except possibly at z 0 (where they may have poles of certain orders). In particular,
the function g(a, z) may either be analytic at z 0 or have a simple or double pole
there. Moreover, we assume that limz-,0 z2g(a, z) is independent of a and that

(1.2) lim z2g(a,z) > -1/4

(see (2.7) in 2). The reason for the restriction (1.2) is that we require the solutions
of (1.1) to be monotonic near the regular singularity z 0 they would be oscillatory
otherwise.

In the real-variable case Nestor [4] derived uniform asymptotic approximations
for solutions of second-order linear ordinary differential equations having a coalescing
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turning point and simple pole, in terms of Whittaker functions. In this paper we
extend Nestor’s results to the complex plane, constructing asymptotic solutions to
(1.1) also in terms of Whittaker functions, which are valid in certain subdomains of
D, uniformly for u > 0, a E [0, A]. Not only are the present results more general in this
regard, but in some instances they are valid for a larger parameter range and include
a full set of numerically satisfactory solutions. In particular, for what is equivalent to
our case II, Nestor imposes the restriction m _< 1/2 and does not construct a uniform
asymptotic solution that is always recessive at the pole z 0. By working in the
complex plane we are able to overcome both of these restrictions.

It is worth noting that having asymptotic approximations that are valid in the
complex plane can be of importance in subsequent identification of standard solutions
of (1.1) with the asymptotic solutions. This identification is often greatly facilitated
by using complex variables.

Examples of differential equations that are of the form (1.1) are the differential
equation satisfied by the Jacobi polynomials and the differential equation satisfied by
the Mathieu functions (in their algebraic form). The latter equation is the motivation
for the present investigation; having asymptotic solutions in a complex domain con-
taining all the critical points will allow a certain analytic continuation, which in turn
should provide asymptotic information on the characteristic exponent of Mathieu’s
equation.

The new results in this paper in effect unify two current asymptotic theories of
a turning point in the complex plane and a simple pole in the complex plane, given
in Olver’s book [5, Chaps. 11 and 12], and can be regarded as complementary to
currently existing uniform asymptotic theories concerning coalescing critical points
(see [1], [3], [4], [6]). The first such investigation is in the famous paper of Olver
[6], who constructed uniform asymptotic approximations of equations having two
coalescing turning points. By an appropriate Liouville transformation Olver arrives
at equations of the form

d2W/d2 {=t:u2(c2 if2) + (u, c, )} W

and derives asymptotic solutions in terms of parabolic cylinder functions. These are
uniformly valid for u > 0 and c lying in some closed interval that contains the critical
value a 0 (when the two turning points at =t=c coalesce). Olver treats the
case for which the principal part of (1.3) is real, that is, for either real or purely
imaginary.

In a review paper of 1975 on asymptotics [8], Olver mentions that one of the
unsolved problems is an extension of the coalescing turning point theory to the com-
plex plane. The results of this paper partly achieve this goal. To see this, consider
(1.3) with now regarded as complex, with arg () <_ 7r/2. By the simple Liouville
transformation on (1.3)

(1.4) z -2, W(Z) ’l/2w(’),
we arrive at the equation

(1.5)
d2w {(a-z) 3 (u,o,)} w (a o2)
dz2

=t=u2 --z 16z2 4z

where arg (z) _< 7r. If (u, a, ) is an analytic function of z at z 0, then (1.5) is
a special case of the general class of equation we are investigating (satisfying (1.2)),
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the 4- corresponding to cases I and II, respectively. Other ranges of arg(() can be
considered either similarly or by using appropriate connection formulas for the special
functions under consideration.

Olver applies his results of [6] to the associated Legendre equation [7] and to
Whittaker’s equation [9]. The present theory can also be applied to the associated
Legendre equation.

2. Case I: (z zt(a))-:f(a,z) < 0 on the positive real z-axis. Our first
step is to make the following Liouville transformation:

(2.1a) f(a, z)
a

(2.15) W() w(z),

where a is a nonnegative parameter that will be specified shortly, so that z 0
corresponds to 0. Integration of (2.1a) yields the relationship

(.) d

the lower limits of inteation being chosen so that z zt(a) corresponds to a.
Explicit inteation then gives

(2.3) /( )/ {-](a, t)}/ dr.

Brches for the points z 0 ( 0) and z zt(a) ( a) must be chosen so
that (z) is alic nction of z at both z 0 d z zt(a). We temporily
introduce cuts ong the real z- d &es, om - to adom z -to z z(a). Our choice of brches is such that both sides of (2.2) (d (2.3))
e re d positive when z is lying in the re inte z > zt d e continuous
elsewhere.

We now define a so that z 0 corresponds to 0 om (2.2) we see that this
is hieved by speciing

(2.4) dv {f(a, t)}/2 dr,
T

which om (2.3) gives the following definition of a a continuous nonnegative real
nction of a:

2 zt }/2(2.) {(,, t) dr.

We shall assume that a is a stctly increasing nction of a. Note that a tends to
zero a approaches the critical value 0. In this limiting ce the z relationship
is given simply by

(.) ( {-I(o, t)}/
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We denote by A the domain corresponding to the z domain D. Therefore, of
course, both the critical points 0, a lie in A. Also, we denote a A as the
corresponding value of a A.

Let m be a nonnegative real number such that

(2.7) lim z2g(a, z) m2 1

z--O 4"

Then, the effect of the preceding transformations is to yield the new differential equa-
tion

(2.8) d2
where, with dots representing differentiation with respect to

(2.9) (-/2) +2_ e2
4.

om (2.1a) and (2.9) we find that

a2 + 42_ 16m2(a_ )2 (a- )(4ff" + 16f2g- 5f’2)(2.10) (a,e) +16e(a e)2 163
where primes represent differentiation with respect to z. If one recls that z() is

alic A, it is strghtfod to show om (2.7) d (2.9) that (a,) is Mic
nction in
is continuous for 6 A d a 6 [0, A]. The proof of this is a frly strghtforwd
exercise using Cauchy inte representations for z d its -deritiv. The cor-
responding proof for the real-iable ce is considerably more difficult (c [6, pp.
142-1501).

If one neglects the term (a,)/ in equation (2.8), the resulting "compison
equation" h solutions thatc be expressed a line combination ofy pair of the
tee Whitter nctions Mu/2,m(2e=/2), Wua/2,m(2ue=/2). (The notation
we use is the stdd one (see, for exple, [5, p. 260]).) With this in mind we seek
three ymptotic solutions of (2.8) of the form

() 2 ()(2.11) W)(,,e) U,/2,( ) + (,,) ( 0, 1,2),

where we define

<0) -/2-,/2+1/ Ir( +(2.12) u,() r( + 2) k

(2.13)

and

(i)bl,,(z) e’/eiW_i,, (ze-’i/)

,re(z) ekr/2e-’OWik,m (zeri/2)
Here, for convenience, we have introduced the parameter

(2.15) 0 arg F m + ik + - 2
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with the principal value taken. The normalizing constants taken in (2.12)-(2.14) are
selected to ensure that the three functions form a numerically satisfactory set both
for complex values of z and large positive values of k. This is of crucial importance
in subsequent construction of error bounds.

We do not attempt to obtain asymptotic expansions. The reason for this is the
same as that for the case of two coalescing turning points; see [6, Part D]. In short,
error bounds for asymptotic expansions would not be uniformly valid in unbounded
domains. This problem was not encountered in the problem of a coalescing turning
point and double pole [1], [3].

From the well-known connection and analytic continuation formulas of Whittaker
functions (see [5, pp. 261-262]), one easily finds that the three functions are related
by

11(0) (1)u,,(z) ()..,.(z) +...,.
Next, we record the following asymptotic forms of the functions as z --, 0, cx), which
we require:

(2.17) Lk(1) eiOZ-ikez/2,.() (z --* c, -" < arg z < 2r),

(2.18) b[k,m(z)(2) e_iOzike_iZ/2 (z --, c, --2r < arg z < r),

(2.19) .(o) _./ Ir(. + + 1/2)l z.+/ (z -, o),() r(1 + 2m)

(2.20) .(1,2) r(2m) z/2_, (z -, o, m>0),

1 zl/21n (1) (z-, 0)(2.21) Hk(;2) (z)~ i’/2 It(ik + 1/2)l
An important observation is that ,,k,m(Z) is recessive at z 0 (with respect to the
other solutions) 1(1)

"k,m(z) is recessive at z icx), and "k,m(z) is recessive at z -icx).

We shall use what can now be regarded as a standard method, due to Olver, of
obtaining bounds for the error terms s(J)(u, a, ) in (2.11). First, we find a differential
equation for the error terms, and this differential equation is then re-expressed as a
Volterra integral equation. A bound for a solution of this integral equation may
be found by the method of successive approximations (by using [5, Thm. 10.2, p.
220]). To use this theorem we require suitably defined real-valued auxiliary functions

() (z ()k,m(Z), Mk,m, and (z), which satisfy1

and

(2.23)

k,m (Z)= k,m (Z) "’k,m(Z) sin ’k,m(Z)

I(J--1) E(J-1) -1Uk,m(Z)COS(J) O(j)
i, (z)= , (z) ,t-

In 2 and 3 we shall suppose j is enumerated modulo 3.
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We shall define weight functions E(j)
k,m (z) (j 0,1, 2) that have an asymptotic behav-

ior that is similar to that of the corresponding functions Ib/()m(z)l-1 (with regard to
both the complex variable z and the real parameter k). Once these weight functions
are prescribed, the modulus and phase functions are implicitly given by (2.22) and
(2.23), viz.,

(2.24) (j) fE(-1) [(j--1) 2 E(J+I) i(j4.1) 211/2

To motivate our choice of weight functions let us briefly examine the general
asymptotic behavior of the Whittaker functions .,m(z) as k - oo and Izl --. oo. The
functions/g() (z) satisfy the differential equationk,m

{ }(2.26)
d2V z 1/4 V.
dz2 4z

-t- z2

By an application of [5, Chap. 6, Thin. 11.1], with the identification in [5, Chap. 6,
eq. (11.01)], i.e.,

4k / m2 1

(2.27) f(z)
z
4Z

g(Z) Z2

one establishes the existence of two solutions of (2.26) of the form

Z )1/4 (kj)(2.28) U(J)(z)- z’ 4k exp{i(J)(z)) {1 + (z)} (j- 1,2).

The functions ()(z) appearing in (2.28) are given by

1]:z($’-’4k)
I/2

(2.29) q()(z) dr,

(cf. [1, eq. (5.7)]). These functions have branch points at z 0, 4k, and their branches
will be specified shortly in such a way that Im (kD(z) --* oo, Im (2)(z) -- --oo as

z --. ioo, and Im (1)(z) -. -oo, Im q(2)(z) oo as z --. -ioo. We shall also specify
branches for a third function (0)(z).

The error terms e()(z) are uniformly bounded by [5, Chap. 6, eq. (11.07)] in a
certain domain that contains z +ioo (but not the points z 0, 4k), and these
bounds imply that in this domain

(2.30) e(’) (z) o(1) (k -* oo Izl- oo).

With the choice of branches for (2.29) just described we see that Uk(1) (z) is recessive

at z ioo and Vk(2) (z) is recessive at z -io0. Consequently, J(1),.,m(z) is a multiple

of U(1)(z)and (2) Uk(2)blk,m(Z is a multiple of (z).
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We introduce cuts for the branch points of (kj) (z) (j 0, 1, 2) as follows. With
respect to the branch point at z 4k we introduce a cut along a curve on which
Im (J)(z) 0. There are three such curves emanating from z 4k, one in the
upper half plane (which we label 2), its conjugate in the lower half plane (labelled
1), and one along the positive real axis from z 4k to z c (labelled C0 ). The
curves 1 and 2 emanate from z 4k at an angle of q=27r/3 with the positive real
axis, respectively, and are asymptotic to the lines Im z q=2kr as Re z --. -c (see
Fig. 1).

(2kzi)

(0) (4k) Co

C1

FIG. I. z-plane.

We define (J)(z) (j 0, 1,2) to have the branch cut Cj, and with respect to
the branch point at z 0 we introduce, for all three functions, a cut along the
negative real z-axis from z 0 to z -cx. The branches in (2.29) are now selected
so that the three functions are continuous in their respective cut planes, such that
Im (I)(’) (z) --, o as z -, ioo, Im (I)() (z) --, o as z --, -ioo, and Im (I)() (z) --,

as z --, +ioo.
We now are in a position to define weight functions for (j),..,k,m(z)(j O, 1,2) and

we shall use the functions =k+l(Z) to do this. The branch cuts associated with these
functions emanating from z 4k + 4 divide the z-plane into three regions, which we

(J) (z-a() (see Fig. 2). Each of the functions/d,m is recessive in anddenote by ,
() )()dominant in 8(j-) q(J+) The reason we use+(z)instead of (z) is that the

region S() as it is now defined does not vanish as k -o 0.
a .ot )(. i. (

a()ing to S(j). The so-called level curves Im ,u,/2+(2u) constant are important
in our asymptotic analysis, and some of these curves are indicated in Fig. 3. In
this figure the heavy lines emanating from the point + 2/u are the curves

(J)Im ua/2+l(2u) 0, which form the boundaries of S
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(2(k+l)zi)

(o)

t (-2(k+l)vi)

(0

(-(oe/2+l/u)m)

FIG. 3. -plane: level curves for Im *(:2/2+1(2u) constant.

With (2.16) and (2.28)in mind we define

E(J):,ra(z) lexp { a(J)
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for j 0, 1, 2. Note that with our choice of branches k,m(Z)w.(j) _> 1 for z E "k0) and

k,,(z) < 1 for z E ,.k(j-l) I.J-(j+l)

Unfortunately, (2.31) is not an appropriate definition for the weight functions in
J(J) zSk() because the Whittaker functions "’k,m( have an asymptotic behavior that is

different from that of (2.28) near the singularity z 0. Therefore, we must give
O) (z Sk()a different definition for Ek,m, in Our choices should reflect both the k-

asymptotic behavior H(j) 8k()k,m (Z) in and the behavior of these functions as z -. 0 (see
(2.19)-(2.21)). Also, bear in mind that S0)k,m(z) must be continuous for z > 0, and

O) (zso our definitions must be such that Ek,m, 1 as z approaches either of the two

curves that form the boundary of SI) i.e., as Im (J)+(z) -+ 0.
We begin by defining a positive real-valued radial function Rk(z) having the

properties

(2.32) Rk(z) Izl (z - 0),

(2.33) nk(z)--+ (lexp { ;re(J)o --ok+(z)} --, 1).
The following function satisfies these criteria:

exp --z,k+ (0)} --1 iz
}1 +

Given y point z e S), we define a domn 0)(z) of a complex t-plane to be the
set of points satising

(2.35) -(0) Im (z)m+(t) >

(2.36) It{ < n(z),

(2.37) -r < argt < 7r

(see Fig. 4(a)) Note that the level curve Im (0) (t) Im(k:(z) forms part of the:k+l
boundary of :D(k) (z).

Similarly, given any point z S(), we define :Dit’2) (z) to be the union of the set
of points in the t-plane satisfying Im k+l(t) 0 with those satisfying

Im(I)(: (t) > Im+(k: (z),

(2.39) ltl _> R(z),

(2.40) -r < argt < r

(see Fig. 4(b)).
Following Olver [6], we introduce so-called balancing functions given by- 0 < Izl < 1,(2.41) gtg(z) 1, Izl > 1,-

where d is real and nonnegative. With the preceding definitions we now can define
our weight functions E0) Sk() Sk() 0) definek,m (z) for z For each z (1 z{ > we
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FIG. 4(a). t-plane.

FIG. 4(b). t-plane.

where

(2.43)

e(j) (j)
k,m12Jk,m (j 0, 1, 2),

sup
teD() (4(k+

(fll/2(t) k,m(t)l),



332 T.M. DUNSTER

o(1) (2) sup "l,ffll/2(t)(..44) "k,m ’k,m

(The re,on for introducing the factor n/2(t) in (2.42) will be explained shortly.)
The coefficiems given by (2.43) and (2.44) are imroduced so that (),m(z) 1 z

approaches any boundary point of 8) To see this note that a consequence of
the property (2.aa) of n() and the definitions (2.a)-(2.40)

for any point z* on the boundy of 8).
It is straightforwd to show from (2.36), (2.39), and (2.42) that

(2.46) (j) (j) (,--1 --1/2 [Ui(z)l (z 0, 1, 2),,- Izl 0,

and hence kom (2.24) that

(2.47) "() {() +,, ) } ,z,1 (zO)....,() 2) ((+)

The re,on for introducing the ftor 1/2(t) in (2.42) w to ensure that
1[)(t)[ t 0, which would not be true without this ftor if 0 g m

(see (2.20) d (2.21)). The importce of this is that the supremum in (2.42) for
j 1,2 is attained on the boundy given by (2.39) when It[ is sumciently small,
which, in turn, is a sufficient condition for (2.46) to hold when j 1, 2.

Having defined the weight nctions for all lues of z ([z[ > 0), we define modulus
d phe nctions for the deritives of () (z,, (j 0, ,2) by

(2.48) [](i+)’ E(+x) -x() (’ sin w() (z)

(2.49) [(-)’ E(-x) () ’() (z, () , ()- "’,() cos _,, ,.

We now substnute (2.11) into the differential equation (2.8), yielding the following
inhomogeneous differentiM equation for the error term:

m2

(2.0) (, e) f,,() e() (u, ) }i.,/,(2)+ ,
which by viation of preters can be rexpressed the inteal equation

(2.51) (J)(u, a, )= ip<) K(e’v)(a’V)v [SH()ua/2’m (2uv)" + e() (u, a, v)}dv.
The kernel K(, v) is given by

#(J) 2 v (jl) l#(J) (2u1(j1) (2uv)
(.e) K(,,) -/,( )U-/,() -/,

W (H2/:,(2uv), (s)
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where )/Y denotes the Wronskian and the choice of suffix is j + 1 when E S)U S+1)

and is j 1 when e S)U S-1). From well-known results we find that

(2.53) )4)[’’’(j),’aua/2,m (2uv),lg(:i+D(2uv))]
The path of integration o(J) in (2.51) runs from v (J) to v , where (0) 0

and (,2) is some suitably chosen reference point in S(a’2) (possibly at infinity) such
that

(i) P(J) consists of a finite chain of R2 arcs;
(ii) Im (I)(:a)/2+ (2uv) is nonincreasing as v passes along P(J) from (J) to

(lima) for the segment of o(0) in S(a), Ivl is nondecreasing as v passes along :p(0)
from 0;

(iiib) if S(a), Ivl is nonincreasing as v passes to along the segment of
lying in S).

(Here, for simplicity, we identify the region S(a) in the wplane as being equivalent
-() (2uv) is non-to S(a) in the -plane.) The reason for these conditions is that ’u,/2,m

E(j+l) (2uv) is nondecreasing as v passes along P(J) from () toincreasing and ua/2,m

( S)U S+)); these monotonicity conditions allow us to apply [5, Whm.
10.2, p. 220]. The subsequent error bounds will be uniformly valid in subdomains
A(J) (j 0, 1, 2) defined as the set of points in A that can be linked to () by a path
:P() satisfying the conditions (i)-(iii).

Before we state our theorem on error bounds, we introduce some terms that
appear. We define

f u, a, -,-,-@ d

and assume that this integral converges uniformly with respect to ( at 0 for some
suitably chosen i in the interval

2
(2.55) 0 _< i < .
Recall that (a, ) is analytic in A. If (c,) O() as --. 0, then, of course, we
may prescribe i 0 (and hence (2u)

_
1 in (2.54)).

Following [1, eq. (5.13)], we introduce the following constant:

(2.56) am ;m,1m,2,

where

+ > 0),
j-0

(0) --1D-y.(1 --1 } 0),(2.58) am,2 sup Ek,re(z) k,m(Z) (m >

the supremum being taken over all k >_ 0 and all Izl > 0 for (2.57), and the supremum
being taken over all k _> 0 and all z e 8k()\(0} for (2.58).
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For the case m 0 we select any 8 satisfying
1

(2.59) 0 < t’ <

and then define

(J)
Z

2

;0,1 sup a(z)-},(z)(1 + k)-1/3 (j) (z)2 Uk,O( )-k,0
j=O

(2.61) a0,2 sup {,(Z)-E(kO,)o(Z)-l.(D’k,otZ)’- },
where the suprema are taken over the same ranges as for (2.57) and (2.58), respec-
tively. The factor (1 + k)-/3 appearing in (2.57) and (2.60) is needed to ensure that
these suprema exist. A consequence of this is that the error bounds are necessarily
weakened by a factor of (1/2ua + 1)/3 (see (2.63), which follows). An indication of the
proof of the existence of the suprema will be given in 3.

We now are in a position to state the main theorem for case I.
THEOREM 1. With the conditions described in the present section, (2.8) has, for

each u > 0 and e [0, h], solutions W(J)(u, c, )(j 0, 1, 2) that are holomorphic in
A except at 0 and satisfy

Wo) +(2.62)
where

M(j=i=l) 2 N(j:t=l)u

(2.63) 1 ) 1/3

exp
2u ])o) (F) 1

when e A(). In (2.63) the suIx on M and N is j + 1 when e S)(J S-1) and
is j 1 when e S)t S+1).

The variation of F in (2.63) is given by

(2.64) (F) t)l

Note that the domains A(,2) depend on the choice of reference points (1,2). these
points can be taken at infinity in S(a’2) provided that the variation (2.64) converges
at infinity.

It is not difficult to show from (2.64) that V,o)(F) O(u) uniformly for e
AU). For j 1,2 this estimate can be strengthened to O(1) if is bounded away
from 0. Consequently, from (2.63) we have the estimates

(2.65) --,12,,(2u) u,12,m(2U)
as u --, cx) uniformly for e S)U S+). The number/i can be taken to be zero if
(a, ) O() as --, 0; also, for j 1, 2 only, i can be taken to be zero when is
bounded away from 0.
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3. Existence of the suprema. In this section we establish the existence of the
constant m that is defined by (2.56)-(2.61). To do this we require uniform asymptotic
approximations for the Whittaker functions k,m(Z) as k ---, oc and Izl--. x), which
are valid at the turning point z 4k (in terms of Airy functions) and the pole z 0
(in terms of Bessel functions). In both cases certain Liouville transformations are
used, and it is understood that appropriate branches for the branch points are taken
so that the transformations are regular at these points.

For the Airy function approximations we use [5, Chap. 11]. The Liouville trans-
formation on (2.26),

2 3/2 4k T
dT, I7V() -z U(z),

yields a new differential equation (with z 4k, oc corresponding to 0,-c,
respectively) of the form

(3.2)
d2iYd { + (k,)}de2

Here the Schwarzian is given by

(3.3) 5(k 6) 6(z2 + 4k2 4m2(z 4k)2) 5
z(z 4k)3 162

and is analytic at 0. An application of [5, Chap. 11, Thm. 9.1] (with u 1
yields the solutions

(3.4) IV(’) (k, ) Ai (e2i/3) + g(1)(k, ),

r(2)(k, )--Ai (e-2ri/3) -(2)(k, ),

where the error terms are bounded by [5, Chap. 11, Eq. (9.03)]. In these bounds E
and M are auxiliary functions for Airy functions of complex argument satisfying (see
[5, Chap. 11, 8.3])

(3.6a) IAi (e-2"i/3)I {Sl()}-1M0()sin 0o(),

(3.6b) IAi (2ri/3) i-- {S_l()}-1Uo()cos
From the error bounds one can show that

(3.7a) [g(1)(k, ) {E_I()}-1M0(()O(1),

(3.7b) ]g(2)(k,) {E1()}-1M0()O(1),

where the O(1) term is uniform for z E 8k(1)U (2) and 0

_
k < cx). Moreover, this

O(1) term is o(1) if k --, oc or Izl--, x) (z E .k(1)[.J .k(2)).



336 T.M. DUNSTER

The asymptotic solution (3.4) is recessive as -- ooe-2ri/3 which corresponds
to z --+ ion, and hence we can claim the existence of a constant (1) such that

(3.s) cl $Cl) ( Z ) 1/4

,re(z) "k,m 4k z [Ai (e/3) + g’l’(k, )]
since both solutions are recessive at z ic. This constant can be determined by
comparing both sides of (3.8) as --, -o, z --, +oo one finds by this method

(3.9)

Similarly, one finds

(3.10) (2)u,,() ,. 4 [Ai (’e-2ri/a) + g(2)(k, )].
Consider first the supremum (2.57). From (3.1) a straightforward calculation

establishes that

(3.11) lim ( z ) /4.-,O,z.--4k 4k" (2k)/6’

and hence, by using this result and (2.16), (2.43), (2.44), (3.4), and (3.5), it can be
shown that

(3.12) (J) O(k1/6) (k oo)’/,m

Therefore, from the definition (2.42) we see that2

for z E 8(0), k _> 0. From (2.57) and (3.13) it is now clear that m, exists as a

supremum over z E ,(0), k _> O.
To establish the existence of m, it remains to consider z (1) U k(2), k

_
0.

For this range we use (2.16), (3.8), and (3.10) and the following bound (j 1, 2) for
Airy functions of complex argumeng:

(3.14) IAi(e+/-2/3) + g(J)(k, )] < K
[exp (i(I)()

1 --I’[ 1/4

To complete the proof of the existence of am, we see, from the preceding formulas,
that it is sufficient to establish the uniform boundedness of the following function for

s()us(), >_ o.

(, z) (k, z),:(k, )3(, ),

Here and throughout, K is used generically as a positive constant (independent of z and k).
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where

(3.17) o’2(k, z) z
(1 + )2/3(z 4)

1/2

(1 + 111/4) 2’

(3.18) .-()u3(k, z ---lexp {2i(J)(Z)- ZZWk+I(Z)}
The factor ’~(J)ICk,m[ on the right-hand side of (3.16) is clearly bounded for k _> 0. On
noting that

(3.19) Izl ZO > 0 (Z .(kl)U ’(k2) k >_ 0),

where z0 is some positive constant, it follows that the balancing function in (3.16) is
also uniformly bounded on the range of z and k under consideration. Using (3.1) and
(3.11), one can show that a2(k, z) is also uniformly bounded for this range. To prove
the same for a3(k, z) we consider

(3.20) J(k,z) fz (t 4k) 1/2

f4
z

(t 4(k + l) ) /2dt- dt
k t (k-t--l) t

and show that the imaginary part of this is uniformly bounded for z E .k(I) U.k(2) k
0. To do this we consider separately the cases Z bounded and 1/Z bounded, where
Z z/(k + 1).

Let Zo be an arbitrary positive constant. Then, for the case 0 < Z _< Zo one can
show that

(3.21) g(k,z)=21n(Z-2+(Z2-4z)l/2} ( 1 )2
+0

k-.i-1

and for the case 0 < 1/Z <_ 1/Zo one can show that

(3.22) 4Z-1 +

Both the O terms in (3.21), (3.22) hold uniformly for z e k(1)U ,.k(2),k _> 0, and
therefore Im J(k, z) is uniformly bounded, as required. The existence of (2.57) is thus
assured, and that of (2.60) is proved in essentially the same manner.

For the second supremum m,2 we consider separately the two cases 0 < k < 1
and 1 _< k _< o. In the former case Im z is bounded in 8k(), and hence one need only
consider the asymptotic behavior (0)

_
..(), ,_

Ek,m(z vvi,,tz at z 0 (see (2.16)-(2.21) and
(2.46))to establish that this product is uniformly bounded for z 8k(), 0 < k < 1.
Similarly, for the case m 0 note that

--1.(0)--1 1.(1)--1 (())(3.23) aa,(z) k,o(Z) (z) 0 z’ In (z --. 0)."-%,0
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For the case k _> 1 we consider two subcases: (i) pairs of z and k such that
Im a() (2k) < Im (0) (0)

=k+l =k+l(z) < Im (0) and (ii) pairs of z and k such that 0 <:k+l

Im (0) (0)
}+1 (z) < Im }+(2k). Let us denote the first domain in the z-plane by Zo and

the second domain by Z (see Fig. 5). Clearly ,%(o) Zo U Z, the pole z 0 lies
in Zo, and the turning point z 4k lies in Zl. Moreover, these critical points are
bounded away from the common boundary of Zo and Zl when k _> 1.

Z0

(2k) (4k)

FIG. 5. z-plane.

For z E Zo we write z 4kp and consider "k,m(4kp) that satisfy the differential
equation

(3.24)
d2ydp2-((2k)211-p (2m)2 1

4p2

To obtain asymptotic approximations for solutions of (3.24) that are uniformly valid
for z E Z0 and k _> 1 we use the theory of [5, Chap. 12, 9 ]. Following this, we make
the Liouville transformations

(3.25) yl/2 j0P (1- t
dt (p- p2)U2 ln {1- 2p + 2i(p- p2)U2 }

(3.26) L (l--P) 1/4
}i/4y,

P
which transform (3.24) to the form

d2L [ (2k)2 (2m)2 1

d2 4 + 42

where

(3.28) 8(1 p) 5 3
p4 16p(1 p)3 16r/

((2/)2 1) (4p2 4p +
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The function (/) is analytic in the /-domain corresponding to Z0, in particular at
} 0 (z 0). Applying [5, Chap. 12, Thin. 9.1] to (3.27) and identifying the solutions
that are recessive at }--0 (z -0) in the usual manner, we arrive at

(0) ,(0) bl/2 ( P’r] ) 1/4

,(4) o,. i-(3.29)

[I2m(2k1/2) +
where

(3.30) ,(0) 2/2lr(m + ik + 1/2)l-/k-.k,

Likewise, for solutions that are recessive at z} -t-o (z icx) we arrive at

() () k/
(a.all

where

(.2) () 2-/eei(+0+/)k

he O(k-) fgors in (.29) d (a.l) hold uniformly for n lying
domNn whose corresponding -domNn eongains 1 poings in ghe principal -ple
exeepg ghose on or ne ghe posigive real s om 4k go
pmicul, ghe idengifieagion (.1) is justified, d (a.) d (a.al) hold uniformly
for 0 d k 1.

he negions g d e aliy negions for Bessel negions of complex
meng, defined in [g, Chap. 12, 8]. hese have ghe propergies ghag 0

(3.33a)

(3.33b)

(3.34a)

(3.34b)

and as k1/2 oo

(3.35a)

(3.35b)
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Since p y/4 as y --, O, p -, c as y --, cx, and p is bounded away from 1 in
the present circumstances, we deduce from [5, Chap. 12, eq. (8.19)] and the preceding
results that

(3.37)

]H(o)al/2(4kp) k,m(4kp)[
k’l(0) /el/2 l/l 1/2< "’"k’m" 1 --I[ 1/4 l/2(k)-’2m(2kT]l/2)j2m(2kr]l/2)

(3.38)

1/2(4kp)

< 1(1) /el/2 IT}[ 1/2
k,m’" 1 + I/11/4 l/2(kl)’lm(2kll/2)’A/12m(2kll/2)

for z E Z0 and k >_ 1.
By virtue of the maximum modulus theorem, it follows from (2.42) that for k _> 1

and IP[ > 0

(3.39) .(1) 1 {,(1) / -1
k,,(4kp)- I/M(1) (4kpl)l,

where Pl lies either on the boundary of T(l)(4kp) or on the circle Ipl 1/(4k) (on
any part of this circle that. may lie inside ’(k1) (4kp)). Likewise,

(3.40) .(0) 1 f (0) }--1 lu() (4kpo)[,1/2(4kpo) k,m

where po lies either on the boundary of :D() (4kp) or on the part (if any) of the circle

I l- 1/(4k) that lies inside :D(k) (4kp).
Note that [p0[ _< [PI and that pj --. 0 if and only if p --. 0 (j 0, 1). Let

correspond to pj Then from (3.37)-(3.40) we can prove that ..,k,m(z)(o)--1(1),,m (Z)--
is uniformly bounded for z E Zo and k _> 1 by showing that the following function is
uniformly bounded:

(3.41) 1(1)k,m"k,lf]’l, (0) (1)/-1
ek,mek,m

1/22m(2kl/2)2-1m(2kll )"Ym(k, po)"/m(k, pl),

where

(3.42) /m(k, p) k1/2 llll/2fll/2(kl)

Consider first the coefficients in (3.41). By considering the asymptotic behavior
of the Gamma function of large complex argument (e.g., see [5, p. 294]), it is straight-
forward to show that 1() 1(1) (0) (1) -1Ok,mOk,m[ is bounded as k --. x. Also, note that tek,mek,m}
is bounded for all nonnegative k.
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Next, from the definitions of :D() (z) and T(1) (z) we observe that Re
Re (kl/2}. Therefore, as kl/2 ---, (x) it is cle from (3.35b) that

(3.43) 2(2k,/2)2(2k,/2) O(1).

rthermore, on recalling that Iwl I01, we see om (3.33b) that (3.43) is o true
when ky/2 O.

It remains to establish that 7re(k, p) is uniformly bounded. Essentially, there e
three ces to consider, nely,

(i) kp (k/2 ) such that k, ,
(ii) kp (ky/2 ) such that ky 0,
(iii) kp 0 (ky/ 0).
For ce (i) we note that /2(ky) 1, d so kom (3.35a) we deduce that

(3.44) 7m(k,P) O(1) (ce (i)).

For ce (ii) we have /2(ky) {ky}-/2, d so, again using (3.35a), we find that

( 1 }(. (,o o
//

Nor ee (iii) we use (.) and find (for m > 0)

(.46) (k,O) (2m)/ (ee (iii)).

o eomplege ghe proof of ghe esgenee of, one needs go show ghag (0) ()_
(/E,() is uniformly bounded for d 1 N k < . his can be done

in mner simil go ghag for ghe ee 0, by using ghe uniform ympgogie
approximations (.8) d (.10) (d he connection formula (2.16)), weheid
in . Degails need hog be recorded here. he proof of ghe esgenee of ghe supremum
(2.61) (for ghe ee m 0 ) follows similly go ghe preceding.

seegion we eonsrueg ympgogie solugio for ee II, where ](,
real s begween ghe gurning poing d ghe pole (when > 0 ). he appropriage
Liouville grsformagion in ghis ee is given by

(a.l) (, z)

(4.1b) W() w(z),

which transforms (1.1) to the form

(4.2) d2 + 2 +

where

c2 + 42- 16m2(- c)2 (- c)(4ff" + 16f2g- 5f’2)
(4.3) (a, ) +16( c)2 1613
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We integrate (4.1a) to give

(4.4) dr {f(a, t)}1/2 dr,

which yields the relationship

(4.5) {f(a,t)}/2 dt /2( a)/2 ln
The choice of branches is such that both sides e real and positive for z 6 (zt,)d
6 (a, ), with (z) an alic function of z in D. We denote by the domain

corresponding to the z domain D.
Again, we speci a so that the poles z 0 d 0 correspond, which gives

the formula

2 z(4.) {-(a, )}V d.

We se that a is a strictly increing nction of a, with a [0, A].
The compison equation this time h its solutions the Whitter nctions

Mua/2,m(2), Wua/2,m(2), d W-ua/2,m(2e). We thus seek ymptotic s
lutions of (4.2) of the form

() 2 ()(4.) $)(, ,) U/,() + (, ,) (j 0, , 2, 3, 4),

where we define

(4.s) .0) r(k + + /)U,() (k)r( +) M,(),

(4.9) ^(1) W. -iu,() -’(k) _,( ),

(4.10) ^(2) emriu,,() (k)W_,(),

(4.11) ^(3) (k)r(m- k + 1/2)U,(z) r(k + m + 1/2) Wk,m(z),

(4.12) 7)(4) e(k-m+l/2)i
,() (k) W,(),

introducing, for convenience, the parameter

(4.13) (k) kke-k.

The reason that we have introduced ^(4)lgk,m(z), which will become clearer later,
is due to the complication that Mk,m(Z) and Wk,m(z) are linearly dependent when
k- m- 1/2 e N. When k- m- 1/2 e N it can be shown from (4.8).and (4.12), by
using well-known connection formulas for Whittaker functions, that

(4.14) 7)(4) 7)(0)_,() ,(z).
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For the time being we assume that k m 1/2 9 N.
^(J) (zFurther connection formulas for the functions H,m are given by

(4.15) ^(o) r( + 1/2)r( +. + 1/2) [u.() +.u,(z) ^() ,() ()]27r72(k)

(4.16) ^(4)t4,()
r( . + 1/2)r( +. + 1/2) [() (_).,.,()..

27r.2 (k) k,m(z)-

and

(4.17) ^(4)u,() +e(k-m)’riF(k + m + 1/2)/(1,2) ,Ak-m)’ri,,+(k-"")’i7)() t,,

()r(,- + 1/2) , () - ,’""

The motivating reason for using the particular Whittaker functions (4.8)-(4.12) is
their asymptotic behavior at the singularities, which is given as follows:

(4.18) 7)(o) F(k + m + 1/2) z_e/2 (z ---,,(z) ()r(, + 1/2) - < argz <

(4.19) ^(0) ie zke-z/2u,.,() ,,/(k) < argz < ---(4.20) (o) ie(k-m)*izke_Z/2*,() (k)
-Tr < argz < ---(4.21) }(1) e(k_,,),iz_eZ/2 (,() 7(k) -, , - < argz < --(4.22) D(2) e-(k-m)*iz-ke*/2,.() ~(k)

2
< argz <

(4.23)/()m(z) 7(k)r(m- k + 1/2)zke_Z/2 (zr( + . + 1/2) 2
< argz <

(4.24) 1)(4) e(k-m-l/2)ri
zke-z/2 (,() (k)

-. oo,
37r 37r)2 <argz<--

r(k + m + 1/2) zm+l/2(4.25) ^(o)u,() (k)r( + 2-0 (z -, 0),

(4.26) 7)(3) 7(k)r(2m) zl/2_rn.(z) r( + . + 1/2) m>0),
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;(k) o)+

(4.28) )(’) 7(k)r(2m) z/_ (z -, O,, (z) ::it(k + m + 1/2) m>0),

"y(k) zl/21n(1/z) (z -- 0).+ 1/2)

And so in particular, ^(o)k,m(Z) is recessive at z O, k,m(z) is recessive at z

oo (r/2 < arg z < 3r/2), ^(2)H,m(Z is recessive at z oo (-3r/2 < arg z < -r/2), and
(3) bl,,m(z is recessive at,k,m(Z) is recessive at z o (--r/2 < arg z < r/2). Also, ^(4)

z cx (-r/2 < arg z < r/2) and, in addition, is recessive at z 0 when k-m-1/2
N (as a result of (4.14)).

Corresponding to (2.29), let us define the functions

(4.30) ()(z)
+ t

dt (k > O, j 1, 2, 3),

with branches defined as follows. With respect to the branch point z 4k of (J)(z)
we introduce a cut along a certain curve (j. The curve 2 consists of the union of
the real segment from z 4k to z 4k / 1, with the curve in the upper half plane on
which Re ((J)(z) 0. The curve (1 is defined as the conjugate of 2, and (3 is the
finite segment of the positive real axis from z 4k + 1 to z 0. The nonreal parts of
the curves 71 and 72 emanate from z 4k + 1 at an angle of =r/2 with the positive
real axis, respectively, and at infinity are asymptotic to the curves

(4.31a)
1
(1 -f- (k))2e(x-/(k))/k x2Y=: (x=Rez, y=Imz, k>0),

where

(4.31b) /3(k) 2k + (4k + 1) 1/2.

When k 0 the curves 1 and 2 are the vertical lines Re z 1
The three curves divide the principle z-plane into three domains, which we

call SJ)(j 1, 2, 3). The regions in the -plane corresponding to these will be labeled

a respectively; see Fig. 6. In this figure pairs of numerically satisfactory solutions
()

in tia are indicated.
We define )()(z) (j 1,2, 3) to have the branch cut j, and with respect to

the branch point at z 0 we introduce, for all three functions, a cut along the
negative real z-axis from z 0 to z -oo. The branches in (2.29) are now selected
so that the three functions are continuous in their respective cut planes, such that
Re (J)(z) --+ oo for z E ,(J) as Izl-- oo.
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{(o, (

{c(0), (2)}

(a) (a+l/(2u))

{c(0), ,7/(3)
{q.(1), q(4)

FIO. 6. -plane.

We next define

(4.32) @(4) (z) @(3)(z) (k > 0)

so that Re &()(z) --, - Izl . For the ce k 0 we define J)(z)
lim0 (z). Thus

{(4.34)

(4.35) (o4) (z) (o3) (z) 1/2(z i),

(4.36)

The level curves in the -plane for case II are defined by Re )/2(2u)___ con-

stant, some of which are indicated in Fig. 7. In this figure the heavy lines emanating
from the point + 1/(2u) are the curves Re "(J) i2uf: O, and those ema-"u/2
nating from the turning point a (a > 0) make an angle +/-r/3 with the positive
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real -axis and satisfy

1
(uc -/3(u/2)) + -ln(a.a7) Re (/(.)=

When a 0 the level curves e the vertical lines Re eonstt.

(a) (a+l/(2u))

FIG. 7. -plane.

We now begin our definitions of the weight functions for ..,t,m(z).7(J) For z E ,(3) we
define

(4.38) (j 0, 1, 2, 3, 4),

and for j 4 only we use the definition (4.38) also for z E ,(1)Uk(2).
The definitions of the weight functions for z k(1) tk(2) are similar to the corre-

sponding ones for z (0) in case I. Given any point z k(), we define ()(z)(k >_ O)
to be the set of points in the t-plane satisfying

(4.39) R. ()() >_ a. ()(),

(4.40) It] >_ rain {4k + 1,

(4.41) 0 _< arg t < 7r;

see Fig. 8. Given any point z ’k we define (z) to be conjugate of (z)(k >_
0).
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FIG. 8. t-plane.

For k > 0 choose any point z E (1)U (2) and define i)(z) to be the set of
points in the t-plane satisfying

(4.42) Re (k) (t) >_ Re (o)(z),

(4.43) Il Izl,

(4.44) oo < Re t _< 4k + 1,

(4.45) -r < argt < r;

see Fig. 9(a).
For k 0 we introduce the radial function

(4.46) /o(z)

which has the properties

rain {1, I1 Re(z)[}’

(4.47) /o(z) Izl (z --, 0),

(4.48) /o(z)- Izl (Re(z) o),

(4.49) /o(z) -* o (Re(z) --, 1).

Then, given any point z E oO) Uo(2), we define o() (z) to be the set of points in the
t-plane satisfying

(4.50) -oo < Re(t) G 1,
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FIG. 9(a). t-plane.

(4.51)

<

(4.53) -r < argt < r;

see Fig. 9(b).
For (j 0, 1, 2) we then define

(4.54) ^() "() "- {l/2(t) ^() t

with

(a.)o) sup
teO(ui) (4k-l-1)

{a/(t) )()

where in (4.54)it is understood that z E (J) when j 1, 2 and z E ,(1)U (2) when
j 0. By using the uniform asymptotic approximations for Whittaker functions in

$(J) 0 (k1/6) as k --, oo 3[2] it can be shown that for all j ,m

3 In [2] there are two errors: in equation (4.7) the term -I should be included in the right-hand
side, and in equations (6.17) and (6.20) the term 4 should be replaced by the term e-2.
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FIG. 9(b). z-plane.

The only points in (1)U (2) for which we define a weight function for 7)(3) (z)
are those lying in the real interval 0 < z _< 4k -F 1. For these values of z we prescribe

(4.56) (3) /7.(3) 1,..:,m,_,:,mZj-- sup
Re(t)_>.

"(3)

(3)La.O) sup
Re(t) _4k-I-1

"(3)

Modulus and phase functions are then defined to satisfy

(4.59) *,() ,t ’, () cos,, (),

where j, run through the integer lues 0 g j, g 4, (l j), yielding

I1

(4.61)
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The following asymptotic behavior as z --, 0 should be noted (for 0 _< j _< 3 ):

(.#) (.) -:L,,(z) ~11 /lc:)(a.l) ’’(z)

..:..,(z)~ t ."] + I

For the derivatives we define (for 0

(4.64) "’,m(Z) l,mtz) "’,m (z) sin (z)

I(/)’ (1) lj(j,l) ^,(j,l)E,,() ,..,’() () ()"

We next choose reference points CJ)(1 _< j _< 4), where (0) 0, (J)(j 1, 2, 3)
()

(possibly at infinity) and (4) (3)is some suitably chosen point in ia
We define paths of integration 95() (1 _< j _< 4) in the v-plane to run from v ()

to v , such that
(i) 95() consists of a finite chain of R2 arcs;
(ii) Re (:)al2(2UV) is nonincreasing as v passes along 9b(j) from () to , except

when a 0,j 0, in which case IRe(v)] must be nondecreasing as v passes along

(iiia) for the segment of 95() in (:) U (:), Ivl is nondecreasing as v passes along
75(0) from 0;

(iiib) if e (a1’2), Ivl is nonincreasing as v passes to along the segment of 95(1’2)
lying in (1,2);

(iv) the only segment of 95(3) that can lie in ba U ba is the one that consists of
the real interval

_
v <_ ct + 1/(2u).

() 1The subsequent error bounds will be uniformly valid in subdomains "-%/2,m -<
=() that can be linked to 0) by a pathj < 4), defined as the set of points in -./2,m

:P(J) in-’,a/2,m=() satisfying the conditions (i)-(iv), where

(4.66) =co) { h 1/2 cN),
1/2 e N),

(4.67) ,,(1) (1) U""u/2,m

(4.68) =(2) (2) ,(3)
"ua/2,m "a U ici

(3) U { 0 < < c+ 1/(2u)}
(4.69) =(3) -a

’--’ua/2,m
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(4.70) (4) .(3)
u12,m "

Here q) denotes the empty set, and so, for instance, there will be no bounds for
g(3)(u,c,) when 1/2uc- m- 1/2 N. We denote the z-domains corresponding to
() y()
ua/2,m by ffi,m"

As in case I, we choose a 5 in the interval

2
(4.71) 0 <_ 6 < ,
such that the following integral converges uniformly with respect to a at 0

(4.72) /
Analogously to (2.56), we introduce the following constant:

(4.73) km m,l;m,2,

where

{ 4

(4.74) m,l sup G(z)(1 + k)-1/3 ]-(J) 2 [7(j) 2
> o),

j=O

(0) --I ,(I) ’,--1} (’D’,)’ 0),(4.5) m,2 sup Ek,

the supremum being taken over all k > 0 and all z E X(j) for (4.74) and the supremumk,m

being taken over all k _> 0 and all z e ,(1)U (2)\(0} for (4.75).
For the case m 0 we select any 6’ satisfying

1
(4.76) 0 < ’<

and then define

(4.77) { 2

;0,1 sup f(z)f,(z)(1 + k)-1/3 Zt2’i,o’z)[k,o(Z)-(j),,2 [[(j) 2

j=O

(4.78) 0,2-- sup{6’(Z)-1’(0)" ,-1(1), "-1},0(z) i:,O(z)

where the suprema axe taken over the same ranges as for (4.74) and (4.75), respec-
tively. The existence of these suprema can be established in a similar manner to
the proofs in 3, by using, for example, the uniform asymptotic approximations for
Whittaker functions in [2].

We now state our theorem on error bounds for case II.
THEOREM 2. With the conditions described in the present section, (4.2) has, or

each u > 0 and a E [0, A], solutions l()(u, (, )(j 0, 1, 2, 3, 4) that are holomorphic
in except at 0 and satisfy

(4.79) l?V()(u, a, ) ,0) g()+
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where

(4.80)
/17/(J,t)ua/2,m(2)

(j) -l [ { m(1/2UOt-l-1)1/< uol2,m(2u) exp
2u

when e (,)/2,m’__ In (4.80) the su accompanying the j in I and 1 depends o
which re#ion lies in, according to Table 1.

TABLE 1

/=0

/=1

/=2

/=3

/=4

j=0

=(o)

(a1) (a)
j=3

Discussions similar to those for (2.63) lead to the estimates

(4.81) (2u)O((ua + 1)l/au-l+’)
(J) (with given by Table 1). As in case I, theas u --, cx) uniformly for E "%o/,-

constant 6 can be taken to be zero if (c,) O() as -, 0; also, for j 0, 8 can
be taken to be zero when is bounded away from 0 (which is always true for j 4 ).

Finally, we remark that the solutions given by Theorem 2 form a numerically sat-
isfactory set in the principal -plane for all ranges of u and a under consideration. The
pairs {lYV(), l/r(1)}, {1/r(0), l/r(2)}, and {I/r(1) 1/r(4) } form sets of numerically satisfac-

^(1) ^(2) ^(3)
tory solutions in So So and So respectively. Moreover, when ua/2-m- 1/2 tig N,
the pair {lfid(), IYV(3) } form a numerically satisfactory set of solutions on the positive
real -axis.
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ON THE DERIVATIVE WITH RESPECT TO A PARAMETER OF
A ZERO OF A STURM-LIOUVILLE FUNCTION*

’kRPfkD ELBERT AND MARTIN E. MULDOON
Abstract. A formula for the derivative with respect to a parameter of a zero of a suitable

solution z(t, u) of the differential equation (p(t, u)z) + r(t, u)z 0 is derived. This provides a kind
of quantitative confirmation of the Sturm comparison theorem in that it shows that the zeros axe
monotonic in u in the same direction as p(t, u) and in a direction opposite to that of r(t, u). It is also
shown that the derivative of a zero with respect to a parameter is equal to the value at the zero of a
function that satisfies a third-order linear nonhomogeneous differential equation. Different methods
of solving this equation lead to different formulas for the derivative. The results are applied to get
formulas for the derivative with respect to A of the zeros of the Gegenbauer polynomial Pn(A) (z). The
method also yields a generalization to arbitrary cylinder functions of formulas due, respectively, to
SchlhCli and Schafheitlin for the derivative with respect to order of the zeros of the Bessel functions
J(x) and Y(x).

Key words. Sturm-Liouville functions, zeros, monotonicity, Bessel function, ultraspherical
polynomials

AMS subject classifications, primary 34C10; secondary 33A65, 33A40

1. Introduction. The Sturm comparison theorem [21], [22, p. 19] says essen-
tially that if y and Y vanish at a and satisfy

(py’)’ + ry O,

(PY’) + RY O,

where 0 < P(t) < p(t), R(t) > r(t), a < t < b, then the next zero of Y to the right
of a on (a, b) occurs before the next zero of y. Thus if we have a family of functions
y(u, t) satisfying

(v(t, + 0,

where p(t, ) increases and r(t, ) decreases in for each t, and y(a, ) 0 for each u,
then the next zero c c(u) of y(t, ) to the right of a increases with or dc/d > O.
This raises the question of whether we can find a formula for dc/d from which its
positivity would be obvious. We prove such a formula for suitable functions p(t, )
and r(t, u):

p(c, u)[y’(c, )12 dc fa
c- [-r(s, u)y2(s, u) + p(s, u)[y’(s, u)] 2] ds.

(Here and in what follows, the prime indicates partial differentiation with respect to
the first place variable, and subscripts denote partial differentiation with respect to
the indicated variable.)
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In 5 we show also that the derivative of a zero with respect to a parameter is equal
to the value at the zero of a function that satisfies a third-order linear nonhomogeneous
differential equation.

We apply our results to get formulas for the derivative with respect to A of the
zeros of the Gegenbauer polynomial Pn() (x). Our method also yields a generalization
to arbitrary cylinder functions C(x) cosJ(x)- sinY(x) of formulas due to
Schlifli [20], [23, p. 508] and Schafheitlin [19], respectively, for the derivatives with
respect to order of the zeros of the Bessel functions J(t) and Y(t).

In a later paper [6] we apply some of these results to zeros of Hermite functions.

2. The Richardson formula. We begin by considering the differential equation

(2.1) (p(t, )y’)’ + r(t, )y O, t e I,

for each in some interval J. We suppose also that p-l(t, ) and r(t, y) are of class
C1 in a domain of (t,)-space that includes I J. This implies, in view of [10,
Cot. 4.1, p. 101], that the solutions of (2.1) are of class C throughout their domains
of existence in the (t, ) plane. Furthermore, [10, Thm. 3.1, p. 95] shows that y(t, )
satisfies the equation obtained by formally differentiating equation (2.1) with respect
to , with the implied interchange of orders of differentiation. Thus we get

(2.2) (py) / (py) -t- ry -t- ry O.

Multiplying (2.1) by y and (2.2) by -y and adding, we get, as in [18, p. 2931, that

(2.3) Dt [PYty PYyt PYtY] ry2 py.2.

Now, if we are in a situation where either y(a, y) 0 or yt(a, ) 0 for each in J,
and if c c() is another zero of y(t, ), we see by integrating (2.3) from a to c that

Also, by differentiating (e, u) 0 we have

+ 0,

so that we finally get

(2.6) p(c, u)[y’(c, u)]2 dc ac

[-r(s, y)y2(s, ) + p(s, )[y’(s, )]2] ds.

Actually, by a well-known transformation we can reduce the differential equation (2.1)
to the ce where p(t, y) 1. In that ce, (2.6) takes the simpler form

dc

We consider now ghe equengly occurring ce where the poing is a singular
poin of ghe differential equagion. We sume again ghag p(t, u) 1. hen if is he
lea-hand endpoing of ghe interval I, for c > we ge, before,

+e
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for each e > 0. Thus we get the result (2.7) again, provided that the integral on its
right-hand side exists and provided that

(2.9) lim [y(a -4- e)yt,t(a -4- e) yt(a + e)yt,(a + e)] O.
e..--O+

The result is modified in an obvious way when c < a.

3. Applications of the Richardson formula.

3.1. The Bessel equation. As a first application we consider the equation

1/4 v ](3.1) y"+ 1+ t2
y=0,

with a solution y(t, ) tl/2Jv(t) vanishing at t 0. The method of 2 is applicable,
with a 0, since Jr(0) 0, > 0, and we recover Schl/ifli’s formula [20], [23, p. 508]

dj f(3.2) s-IJ2 (s)ds, t > 0,
d jj2+(j)

where j j(g,k) is a positive zero of J(x). The verification of condition (2.9) for
> 0 is based on the series expansion of J(x).

3.2. The generalized Airy equation. Here we consider the differential equa-
tion

(3.3) y" + ray 0, t > 0,

with the initial conditions

(3.4) y(O) O, y’(O) 1.

c is supposed to be a fixed positive number. Using the comparison equation z"+z 0,
we see that all the positive zeros of y exceed 1. (Suppose that y has a zero on (0, 1).
The equation z" + z 0 is a Sturm majorant of (3.3) on (0,1). Thus its solution
sin t, which satisfies z(0) 0, z’(0) 1, would have to have a zero there too, which is
impossible.) A well-known transformation [23, p. 96] shows that the solution of (3.3)
is given by y(t, a) -F(t + 1)tl/2j(2t1/(2v)), where 1/(a + 2). Since y(t, a)
vanishes at 0 for each a > 0, we find, as in 2, that for every positive zero aak of

(3.5)
a

[y’ (a, a)12 __da sa log s[y(s, a)]2 ds.
d

Since the integrand changes sign at s 1, it does not seem to be easy to deduce from
(3.5) the fact [9] that da/d < O, a > O.

3.3. Ultraspherical polynomials. With a usual notation ([22], not [7]) for
the ultraspherical or Gegenbauer polynomials, we recall [22] that yn(t,A) (1-
t2)x/2+l/aP(n) (t) is a solution of

(3.6)
d’y

t- { (n + A)’ 1/2 + )- A’ + x2/4 }dx---g 1 x + (1 x)
y O.
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For A > -1/2, yn(1,,k) 0 for every n, while for every ) we have yn(O,)) 0 for n
odd and y(0, ) 0 for n even. Applying the results of 2, with a 0, we get for a

zero c of Pn(x) (x) the formula

(3.7)
dc

-(1- c2)-x-1/2 Lc 2n + 1 2(n + A)s2 ]2[P() (c)]-2
(1 s2)-+3/2 [P()(s) ds.

Formula (3.7) shows that a positive zero of Pn() (x) is a decreasing function of A for
those values of A that satisfy A < (2n + 1)/(2c2) -n. This covers all the zeros on
(0, 1) in case -1/2 < ) g 1/2. On the other hand, when A > 1/2, the integrand in (3.7)
may change sign. But in this situation we can use the formula

(3.8)
dc L 2n +1-2(n + A)s2 [,( ]2d- (1 c2)-’k-1/2[P(n’k) (c)] -2 (1 s2)-)’+3/2 (s) ds

obtained by using the method described at the end of 2 with a 1 or by using the
identity

(3.9)
(2n + 1) (1 s2)-a/2 [P(X)(s)] 2

ds
1

ds.

To prove (3.9) we let A denote the integral on its left-hand side and B the integral
on its right-hand side. We have, using [22, eq. (4.7.28)],

n--2a a
k=0

where the ck are constants. Thus, using the orthogonality property of the ultraspher-
ical polynomials, we get

(1 s2)-l/2sp(’X)(s)dp.(’X)(s)ds
1 ds n

2
n (1 P(n) (s) ds n(A S).

1

Now

(2 1)B S__1
1

d
(1 s2)’-l/2ds,

and so, using integration by parts, we obtain

(2, I)B kP(X)(s)j
2
(I- s2)-1/’ds + s_.,.),s,dp.(X),s,,iP(((( s2)-l/2ds

1 ds n

A- B + 2n(a- B).
From this we get (2n + 1)A 2(n + $)B, which is the identity (3.9). To recapitulate,
formula (3.7) shows that a positive zero of P(na)(x) is a decreasing function of A
for those values of ,k that satisfy ,k < (2n / 1)/(2c2) -n, and (3.8) shows it for
,k > (2n / 1)/(2c2) n. Together, these results recover the known result [22] that
all the positive zeros are decreasing functions of ,k. We remark that the integral in
(3.8) exists only .for ,k > 1/2. But on considering that 0 < c2 < 1, this follows from the
condition ,k > (2n + 1)/(2c2) n.
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4. The determinant Q(t, ). Here we consider a pair of linearly independent
solutions x(t, u), y(t, ) of the differential equation

(4.1) z" + q(t, y)z O, t e I,

satisfying the initial conditions

(4.2) x(a, ) (), y(a, ) O,

(4.3) xt(a, u) O, yt(a, ) 1/(u)

for each u in some interval J. The function (u) is supposed to be differentiable on
J. The Wronskian

(4.4) W x(t, u)yt(t, ) xt(t, u)y(t, u) -= 1, t e I,

for each u E J. We suppose, as in 2, that q(t,u) is of class C1 in a domain of
(t, u)-space that includes I x J. This implies, as pointed out in 2, that the solutions
x(t, u), y(t, u) and, indeed, any linear combination

(4.5) z(t, u) cos a x(t, u) sin ( y(t, u)

are of class C1 throughout their domains of existence in the (t, U)-plane. Let c
c(u, a) be a zero of z(t, u) for some fixed a. Thus

cos a x(c, u) sin a y(c, u) O.

Proceeding somewhat as in [23, p. 508], we differentiate (4.6) with respect to u to get

(4.7) cos a[x(c, u) + xt(c,u)c] sin a[y(c, u) + yt(c,u)c] O.

In order for (4.6) and (4.7) to hold simultaneously (since cos2 a + sin2 a O) we must
have (abbreviating the notation)

(4.8)

or

(4.9) x y x y
xt yt

Hence, using (4.4), we have

(4.10)

where

de
d-- -Q(t, ),

(4.11) Q(t,) (t, u(t,
u (t,

We will show in 5 that Q(t, u) satisfies the third-order nonhomogeneous linear dif-
ferential equation

(4.12) w’" + 4q(t, u)w’ + 2qt(t, u)w 2q(t, u)
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with initial conditions

(4.13)

It will then follow that

(4.14)

where

(a, ) -2’()/().

Q(t,v) [-2’(v)/(v)]x(t,v)y(t,v) + q(s,v)[z(s,t;v)12ds,

(4.15) z(t,s;)

is the solution of

d2z
(4.16)

ds2
{- q(s, u)z O,

From (4.14) we get

,(t, t; ) o, z,(t, t; ) .

were proved by showing that both sides of (5.1) satisfy the same third-order differential
equation and have the same asymptotic behavior. Here we prove (4.14) by showing
that both sides satisfy (4.12) with initial conditions (4.13). We remark that the prod-
uct xy of any two solutions x and y of (4.1) satisfies the corresponding homogeneous
equation

(5.3) wm + 4q(t, u)w’ + 2qt(t, u)w 0;

see [11 Thus the general solution of (4.12) is

(5.4) Q(t,) k()(t,) + ()(t,)U(t,)+ k()U(t,) + S(t,),

where

S(t, u) q(s, u)[z(s, t; u)12ds

(5.1) J(z)OY(z)/O Y(z)OJ(z)/Ou -47r-1 K0(2z sinh t)e-2tdt,

and its almost immediate consequence,

(5.2)
dc fod-- 2c K0(2c sinh t)e-2utdr,

5. A third-order differential equation. Our approach here is motivated by
what was done in [15] in the case of Bessel functions. There a formula of Watson [23,
p. 444],

In case c 0 or a 7r/2 the first term on the right-hand side vanishes, and so we
see that (4.17) gives a generalization of the Richardson formula (2.7).

Cdc
[2’(u)/(u)lx(c,u)y(c,u)- q(s,u)[z(s,c;u)]2ds.

du
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is the integral on the right-hand side of (4.14). To show that Q(t, u) satisfies (4.12)
we find it convenient to introduce also the determinant

(.) R(, ) (t, ,) u(t, ,)
(t,,) u(t,,)

Using the well-known rules for differentiation of determinants, we have

(5.7) P(t, ,)

Now, using (4.1) and [10, Thm. 3.1, p. 95], which implies that x and y satisfy
the differential equation obtained by formally differentiating (4.1) (with the implied
interchange of orders of integration), we get

x yP(t, ) -q
Xut Yut

-qQt + q.

x y -q

Similarly,

- , v xtt ytt +2 xt
Xv y

X y
-q + 2R +

Xu Yu
-2qQ + 2R.

-qux qxu

Y
Ytt

Y
-qy qy

Differentiating this last equation with respect to t and using (5.8), we see that Q(t, )
satisfies (4.12). As already remarked, the first term on the right-hand side of (4.14)
satisfies the homogeneous equation (5.3). Hence in order to show that Q(t, ) satisfies
(4.12) it will be enough to show that S(t, ), as given by (5.5), satisfies (4.12). We
remark, first of all, that

(.9) (t, ; ,)

since both sides satisfy (4.16). We also have z(t, s; ) -z(s, t; ), and hence z(s, t, )
satisfies

d2z
(5.10) dr--: + q(t, )z O, z(s, s; ) O, zt(s, s; ) 1.

Now

(5.11) St(t, r,) 2 q(s, r,)z(s, t; t,)zt(s, t, r,)ds.

Differentiating again and using (5.10), we get

(5.12) Stt(t, t,) -2q(t, r,)S(t, t) + 2 q(s, t)[zt(s, t; t)]2ds.

A final differentiation and use of (5.10) and (5.11) show that S(t, ) satisfies (4.12).
Though the verification is easy, we remark that in order to discover the form of the
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right-hand side of (4.14) we used the method of variation of parameters to solve (4.12)
by using the linearly independent solutions x2, xy, and y2 of (5.3).

It is clear on using the initial conditions (4.2) and (4.3) that Q(a,u) 0 and
R(a, ) O. We have

(5.13) Qt(t,)

so that

(5.14) Qt(a, ) -2’()/(),

and from (5.8), Qu(a,u) 0. On the other hand, from (5.10), (5.5), and (5.12),
S(a, ) St(a, ) Su(a, ) O. It is clear that choosing kl () k3(u) 0, k2()
-2’()/() in (5.4) will make Q(t, ) satisfy the initial conditions Q(a, ) Qu(a, )

o, Qt(a, ) -2’()/(). Thus the proof of (4.14) is complete.

6. Application of third-order-equation method to cylinder functions.
In the case of cylinder functions,

C(t) cos aJ(t) sin aYe(t),

the relevant differential equation satisfied by tl/2Cu(t) is

1/4 v2 ](6.1) y"+ 1+ t2
y=0.

For the Bessel function of the first kind, J(t), we get the Schlifli formula of 3. The
discussion of 4, however, enables us to extend this result to all cylinder functions,
rather than just J(t). The approach of 3 does not work because the functions no
longer vanish at 0, nor do they have a common finite zero (for all ). We avoid this
problem by choosing, in effect, a c.

We suppose that Q(t, ) is given by (4.11), where

x(t, ) -(tr/2)/2y(t), u(t, ,) (t/2)/J(t).

We can verify easily that in the present situation (4.12) has a particular solution

(6.2) s(,) q(,)
2

ds,

so that if we use the considerations leading to (5.4) of 5, its general solution is given
by (5.4). With the standard notation [23] for Bessel functions this leads to

(6.3)
Q(t,) ka(u)t[j2(t) + Y2(t)] + k()t[H()(t)]2

+ k6(u)t[H(2)(t)]2 -t-(ur2/2)t 8
-1

2

Now from standard asymptotic expansions for the Bessel functions ([23, Chap. 7] or
is, q. 7.3]) we hv (e [7, p. 3al d [5])

Q(t, ) -(r/2) + O(t-),
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(6.5)

(6.6)

J2() + Y2(t) (a/.)t-1 + o(t-,),

as t --. c. It is also clear that

(6.7) s-
since [23, Chap. 7]

J(t) y(t) ]J(s) Y(s) ds O(t-2), t --,

Using these asymptotic estimates in (6.3), we conclude that k4(u) -r2/4, k5(u)
k6 (u) 0. Thus we have

urt.f Jr(t) Yv(t)2(6.9) Q(t,)
72t [J2(t) + Y2(t)] + 2 J(s) Y(s)- s- ds.

If c c(u, k, a) is a zero of any cylinder function C,(t) cosaJ(t)- sin aYv(t), we
get from (4.10)- - ( g(.) a

But the determinant in the integrand here is a solution of the Bessel equation (in the
variable ), which vishes age. Hence ig is eonsgg mulgiple of u(). Differengi-

aging wigh respeeg go , seing e, d using ghe Wronski formula [2, p. 76],
we find that this constt is 2/[cC’(c)]. Hence (6.10) c be itten

2 8-16(8) ds[g2()+ Y2()] c,()(6.11) d

In the speciM ce where a 0d c j j, a positive zero of J(t), this becomes

(6.12)
dj JY(J)

1- 2 - J() d

Using the formula [23]

(6.13) s-j2(s) ds-- 1/(2u),

as well as the Wronskian relation and a recurrence relation for the Bessel function,
we see that (6.10) reduces to Schlifli’s formula (3.2). Similarly, in the case
we are led to Schafheitlin’s formula [19]

(6.14) d ’J()
1 2, -Y() d

for the zeros of Y,(t).
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Remark 1. A formula that is somewhat more useful than (3.2) for the derivative
with respect to order of a zero of a Sessel function is (5.2) (due to Watson [23, p. 508]),
which is valid for all zeros of cylinder functions throughout the interval in which they
are continuous functions of u. Because of the simple nature (positive, decreasing, etc.)
of Ko(t), the formula (5.2) has been used to remarkable effect in several discussions
of monotonicity, convexity, etc., of the zeros; see [2]-[5] and the references therein. In
[15] it was shown how to derive (5.2) by a differential-equations method essentially
by showing that the corresponding Q (in the notation of the current paper) satisfies
(4.12) in the special case involved. It would be interesting to be able to do this for a
class of differential equations, that is, to find a method for solving (4.12) that would
lead to formulas like (5.2) in much the same way as variation of parameters leads to
formulas of the Schlfi$1i type; see [16] for further remarks on this topic.

In contrast to (5.2), there are many approaches to the SchlfiaCli formula (3.2). In
addition to the approach in this section, there is an approach based on the Hellmann-
Feynman theorem in [14]. A formula for dj/du ([11]; see also [13]) involving infinite
sums has been shown [12] to be derivable from the SchlfiaCli formula by using classical
results for Bessel functions.

Remark 2. Since we know independently from (5.2) that dc/d > 0 and since
every positive number can be realized as a zero of some C(t), we find from (6.10) the
inequality

(6.15) J2(t) + Y2(t) > 2u s_1 J(t) Y(t) 2

J(s) Y(s) dE, t > O.
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Abstract. Remez- and Nikolskii-type inequalities on line segments, on circles, and on certain
bounded domains of the complex plane are established for exponentials of logarithmic potentials with
respect to probability measures on C having compact support.
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1. Introduction and notation. Generalized nonnegative polynomials of the
form

II c, e c, 0 <

were studied in a sequence of recent papers [1], [2], [3], [4], [6], [7]. Several important
polynomial inequalities were extended to this class by utilizing the generalized degree

(1.2) N :- Zrj
j--1

of f in place of the ordinary one. Since

k

(1.3) log f(z) Z rj log Iz zjl + log

a generalized nonnegative polynomial can be considered as a constant times the ex-
ponential of a logarithmic potential with respect to a finite Borel measure on C
that is supported in finitely many points (the measure has mass r > 0 at each
zj, j 1, 2,..., k). This suggests that some of the inequalities holding for generalized
nonnegative polynomials may be true for exponentials of logarithmic potentials of the
form

(1.4) Qmc(z) exp (jfclog lz tld#(t) + c)
where # is a finite, nonnegative Borel measure on C having compact support and
c JR. The quantity #(C) plays the role of the generalized degree N, defined by (1.2).
In this paper we extend a number of classical polynomial inequalities for exponentials
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of logarithmic potentials. Typically such extensions are not straightforward; indeed
our proofs are far from simple density arguments.

Denote by Pnr the set of all algebraic polynomials of degree at most n with real
coefficients and let :P, be the set of all algebraic polynomials of degree at most n with
complex coefficients. Let jr4 denote the set of all probability measures on C with
compact support. For # E J and c E R we define

(1.5) P,c(z) :- / log Iz tld#(t + c (z e C)
c

and

(1.6)

Associated with # Az[ and c l we introduce the sets

E,c {x e [--1,1]" P,,(x) <_ O}

(x e [-1, 1]" Q.,c(x) _< 1}.

We will denote by m(A) and m2(B) the one-dimensional Lebesgue measure of a set
A c R, and the two-dimensional Lebesgue measure of a set B c , respectively.

The Remez inequality [12] asserts that

(1.8)
--l<z<l 2

for every p P such that

(1.9) ml({x e [-1, 1]" IP()I-< 1}) >_ 2- s (0 < s < 2),

where Tn is the Chebyshev polynomial of degree n, defined by Tn(x) := cos nO, x
cos0. Proofs of this inequality appear in [9, pp. 119-121] and [5]. In Theorem 2.1 we
establish a sharp upper bound for max_l<x< Q,c(x) when m(E,c) >_ 2 s, and
(assuming Q,c(x) is continuous) we find all # e J[ and c e R with m(E,c) _> 2- s
for which this sharp upper bound is achieved.

In Theorem 2.2 we establish pointwise upper bounds for Q,c(x) for fixed x
[-1, 1], if # e JI, c R, and ml(E,c) >_ 2- s. An obvious bound for Q,c(x) follows
immediately from Theorem 2.1, but it turns out that for any fixed -1 < x < 1 this can
be substantially improved. Indeed, Theorem 2.2 establishes essentially sharp upper
bounds, which extend the validity of a pointwise Remez-type inequality [4, Thm. 4]
proved for generalized nonnegative polynomials.

In Corollary 2.3 we offer another, slightly weaker version of the Remez-type in-
equality of Theorem 2.1, and in Theorem 2.4 we establish an analogue of Corollary
2.3, where the interval [-1, 1] is replaced by the closure of a bounded domain 12 C C
with C2 boundary, and the one-dimensional Lebesgue measure m is replaced by m2.
Such two-dimensional Remez-type inequalities seem to be new even for ordinary poly-
nomials and for special domains, such as the open unit disk. Therefore we formulate
a two-dimensional Remez-type inequality in this special case first, which turns out to
be essentially sharp by Theorem 2.6.
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Concerning Lp-versions of Remez’s inequality, we study the following question:
How large can the ratio

f (Q.,(x))pdx
--1

f(Q.,(x))dx
A

be if#EYPl, ceR, AC [-1,1], ml(A)_>2-s, 0< s<2, andp>0? We give
an essentially sharp answer in Theorem 2.7 for the case when 0 < s _< 1/2. In Theorem
2.8 we establish an essentially sharp upper bound for the ratio

f(Q,,(z))dm2(z)
f(Q,,(z))dm(z)
A

when f c C is a bounded domain with C2 boundary, # A/l, c R, A c ,
m2(A) _> m2(f)- s,s > 0 sufficiently small, and p > 0. In Theorems 2.9 and
2.10 we give essentially the best possible Remez-type inequalities for exponentials of
logarithmic potentials on the unit circle. The Remez-type inequalities of Corollary
2.3 and Theorems 2.4 and 2.9 will play a central role in establishing the Nikolskii-type
inequalities for exponentials of potentials on [-1, 1], on the unit circle and on bounded
domains of C with C2 boundary. These Nikolskii-type inequalities are formulated in
Theorems 3.1, 3.2, and 3.3.

2. Pemez-type inequalities: statement of results. In this section we state
our main results concerning Remez-type inequalities for logarithmic potentials on
[-1, 1], on the unit circle and on bounded domains having smooth boundaries. The
proofs of these results will be given in 6, 7, 8, and 9.

THEOREM 2.1. Let # ], c ], and E,,c be defined as in (1.7). Then

(2.1) ml (E,c) >_ 2- s (0 < s < 2)

implies

(2.2) max Q.,c(x) <
x/ + v

Furthermore, if Q.,c restricted to [-1,1] is continuous on [-1,1], then the equality
holds in (2.2) if and only if

and

2--8
c log

4

where # denotes the equilibrium measure (cf. [14, III.2]) of a compact set g C C.
We remark that Q,c is upper semicontinuous on C, so the maximum on [-1, 1]

is attained.
Concerning pointwise upper bounds for Q,c(x) we shall prove the following result

that extends the validity of Theorem 4 of [4].
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THEOREM 2.2. There is an absolute constant kl such that

(2.3)

for every -1 <_ x <_ 1, # E JA and c satisfying

(2.4) ml(E,,c) >_ 2- s (0 < s g 1).

Here we do not examine what happens when 1 < s < 2; the case 0 < s <_ 1 is
more important in applications. The sharpness of Theorem 2.2 (in the corresponding
polynomial case) is shown in [4, 12].

Observe that the first assertion of Theorem 2.1 is equivalent to the following.
THEOREM 2.1". For every Iz ]VI, c and 0 < t < 1,

(2.5) m x [-1, 1] Q,,c(x) > max Q,(y) > 2t.
1 + V/-_<_<

Consequently, we obtain the following.
COROLLARY 2.3. There is an absolute constant k2 > 0 such that

for every # JA, c , and 0 < s < 2.
In our next theorem we establish the analogue of Corollary 2.3 for the case when

[-1, 1] is replaced by the closure of a bounded domain f c C with C2 boundary.
THEOREM 2.4. Let f C C be a bounded domain with C2 boundary. Then, there

is a constant k3 k3(f) > 0 depending only on f such that

.for every # J, c JR, and 0 < s < m2(f).
Actually, in the above theorem it suffices to have a somewhat weaker geometric

assumption for the boundary of f, namely, the following: there is an r > 0 depending
only on fl such that for each z 0fl there is an open disk Dz with radius r such that
Dz c f and z N 0fl {z}. It is well known that if 0fl is a C2 curve, then this
property holds.

To prove Theorem 2.4 we will need the following result for polynomials. To
formulate this, we introduce the notation

(2.8) D := {z e C’]z[ < 1}

and

(2.9) :P(D, s):= {p E :P m2({z e D’[p(z)[ <_ 1}) _> r- s} (0 < s < r),

along with the analogous definition for P(D, s).
THEOREM 2.5. There is an absolute constant k4 > 0 such that

(2.10) marx_ [p(u)[ _< exp(kanv/)
uED

for every p 7(D, s) and 0 < s <_ Z"
Our next theorem shows that the result of Theorem 2.5 is essentially sharp.
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THEOREM 2.6. There is an absolute constant k5 > 0 such that

(2.11) sup({Ip(1)[ p e :Pn(, s)}) _> exp(ksnvf)
1for every 0

Using Theorems 2.1 and 2.4, we establish Remez-type inequalities in Lp(0
cx)) for exponentials of potentials on both [-1, 1] and bounded domains C C d
C2 boundy.

THEOREM 2.7. The is an absolute constant k6 > 0 such that

1 + [(Q.,(x))Pdx
(2.12) A

g (1 + exp(k6p)) ]A(Q,c(x))ndx
for eve
0 < s , then k6 4 is a suitable choice.

THEOREM 2.8. Let C be a bounded domain with C2 bounda. Then the
are constants 0 < k7 kT() and 0 < ks ks() depending only on such that

(2.13)
A

/or eve , c R, p > O, 0 < s g ks, and A c with m2(A) m2() s.
The following theorem establishes a Remez-te inequMity for exponentis of log-

ithmic potentis on the unit circle, extending a Remez-te inequity for trigon
metric polynomis [4, Thm. 3].

THEOaEM 2.9. There is an absolute nstant k9 > 0 such that

(2.14) m Q,c(eit) < exp(kas)

for eve , c R and 0 < s S /2 whenever

om this we will eily obtain the following.
THEOaEM 2.10. We have

for eve , c R, p > O, 0 < s ./4, and A c [-., .) with m(A) 2. s.
Here k9 is the same as in Theorem 2.9.

We have formulated each of our results for probability meures on E with compact
support. This w done only for the sake of brevity. As an example, we rewrite the
result of Theorem 2.1 for all finite Borel meures on E with compact support.

COaOLLAaY 2.11. Let be a finite Borel measure on with compact suppo,
and let c R and E,c be defined as in (1.7). Then

2- (0 < < 2)

implies
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max Qu, (x) < +
u(c)

Furthermore, if Q,c restricted to [-1, 1] is continuous, then equality holds in (2.17)
i.f and only if

and

,

2--8
c=-#(C) log

4

where P*K denotes the equilibrium measure of a compact set K c C.

3. Nikolskii-type inequalities: statement of results. Using Corollary 2.3
and Theorem 2.4 we will prove the following Nikolskii-type inequalities. The proofs
will be given in 10.

THEOREM 3.1. There is an absolute constant ko > 0 such that

(3.1) ]IQp,c][L(-1,1)

_
(kl0(1 -{- q2))l/q-1/P[]Q,c[]Lq(-1,1)

.for every )/1, c JR, and 0 < q < p <_ oo.
THEOREM 3.2. Let fl C C be a bounded domain with C2 boundary. There exists

a constant kll kll () > 0 depending only on such that

(3.2) I[Q,[IL(a) <- (k(1 +
.for every tz J4, c R, and 0 < q < p <_ o.

We remark that Theorem 3.1 is an extension of [7, Thin. 6], where the same
inequality was proved when the support of # is a finite set.

THEOREM 3.3. There is an absolute constant k2 > 0 such that

(3.3) liQ..(e**)IiL.(_.) <_ (k12(1 + q))t/q-1/PllQ,c(ei*)[]Lq(_=,)

for every # JVI, c JR, and 0 < q
For general finite measures #, Theorem 3.1 yields the following.
COROLLARY 3.4. There is an absolute constant kl0 > 0 such that

(3.4) IIQ/,,cI[Lp(-1,1) -- (k10(1 + (qlz(C))2))l/q-1/P[[Q,iz,c[[Lq(-1,1

for every finite Borel measure IZ on C with compact support, c R and 0 < q < p <

Theorems 3.2 and 3.3 have similar straightforward extensions.

4. Lemmas for Theorem 2.1. To prove Theorem 2.1 we need a series of lem-
mas, which we state in this section and prove in 5.

For a compact set K C C containing infinitely many points, let T,K P be the
nth degree monic Chebyshev polynomial with respect to K, i.e.,

(4.1) IITn,KI]K inf ]]zn P(Z)l]K,
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where I1" II K denotes the uniform norm on K. We also define the normalized Chebyshev
polynomials

(4.2) Tn,K "= IIT=,KIIK"
LEMMA 4.1. Let 0

_
< 2, < s < 2, and z C with Rez >_ 1 fixed. Then

(4.3) sup Ip(z)

where the supremum in (4.3) is taken over all p P satising

(4.4) ml((X [-1,1- ]" Ip(x)l

If K C C is a compact set we denote by boo(K) the unbounded component of
the complement C\K. This domain is referred to as the outer domain of K and its
boundary ODoo(K) is called the outer boundary of K. If K has positive logarithmic
capacity [14, p. 55], we denote by gDoo(K)(Z, 00) the Green function with pole at c
for Doo(K). We remark that gDoo(K)(z, oo) is the smallest positive harmonic function
in Doo(g)\(oo) that behaves like log Izl-t- const, near cx) (cf. [11, p. 333]).

LEMMA 4.2. Let g C [-1,1] be compact with rex(K) >_ 2- s (0 < s < 2). Then
the inequality

(4.5) ()(,) _< ([_,_l)(z,)
holds for all z such that Re z >_ sup(K).

To prove Lemma 4.2 we need the following result of Myrberg and Lega [11, Thin.
x., p. 333l.

LEMMA 4.3. Let K C C be compact with cap(K) > 0, where "cap" denotes the
logarithmic capacity. Then

IF,()l(4.6) lim
i

log gD(K)(Z, c)

for every z E Do(K), where Fn,K denotes an nth degree monic Fekete polynomial
for K. The convergence in (4.6) is locally uniform in no(K).

LEMMA 4.4. Let # ]/[ and c R. If

(a.)

then the inequality

(a.s)

m(Ez,c) >_ 2- s (0 < s < 2),

p,() _< a.(I_,_,l)(z,)
holds for all z such that Re z _> sup(Ez,c).

To formulate our last lemma, for 0 < s < 2 we introduce the notation

(4.9) fl4(s) :-- ((#, c) e J x R m(E,c) >_ 2- s).

LEMMA 4.5. Let 0 < s < 2 be fixed. Then

(4.10) sup( max P,c(x))=sup(P,(l))
where the supremum on each side of (4.10) is taken over all (#, c) J(s).
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5. Proofs of the lemmas for Theorem 2.1.
Proof of Lemma 4.1. We prove the lemma only when 0, since the case when

0 < 5 < 2 can be handled similarly. For the sake of brevity we introduce the classes

P([-1,1], s).= {p e "P’m({x e [-1,11" ]p(x)] < 1}) > 2-s}(5.1)
(n=0,1,2,...; 0<s<2).

It is easy to see that P,([-1, 1], s) is a closed and bounded subset of :pr in the uniform
norm on [-1, 1]; hence it is compact. If z 6 C is fixed, then the map p --. Ip(z)l is
continuous; therefore, there exists a p* 6 :P([-1, 1],s) such that

pe([--1,1],,)

Now we show that Re z _> 1 implies

(5.3) p* ].

To see this, we analyze the properties of p*.
PROPOSITION 5.1. p* has only real zeros.

Proof. Assume to the contrary that p* has a nonreal zero w. Then

p(x) (1 1-
(x-w)(x-N)

e

with sufficiently small r/> 0 and e > 0 contradicts the maximality of p*. This proves
the proposition.

PROPOSITION 5.2. All zeros o.f p* are in [-1,1].
Pro@ Assume to the contrary that p* has a nonreal zero w outside [-1,1], which

is real by Proposition 5.1. We now distinguish three cases.
Case 1. w > Re z. Let w* E be the symmetric image of w with respect to

Re z, i.e., w* := 2Re z- w. Then

X W*
(5.5) p(x) := (1 + y)p*(x) e P,([-1, 1], s)

with a sufficiently small r > 0 contradicts the maximality of p*.
Case 2. 1 < w < Re z. Now

x-1
(5.6) p(x) := (1 + r)p*(x) e P([-1, 1], s)

with a sufficiently small r] > 0 contradicts the maximality of p*.
Case 3. w < -1. Observe that (x + 1)(x- w)-1 is strictly increasing in [-1, oo),

and so

Rez+l _< z+l

Then

(x + 1)(Re z- w)(5.8) p(x) := (1 +)p*(x)(x w)(Re z + 1)
e P,([-1, 1], s)

with a sufficiently small v/> 0 contradicts the maximality of p*.
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By considering Cases 1, 2, and 3, Proposition 5.2 is completely proved.
Now we introduce the notation

(5.9) I :-- {x e [--1, 11" IP*(X)l < 1}.

Obviously I is the union of pairwise disjoint subintervals of [-1, 1] that will be called
the components of I. Every component of I contains at least one zero of p*; otherwise
a routine application of Rolle’s Theorem, together with Propositions 5.1 and 5.2 would
imply that p’* has at least as many zeros as p*, a contradiction. Using this observation
we prove the following.

PROPOSITION 5.3. The set I is a single interval; in fact, I [-1, 1 s].
Proof. To see that I is an interval, assume to the contrary that I has at least

two components, and let I1 be the component closest to 1. Let 7 and 7 be the
left-hand endpoint of I1 and the right-hand endpoint of the component closest to I:,
respectively. If wj(j 1, 2,..., m) are the zeros of p* lying in I:, then it is easy to
check that

m

1-] (x wj / h)
(.0) () := *()= e ,([-1 1],)

I1 (-1
j--1

with 0 < h _< 7 y contradicts the maximality of p*. Therefore I is an interval with
ml (I) _> 2 s. Now if I [-1, 1 s], then

(5.11) p(x) := p* (x + e) e P([-1,1], s)

with sufficiently small e > 0 contradicts the maximality of p*, which proves the
proposition. El

Now Proposition 5.3 together with a result of Erd6s [13, p. 64] yield that p* _=

Tn,[_l,l_s] and Lemma 4.1 is proved. El

Proof o.f Lemma 4.2. Let Fn,K denote an nth degree monic Fekete polynomial for
K and set

Then

Therefore,

F.,K() :--
IIF.,KIIK and 5:-l-sup(K).

[-1, 1- 5]" IF.,K()I _< 1}.

ml({X e [-1, 1- ,]" IF.,()I _< 1}) _> 2- s,

and Lemma 4.1 implies that

(5.12) IF.,K(Z)I <_ IT.,[-:,l-,,](z)l
holds for every z E C such that Re z > sup(K). Since cap(K) > ml(K)/4 > 0 [14,
Cot. 4, p. 84], by Lemma 4.3 we have

(5.13) lim In,K(Z)l 1/n exp(gDo(g)(Z, 00)), Z e Do(g),
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and, as is well known,

(5.14) nlirnoo [n,[_l,1_8](z)[ 1/n exp{gDoo([-,-8])(z,

for eve z e C such that z [-1, 1 s]. Now (5.12)-(5.14) yield the lemma except
for the point z0 sup(K) 1 s. That (4.5) also holds at z0 can be seen from the
limiting gument given in the next proof.

Proof of Lemma 4.4. For a ed 0 < < 2- s we choose a compact set K c E,c
such that sup(E,c) > sup(K) and

m(E,cg)
The lt inequity, together with (4.7), yields m(K) 2 s . Note that the
function

gD(K)(Z,) P,(z)
is superhmonic on CK d, since K c E,c,

liminf (gD(K)(Z,) P,c(z)) > O.
zD(K)

Therefore the minimum principle for superhmonic nctions gives

0

for all z D(K), d in pticul, for all z C with Re z sup(E,c) sup(K).
On the other hd, by the preceding proof,

(g)(z,) ([_,_,_])(z,
for M1 z C with Re z sup(K). This, together with (5.15) yields

for all z C with Re z sup(E,c). Ting the limit in (5.16) 0+, we obtain
the desired result.

Proof of Lemma 4.5. Note that P,c ispper semicontinuous; hence there ests
[-1, 1] such that

--11

If (p, c) (s), then either

or

We may sume that 9 -1 and that (5.17) holds; otherwise, we study
(s). Now (5.17) impiles that (, ) (s), where

2
t+ 2 :=c-log

+1
and

max P,c(x) P,c(Y) P,e(1),
--1<x<1

which proves the lemma.
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6. Proofs of Theorems 2.1 and 2.2.
Proof of Theorem 2.1. From Lemmas 4.4 and 4.5 we deduce that

<
--l<x<l

whenever ml(E,c) > 2 s. Note that

(6.2) exp{gD([_l,_s])(1, )} _,
which, together with (6.1), yields the first part of the theorem.

Now we prove the unicity part of the theorem. Assume that (#, c) E jI(s), Q,c
restricted to [-1,1] is continuous and

(6.3) Q,c(1) /_

Then, by continuity, sup(Emc < 1. First we show that

for all z in the half plane

7-/:= {z e C: Re z > sup(Emc)}.

Indeed, (6.3) can be written as h(1)= 0, where

h(z) := gD([_l,l_s])(Z, 00) Pine(z).

Since h is superharmonic in the domain and 1 T/, Lemma 4.4 and the minimum
principle for superharmonic functions imply that h(z) =_ 0 in 7-/. Thus (6.4) holds
in 7-/.

Next we show that

supp(#) C R.

Assume that supp(#)\IR q}. If w supp(#)\]R, then the disk

n(w,e) :-- {z e C: [z-w[ < e}

has positive #-measure for every .e > 0. Now let

(6.5) A := supp(#) fq D(w, e) with e 1/2 IIm w[.

We define the linear transformation qo C -- C by

(6.6) o(z) :-- 1 + (z- 1)exp(i(r- arg(w 1))).

Obviously,

(6.7) [1-(t)[=11-t for allteC,

and there is a 0 < 6 < 1 depending only on w and sup(Emc such that

(6.8) Ix (t)l < 6Ix t for all t E A and 1 _< x _< sup(E,,c).
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We denote the restriction of a measure u on a measurable set B by uls, and define
the measure a(t):= #(qo-(t)). Then (6.7), (6.8), and/ e A4 imply

(6.9)

and

log tl tld#lA(t) f log I1 (t)[du(t)
c A

f log I1 tlda(t)

(6.10)

log Ix tldal(A) fA log IX o(t)ldu(t)
c

< fA log Ix tld#(t + #(A) log 8

Now let

for all- 1 < x < sup(Emc).

(6.11) p(t) lc\A(t) + alfA)(t).
We have/2 J/l, since # J4 and

C CkA (A)

o (.)-(.) obti

(6.12) log I1 tldp(t) log I1 tide(t)

d, for -1 x sup(Em),

(6.13) log Iz tldp(t) < log Ix tide(t) + (A)log 8.

Now (6.13) and (, c) (s) imply

(, ,(A) og) e (),

while (6.12) and 0 < 8 < 1 yield

P,,.-.ao() P.,(1) .(A)og > P.,(1),

which contradicts the extremal property of P,e. Therefore supp() C .
Let [a,] be the smallest interval containing supp()U [-1, 1- s]. Since the

function got-,x-. P., is hmonic on C[a, #] and vishes in the half plane, we have

(6.14) gDt-,x-,(z,) P,,(z)
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for all z C\[c, f]. In particular, letting z --+ oc in (6.14),

2--S
c log

4

Since (6.14) can be written as

Jc log Iz tld#(t Jfc log Iz rid#i*_,_,] (t)

for all z C\[a, ], the result of [10, Thin. 1.12’, p. 76] yields # #-x,x-s]"
Finally, if (#, c) l(s) and

x/ + /’ [-1 11,.,(u)

_
, u e

then, as in the proof of Lemma 4.5, we have either

(0, e) () o (, e) (),

where

and

o(t) := (( + )tl + ( )1),

(t) := #((1 -Y)tl2 + (1 + y)/2),

If (b, ) E A/I (s), then

:=c-lg( 2)y+l

Qo,e(1) Q,,(y)

(2)fi "= c- log
1 -/

and so, by the first part of the proof,

+v

2--8
b

,
=#[_t,t_e] and =-log

4

Since Qo,(1) _> Q.,(1) Qo,e((3- y)/(1 + y)), it follows that y 1. Hence

2--8
# b *[--1,1--s] and c fi log

4

If (, 5) E Jl(s), then in exactly the same way we obtain

2--8
# --1-1-s,1] and c log

4

377

ml(Eu,c\K <_ e.

which completes the proof, r
Proof of Theorem 2.2. We assume that 0 < s < 1, since the case s 1 can be

obtained by Theorem 2.1. Let # JP[ and c ]R be such that (2.4) holds. For a fixed
0 < < 1 s we choose a compact set K c Eu,c such that
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Then, as in the proof of Lemma 4.4, we deduce that

(6.15) gDo(g)(Z, x3) P,c(z) > 0

for all z
2 s + e. Applying [4, Thm. 4] to the Fekete polynomials Fn,K , we have

(6.16)
n [[Fn,KI[K- 1 X2’

for every --1 x 1, where k > 0 is an absolute constt. By Lemma 4.3 and
m(K) 2 s > 0, the limit of the len-hand side of (6.16), n , exists
for every x [-1,1]kK, and equals gD(K)(X, ). Therefore (6.16) and Lemma 4.3
imply

9()(,) N k rain
1 ’

for every e [-1, 1]K, d gogegher wigh (6.1g) ghis yields

(6.17) P,c(x) k min
1 x2’

for every x [-1, 1]K. Since P,c(x) 0 for every x K C E,c, (6.17) holds
for every x [-1, 1]. Ting the limit in (6.17) e 0T, we get the desired
result.

7. Proofs of Theorems 2.4 2.5 d 2.6. Denote by the set of all real
trigonometric polynomials of deee at most n. Note that p P implies that qr(t) :=
]p(ret)[2 for eve r > 0. This follows immediately om the identity

]z z ]re re (re re)(re- re-
(7.1) + y o( )

(z re, zj re t, tj R, r > O, r > 0).

In the proof of Theorem 2.5 a Remez-type inequality on the size of trigonometric
polynomials will play a centr role. To formulate this we introduce the notation

(.) ():= {q e 1({ e [--, )- Iq()l }) 2- } (0 < < ).

LEMMA 7.1. The is an absolute constant k3 > 0 such that

m ]q(t)] exp(kans) (0 < s r/2)

for eve q (s).
Lemma 7.1 is proved in [4, Thin. 3]. Our next lemma is a well-known, simple

consequence of the mimum principle for analic functions.
LEMMA 7.2. Let D := (z C" [z] g 1}. We have

m ]p(u)] (1 r)-n m ]p(u)

for every p 79 and 0 < r < 1.
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Theorem 2.5 will be used in the proof of Theorem 2.4, so we prove Theorem 2.5
first. The proof of Theorem 2.4 will be given at the end of this section.

Proof o Theorem 2.5. Let p e 7nc(,s)(0 < s < 1/4). Observe that if qr(t) "--
Ip(ret)12 Tn(2vG for every 1 v/ < r < 1, then

(7.3)
1

m2({z e " ]p(z)l2 > 1}) > / 2vdr >_ x/2V(1- v) _> s

(0 < s _< 1/4 was used in the last inequality), which contradicts the fact that p E
:pc(, s). Thus there exists an r0, (1 V < r0 < 1) such that

(7.4) qo(t) Ip(roet)l c (2).

Then, by Lemma 7.1, we obtain

(7.5) max Ip(roeit)12= max Iqro(t)l <exp(2k13nv/’).
--r<t<r --r<t<r

Furthermore, Lemma 7.2, together with 1 vG _< r0 _< 1 and 0 < s _< 1/4, yields

marx_ Ip(u)12 < (1 x/;)-’ max Ip(u)I
uED Iul<ro

< exp(4nx/) max Ip(u)l exp(4nx/) max Ip(roP)l2.
lul_<ro -r_<t_<r

Now (7.5) and (7.6) give the theorem with k4 := k13 + 2.

Proof of Theorem 2.6. Let Tn(x) cos(n arccos x)(-1 _< x _< 1) be the Chebyshev
polynomial of degree n. For 0 < s < 1, define the polynomials

(7.7) :=
cos V;

and

Obviously,

(7.9)

Let

(7.10)

Q3n,s(z) := z Tn,8 2

max lQ3,,s(U)l lQa,,s(1)l T, ( 1 ) ( s )I1_<1 cos X/ > T= 1 +

Ds,c := {z E C’lz < 1,argz c [v/’, r- ] u [r + x/’, 2r-

e C-lzl <_ 1-

where 0 < c < 1 will be chosen later. We examine the maximum of IQ3n,sl on Ds,c.
By the maximum principle, it is sufficient to examine the maximum of IQ,3n,sl on the
boundary of Ds,c. For z satisfying Izl 1, arg z E Iv/g, r- x/] U [r + x/g, 2r x/],
we have

(7.11) IQ3., (z), <
l-Imax<cosv IT(cosX ) -<1"
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Furthermore, by the maximum principle, we have for Izl- 1 -cv

[Qan,.(z)l < (1- cvq)n max unTn,s (u+u-x)
.T (U+U-1)=1 2 cos

Now let

z r(cos vf +/sin vf) with 1 cv g r g 1.

If c- and 0 < s <_ 1 in (7.13), then

(7.14)

z+z- COS ( r+r-12
1 cs

1) cos Vf + i
r r-

2
sinV

cv s
cosV /

1 c----- sinV _< cos

Therefore, using the fact that the zeros of Tn,s are in (-cos v, cos V), we easily
conclude

(7.15)
8 8<_ Tn,. ((1 + ) cos vf)

By the reason of symmetry (7.15) holds when z r(:t: cos V/’:t: i sin vf), 1 v//8 _<
r _< 1, and 0 < s _< 1. We define

(7.16)
1 (1K(n, s):--max (Tn (cosl )exp

and

Q3n,s(z)P3n,s(z) "=
K(n,s)"

By (7.11), (7.12), (7.15)-(7.17) and the maximum principle we can easily deduce that

(7.18) for z e D,,/8.

Hence

(7.19) P3n, - Pn(D, s) (0 < s <_ 1).

Finally, by (7.9), (7.16), and (7.17) we obtain

Pan, (i) Tn (1/ COS
K(n,s)_

rain exp n

which completes the proof.
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Proof of Theorem 2.4. Denote the boundary of by r. Since r is a C2 curve, there
is an r > 0 depending only on such that for each z E F there is an open disk Dz with
radius r such that Dz c 2 and Dz N r {z}. By the maximum principle for analytic
functions, for every p E :P, there is a z0 r such that
It follows from Theorem 2.5, by a linear transformation, that there are constants
k4 "= k4v/1/r2 ka/r > 0 and k15 := r2/4 > 0 depending only on 12 (k4 is the same
as in Theorem 2.5) such that

(7.21) ma_ Ip(u)l- m_ax Ip(u)l <_ exp(kans/)= exp(kanv/) (0 < s _< k)
u uDo

for every p :Pnc satisfying

e I (z)l < >

Now let JA, c R,

(7.23) Ea,, := {z e " Q,c(z) _< 1},
and assume that

(7.24) m2(Ea,,) > m2() s.

For a fixed 0 < e < m2() s we choose a compact set K c Ea,,c such that

(7.25) m2(E,,c\g) <_ .
This, together with (7.24), gives

(7.26) m2(g) >_ m2() (s +
As in the proof of Lemma 4.4, we obtain that

(7.27) gDoo(g)(Z, oo) P,(z) >_ 0

for all z Doo(K). Applying (7.21) to the normalized Fekete polynomials

fn,K(7.28) Fn,K "=
iIFn,gllK

we obtain

(7.29) __1 log I,,K(z)l <_ Kt4x/S + e

for every z t and 0 < s + e _< k5. By Lemma 4.3, the limit of the left-hand side of
(7.29), as n - oo, exists for every z e Doo(g) and equals gD(g)(Z, oo). Therefore,
(7.29) and Lemma 4.3 imply

(7.30) gDoo(K)(Z, 00)

_
kl4/s +

for every z e Doo(K) 12 and 0 < s + _< k5, and together with (7.27) this yields

(7.31) P,c(z) _< kla/s +
for every z e Doo(K) fl and 0 < s + <_ k5. Since K C Ea,,,c and P,c(z) is
subharmonic in C, it follows from the maximum principle that (7.31) holds for all
z ft. Taking the limit as --. 0+, we get

(7.32) Q,c(z) _< exp(kavf)
for every z iS and 0 < s _< k5, which completes the proof.
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8. Proofs of Theorems 2.7 and 2.8.

Proof of Theorem 2.7. From Theorem 2.1" we can easily deduce that

(8.1) ml(Ett,c,s,A >_ 2s- s s

for every # E J[, c E R, 0 < s < 1, and A c [- 1, 1] with ml(A) _> 2 s, where

1-V max Q,c(y)}.(8.2) E,c,s,A x e A" Q,c(X) >
1 + x/-l_<y_l

Hence

(8.3)

/
[-1,1]\A

(Q,c(x))Pdx < s max (Q,c(y))P

<(1+i-s) / (Q,c(x),’dx
Ett,c,,,A

< (1+1_]vf"/(Q,,c(x))’dx
A

_< exp(k6pv/’)/A(Qt,,c(X))Pdx
for every # AA, c e R, 0 < s _< 1/2 and A c [-1, 1] with ml (A) _> 2- s, where k6 4
is a suitable choice. From (8.3) we immediately get (2.12).

Theorem 2.8 follows from Theorem 2.4 by straightforward modifications of the
proof of Theorem 2.7.

9. Proofs of Theorems 2.9 and 2.10.

Proof o Theorem 2.9. Assume that p 7)nc and

(9.1) T/,l({t e [-, ). _< 1}) > 2T- s (0 < s _< ’/2).

Applying Lemma 7.1 to q(t):-Ip(eit)]2 e n(s), we obtain

(9.2) Ip(eit)l < exp(k13ns) (t
_

R).

The above polynomial inequality can be extended to exponentials of logarithmic po-
tentials with compact support by the technique used in the proof of Theorems 2.2
and 2.4; so we omit the details. D

Theorem 2.10 follows immediately from Theorem 2.9 in exactly the same way as
Theorem 2.7 was obtained from Theorem 2.1" so we omit the details.

10. Proofs of Theorems 3.1, 3.2, and 3.3.

Proof of Theorem 3.1. For the sake of brevity we denote the norm I1" IIL(-1,1) by
I1" lip. It is sufficient to prove the theorem when p o, and then a simple argument
gives the desired result for arbitrary 0 < q < p < x. To see this, assume that

Ilfllo < M1/ql]fl[a

for an f Loo and 0 < q < cx), with some factor M. Then
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and therefore

Ilfll < UX/-Xh’llfllq
for every 0 < q < p < oc. Thus, in the sequel let 0 < q < p cx. Applying Corollary
2.3 with

s min{ 1,(10.1)
we obtain

for every # E A/l, c E JR, and q > 0. Now, integrating only on the subset E of [-1, 1],
where

(10.3) (Qr,,e(x))q > e-1 max (Qmc(y))q
--1_y_1

(lO.1)

(10.4) IIQ., IIL _< e

rex(E)
E

for every # JA, c IR, and q > 0, and the theorem follows by taking the qth
root. F1

Theorems 3.2 and 3.3 follow from Theorems 2.4 and 2.9, respectively, by straight-
forward modifications of the proof of Theorem 3.1.
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Abstract. The necessary multiplier conditions for Laguerre expansions derived by Gasper and

Trebels [Canad. J. Math, 43 (1991), pp. 1228-1242] are Supplemented and modified. This allows the
authors to place Markett’s Cohen-type inequality [SIAM J. Math. Anal., 14 (1983), pp. 819-833]
(up to the log case) in the general framework of necessary conditions.
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1. Introduction. The purpose of this sequel to [3] is to obtain a better insight
into the structure of Laguerre multipliers on /2 spaces from the point of view of
necessary conditions. We recall that in [3] there occurs the annoying phenomenon
that, e.g., the optimal necessary conditions in the case p 1 do not give the "right"
unboundedness behavior of the Cesro means. By slightly modifying these conditions
we not only remedy this defect but also derive Markett’s Cohen-type inequality [6]
(up to the log case) as an immediate consequence.

For the convenience of the reader we briefly repeat the notation. We consider the
Lebesgue spaces

w() f" [[f l[ L’(.) 1 <_p< o,

denote the classical Laguerre polynomials by L(x), > -1, n e No (see Szeg5 [8,
p. 100]), and set

Ran(x) Ln(x)/Ln (O), n(o) A n
F(n + a + 1)
+ +

Associate to f its formal Laguerre series

f(x) (r( + 1))-1 ]a(k)L(x),
k--O

where the Fourier Laguerre coefficients of f are defined by

(1) ]a(n) f(x)Ran(x)xae-x dx

(if the integrals exist). A sequence m {ink} is called a (bounded) multiplier on
Lv notation m E Mv if(), (),

mk]a(k)L C
k=O Ln

()

()
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for all polynomials f; the smallest constant C for which this holds is called the mul-
tiplier norm IlmllMn.. The necessary conditions will be given in certain smoothness
properties of the multiplier sequence in question. To this end we introduce a fractional
difference operator of order 6 by

mk+j

(whenever the sum converges), the first-order difference operator A2 with increment
2by

A2mk mk mk+2

and the notation

A2A6mk A6+lmk q-A6+lmk+1.

Generic positive constants that are independent of the functions (and sequences) will
be denoted by C. Within the setting of the LP()-spaces, our main results now read

(with 1/p + 1/q-- 1) as the following theorem.
THEOREM 1.1 Lets, a > -1, andr+a > -1 If E Lp 1 < p < 2, / > -1,(),

then

(2) I(k q" 1)C’+1)/p-1/2A2i f,(k)lq <_ C II.fllL:c
k.---O

provided

+1 c+a 1
<+1 q’a+a<,P P

If we note that

ImlllLll: IImLll: <- IlmllM=:, IILII::<+ - >-1,implies M C,w(,) C we immediately obtain, as in [3] (see there the proof of Lemma
2.3), the following theorem.

THEOREM 1.2 Let m {ink} M 1 < p < 2, and let , % and a be as in(),
Theorem 1.1. Then

(3) sup I(k + 1)(’+)/-("+)/aa"mlq 1 < c IlmllM.,
n \k=n

k + 1

An extension of Theorem 1.2 to 2 < p < oo easily follows by duality

Mp Mq -1 < "r < P(a + 1) 1, 1 < p <w(.7) w(oq-/qlp)
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In view of the results in [3], [6] and for an easy comparison we want to emphasize the
cases 9, c and 9’ ap/2. Therefore, we state the following corollary.

COROLLARY 1.3. (a) Let m E Mp 1 < p < 2, > -1, and let A :-(),
2t + 1) (lip 1/2). Then, with A > O,

sup I(k T 1)’A2A-lmklq k -}- i <_ C IlmllM,
n \k--n

w(a)

if el + A >_ 3/2; if a + A < 3/2, it has additionally to be assumed that A >_ 2 p. In
the case a -t- A < 3/2 and A < 2 -p an analogous result holds when the difference
operator A2A-I is replaced by A2.

(b) Let m E Mp 1< 4
(,p/2), -P < , and (a- 1)(1/p- 1/2) _> -21-. Then

sup I(k / 1)l/n-1/2A2mklq k/ 1
<_ C llmllM(.pm.)n \k--n

Remark 1. For polynomial f(x) ,’=o ckL(x) Theorem 1.1 yields, by taking
only the k n term on the left-hand side of (2),

Ic.l(n + 1) (I’t-1)/p-1/2 -- C II.t’llL2( .:,, 1_<p<2

(under the restrictions on 9’ of Theorem 1.1). In particular, if we choose 9’ (, this
comprises [6, form. (1.13)] for his basic case/ a. For 9" (p/2 it even extends
[6, form. (1.14)] to negative a’s, as described in part (b) of Corollary 1.3. The case
2 < p < cx) can be solved by an application of a Nikolskii inequality; see [6].

Remark 2. Analogously, Cohen-type inequalities follow from Theorem 1.2; in
particular, Corollary 1.3 yields the following corollary.

COROLLARY 1.4. Let m {mk}=0 be a finite sequence, 1 <_ p < 2, and (l > -1.
p(a) If m e MW(,), then

(n-t- 1)(2l-t-2)(1/p-1/2)-1/21mn
_
C IlmllM2(=)

4a+4
l_<p< 2a+3"

(b) If m e M and (- 1)(lip- 1/2 > -1/2 thenw(ap/2)

1 g p < 4/3.

4With the exception of the crucial log case, i.e., P0 (4( + 4)/(2a + 3) or P0 ,
Corollary 1.4 contains [6, Thm. 1] and extends it to negative a’s. In particular we
obtain for the Ceskro means of order 6 >_ 0, represented by its multiplier sequence

ink, An_ IA, the "right" unboundedness behavior (see [4])

> c(. + 1)(2a+2)cl/p-1/2)-l/2-, 1 _< p <
4a+4

2a + 3 + 26"
Remark 3. There arises the question of how far are necessary conditions of the

type given in [3] comparable with the present ones. Let A > 1. Since A2mk.
Am\ + Am\+1, we obviously have

(4) sup ( l(k + l)C2+l)ln_C2,+l)12A2AX_lmlq. 1. )
llq

n \k=n
k-l-i
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<_ C sup i(k -- 1)(2.+l)/p_(2a+l)/2AAmk[q 1

\k=n
k + 1

In general, a converse cannot hold, as can be seen by the following example:
choose - a, A (2a + 1)(1/p- 1/2), and mk- (-1)(k + 1)-, 0 < < 1. Then

sup l(k + 1)Am[
1

k+in \k=n

and hence by the embedding properties of the wbv-spaces (see [2]) the right-hand
side of (4) cannot be finite for all A > 1. But since A2AA-lm AA-tA2mk
(k + 1)--A, the left-hand side of (4) is finite for all A > 1.

Theorem 1.1 will be proved in 2 by interpolating between (Lt, l) and (L2,/2)_
estimates. The a 0 case is an easy consequence of the case a 0 when one uses the
basic formula (see [3, form. 3 and Remark 3 preceding 3])

(s) + i)
r(o + a -{- 1)

T,a l:+a x > 0, a > -1- min{a, a/2- 1/4},

where in the case a > -(2a + 1)/4 the series for the fractional difference converges
absolutely. In 3 a necessary (L1,/t)-estimate is derived and is compared with a
corresponding sufficient (l t, Lt)-estimate.

2. Proof of Theorem 1.1. Let us first handle the (L2,/2)-estimate. Since

A2AaL(k Al+aL(k) q- Al+aL(k q- I),

it follows from the Parseval formula preceding Corollary 2.5 in [3] that

(6)

_
C [f(/;)e-t/2t;(a+l+a)/2[2 dt

Concerning the (L1,/)-estimate, we first restrict ourselves to the case a 0. Define
geRby

with the notation L:(t) (A/F( + 1))l/21(t)e--t/2;a/2 it follows that

< C(k + 1)--/ IJ’(t)llt-"-/(t)le-t/t(+1/+" dt

+ C(k + )-/ I$(t)llt-"-/{(t) +(t)}l

e-t/2t(+l)/+" dE

I+II.
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We distinguish the two cases c _< 1/2 and c > 1/2 as follows:
First consider the case c <_ 1/2. By the asymptotic estimates for

in Askey and Wainger [1, p. 699] (see also [6, form. (2.12)]) it follows
that

so that

II _< C(k + 1)-1-t-a/2 If(t)le-t/2t(a+D/2+ dr, 9/_< a+p-1.

By [5, Lemma 1, case 4]

I[t--l/2,(t)lloo <_ C(k + 1)-t-5/6,

so that trivially

I <_ C(k + 1)--t’-a/2 [f(t)[e-t/2t(a+)/2+" dr, 9/+ 1

P
a+l 1 2

2 3p 3"

By [5, Lemma 1, case 5]

IIt-"-l/2,(t)[Ioo <_ C(k + 1)+1/2,

so that

I <_ C(k + 1)t’-/2-’/2 I$(t)le-t/t(+)/+" dt

< C(k + 1)--’-’/ I$(t)le-t/t(+)/+" dr, 9/-t-1 a+l 1 2
> +,p 2 3p

provided that u (a + 1)/2 _< -1 u a/2, which is equivalent to # _< -1/4 or
9/<_ 3p/4- 1/2 + o.p/2. But this is no further restriction since for _< 1/2 there holds
o + p- 1 <_ 3p/4- 1/2 + op/2. Summarizing, for -1 < a _< 1/2, 9/ _< c + p- 1, and
# (9//p- (a + 1)/2)/2(1/p- 1/2) we have that

(8) sup I(k + 1)+t’+"/2A2](k)l <_ C II(t)le-t/h("+).I+" dt.
k

Now consider the case c > 1/2. Then, by [6, form. (2.12)], (7) is obviously true
when (9/+ 1)/p <_ o/2 + 1 + (lip- 1/2)/2. Again, the application of [5, Lemma
1] requires 9/ _< a + p- 1, which for a > 1/2 is less restrictive than (9/+ 1)/p <_
o/2 + 1 + (lip- 1/2)/2. Now [5, Lemma 1, case 4] leads to

I <_ C(k + 1)-11/6-t-a/2 If(t)le-t/2t(+)/2+" dt, 9/+ 1
p

a+l 1 2
2 3p 3’

and [5, Lemma 1, case 5] leads to

I <_ C(k + 1)t’-U2-a/2 If(t)le-t/2t(a+l)/2+t" tit,
a+l 1 2

2 3p3"
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But # 1/2 a/2 _< -u 1 a/2 if (/+ 1)/p <_ /2 + 1 + (l/p- 1/2)/2, so that,
summarizing, (8) also holds under this restriction for a > .

Now an application of the Stein and Weiss interpolation theorem (see [7]) with

and Tf(k) A+A2/a(k) gives the sertion of Theorem 1.1 inTf (Tf(k)}
the ce a 0.

If a 0, then by (1), the definition of A2Aa, d (5)

A2AaL(k) C(AL+a(k) + AL+a(k + 1)}

since already the condition < a + a + 1 (which implies no new restriction) gives
absolute convergence of the infinite sum and inteal involved (see the formula follow-
ing (9) in [3]) and bini’s theorem c be applied. Hence all the previous estimates
remain vid when a is replied by a + a.

3. A it for integrable functions. Theorem 1.1 gives a necessy con-
dition for a sequence (f} to generate with respect to L an L 7-function But()
this condition is hdly compable with the following sufficient one, which is a slight
modification of [3, Lemma 2.2].

THEOREM 3.1. Let > 1 and > 2-a+ O. ff {fk} is a bounded suence
with lim f 0 and

+
k=0

with ]a (k) fk for all k e N0 andthen the ests a nction f Lw(7)

for some nstant C independent o] the sequence {fk}.
The proof follows along the lines of [3, Lemma 2.2] since the norm of the Ceso

kernel

xg,(x) (Ar(a + ))- A_L(x) (Ar(a + 1))-Lg++(x)
k=0

C be estimated with the aid of [5, Lemma 1] by

he vig of heorem 1.1 in ghe ce p 1 is he following heorem.

k:0

A comparison of the sufficient condition and the necessary one nicely shows where
the Ll()-functions live; in particular, we see that the smoothness gap (the difference

of the orders of the difference operators) is just greater than . It is clear that
Theorem 3.2 can be modified by using the A2 operator. Theorem 3.2 does not follow
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from the p 1 case of [3, Lemma 2.1] since that estimate would lead to the divergent
sum ,k=o(k -I- i) -I {{.f{lL

()

Proof. By formula (5) we have

/k2-a+l/3/a(k) C f(t)R2k/+l/3(t)t2/+l/3e-t dt

’’+/a(t)t’+/e-t/ dtC(k+ 1)-’-/ J’(t)

and hence

:_(k -{- I)-2/312-+1/3o,(k){
k:O

k=0

if the right-hd side converges. To show this we discuss for j Z

sup (k +

d prove that this quantity is uniformly bounded in j, whence the sertion.
First consider those j 0 for which there exists a nonnegative integer n such

that 0 k 2n implies 3u/2 := 3(2k + 27 + 4/3) 2 but such that this inequality
fails to hold for k 2n+1; the latter sumption, in pticul, implies that essentily

+ Lemm 
we obviously have

() (k + 1)-/t/+/a(t)l + + O(1).
k=0 kk=O

Pot k 0,...,2n we can apply [g, form. (2.g), ce 4]
e- for some positive cons , and he firs sum on ghe right-hand side of (9)
i boaa uniformly in j. In consequence of he choice of n, [g, form. (2.), ce 2]
c be used for k 2+, giving

( + 1)-/lt/+/a(t)l Ct-/ (k + 1)-a/ O(1)

since 2 N t N 2+ and j d n e compable.
Now consider ghe remaining j’s: We have go splig up he sum 0"" ingo gwo

pars, one where k is such hat 2Ju 1 (his conribugion h jus been seen o be
uniformly bounded in j) and he ogher where k is such hat 2u N 1. To deal wih ghe

1 ce again choose n go be ghe eaes integer such ha 2+ + 47 + 8/g N 2-;
his ime, n and -j e comparable and we obtain by [g, form. (2.g), ce 1]

(k + 1)-/lt/+l/a(t)l Ct+/a(k + 1)-/a O(1)
k=0 k=0

if 2J N t N 2+, 7 > -, which complees ghe proof.
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SCATTERING THEORY, ORTHOGONAL POLYNOMIALS, AND
q-SERIES*
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Abstract. The techniques of scattering theory and Banach algebras are used to study orthog-
onal polynomials. The coefficients in the three-term recurrence formula are assumed to converge
geometrically to their asymptotic limits. The results are used to investigate certain properties of the
Askey-Wilson polynomials.
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algebras, q-series
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1. Introduction. Beginning with the three-term recurrence formula

a(n + 1)p(A, n + 1) + b(n)p(A, n) + a(n)p(A, n 1) Ap(A, n),
(1.1)

p(%, 0) 1, p(/X,--1) 0, n 0, 1, 2,...,

with a(n) > 0 and b(n- 1) real for n 1, 2,..., one can construct a sequence of
polynomials which are, according to a famous result of Favard [7], orthogonal with
respect to some (not necessarily unique) probability measure. In [8], [10], and [11]
equation (1.1) was studied in the case when a(n) a() > O, b(n) --. b(), and

o0

{ a(n)2 }(1.2) Z t//(2t) 1
a(oo)2 + iB(n- l)i < oo,

n-’l

where

(1.3) B(n) b(n) b(o)

and v(n) has the following properties:

(1.4)
r,(n) g r,(n 4- 1), n > O,

<_ >_ o,
(0) i, (n) >_ 1,

limsup(,(n))l/n- R,

with R 1. In this case of course the measure p(A) is unique and {a(n)} and {b(n)}
are related to p(A) by the standard formulas

a(n) / Ap(A, n)p(A, n 1)dp(A), n 1, 2,...,

b(n) f Ap(A, n)2dp(A), n O, 1, 2,...,
J
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where the integral is taken over the support of p(A).
In Geronimo and Nevai [11] (see also Guseinov [13]) necessary and sufficient con-

ditions were found relating (1.2) to the measure for R 1. Here the case R >_ 1 will
be investigated. It will be shown that the decay of the coefficients manifests itself in
the decay of the Fourier coefficients of the absolutely continuous part (after suitable
modifications) of the measure. Another consequence of (1.2) with R > 1 is that un-
der certain circumstances one can specify the measure just in terms of the absolutely
continuous part and the location of the mass points (see Theorem 4). Note that (1.2)
takes into account the exponential decay of the coefficients to their asymptotic values.
Thus many of the results obtained here are directly applicable to the q-analogs of some
classical orthogonal polynomials, (see [1], [2], and [14]).

We proceed as follows: In 2 the notation is established and some of the analytic
consequences of (1.2) are discussed; the techniques of scattering theory and Banach
algebras are introduced also. In 3 the addition or removal of mass points is discussed.
Also investigated is the addition or removal of polynomial factors (see also [17]) from
the measure. Returning in 4 to the absolutely continuous part, the connection be-
tween the decay of the coefficients in the recurrence formula and decay of the Fourier
coefficients of the absolutely continuous part of the measure is investigated. Finally,
in 5 we consider certain examples (the Askey-Wilson polynomials) and obtain some
general results on polynomials of this type.

2. Analytic properties. Without loss of generality let

(2.1) a(n) 1/2 and b(n) O.

Then (1.1) can be written as

(2.2) ((z, n) C(n),(z, n 1),

where

,(z,

1 [ z-2b(n-1) l/z](2.3) C(n) 2a(n) (1 4a(n)2)z 2b(n 1) 1/z

(z + i/z)
2

and

Here we choose the branch

(2.5) z - x/2 1.

To proceed further, it is convenient to introduce the techniques of Banach alge-
bras. Let (n) be given as in (1.4) with R > 1. Let A denote the class of functions

o
1 < < R,
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with

and A+ and AT denote those functions in A of the form

() ()
n-----O

and
0

()= (),

respectively.
If I]" I] is the norm on Av, A+, and A-, then Av, A+, and A are Banach

algebras. We also set A A, A+ A+, and A A- in the case when v(n) 1
for all n.

Note that if (2.1) holds, then (1.2) becomes

nu(2n) {11 a()l + lu( 1)1} < oo.
n----1

We begin with the following.
LEMMA 1 (Krein [16]). Suppose g(z) e A+ and g(zo) 0 for Izol < R. Then

(g(z)/z- zo) e A+.
Proof. Let g(z) n=ognzn and define gn gnRn, z Rz, and u(n)

Rnu’(n). Then g(z) -],=o g(z n=o g,(zb (g)". Summation by parts
gives

g(z) gm(zb) 1

where the fact that g(zo) ’:n=o g(z)n 0 has been used. The above equation
shows that

Consequently,
oo u’(n- 1)(:)11 <-Z ,z’,-1, Zn-’--1

oo m--1

<_ ,’(mllg’llzGl" I1/zol",
m=l n=O

< Il ’(’)lgl1-IGI m=l

since
THEOREM 1. I] (2.6) holds then there exists a ]unction f+(z) such that
(i) limn-o Ilzn(z, n) 2zf+(z)ll 0;
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(ii) Furthermore, the zeros of f+(z) .for Iz] < 1 are real, simple, finite in number,
and the points where the orthogonal polynomials are square summable;

(iii) /f f+(z) has zeros on the unit circle they must be at z =t=l, and they must
be simple.

(iv) (zf+(z)/d(z)) e A+, where

1-z if f(1) O,
d(z) 1 + z if f(-1) O,

1 z2 if f(1) f(--1) O;

(v) (1 z2)(dzf+(z)ldz) e A+ finally, if

(2.7) n2{11 4a(n)2l + 2lb(n 1)1}

then
(vi) (dzf(z)/dz) e A+.
Proof. Parts (ii) and (iii) are proved in Geronimo and Case [10] (see also Chihara

and Sevai [6], and Geronimo [9]). For R > 1 (iv) follows from Lemma 1 while for
R 1 see [10]. Part (v) follows as in Geronimo [8, Tam. 2.3]. To prove (i) first define
*(z,n) zn(z,n) and a(n) 1-Iin=l(1/2a(i)), a(0) 1. Multiplying the lower
component of (2.2) by zn, then iterating down yields

(2.8) *(z, n) n-1

cz(n)
1 + E {(1 -4a(i + 1)2)z2 2b(i)z} ziP(A’ i)

i=o
(i)

After suitable manipulation of (2.2) (see [10, eq. (B.4)] or [17, Thm. 3]) the following
formula can be obtained for p(A, n):

(2.9)

znp(A, n) 1 z2n+2 +cz(n) 1 z2 {(1i=0 -4a(i + 1)2)z2 (.1 --z2--ni-2.lz2

2b(i)z(,i z2n-2i }zip(A, i)
1:- ] ((i)

To get a bound on z(p(A, n)/a(n)) note that the above equation yields

_< (n -F 1)v(2n + 2)

n-1

+ {11 -4a(i + 1)1 + 21b(i)l} (n- i)v(2n- 2i)
i=0

zp(),

Since (n i)v(2n 2i) < (n + 1)v(2n + 2) for i O, 1,..., n 1 we find

n--1

lip*(),, n)ll,, _< 1 + (11 -4a(i + 1)1 + 21b(i)l}(i + 1)v(2i + 2)liP* (,X, i)11,,
i=0
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where p*(A,n) znp(A,n)/(n + 1)(2n + 2)c(n). The discrete Gronwall inequality
(see Van hssche [21]) now yields

a(n)
<_ (n + 1)(2n + 2)

expEi(2i1 (11 4a(i121 + 12b(i -iII }
i--1

Consequently,

(2.11)

,.*,(Z., n!l < 1 +Ei(2i) {]1 4a(i)21 + 12b(i 1)]}

.=1

Furthermore, from (2.8) we find

a(m) -< E iy(2i) {11 4a(i)21 + 12b(i 1)1 }

i--1

expEj(2j) {11 4a(j)2 + 12b(j
j---1

proving (i). Since (z, n) e A+ for all n, zf(z) e A+. To prove (vi), differentiate (2.8)
and (2.9), then use (2.10) with v(n) 1, for all n, the equation II(d/dz)((1- z2(n+l))/
(1 z2))l] n(n + 1), and Gronwall’s inequality to obtain

n

_< (n + 1)2C expCEi2 {11 4a(i)2l + 2]b(i 1)l},
i--1

where C is independent of z and n. This implies

hence (zf+(z))’ e A+ which yields the result. 0
This leads to the following.
COROLLARY 1. If (2.6) holds, then zf+(z) is analytic ]or Izl < R >_ 1 (see (1.4))

and continuous for Izl <_ R. It also follows from (2.8) and (2.9) that ]or Iz] < 1,

(2.12) znp(A, n) *(z, n) o(1).
1 z2

So far a consequence of the results above is the extension of the region of analy-
ticity of zf+(z) to the open disk of radius R. As a function of A this means f+ can
be continued onto the second Riemann sheet, (z A + v/A2 1). In analogy with
scattering theory we shall call the principal sheet (z A-/A2 1) the physical sheet.
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It is possible to include polynomials of the second kind in this scheme by defining

(.a) (,) ((,))\(z,n)
n_> 1,

satisfying (2.2) with boundary conditions

p1(%, I) 1(z, i) i/a(1).

From (2.2) and (2.13) the following equations for /)l(z,) and pl(A,n) can be
derived:

.(,) -c(n)
2z + Z ((1 --4a(i + 1)2)z2 2b(i)z} z’P()’ i)

i=l
(i)

and

znpl(A,n)

Let

(2.14) z 1f+(z) 1/2 nlirn zn-(z, n).

Then the above methods show that

(2.15) zf_ (z) e A.

Two other useful solutions (see [10]) of (2.2) are

(2.16) *+(, =) (+(,)
\+(,))

and

(2.17) (z, ) {-(’ )1
\-(,)/

satisfying the following boundary conditions

(2.18a) lim Iz-np+ (z, n) 11 --0,

(2.18b) nlirno I-"+(, )1 0,

and

(2.19a) lira Ip_(,,)- 1l =0,
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(2.19b) lim Izn_(z, n) (1 z)l-" o, Izl x.

THEOREM 2. If (2.6) holds, then z-np+(z,n) and z-n+(z,n) are elements of
A+, which implies that +(z,n) is analytic for Izl < R. Likewise znp_(z,n) and
zn_(z,n) are elements of A. Furthermore, +(z,n) and (I)_(z,n) are linearly
independent for 1/R < Izl <_ R except at z =l=l and p+(1/z, n) p_(z, n). If (2.7)
holds, then p+ (z, n) is continuous for Izl < 1.

Proof. Inverting C(n) we find from (2.2) that

(2.20) p+(z,n)
2a(n + 1)z

(p+ (z, n + 1) +(z, n + 1)).

Iterating this equation plus the lower component of (2.2) upwards and using the bound-
ary conditions (2.18) yield a discrete integral equation for p+(z, n):

’)’(n + I)

with 7(n) rI,%n(1/2a(i)). The following bound on p+(z,n) can be obtained using
the discrete Gronwall inequality,

(2.22) II z-np+(z’+ 1)
< exp C Z mu(2m) {11 4a(m + 1)21 + 12b(m)l}

re=n+1

with C max,,j l-I=i+,(2a(k))2. Furthermore, using the above equation in (2.21)
yields

7(n+l)
-1 <D Z

re=n-l-1

m,(2m) {11 4a(m + 1)21 + 12b(m)l},

where D is a constant independent of z and n. Since p+(z, n) and p_(z, n) satisfy (1.1)
with the boundary conditions (2.18a) and (2.19a), respectively; we see that p_(z, n)
p+(1/z,n) for 1/R N Izl <_ ]RI, which implies that znp_(z,n) E A. Since the
Wronskian of any two solutions @1 and @2, W[(I)i(n), (I)2(n)] det I@l(n), (I)2(n)l is
independent of n [10], we find that W[+(n), (I)_(n)] 1- z2, which implies that
(I)+ (z, n) and @_ (z, u) are linearly independent except at z :t: 1.

The properties of + follow from (2.20) while those of

_
follow an analogous

equation. If (2.7) holds, multiply (2.21) by z-n, differentiate, then use (2.22) and
Gronwall’s inequality to obtain

II(z-’p+(z,n))’ll < OexpC Z mlI -,la(m / 1)zl / 21b(m)l,
m=n+l

which says that (z-np+(z, n))’ e A. 0
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Since (I)+ and (I)_ are linearly independent except at z +1 we find, using the
fact that the Wronskian is independent of n, and the boundary conditions (2.18) and
(2.19), the useful equation

(2.24) (I)(z n)-
2 1

z 1/z (f+(1/z)+(z, n) f+(z)(_(z, n)),

Here we have used (2.18) and (i) of Theorem 1 to make the identification

1
(2.25) f+ (z) zz W[(I)+,

Now using (2.2) to eliminate + and in the above equation yields

f+(z) a(n + 1)o(A, n + 1)p+ (z, n) p+(z, n + 1)p(A, n)]
(2.26)

a(O)p+ (z, -1), Izl < R.

Since and Ox are linearly independent except at z O, i.e., W[O, Oil 2z, we also
find that

/(z, n) _(z)(z, n) /(z)X(z, n), Izl < R, > 1.(2.27)
Let

(2.28) P+(z’n) ( )"/(n+l)
zn l + Ec(n,i)z

i=1

Then (2.24) allows us to develop useful asymptotic formulas for p(,, n).
THEOREM 3. /f (2.6) holds, then

(.2)
sinOp(cosO, n) 21f+(e)l’(n + 1){sin((n + 1)0- arg eiOf+(ei))

+Zc(n, i)sin((n + i + 1)O arg eif+(e’))t
i=1

"q" 0(m--It/2] (2m-’+l){ll-4a(m+n+l)21+2lb(m+n)l})
This implies that the zeros of p(cosO, n) in [-1, 11 ave located at

O=
kr arge’f+(ei)

+o(1/n) k 1 2, n.
n+l

...,
n+l

(2.7) holds, then

O<O<_r.

(2.3o)
p(cos O, n) 21f+(e)lT(n+ 1){ sin((n + 1)0- arg eif+(ei))

+ Z(n,i) sin((n +i + 1)0- argeif+(ei)) /sinO
i=1

+O(=[/lk{ll-4(k+n+l)l+2,b(k+n)l}) O<_O<_r.
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Furthermore, from (2.29) the error term for the zeros of p(cos0, n) can be improved
to O(1/n2).

Proof. Everything in (2.29) but the error term follows from Theorems 1 and 2,
(2.2S), the upper component of (2.24) and the fact that f+(e-’e) f+(e’e). Substi-
tuting (2.28) into the left hand side of (2.21) yields

where C(m, i) 1-Ijm=,+ (2a(j))2 and K(m) (1 -4a(m + 1)2)z- 2b(m). Equating
coefficients of zk we find

I(n, k)l <_ C IK(n + i + 1)1 + C E E IK(i + j)ll(i + j, k 1 2j)l,
i:[_.] i--n+l j=O

with C max,n,, C(m, i). Since C’,n i]K(i)l < 1 for all n _> no large enough we
find by iterating the above equation that

la(n, k)l <
C E,[--.] [K(i + n + 1)[
1 CEx ilK(i + n)l

for n _> no large enough. It now follows by induction on n that

(2.31) la(n,k)l<_O(,=t(k_x)/21 11-4a(m+n+2)lU+2lb(m+n+l)l)
Summing the above equation from k + 1 to infinity and using the fact that
p_(e’e, n) p+(e’e, n) yields the error term in (2.29). The representation for the
zeros of p(cos/9, n) now follows from (2.29).

To show (2.30) note that since p_(ei,n) p+(e-’,n), P-(ei’n)--P+(ei’n) ex-sin 0
ists for 0 0 and 7r by Theorem 1 (vi) and Theorem 2. The same is true for
S/(’)-S+(’)

sine Thus the error term in (2.3O) follows from Theorem 1 (vi), the fact
that

z 1/z
< E la(n’

i--1

and (2.31).
Estimates for the zeros of p(),n) for , near one may be obtained by letting

0--, r- 0.
Equation (2.27) can be used to obtain a useful integral representation for p+(z,
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LEMMA 2. Suppose p+ (z, n) exists for n O, 1, 2..., then for Izl < 1,

(2.32) p+(z, n) f+(z) / p(A’’ n)dp(A’), A
z + 1/z

A A 2
n--O, 1,2,

Proof. (This is a modified version of an unpublished proof of Nevai.)
pl(A, n) is a polynomial of the second kind,

Since

f (p(, ,) p(,,,))
pl(A, n) dp(A)A- A

and from the upper component of (2.27) we find for A not in the convex hull of the
support of p(A),

(2.33)
p+(z,n) / 1
p(A, n) f(z)- f+(z) A- A’ dp(A’) +

+()
v(A,n) A- A’

Since [z[ < 1 and z is not in the convex hull of the support of p(A), limn-.oo [p(A, n)[
cx) and limn-oo p+(z, n) O. These equations, plus the fact that the integral in
the last term on the right-hand side of the above equation is uniformly bounded on
compact subsets of the unit disk that do not include the support of p(A), show that

dp(A’)() +() ,’ A (z + l/z)
2

[z[ < 1, z convex hull supp p.

Extending this equation by analytic continuation to [z[ < 1, using Theorem 4 below,
then substituting this result into (2.27) gives the lemma. D

3. The distribution function.
THEOREM 4. If (2.6) holds, then

(3.1) p(A, n)p(A, m)dp(A) 5n,m,

where

with

a(O)dA,() ,=,(-
cos 0, 0 <_ 0 _< r,

not as above, N < oo,

sin 0
(3.2) a(O)dA 2rlf+(z)l2

dA, A cosO, z e’,

and

1
(3.3) P,

p+ (z,,
r_ [,"’,’0), A, (z, +21/z,) Iz’[ < --’R

(z,- 1/z,) 1 1 < [z,i < 1.(3.4) P’ 2 f+(1/z,)f_(A,)’ -Here {A,} denote the roots of f+(z) for I1 < , and the above differentiation is with
respect to A.
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Proof. All but (3.4) has been proved in [10]. Furthermore, it was shown there
that (3.3) holds for Izil < 1. To prove (3.4), note that if (2.6) holds, then (2.24) is
valid for all z such that 1/R <_ Izl <_ R. Therefore, let f+(zi) O, 1/R <_ Izl < 1.
Then from (2.24),

zi 1/z f+ p+(zi, ,...,

and the result follows by eliminating p+(z, 0) in (3.3).
If

(3.5) f+(z) O, Izl R,

then inside the disk of radius R, f+ (z) has only a finite number of zeros, each having a
finite multiplicity. Let zo, zl,z2,... ,zn be the zeros of f+(z) including multiplicities;
then by Lemma 1,

(3.6) zf+(z)
a(z)

e A+,

where
n

i--0

This leads to the following.
COROLLARY 2. If (2.6) and (3.5) hold, then

In a(z)(z)a(1/z)
z- 1/z

Proof. From (3.2),

(3.7) a(z) 1__ z- 1/z
4-i I+(.)I+(/.)’

It follows from (3.6) that .f+(1/z)/za(1/z) e AT. Furthermore, f+(1/z)/za(1/z)
and zf+(z)/a(z) are nonzero for 1/R <_ Izl <_ R. Thus the result follows from the
Wiener-Levy theorem.

The above result shows that a(z) is a meromorphic function for 1/R < Izl < R.
If a(z) has a pole at Iz01 < 1, (3.7) forces a(z) to have a pole at 1/zo and these are the
only places a(z) may have poles. Consequently, we need only study the poles of a(z)
for Izl

_
1, or in terms A, we can stay on the physical sheet. As seen from (3.7) the

poles of a(z)/(z- l/z) come from the zeros of f+(z) and f_(z), and (2.4) prevents
f+(z) and f_(z) from vanishing at the same value of z for 1/R <_ Iz <_ R, z 4-1,
since the zeros of p(A, n) alternate with those of p(A, n q- 1).

The following gives a useful representation of f+(z) in terms of a($).
COROLLARY 3 (Geronimo and Case [10]). /] (2.6) holds with v(n) 1 for all n,

then

l fi Izil (zi--z)exp--lf (ei’ -t- zZ_)f+ (z)
zi 1 zi ,e In , sin O’ ]

dO’, I’1 < 1.
i=1
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What we would like to consider now is the effect of adding or removing the poles
(zeros) of a(z) (f+(z)). To this end Geronimo and Nevai [11] have proven the following.

THEOREM 5. Let dp()) be given as

d() m=l Pm6()- Am)d),
COS 0

not as above, N > 1, I.Xl >_ ]&-ll,

and let

dp*(,k) N-IEm= pm6(A- Am)dA.
Furthermore let {a(n)}, {b(n)}, {a*(n)}, and {b*(n)} be the coefficients associated
with dp()) and dp*()), respectively. If ’n= nv(2n) {11 4a(n)21 + Ib(n 1)1 } < oo,
then,nv(2n) {ll 4,*(,01 + Ib*(, 1)1) < .
T.oa . La d,(,), {’(’0}, ,,d {t,(,0} i,,, , , Tho,’, . La

d(A) v,N+ PmS() )m)d),Z-am=l

where )N+--(ZN+I + llzN+)/2, Iz+l < 1/,IN+I >_ I1. Furthermore, let
{&(n)} and {(n)} be the coefficients associated with d()). If

nv(2n){ll 4a(n):l + Ib(n 1)1} < ,
n-’l

then
Thus from Theorem 5 it is clear that one can remove all the mass points and

the rate of convergence of the coefficients associated with the new measure will be at
least as fast as the rate of convergence of the coefficients associated with the original
measure. Theorem 6 shows that if IzN+l < I/R, that is, if ZN+ is not in the
maximal ideal space of A, then one can add a finite number of mass points, the
only restrictions being that each one must be positive and of finite magnitude, and
the rate of convergence of the new coefficients will be at least as fast as the rate of
convergence of the original coefficients. It should be noted that the mass points axe
added or removed without altering the absolutely continuous part of the distribution
function.

LEMMA 3. If (2.6) holds, then

(3.8) Iz-’+(z,i)l < , Izl _< R,
i--1

(3.9)

and

i(2i)lz-’(p+(z, i) p+(z, i + 1)p+(z, i 1))l < ,
i--1

i,(2i)l-,(ap+(, i)p+(, i + 1) a(i + 1)p+(z, i)
i--1

-a(i-t- 1)p+(z,i / 1))1,, < , I;I-< R.

Izl R,
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Proof. From (2.2) and the boundary conditions satisfied by +(z, n) we find

-+(,n)
"(n / 1)

E (2a(k))2 {(1 4a(j 4- 1)2)z 2b(j)} z2J-2n+: z-Jp+(z,j)

= =+ (J + )

To obtain (3.8), multiply the above equation by z-n, take magnitudes, then sum on
z’JP+(z’)l (see (2.22)).n and use the fact that {I-[=n+:(2a(k))2}l (j) I< c

To show (3.9) and (3.10) set ff(n) p+(z, n 4- 1) zp+(z, n) and w(n) p+(z,
n 4- 1) (1/z)p+(z, n). Then

p+(z, n)2 p+(z, n 1)p+ (z, n + 1)

-1[{ l(n_ 1)2 ’(’)- :
4- w(n) zw(n i) }p+ (z, n) w(n)(n i) w(n i)(n)]

From (2.6) and (2.22) it is apparent that (3.10) will follow if it can be shown that

z-2n [Ap+(z n)v+(z’ n + l)
p+(z’ n)2 p+(z’ n + l)2]’2 2 -z-2nw(n)ff(n)2

converges fast enough. Since

w(n)Fv(n 1) 4- w(n 1)ff(n)

w(n) [(n- i) (n)]
4- (n)[w(n 1) ()l + + ()(),

z

the result will follow if it can be shown that

(3.11) Eit(2i) <

(3.12) E it"(2i)lz-2i(w(i) zw(i 1))p+(z, i)l < oo,
i=1

and

(3.13) E i’(2i)lz-2iw(i)dv(i)l < oo.
i--1

From the definition of w and @ we find

ff(i)- -lzff(i- 1) w(i)- zw(i.- I)

(1 2a(i + 1))p+(z, i + 1)- 2b(i)p+(z, i)
+ (1 2a(i))p+(z, i- 1).
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Combining this with (2.22) gives (3.9) and (3.10). It is a consequence of (3.8) and
(2.2) that

Therefore, with w*(n)-- z-nw(n) we find

the result follows from (3.12) and the fact that lim_o (z-ip+(z,i))/?(i + 1) 1.

Theorem 6 deals with mass points whose locations are in the region 0 < Izl < 1/R.
The next theorem demonstrates that if one wants to add mass points whose locations
lie in 1/R _< Izl < 1 and still have the coefficients converge at least as fast as the
original coefficients, then the normalizations are strictly determined.

THEOREM 7. Let

piS() 
cos O, 0 < 0 < r,
(zi’q-l/zi) 1 > Iz, > l/R,2

and
dp())

)N (zN + 1/zn)
2

1 > zN > 1/R.

Let {p(A,n)}, {a(n)}, {b(n)}, {/(A,n)}, {a(n)}, and {(n)} be the orthonormal poly-
nomials and coecients associated with dp()) and d(A), respectively. If

n(2n) {11 4a(n)2l + [b(n 1)1 } < oo
n’--i

and

--(ZN- 1/ZN)(3.14) PN 2f+(1/ZN)f+(ZN)’

then Y],=l n(2n){ll -4fi(n)2l + I(n- 1)1} < oc.

Proof. Expanding iS(A, n) in terms of p(A, n) yields

](n)__,. n)- k(n- 1)(3.15) 15(A, n) k(n)p(,, (n) p()’ n 1),
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where/(n) and k(n) are the leading coefficients of 15(),, n) and p(A, n), respectively.
Multiplying by d(,) and integrating gives

(n)2 k(n)k(n 1) fp(’ n 1)d()
fp(A,n)d()

n > O.

Since AN > A], i 1,... ,N- 1 the nctions of the second kind sociated with
p(X) evaluated at e positive. This, plus the ft that p(AN,n) > 0 for n O,
implies that the above inteals do not vanish. Therefore

(3.16) a(n + 1)2 a(n + 1)a(n) fp(A’ n 1)d(A) fp(A, n + 1)d(A)
((,)a())

> 0.

Squing (3.15) then multiplying by dp(A) d inteating yields

() k(- 1)(,)( )d() k() ()
Consequently,

which gives

A consequence of (2.10), (2.22), and (2.32) is that fp(A, i)d(A) O(z) for large
enough i. Thus, from (3.16) and (3.17) the result follows if it can be shown that

(3.18) Ei’(2i)lz
i-1

and

Ei(2i)lz AN /P(A, i)d(A)/p(A,i-1)d(A)
(3.19) ,=1

a(i) (/p(A, i l)d(ik))
2

a(i)

Since fp(), n)d(A) (p+(zg, n)/f+(Zg)) + pNp(AN, i), the terms between the mag-
nitude signs in (3.18) can be rect

[ +() +PP(,i)

5 +Op(1, i + 1) p+(, i- 1) ,
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which can be rewritten as

2iz [p+(z i)f/(zN)2 p+(ZN, i + 1)p+(ZN, i 1)]
pv 2 [+ f+(zN) zN

2p+(ZN, i)p(AN, i) p+(ZN, i 1)p(AN, i + 1)

p+(ZN, i + 1)p(AN, i 1)]
+ "N’2i"2’N [p(AN, i)2 p(AN, i + 1)p(AN, i 1)].

From Lemma 3 it is apparent that one need only consider the last two terms in the
above equation. Since 1 > IZNI > l/R, equation (2.24) can be used, yielding

(3.20)

[ 4pNf+(1/ZN) 4PNI+(1/ZN)]ZN IT(ZN)(ZN- 1/ZN) -- (ZN- 1/ZN)2

x [p+(ZN, i)2 p+(ZN, i 1)p+(ZN, i + 1)]
2i+ (N 1/ZN) -(’i) _(, i )_(, i + 1)]

[ 2pN 4pf+(zN)f+(I/zN)](- i/) + (- 1/z)
x [+(z, i)_(,i) +(z,i + 1)_( i 1) +(z i 1)_(z i+ 1)].’

Thus the convergence of (3.16) follows from Lemma 3, (3.14), the fact that p_ (z, i)
p+(1/z, i), and the fact that (n) (-n).

Recast (3.17) as

O(z) []kNp+(ZN, i)p+(ZN i 1) a(i)p+(zN i 1)2 a(i)p+(ZN, i)2]IW(ZN)2
[gNO(Z) [’N(P+(ZN, i)p(.N, i 1) J- p+(ZN, i I)p(,N, i))+ l+(ZN)

(i),+(N, i ),(, i 1) (i)+(,i)(, i)]
+ 2 2{;’NO(N)[N’(N, i)(N, 1) (i)(N, i ) (i)(N, i)].

The convergence of the first term follows om Lemma 3. The convergence of the lt
two terms c be demonstrated by using the same manipulations that led to (3.20),
then by using Lemma 3, (3.14), the ft that p_(z, i) p+(1/z, i), and the symmetry
of v(n).

An analogous result holds for AN < 0, by letting dp(A)/(AN A) dp(A)/(A AN).
A consequence of (3.2) is the following.
COROLLARY 4.

]+(z) (N ) I+(z).

The following theorem allows one to eliminate ms points in a fhion that inverts
the procedure given in Theorem 7.

THEOREM 8. Let

a(O)dA, A cos0, 0 8 ,
d() :(_,)d, o bo,, N > O,N ,
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and
dp*(A) (AN

Let {p(A,n)}, {a(n)}, {b(n)}, {p*(n)}, and {b*(n)} be the orthonormal polynomials
and coecients associated with dp(A) and dp*(A), respectively. If Y41 i(2i){11-
4a(i)2[ + [b(i- 1)l } < cx, then ’41 i(2i){[1 -4a*(i)2[ + [b*(i- 1)]} < oo and

(3.21) f(z) f+(z).
ZN Z

An analogous result holds for AN < O.
Proof. Expanding (AN A)p*(A, n) in a Fourier series gives

(3.22) (_ ),(,)= k() k*k,(n)p(A, n) k(n )p(A, n / 1),

where k*(n) and k(n) are the leading coefficients of p*(A, n) and p(A, n), respectively.
At A AN we find

1 1 P()N, n + i)(3.23) k*(n)-k(n+l)k(n) p(AN, n)
or

1)P(AN n + 1)p(AN, n 1)a*(,0 a(,)a(, + V(,,0:
Squaring (3.22), then multiplying by dp(A) and integrating yields

k() k*()AN b*(n) k*(n)2 k(n + 1)2"

Now, using (3.23) gives

(3.24)
b*(n) ()Np()N, n)p(N, n -t- 1) a(n + 1)p(AN, n)2

a(n + 1)p(AN, n + 1)2)/p(AN, n)p(AN, n -t- 1).

Since the mass points occur at the zeros of f+(z) for Izl < 1, we find

Ip+(ZN n -t- 1)p+(ZN, n- 1)a*(n)2 a(n)a(n P+(ZN, n)2

and
b*(n) ()tNP.t.(ZN, n)p+(ZN, n -t- 1) a(n + 1)p(ZN, n)2

a(n + 1)p+(zN, n + 1)2)/p+(ZN, n)p+(ZN, n -}- 1).
The convergence of the series now follows from Lemma 3 and the fact that p+(zN, n) 7
0 for all finite n. Equation (3.21) follows from (3.2). El

Theorems 7 and S demonstrate how to add zeros to f+(z) for 1 > Izl >_ 1/R or
remove the zeros of f+(z) for 1 > Izl > 0 without decreasing the rate of convergence
of the new coefficients. What about the zeros of f+(1/z) in the region 1 > Izl >_ l/R?
This breaks down into two cases: the roots of f+(1/z) that are real and those that are
complex. Since the coefficients of f+(1/z) are real the complex roots of f+(1/z) come
in conjugate pairs. Thus the investigation reduces to considering the effect, on the
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coefficients, of multiplying or dividing the distribution function by linear or quadratic
polynomials. (For other results in this area see Nevai [17, Chap. 6].)

THEOREM 9. Given dp(A) and d())= dp()/(Ao- )) with x) > )0 > 1, A0
not in the convex hull of the support o] p(A), o (zo + 1/zo)/2, 0 < zo < 1. If
’,__1 i(2i){ll-4a(i)21+lb(i)l} < o, then ’,=1 i(2i)(ll-4a(i)21 + I(i)1} < o and

(3.25) ]+(z) (1 zoz)
4 +()"

Proof. Use the same procedures that led to (3.16) and (3.17). Then the theorem
is a consequence of (2.32), Lemma 3, and (3.2).

It should be noted that the only restriction on z0 is that 0 < zo < 1, which may
put 1/zo outside the region of analyticity of zf+(z). However, if 1/zo is within this
region or if the region of analyticity can be extended by analytic continuation (see
examples) to include the point 1/zo, then ]+(z) will have a zero there. Analogous
results holds for Ao < -1.

THEOREM 10. Let
dp*(A) (A0

)o > 1, Ao not in the convex hull o] the support of p()), )o (zo + 1/zo)/2 with
1 > zo >_ 1/R. If ’],1 i(2i){11- 4a(i)l + Ib(i)[} < o, and $+(1/zo)= 0; then

1i(2i){11 -4a*(i)l + [b*(i)l} < oo, with I(z) 2//(1 zoz))I+(z). Anal-
ogous results hold ]or o < -1.

Proof. Using procedures similar to those of Theorem 8 we find

lp()o,jn -t- 1)p(Ao, n- 1)a*(n)2 a(n)a(n / p(Ao, n)2

and
b*() (o(0, )p(0, + )-(+ )(0, + )

a(n + 1)p(Ao, n)2)/p()o, n)p()o, n + 1).
Substituting (2.24) into the above equations yields

1,p_ (zo,j
n + 1)p-(zo, n- 1)a*(n)2 a(n)a(n + -(o,)

and
b*(n) (;kop-(zo, n)p-(zo, n + 1)- a(n + 1)p-(zo, n + 1)2

a(n + 1)p-(zo, n)2)lp-(zo, n)p-(zo, n -- 1).
Since o is not in the convex hull of the support of p(A), p-(zo, n) O. Thus the
convergence of the series is guaranteed by (2.22), the fact that p_(z, n) p+(1/z, n),
Lemma 3, and (3.2).

THEOREM 11. Given dp(A) and

dp(A) dp(A)
d(A) (,k- A)2 + B2 (1 )( )’ 1 A +.iB,

with 1 (Zl + 1/Zl)/2, 0 < I11 < 1 (.kl on the physical sheet). If ’],=1 i,(2i){11
4a(i)2l + ]b(i- 1)1 } < , then "]__1 i,(2i){ll -4a(i)l + I’(i + 1)1} < o and ]+(z)
((1 ZZl)(1 zz[)/2lZll)f+(z).
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Proof. Expanding 15(A, n) in terms of p(A, n) gives

(3.26)

()p(,) -t,) + C(, 1)v(, 1)

k(- 2)+ (n) p(X’n-2)’ n>_2,

where (n) and k(n) are the leading coefficients of 15(A, n) and p(A, n), respectively.
To determine C(n, n- 1) multiply (3.26) by A1 A and integrate with respect d(A),
then use (2.32) to find

c(, ) -() +([’) k( :) +(, )
k() +(z,- ) () +(,- )’

> "
Multiplying (3.26) by (A A)d(A) and integrating, then using the above equation
yields

](n)2 k(n)k(n- 2) A(n- 1)

where A(n) [p+(z1, )p_}_(z, 1) p+(z{, n)p+(zl, n 1)]. Therefore

&( q- 1)2 a( q- l)a(- I)[/k( 1)A( q- 1).]A().

Likewise
(n, n 1) (n + i, )

(n) (n q- I)

where it(n, n- 1) is the coefficients of )n-1 in p(A, n). From (3.26) we find

which, using (3.27), becomes

;(n, 1) k(n, rt 1) a(n) p+(z’,
() k(n) p+(z[, 1) a(n)p+(z-’ n 2) A(n)

p+(z, n- 1) A(n- 1)"

Therefore,

Using Lemma 3 we see that the result follows if it can be shown that

(3.29) E n(2n)
n--2

A(n)2 A(n + 1)A(n- 1)
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Since p+(z, n) satisfies (1.1), it follows that

a(n + 1)A(n + 1) (1 ,)[pT(z1, )12 -" a()h(,).
Therefore A(n) 0 for finite n and for large n goes as

1 1
A(’)--"O (’Zl’2n (Z

Substituting (3.30) in (3.29) we find that the series converges if it can be shown that
the following is true:

(2)lzl--J( )lp+(zl, )llp+(z, 1)[2
n---2

a(nlA(nl(IP+(z,,)l IP+(I, n 1)1:91 < .
If we eliminate )tp+(z[,n) and )tlp+(zl,n) using (1.1), then the result follows from
Lemma 3. D

THEOREM 12. Given dp()t) and

dp*(.) (( A)2 - B2)dp(,,) (1 )( ,,)dp, (,,), A + iB,

with 1 (Zl + 11z)12, IlR < I1 < 1.
f Z:,%l i,’(2i){IX 4a(i)2 + Ib(i x)l} < and

(3.31) f+(llzi) =0,

then EI iv(2i){ll -4a*(i)2 + Ib*(i- 1)1} < o and

/+()_; (z) 21zll (1 zz)(1 zz[)"

Proof. Expanding (Al ,k)() ,k)p* (,k, n) in terms of p(,k, n) gives

(3.32)
()u )t)(A A)p*()t, n) k(n

p()t, n + 2) + C(n + 1, n)p()t, n + 1)

+ (,2)(,).
Therefore setting ,k ,k and using (3.31) and (2.24) yields

C(n + 1, n) k*(.) v_(.. + 2)
k(n + 2) p_(z’, n + 1)

k() _(.)
k*(n) p_(z’,n + l)"

Now setting , ,kl in (3.32) and using the above equation gives

/(n + 1)k*(n) k(n + 2)k(n)-+ 2)’



412 JEFFREY $. GERONIMO

where/(n) [p-(zl, )p_(z[, 1) p_(z[,/.)p-(z1, B 1)]. Therefore

a*(n + 1)2 a(n + 3)a(n + 1) g
Equating coefficients of n+l in (3.31) yields

k*(n,n-1) _(ATA)= k(n T 2,n + l) k(n T1) p_(z,n + 2)
k,() k( + =) k( + =)

_
(z, + )

k() _(;,)
k*()= p_(, + 1)"

Thus

=(+ ) =( + =)-(, + =) (, + 3)$() _
( + 1) + a( + =)___(: + =)

_(:,) (+ )
_
(, + 1)(+ a)a(n + 2):5:+ 1)(+ ) + a( +a)(:+ )(+ 1)"

The result now follows using mipulations simil to those used in the preceding
theorem.

4. The absolutely continuous pt. In this section the relation between the
decay of coefficients in the recurrence formulad the decay of the Foxier coefficients
of the absolutely continuous pt of the meure will be investigated. We begin by
recMling a result of Ber.

Let a(O) be a ram nonnegative periodic nction inteable on [-r, r]. Let

e-i(O)dO, 0,

and define

Dn(a)

(Note that On(a) > 0.) Let

C--1 C--n
CO C--n+l

c-i CO

n 0, 1, 2,

?(n)= (-l)n
Dn-i(a)

Cl CO C--n+2
C2 C1

Cn Cn--I C1

LEMMh 4. Given a(O) as above assume (abusing notation) la(z){ < cx) for I/R <_
I=1 < R, R > 1. Then In a(z) e Au if and only ifnl ()1()1 < oo. Here u(n) is
given in (1.4).

Remark. Baxter proved this theorem for R 1 (see Baxter [3], [4]), and his proof
with slight modifications can be carried over to this case.

COROLLARY 5. Let {(z, n)} be the orthOnormal polynomials associated with a((?)
(see Geronimus [12]). If lna(z) e Au, then {zn(1/z,n)} is a Cauchy sequence in Au
and converges in norm to a nonzero function.
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Proof. See Baxter [3], [4]. D
THEOREM 13. Let p(A) be a bounded, nondecreasing, absolutely continuous ]unc-

tion on [- 1, 1] with

dp(A) a(O)dA, A cos 0, 0 _< 0 _< r.

Furthermore, let a(O)/sinO a(-O)/sin(-O) and lna(z)/(z- l/z) e A. Suppose
R > 1 in (1.4). Then

(4.1) n(2n){ll- 4a(n)l + Ib(,- 1)1}
n--1

if and only if

Here a(z)/(z- l/z)= ’m___o g(m)zm, 1In <_ I1 < R, with g(m) g(-m).
Proof. Without loss of generality assume fll dp(A) 1. From Theorems 1 and 4

we find that (4.1) implies that

(a.a) (*)
z- 1/z rf+(z)f+(1/z)’

z e,
with zf+(z) e A+. Since lna(z)/(z-l/z) e Av, (zf+(z))- e A,, which implies
that (4.3) holds for 1/R <_ Iz] <_ R. Differentiating (4.3) with respect to z yields

[Z mq(m)zm-l=-i- (zf+(z))’
,=-oo ’ (/’+(*))1/*/’+ (1/*)

(llzf+(llz))’ ]z]+ (z)(llz]+ (llz))2

From Lemma 1 and Theorem l(v) we find that (zf+(z))’ and (1/zf+(1/z))’ e A
since R > 1. Hence (4.1)implies (4.2).

To prove sufficiency note that lna(z)/(z l/z) e A and a(8)/ sin0 a(-8)/ sin(-0)
imply that we can construct f+(z) such that zf+(z) e A+, zf+(z) # O, [z[ <_ R,
zf+(z)lz=o > O, and

2o(,) :
2rzf+ (z) llz]+ (11z)’ 1/R < Izl _< R.

Differentiating the above equation with respect to z, multiplying by zf+ (z)(llz)f+ (l/z),
applying E+, the operator that projects A onto A+, then multiplying by zf+ (z) gives

(zf+(z))’ -zf+(z)E+ { (1/zf+(1/z))’
f+(1/z)

-2izf+(z)E+{zf+(z’f+(1/z)(’i’-a(z)’’ )1/z]

Thus it follows from (4.2) that (zf+(z))’ e A. Defining

I+(1/z)
+()
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we find from above that (s(z))’ e A. The polynomials {p(A,n)} orthonormal with
respect to a(8) can be written as (see Szeg5 [22])

V( (’2 + 2)) -/(- /)(’) k(2 + )
[Z-n-I(z,2 + 2) Zn+I(1/Z, 2n + 2)], A -(z + l/z),

where {(z, n)} are polynomials on the unit circle orthonormal with respect to a(0)/sin
with leading coefficient k(n). By Corollary 5, (z- 1/z)p(A,n) e A for all n which
implies through (2.32) that

p+(z, n)= A(n, n)z" 1 +Z a(n, i)z’ E A
i--1

for all n,

since
p( -_n)a(A’)A, dA’ 2il ,

p(cos 0’, n)a(O’) i; dO’.

It is known that the Fourier coefficients of p+(z, n) satisfy the discrete analog of the
Marchenko equation [5], [8], [10]"

w(2n + m) + a(n, m) +Za(n, i)w(i + 2n + m) O,
i--1

m>_l,n>_O

with

Therefore

1/w(n) - (1 s(z))zadz
z

(4.4)

nv(2n + 2)Ic(n m) a(n + I,
<_ nv(2n + 2)lw(2n + m + 2) -w(2n +

+Znv(2n + 2)lw(2n + i + m + 2) w(2n + m + i)ll(n + 1,
i--1

+ Znv(2n + 2)lc(n + 1, i) a(n, i)llw(i + 2n +
i--1

Since Y],__ lw(n)l < there exists wl(n) and (n) such that

,(,) (,),a(,) (,),
wl(n), d(n) # O, n <_ N,
n>N,

and n__l [wl (n)[ < 1. Replace w(n) by w(n) + @(n) in the third term on the right-
hand side of (4.4), iterate, then sum n from 1 to infinity. Setting 7 supra Y]n= nv(2n+
2)[a(n, m) --a(n + 1, m)[, and using the fact that s’(z) e A, we find

2c sup, ],=1 nv(2n + 2){]w(2n + m + 2) w(2n + )1}
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In the above equation c max(supi ’]n=l [a(n,i)[ < o, 1). Thus -]n=l nv(2n +
2)[a(n, m)- a(n+ 1, m)[ < o for all m, which implies the result since a(n, 1)- a(n-
1, 1) 2b(n) and a(n, 2) a(n 1, 2) 1 4a(n + 1)2 + 2b(n)a(n, n + 1).

Remark. We note that the ce R 1 does not follow om the above the
rem. For R 1, (4.2) needs to be replaced by nnv(n)[g(n) g(n + 2)[ <
(Geronimo[S]* and Guseinov [13]). This is because Lemma 1 does not hold for z 1
in this ce; consequently, part (v) in Theorem 1 cannot be strenhened.

Unfortunately, without further hypotheses an analog of Theorem 1 in [11] is
unavailable at this time. This is due to the fact that we do not have control on the
number of zeros of zf+(z) for 1 < [z[ < R. Also, although it is clear that one can
add or remove a finite number of zeros om zf+(z) and not decree the rate of
convergence of the coefficients in the recurrence formula, it is not cle whether
infinite number can be ded or removed without decreeing the rate of convergence.
Some statements about the zeros can be made. First let H be the Hilbert space of
functions analic inside d square integable on the boundy of the disk of radius
R, i.e., g(z) e H if g(z) no c(n)z, [z[ < R d (1/2)L [g(Re’)[2dO
no [c(n)[2R2 < " Since zf+(z) is an element ofH its zeros satis the Blchke
condition i(1- ]z,]/R) < .

The results of 3, Theorem 13 in 4, d Theorem 6 in [11] c be combined to
give the following.

THEOREM 14. Let p(A) be a positive measu with absolutely continuous pa
a(O), A cos0, 0 < O < r. Set a(-O)/sin(-0) a(O)/sin(0), 0 < O < r, and suppose
a(z) has a meromohic eension to < z < a > 1 such that ]a(z)] < for

R d 1/R. Lt {,} dot th atn #()/(- 1/z), itda
multiplicities. ThenEn(2n){]l 4a(n)2 + ]b(n 1)]} < i] and only if

a()dA,dp(A) -]iN= p,5(A- Ai)dA,
A cos t, 0 < t < r,
A [-1,1],

ln(a(z)d(z)/(z- l/z)) e Av, and Y]n=_oo =(=)lg(=)l < o, h d(z) 1-I(z
)((1/)- ),11-< 1, M < oo, (’)= (,’), , o’()d()/(-1/)=

5. Examples--the Askey-Wilson polynomials. We now apply the above
theorems to the Askey-Wilson polynomials. These give rise to the q-analogs ofmany of
the classical polynomials [1], [2], [15]. In the examples below the recurrence coefficients
a(n)2 and b(n) have the form

(5.1) 4a(n)2 1 +E qn’7i(q)
i--1

and

(5.2) b(n) Eqnii(q),
i--1

*We wish to point out that Theorem 3.1 and its consequence, Lemma 3.1 in Geronimo [8], are
incorrect. The correct proof of the sufficiency part of Theorem 1 in [8] is given in Appendix A of [8]
(see also Theorem 13 above).
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where /i(q) and i(q) are rational functions of q independent of n and 0 g q < 1. In
order for (5.1) and (5.2) to converge we will assume the limsup Ii(q)ll/ < 1/q and
limsup I(q)ll/ < 1. Coefficients having the form (5.1) and (5.2) have analogs in the
scattering theory literature of physics and are called Yukawa type potentials [20]. We
wish to analyze the structure of p+(z, n) with coefficients of the form (5.1) and (5.2).
To this end let +(z, n) z-np+(z, n)/"/(n 4- 1) with (n 4- 1) given in the proof of
Theorem 2. In this case (1.1) becomes

z24a(n 4- 1)2+(z, n 4- 1) 4- 2b(n)z+(z, n) 4- +(z, n 1) 2zAlb+ (z, n).

Using an idea of Martin [18], we make the ansatz i+(z, n) 1 + -,i hi(q,z)qni and
substitute this into (5.3). Let x an and note that by varying n [15] we may consider
x as an independent variable. Equating powers of xk in (5.3) we find that

(5.4) h
k-1--zqk(Tkqkz + 2k += (Z"/iq’ + 2fi)hk_i)

(1--z2qk)(1--q)

which implies that hk(z) is a rational function of z with possible poles located only at
the zeros of the function (z2q q)k-, where

(1 a)(1 aq)... (1 aq-i),(a-q)k
1,

In order to show that the equation for p+(z,n) given above is valid, define
(z2q’q)k_(q’q):_ihk; then (5.4) reads as

h: -zqt: [(?t:qt:z + 2fk)(z2q q)k-2(q q)k-2- (z2q: q)k-l(q:q)k-i]
i--1

Let S be a compact subset of the complex plane. Since I(z2q. q)l -< e’=’ I’1’ there
exists a constant c depending only upon the set S such that I(z2q q)kl < c and

(z2q" q)k-(q" q)k-
(z2q" q)i-(q" q)i-

for all k > 0 and 0 < i < k. Consequently, (5.5) becomes

where wk Izlq(lzl + 2ifkl), Therefore,

k=l k=l i=1 k=0
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Since ’k__l Iwkl < cx there exists an N depending only upon S so that qa ’i=1 Iwilc <
1 for all n >_ N. Consequently,

i--N k--1 i--N k--1

which leads to

k=g
1 qNck=l [Wk[

oo N-1 N oo )

since the above is true for every compact subset of the complex plane, and since {k}
is a sequence of polynomials in z we have shown the following.

THEOREM 15. Suppose that a(n) and b(n- 1) have the form (5.1) and (5.2),
respectively, for n >_ 1, with limsup[Ti[1/i < 1/q and limsup[fli[U < 1. Then for
each n >_ -1, p+(z, n) is a meromorphic function of z having its possible poles located
only at the zeros of (z2q" q)oo.

Remark. It is left as an exercise to show that the above theorem can be extended
to the difference equation

z24a(n+ 1)215+(z, n/ 1)+2b(n)z+(z, n)/d(n)+(z, n- 1) 2zAe(n)+(z, n), n >_ O,

where d(n) l+:__x di(q)qai and e(n) 1+-i=1 ei(q)qai with limsup [di(q)[1/i < 1
and limsup le(q)l/ < 1.

We now apply our results to the Askey-Wilson polynomials [1], [2], [14], [15],
[19]. In this case a 1/4Aa-xCa, n 1,2,..., and b, 1/2(a + 1/a Aa Ca),
n 0, 1, 2,..., where

An a-(1 abqa)(1 acqn)(1 adqa)(1 abcdqa-)
n 0, 1,2,

(1 abcdq2n-1 1 abcdq2n-2)

and

Ca a(1 bcqa-)(1 bdqa-1)(1 cdqn-)(1 qa)
(1 abcdq2a-l(1 abcdq2n-2)

n O, 1, 2,...,

where a, b, c,d are chosen so that Aa and Ca are real and Aa-lCa > 0. Since 1/a-
An O(qn), a- Ca O(qa) and 1 An-’Cn O(qn) the results of the previous
section apply when [q[ < 1. Thus the distribution function p(A) with respect to which
of the polynomials associated with the above recurrence coefficient are orthogonal,
satisfies Theorem 4. Furthermore, from Theorem 15 and the remark below it we find
that p+(z, n) is meromorphic with its possible poles located at the zeros of (z2q q)oo.
The equation p+(z, n)/f+(z) has been computed for these systems by Rahman [19] and
Ismail and Rahman [15]. When a, b, c, and d are real or come in complex conjugate
pairs and if max(la], Ibl, Icl, Idl) < 1, then Askey and Wilson [2] have shown that
dp(A) a(A)dA, where

a(A) 1 1
A COS ,

sinO 2" If+el’
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with

where

zf+(z) (az, q)oo(bz, q)oo(cz, q)oo(dz, q)
(z2q. q)o

k(q),

1 (abcd’q)
k(q)2 - (ab" q)o(ac q)o(ad" q)o(bc q)o(bd" q)o(cd" q)o(q" q)o

If any of the parameters a, b, c or d become greater than one, then p(A) will have an
absolutely continuous part and some mass points. This case has been considered by
Askey and Wilson [2, Thm. 2.5].

Finally, we note that the error term for the zeros of the polynomials given by
Theorem 3 can be improved; in particular, O k/(n + 1)+l/(n + 1)arg(eif+(ei))+
O(qn/n). Successive iteration of this equation beginning with 00 kf/(n + 1) yields
improving estimates for 0. To see this suppose for convenience that a, b, c, and d
are real and less than one in magnitude. Then with Oo r(n- m)/(n + 1) r(1-
(m + 1)/(n + 1)) we find arg(1 ae’oq) -ar((m + 1)/(n + 1))(qk/(1 + aqk)) +
O(qk/n3). Consequently, arg(ae’eo, q)oo -ar(m + 1)/(n + 1) ’]k=0 qk/(1 + aqk) +
0(1/n3). Set

o
aqk

c(a, q) Z 1 + aq"k=0

Applying similar methods to the other factors in the formula for zf+(z) yields

arg eieo f+ (eiOo ) 7 [c(a, q) + c(b, q) + c(c, q) + c(d, q) 2c(q, q)] m + l (1)n+i +O

Thus we have proved the following.
THEOREM 16. Suppose a, b, c, and d are all real and have magnitudes less than

one. Then the zeros of pn(cosO) are given by

0=r
n+l

+r c(a,q)+c(b,q)+c(c,q)+c(d,q)-2c(q,q)
(n+l)2 +O

Acknowledgments. The author would like to thank W. Van Assche; without
his strong encouragement, this paper may never have seen the light of day.
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1. Introduction. Tricomi [11] studied the polynomials

(1 t(na) (x)
=o k (n k)!

which satisfy the recurrence

( + 1)..() ( + .):)() +.() 0.() ")() 1,

polynomials, the recurrence relation failing to have the required form.
Carlitz [2] discovered that if one sets

(3) fn (X) X,nt(nC)(X--2),

n_>l,

)() =.
(For a brief treatment of these polynomials, see Chihara’s book [3].)
We observe, as did Tricomi himself, that (t(na) (x)} is not a system of orthogonal

However,

then {fn(x)} satisfies

(4)
(n + 1)fn+(x) (n + a)xfn(x) + fn-(x) O, n >_ 1,

fo(x) 1, f(x)

Carlitz proved that for a > 0, {fn(x)} satisfies the orthogonality relation
o 2ea

(5)
oo
fm(x)y,(x)d() (x) (n + a)n!

e,nn,

where (a)(x) is a step function whose jumps are

(6) d(a)(x) (k + c)}-le-k
k[

at x -4-(k -- C) -1/2, k 0, 1, 2,

The generating function

(7) exp
w 1 cx2

Iog(l wx) Yn(x)wn--x + x----- n--0
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follows easily from the recurrence.1 This series converges for [w < [xl, whenever

For a generalization of the Tricomi-Carlitz polynomials the reader is referred to
[1] and [4].

Note that the support of the orthogonality measure is just the set (0} J (:t=(k +
a)-1/2 k 0, 1, 2,...}, which has a single accumulation point at 0. To investigate
the asymptotic behavior of the zeros of a set of orthogonal polynomials Pn (x) defined
on a compact set it is useful to introduce the measures {vn n O, 1, 2,...},

(8)
Vn({Xj,n}) l/n, j 1, 2,..., n

vn(A) 0, A contains no zeros of Pn(x),

where {xj,,} are the zeros of Pn(x). Note the measure vn assigns an equal weight to
each zero. The weak limit of vn (if it exists) is called the distribution of the zeros of

The asymptotic behavior of vn gives substantial information about how the ze-
ros are distributed in the interval of orthogonality. For an extensive discussion of
applications and consequences of this approach, we refer the reader to [6], [7], and

We define the Stieltjes transform of the measure

(9) s(,; d,

This transform will prove to be a very useful tool in our investigation.
The distribution of the zeros of the Tricomi-Carlitz polynomials can be easily

obtained by the following argument:2 The zeros of fn are the eigenvalues of the
Jacobi matrix Jn (see [13]). Let an’s be the recurrence coefficients of the orthonormal
polynomial p(x) [(n + )n!/(2ea)]l/2:fn(x), i.e.,

(0) Xpn(X,) an+lPn+l(T,) -)f" anpn_l(X,).

Here,

(11) an (-l- c)(n q- i)

We have

S(vn; x) n-ltrace(xI Jn) -1,

whose moments are f xndvn n-ltracej.
Thus the second moment is

(12)
2 2 2 j
-n

1
a (j -{- a) (j -{- c 1)

21nn

We see that vn tends towards the 5-distribution as n

There is a misprint in this equation in [3].
This procedure was suggested by a referee.
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Although the distribution can be worked out with the above approach, it gives
no information about the asymptotics of the orthogonal polynomials in the complex
plane. Our approach provides this more general information (e.g., see Corollary 2).
Note the Jacobi matrix Jn is a compact operator (because an O(1/n1/2) here). We
mention a theorem by Schwarz [8], which says that for a trace class Jacobi matrix
(one for which n__l an < cx)) there exists a function f analytic in C\{0} such that

(13) lim
pn(x)

n----o Xn

The above convergence holds uniformly on compact subsets of C\(0). However,
for the Tricomi-Carlitz polynomials the Jacobi matrix is not trace class. Therefore
it would be interesting to see how the corresponding asymptotic behavior of Pn(X)
deviates from what is stated in (13). This question3 is answered in Proposition 2.

Finally, since vn converges weakly to the 5 function, which is degenerate, we
would like to obtain further information about the zero distribution, for example, the
"shape" of the 5 function. To this end, let gn :-- fn((-i/2x) so that all zeros are now
in [-1, 1]. We denote them by rj,n, j

_
n. Let Xn be the random variable so that

(14) Prob(Xn- rj,n)= 1/n for 1

_
j

_
n.

In order to get substantial information we must normalize correctly. Thus we define

One can show that the random variable Xn converges in distribution to the dis-
tribution function whose density p(x) is defined below:

l (4tan-(x/V’4- x2) x/4- x2)
2

-2_<x_2,

It is interesting that the graph of p(x) is volcano-like, i.e., with sloping sides and a
crater. The proof of (16) requires that the asymptotics of the orthogonal polynomials
is in the form gn(nz). Since it is a continuation of the present work, we intend to
publish it elsewhere.

Now let the normalized measure for the zeros of gn be n, i.e.,

(17)
n({rj,n})- l/n, j- 1,2,...,n,
n(A) O, A contains no zeros of gn(x).

The following proposition is easily proved.
PROPOSITION 1. Let x in a compact set K c_ C\[-1, 1]; then

(18) S(n x)
1 g(x) _1 1
n g,(x) n x-r,,j-----1

3 This question was suggested by a referee.
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where rj,n’s are the zeros of gn(x).
Note. This proposition allows us to focus on the asymptotics of g,(x) for x E

g C_ C\[-1, 1].
By Cauchy’s theorem we have, for fixed nonzero x,

1 w exp/Wfn(x)
I--p x

1 OlX2

X2
log(1 wx)I w-n-ldw’ where

1 w exp(W27ri i=lmol ’ + log(1 w) } (w/x)-n-: d.__W,x where ]xp] < 1.

Thus

(19) f,(x) 1 fv {w 1--x2

xn 2ri
exp - + x2 log(1 w)} W-n-1dw.

Equation (19) holds for all x 0, and the integration contour C is any simple
closed contour in the open unit disk encircling the origin.

Recall

(20)

Now all zeros of gn(x) are in [-1, 1]; so (19) becomes

(21)
g,(x) 1 J { w 1- x
xn 2r--- expa 5 + x2 log(1 w) } w-n-:dw.

Equation (21) holds for all x t 0.
The asymptotics of (21) are fairly simple:

(22) gn(x)

We emphasize that although one can employ Darboux’s method to get the asymp-
totics of (22) for each fixed x (see [16, p. 116]), uniformity is, unfortunately, an issue
here, and the Darboux approach does not guarantee uniformity.

Rather, we tackle the problem by using an elementary approach.
PROPOSITION 2.

a.(z)(23) xnn-aC:-’2)/-: r(-.(x

uniformly for all x in a compact set K C_ C\[-1,1].
Proof. To simplify notation we introduce

(x(1-x2) and(24) A(x) :=
x2

Write the Taylor expansion

(25) (l--w)A(x) E anI)
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(26) ewB(:r’) Z bnwn’
n--O

wherean=(-1)n(A(nX))
We form the Cauchy product

and bn
Bn(x)

n!

(27)

Hence

n

[wn] (exp (--5")(1-w)a(1-x)/) Zbjan_j.
j=0

(28)

Using

we have

xnn-A()-I
j=O

J[ n-a()-1 \n J]"

(_l)n-j(A(x)
\n j/

r( j A(x))
r(-A(x))r(n j + 1)’

(29)

(30)

Write

g.(x) 1 .,oB(x):.-()-’ r(-()) .= j n-A(x)-i
r(n-j-A(x))
r(n j + 1)

eB()
r(-A(x))

1 B.(x)
r(-A()) -=

Combining (29) and (30) gives

(31)

g.(z) en()
:n-()- r(-A(z))

1 ’ BJ(x) ( 1

jO J! n-A-(x)-1r(-A()) .=

1
oo SJ(x)

-r(.()) j
j=n+l

F(n j A(x))
F(n- j + 1)

We now decompose the above sum as follows:

(32) g.(z) e’()
:n-a()- r(-A(x)) Sx + S: + Sa,

where

n/log log n Bj (x) ( 1Z j! \n-a-(x)-1j--O

1 Z BJ(x._) 1
S2-- r(-A(x))

j=n/loglogn J! ?I-A(x)-i

r( j A(x))
r(- j + 1)

F(n j A(x))
r(n- j + 1)
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--1 + BJ(x_____)(33) $3
r(-A(x)) = j!

In order to estimate S, i 1, 2, 3, we must interrupt our proof for four short
lemmas.

LEMMA 1. Let x K C_ C\[-1, 1], K compact. Then A(x) is never

_
O, and

there exists M > 0 such that for all x e g we have IA(x)l <_ M.
Proof. Solving,c(1 x2)/x2 for x we have x -t-X/c/(c -{- ). If

_
0,

then x would be real and Ixl _< 1. This is a contradiction. The second part of the
statement is trivial.

LEMMA 2. There exists M > 0 such that for all x E K we have I1/F(-A(x))I <_
M, and IB(x)l <_ M.

Proof. The proof is trivial.
LEMMA 3. Let j be <_ n/ log log n, and x e g C_ C\[-1, 1]. Then as n --, oc we

have

(34) ( 1 F(n-j-A(x))
n-A-(x)-1 F(n-j+l)

-1 =O
log logn

where the implicit constant holds uniformly.
Proo.f. By Lemma 1 there exists M1 > 0 (depending on K) such that for all

x K C_ C\[-1,1] we have

(35) IIm(n- j- A(x))l < M.
The assumption of the lemma implies IRe(n- j A(x))] --, oo, as n --, oo. Hence

there exists a i > 0 (depending on K) such that for all x
r/2- i, provided n is large. Using the asymptotics of log F(z) (e.g., [14]), which hold
uniformly for all z such that IArg z _< r/2- i, we have

(36) (1 F(n-j-A(x)))n-A(x)- r(n- j - 1)

j -A()- (1 A(x))-A()-/2() n-j (A(x)+i)1- - 1 / 1-

l+n_ j
1

By Lemma 1, IA(x)l is bounded. Hence we may estimate each of the above factors
as follows:

(37) (1 j)
-A()-I () (1)--n =1+O =1+0

log logn

(38) (1 A(x))
-A()-U2 ()-1/0 IA(x)..I..

n-3 n-3

(39)
n-j+1

e-A(x)+ 1+0
n-
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The implicit constants in (36)-(39) hold uniformly for x E K and for j such that
j _< n/log log n.

Putting (37), (38), and (39) into (36) we get

1 F(n j A(x))
n-A*- r(n- j + )

-1---- 1+O
log log

I n)0 (log log

(1 o 1

LEMMA 4. Let n/loglogn < j < n and x K C_ C\[-1, 1].
constant c depending only on K such that

There exists a

(40) F(n-j-A(x))
r(n- j + 1)

Proof. Let n- j 1. Thus is in the interval [0,n(1 (1/loglogn))].
Now

(41)

F(/- A(x))
+ 1)

A(x)(1 A(x))... (1- 1 A(x))

IF(-A(x))IIA(x)I A(x)
1

A(x)
2

1-
A(x)
l-1

1

By Lemma 1, A(x) is never nonnegative. Hence

Ir(-A(x))l < M (bounded).

Since IA(x)l is bounded, there is an no depending on K such that for all j > no
we have IA(x)/jl _< 1/2, and as a consequence

(42) r(/- A(z))
F(// 1)

Thus there exists a constant c such that

F(n-j-A(x))
F(n j + 1)

< cn. [:!

With Lemmas (1)-(4) at our disposal we are prepared to estimate S, $2, and $3
in (32). Thus

r(-A(x))

n/log log n

BJ(x)( 1 r(n-j-A(x)))j! n-A(x)-1 r(n-j + 1)
1

Using Lemma 3 we have

(44) ( 1 )ISI MO
log log n

n/log log n

IBdj(,x)l
j=0
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The converging series z_,j=0 IB (z)l/j! is obviously uniformly bounded. Hence
S1 --* 0 uniformly for

Next, by Lemma 4 we see that

r(-A(x)) ( )IBj(!x)l c
n-lA(x)l-1 + 1

j=n/log log n

Now

+1 >_Klexp
log logn-loglogn(46) j! r(j + 1) > F

log log n

Using (46) in (45) we get

(47)
n ) IB(x)ln+lA()ld

log log n K exp
log log n log log n

Since exp(n log n/log log n) is dominant, we have $2 --* 0 uniformly for x E K
as n --. cx). Finally, we observe that the tail of a uniformly converging series

’]j=n+(BJ(x)/j!) --. 0 uniformly for x e g as n --* o. Thus $3 --* 0
uniformly.

PROPOSITION 3.

(48) fn(x) -+ --+ i+g()
r’(-(1 )IX2)
r(-a(1 X2)/2) J

uniformly for x K C_ C\[-1,1].
Proof. Since the convergence in (23) is uniform and both functions

ea/a:gn(X) n_a(l_x)/x-_l and
r(-(1 )/)

are analytic on C\[-1, 1], by a classical theorem of complex analysis on uniform
convergence we can differentiate both sides of (23) with respect to x, still maintaining
the uniform convergence. The result follows after a little simplification.

COROLLARY 1. )n weakly as n --.

Proof. Propositions 1 and 3 imply that

1
(49) S(v,;x)

X
uniformly for x K C_ (3\[-1, 1].

By a theorem of Grommer and Hamburger (see, e.g., [12] and [15]) we conclude
that n converges weakly to 5(x), the i-function at x O. I-!

Of course, Corollary 1 implies that for any continuous function h(x) on [-1, 1] we
have

(50) lim
1

,-oo n
h(rj,n) h(O).

To have an idea of the rate of convergence of (50) we have the following.
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COROLLARY 2. Let h(z) be analytic in an open set containing [-1, 1]. Then

(51) )1
h(rj,n) h(O)

n
j-1

27rz

1 c-2a (X3
+ ah"(0)In n - _---= 1 +

r’(-(1 x2)/x2) " h(x)dx,

where C is a contour in the open set encircling the segment [-1, 1].
Proof. Use Proposition 3 and Cauchy’s integral formula. 1:]

The existence of a "residual term," ah(0) Inn in the above expression (see The-
orems 1.11 and 1.14 in [12]), is rather interesting.
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WATSON’S BASIC ANALOGUE OF RAMANUJAN’S
ENTRY 40 AND ITS GENERALIZATION*

DHARMA P. GUPTAt AND DAVID R. MASSONt

Abstract. The authors generalize Watson’s q-analogue of Ramanujan’s Entry 40 continued
fraction by deriving solutions to a lO9-series contiguous relation and applying Pincherle’s theorem.
Watson’s result is recovered as a special terminating case, while a limit case yields a new continued
fraction associated with an 87-series contiguous relation.

Key words, contiguous relations, continued fractions, Pincherle’s theorem, basic hypergeo-
metric series
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1. Introduction. Contiguous relations for hypergeometric functions are an im-
portant source for obtaining explicit results for difference equations, continued frac-
tions, Jacobi matrices and their corresponding orthogonal polynomials. At the top of
the Askey-Wilson chart of classical orthogonal polynomials [1] one has the 4F3 Wilson
polynomials. However, the 4F3 label is misleading since the properties of these poly-
nomials and their associated case are revealed by two contiguous relations for very
well poised 7F6 series IS], [14]. These, in turn, can be derived as limits of a contiguous
relation for a terminating, very well poised, two-balanced 9Fs-series [8], [18]. This 9Fs
contiguous relation is thus fundamental for the classical hypergeometric polynomials.
In a previous publication [15] it was shown how this 9Fs contiguous relation was also
related to Ramanujan’s famous Entry 40 continued fraction [3], [16].

All of the above are q --* 1 limits of basic hypergeometric analogues. Thus the 43
Askey-Wilson polynomials should be viewed in the light of very well poised s7 series
[9] which are limits of terminating, very well poised, balanced 109’s. The analogous
contiguous relation for 109’s is thus fundamental to the whole scheme of classical and
basic hypergeometric orthogonal polynomials. In this paper we derive this important
contiguous relation and a corresponding continued fraction. A special terminating
version of this continued fraction yields the following result of Watson [17], which is
the q-analogue of Ramanujan’s Entry 40 [3], [16].

THEOREM A (Watson [17]). Denoting the base by q2 (instead o.f more usual q),
let

1 xq2m+),1-[ (1- (Iql < 1),
n--0
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Then, provided that one of the numbers , 7, , e is of the form q+/-n(n 1, 2,... ),

where

Ao (q + q-1)ii(o o:-1)
Om (qm+l + q-m-1)(qm-1 + ql-m)H(c2 + O-2 q2m q-2m),
m (q2m+l q-2m-1)

{ (qm + q-m)(qm+l + q-m-1)(o2 ..+. ]cg-2 + 2) II( + Cg-1)

(q + q-)(qm + q-m)(qm+l + q-m-1)(q2m+l + q-2m-1)
.)

with the products and sums ranging over the numbers (, 13, 7, , e.
A second special terminating version of the continued fraction obtained here will

give the basic analogue of Masson’s Proposition 1 in [15], which is described as a
"missing companion" of Ramanujan’s Entry 40. For the sake of completeness we state
Masson’s result.

THEOREM B (Masson [15]). Let P’ IIr((3 + a +/ +/- 7 + i + e)/4) (0, 2 or 4
minus signs) and Q’ nr((1 + c :t: f :t: 7 :t: i :t: e)/4) (1 or 3 minus signs). Then if
one of the parameters , 7, , e is an odd integer,

Q’ -1 2bl
P’ ao al

b2 b3
a2 a3

where

bn- (II((2- 1)2- o2))/(16)3(2n 1)2,

an-{2n6 -{-n4(5- o2)/4 W n2(- 26 T (1T c2)2- 2Jo4)/64- ao}/(42- 1),

a0 {2(1 ]cg4) -- (1 c2)2 8H}/(16)2

with these products and sums ranging over the parameters ,,% , e.
Masson [15] also gave the nonterminating versions of Ramanujan’s Entry 40 and

Theorem B,
The object of the present study is to obtain the nonterminating versions of Tat-

son’s theorem and the q-analogue of Masson’s theorem. They are given in 4 by
Corollaries 7 and 8, respectively. Our approach is similar to that in several recent pa-
pers [5], [6], [12], [13] on the subject where Pincherle’s theorem [11] has been used to
bring out the connection between several of Ramanujan’s Chapter 12 entries and the
general theory of hypergeometric orthogonal functions (Askey and Wilson [1], Wilson
[18]). For other approaches to explaining some of Ramanujan’s continued fraction
entries see [3], [10], [19].

2. Contiguous relation. We consider a terminating, very well poised, balanced
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109 basic hypergeometric function:

-(a; b, c, d, e, f, g, h)

a, qv/_d,_qv/_d,b,c,d,e,f,g,h; q,q
:=109 v/-,_v/-, aq aq aq aq aq aq aq

b’ c’ d’ e’ f’ g’ h
a3q2 --bcdefgh, ql < 1,

with, say, h q-n, n O, 1, g sqn-l, s :-- a3q3/(bcdef). We follow the usual
notation for variations of with respect to the parameters. For example (b+, c-)
represents the with b and c replaced by bq and c/q respectively. + denotes the
109 obtained by replacing a by aq2 and b, c, d, e, f, g, h by bq, cq, dq, eq, fq, gq, hq,
respectively.

We need a contiguous relation basic analogue to the contiguous relation derived by
Wilson [18] for the 9Fs hypergeometric function. To work out this contiguous relation,
we shall use Wilson’s method [18] of using the basic hypergeometric analogues of the
relevant formulas.

LEMMA 1. Let be given by (2.1) (not necessarily terminating). Then

(2.2) (b-, c+)
(1 1(1 a)(1 aq)(1 aq2)(1 d)(1 el(1 f)(1 g)(1 h)

(i- a--b )(i- a-b)(l- )(i- aq)(lc a-d )(I- aq)(1
x

Pro@ A straightforward term by term subtraction on the left side of (2.2) leads
to the result.

LEMMA 2. If (given by (2.1)) is terminating, then

b2(l h)(l aq)(l aq)(l aq)(l aq aq
bc bd be bf)(1 bg)

/(b-)
(i a-b )(I a-b

h2(1- b)(1 ca-h)(1 h)(1- aq)(1- aq aq)
(2.3) eh Ih)(1 gh +(h-)(1--aq)(1--a-h)h

b(1- -)(1- a-c )(1- a-d )(1- ae-)(1- )(1- ag_)
0.

(1 aq)(1 aq2)

Proof. By eliminating +(b-) from (2.2) and another similar relation written for
(b-, d+) we obtain

a bd
c(1-c) (1-)(1-)(1-qq)(b-,c+)

a (be)(2.4) -d(1-d)(1-) (1---) 1-qq (b-,d+)

+d (1- ) (1- -) (1- 7) (1- ) 0"

With, say, h q-n, we can apply an iterate of Bailey’s transformation 8.15(1) [2, p. 68]
o , +(b-) and +(h-) (he ransformaion [4, ex. 2.19, p. ] wigh b, e, 9 replaced
by 9, b, e, respectively). The three transformed series are related by (2.4). Reversing
the transformations in this relation we arrive at (2.3).
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THEOREM 3. /f (given by (2.1)) is terminating, then

g(l h)(l )(I aq)(l aq)(l aq)(l aq)(l aq)(l a-n-)h gb gc gd ge gf

[(g-, h+) ]
h(l- g)(1- )(I- aq)(I aq)(lhb aq)(lhc aq)(lhd aqhe (1 aq)hf

(1- h)
[(h-, g+) ]

h
I- i- (l-b)(l-c)(1-d)(1-e)(1-f)-O.

Proof. We eliminate +(b-) and +(c-) from (2.2), (2.2) with b - c in (2.2),
and with c - h in (2.3). A final interchange of parameters b .-. g, c - h yields the
desired result. [J

Substituting h q-n, g sqn--:, and renormalizing, the contiguous relation (2.5)
becomes the linear second-order difference equation

(2.6) Xn+: -anXn + bnXn-: -O, n >_ O,

(2.7)
q-n+] s Sqn_2)an-- v/ (1- sqn-)(1- -qn-a )(1- -a

q+) q+ q+(i- qn+l)(l- : (I- : )(I- aon+l:. )(1-
x

(1 sq2n)

+ vf (1 qn)(1 aqn)(1 aqn+)

(1 bs qn-2)(1 cs qn-2)(1 ds qn-2)(1 es qn-2)(1 lSqn-2)-’: -:" - a

(1 sq2n-2)

(s) ]+ V/:qn-1/2a (1 sq2n-:) 1 q2 (1 b)(1 c)(1 d)(1 e)(1 f)

/[(1 sq2n-)(l S-qn-2)(1 aqn+)],
a

(2.8)
a ( a )q-2n+3 (1- qn)(1- 8qn-2) (1- qn)(1- _qn)(1 qn) (1 qn) 1 "-]qn

(1 q’- "q’-) q--) q"-): )(i-: (1- W (1 qn-2)(1 a

(1 q’-:)(1 q’-’)’(1 q’-)

a3q3
8

bcdef
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with the solution

X(n1) q _, -n (sq2n-1)o(aqn+)o
(2.9) 82 (8qn-1)o(qn-1)o(aq’+x aq’+ aq’+ aq"+ aqn+l

(a; b, c, d, e, f, sqn-, q-n).

Here the infinite product (a)o means

(a)o (a; q)o (1 a)(1 aq)(1 aq2)
and

...,

For the exceptional values s q, q2, the a,, bn and b,+ in (2.7) and (2.8), and the

X(n),X( in (2.9) are indeterminate at n 0. We resolve this indeterminancy by
taking limits as n -- 0.

Next, we proceed to find a second linearly independent solution to the second-
order difference equation (2.6). This can be obtained by using a q-analogue of [15].
Thus from (2.6), (2.9), and a symmetry relation ((2.11), which follows) we are able
to obtain a second terminating 09 solution for the special values s q, q2,
For general values of s the second solution will be an appropriate combination of two
nonterminating 109’s which satisfy a four-term transformation (Gasper and Rahman
[4], formula III.39, p. 247). We will consider the case of general s in future work.

Observe that with the replacement

(2.10) (a,b,c,d,e,f, sqn- q-n)._ ( q q q q q q-n+2 qn+l)b’ c’ d’ e’ f’ s

we have

It is easy to check that bn -- bn+l. To check an -- an we used the "Maple" software
on the computer. This meant verifying a polynomial identity in x q-n of degree 14.

Applying the transformation (2.10) to (2.6) and (2.9) and renormalizing, we ob-
tain the second solution

s qn)(sq2n-1q
a bson-1 CSqn-1 dsqn-1 eSqn-1 fSan-1(2.12) s. (qn+)o(aqn)o(-. ’- a 7 a-

(q; q q q q q q-n+2 )x
a b c’ d’ e’ f s

q+ s q, q,

Note that is terminating in (2.12) because of the pameter q-n+2/s.

3. Asymptotics d Pincherles theorem. To obtain a minimal (subdomi-
nant) solution for (2.6) we need the lge n ymptotics of (2.9) and (2.12). Applying
Tannery’s theorem to the m9’s on the right side of (2.9) and (2.12), we have,

(3.1) X1) q +n

and
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W
q q q q q q aq__2 <1s a; b’ c’ d’ e’ f s

where

W(a; b, c, d, e, f) s7 v/-, qa qa qa qa q,
/a, - - - - bcdef

We write

W1 :-- W(a;b,c,d,e,f),

and its analytic continuation otherwise, and we write

W2 :- w(q; q q q q q)a b’c’d’e’f
and its analytic continuation otherwise.

Now taking

(3.3) X(n3) W2X(n1) W1X(n2),
it follows from (3.1) and (3.2) that

X(a) s s
(3.4) nlirnoo x(nl O, [[ < [a[ < [5["
This establishes that X(a) is a minimal solution of (2.6). An application of Pincherle’s
theorem [11] then leads to the following result.

THEOIEM 4. Let s q, q2, Then

1 bl b2 W2Xn(1)- W1Xn(2)(3.5) lim
,,7 v(2)

Proof. From Pincherle’s theorem (3.5) is true for Is/ql < lal < Is/q21. For other
values of a the result follows by analytic continuation. To the left side of (3.5) we can
apply the "parabola theorem" (see Jones and Thron [11, p. 99] and Jacobsen [10])
since from (2.6), bn/(anan-1) (q3/(1 + q)2)(1 + O(qn)). Hence the left side of (3.5)
is a meromorphic function of a. The right side of (3.5) involves convergent infinite
products and 87’s that are each expressible in terms of convergent infinite products
and convergent 43’s (Gasper and Rahman [4, eq. (2.10.10), p. 43]). Consequently,
the right side of (3.5) is also a meromorphic function of a and (3.5) follows by analytic
continuation to all values of a. Note that the exceptional cases s q, q2 that cause
indeterminancy are taken care of by the limit n --+ 0 on the right side of (3.5).

For the exceptional values s q2, q Theorem 4 gives, respectively, the nonter-
minating versions of Theorem A (Watson[17]) and the basic analogue of Theorem B
(Masson [15]). We now demonstrate how to derive the terminating versions of Theo-
rem 4. We shall need to express the ratio. W1/W2 in terms of infinite products when
b/a --qV, N being an integer. We write

(aq aq aq aq aq W(a;b,c,d,e,f)W(a;b,c,d,e,f) :=
\ b’ c’ d’ e’ f/
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and

U(a;b,c,d,e,f) := W(a; b, c, d, e, f)
(aq, b, c, d, e, f)oo

LEMMA 5. _If b/a qN, where N is an integer, then

(3.6) U(a; b, c, d, e, f)
s

U b,
a a a

Proo]. Refer to Bailey’s three-term 87 transformation (Gasper and Rahman [4,
formula III.37, p. 246]). If we apply the condition b/a qN, N 0, +1, +2,... we
obtain the desired result.

LEMMA 6. I 8 a3q3/(bcdef) qM and b/a aN, M and N being integers,
then

(3.7)

W(a;b,c,d,e,f)
w

(aq, c, d, e, f, el, d de=A

where

8 N aq3

58
q-n 2,n O, 1,

and
(3.9)

q) b 58
/or q-n, n -1,0,1,2,

aq

Proo]. We express the left side of (3.7) in terms of appropriate 43’s. To the
numerator W in (3.7) we first apply the identity (3.6) and then the three-term trans-
formation [4, formula III.36, p. 246]. To the denominator W we first apply the 87
transformation [4, formula III.24, p. 243] and then formula III.36 [4]. We also make
use of the relation

(3.10)

lim (e)oo43 (a,b,c,d ) (a,b,c,d, fqn+l,gqn+l,qn+2)oo
e---,q e, f, g

q’ q
(aqn+l, bqn+l, cqn+l, dqn+l, f, g)

(aqn+l bqn+l cqn+ dqn+l )qn+l 43 qn+2, fqn+l,gqn+l
q’q

All this enables us to recognize and cancel a common linear combination of 3’s
from the numerator and the denominator yielding the desired result. We note that
in the case bs/aq q, s q, the limit (3.10) is not required and there is an exact
cancellation. [:]

4. Exceptional values s q, q2. We now restate Theorem 4 for the excep-
tional values s q, q2 and the form they take when the continued fraction terminates:

COROLLARY 7. If 8--q2, then (3.5) can be rewritten as

1 bl b2 2a(1 q) tel-V’(4.1) ,v)’i+ao -al -a2 q3/2(l-a)(l-)(X 7)(1 8)(1-e)
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(4.2)

(4.3)

and product II and summation E are taken over the parameters a, , 3", 5, e. If one of
the parameters ,% 5, e qN, N integer, (a, , 3", 5, e) -o (a2,/32, 3,2, 52, e2) and the
base q is changed to q2, then the right side of (4.1) becomes

2(q-l-q)
(4.4) qrl(a- a P +

with

and a,, b, modified accordingly. This reproduces Theorem A.
Proof. We write a a/b,/3 a/c, 3" a/d, 5 ale, e all. After that the

proof is straightforward on substituting the values of X(o), X(o), boX(_), boX(_2) from
(2.9), (2.12) and (2.8) into Theorem 4. A lot of algebra is involved in the simplification.
Also, appropriate limits are to be taken whenever indeterminates occur.

To obtain the terminating form (4.4) we need to use Lemma 6 after interchanging,
say, b and f. In both cases, viz.,

a q-n, n --1, O, 1, 2,...f-’- q-n, n O, 1, 2, and fSaq
whether the termination is due to one or the other, the result works out to be the
same. The above result (4.4) yields Watson’s result [17] i.e., Theorem A in 1.

COROLLARY 8. If 8 q, then (3.5) can be rewritten as

(4.5) 1__ b__ b2 2 ao +- aao al a2 q (aq)o (-)o

-1
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an

5

bn =q

(q-n-+ _qn+1/2)(q-n+1/2 _qn-1/2)

{ (q3n ..[_ q-3n)(q1/2 -I- q-1/2)

+ + +

+ (qn + q-n) ql q-i + (q1/4 + q-1/4)II(a1/4 + a-1/4)

+ (ql q-1/4)I(1/4 -1/4)]
+ (q-1 + q)(q1/2 + q-1/2) + (q- + q)(-1/2 + 1/2)

(q1/4 + q-1/4)(q1/2 + q-1/2)II(1/4 + -1/4)
+ (q1/4 q-1/4)(q1/2 + q-1/2)H(1/4 -1/4) },

II(q-n + qn (1/2 q-1/2 -1/2 q1/2
(q + q-)(q-1/2 + q-+1/2 )(q.-1/2 q-.+1/2)

(4.7)

a a a a a

a

and product H and summation are taken over parameters a, , 7, 6, e. If one of the
parameters , 7, , e is qN, N an oad integer, (a, ,6, 7, (5, e) (ca, ,64, 74, 64, ea) and
the base q is changed to qa, then (4.5) becomes

(4.8) ao a2 Q,ao ax a2

where

with an and bn modified accordingly.
Proof. We write c a2q/b2, i a2q/c2, "y a2q/d2, a2q/e2, and e a2q/f2

and make the appropriate substitutions from (2.9), (2.12), and (2.8) into Theorem 4.
A considerable amount of algebra is required to reexpress (2.7) as (4.6) for which we
used "Maple" software on the computer. We use Lemma 6 after interchanging, say, b
and f to arrive at (4.8). The result is the same for either type of termination (3.8) or

(3.9). Note that (4.8) can be reexpressed in the form

q2 Q, 1 2bl b2
2 ao al a2

which is a q-analogue of Theorem B in 1. ]
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5. Ordinary cases s = qa, q4, By substituting s qm, m integer greater
than 2, into (3.5) of Theorem 4 we obtain the following corollary.

COROLLARY 9. For 8 qm, m 3, 4,...

where an, bn are given by (2.7) and (2.8) for s qm, m > 3.
Note that if we substitute s q(m 1) into (5.1) the right side reduces to

q 2 ()o(aq)oo
(5.2) a2 1 ()oo()
and (5.1) agrees with (4.5) when the indeterminacy in a0 and bl is taken into account,
that is,

lim ao(s) lim a,(s q),
s--q n---,O

lim bl (s) 2 lim bn(s q).
s--q n--,1

It is the a0 and bl on the left side of (5.3) that should occur in (5.1) with s q,
whereas it is lim an(s q) and lim bn(s q) that are the a0 and b: that occur in

n---*O n---l

Similarly, for s q2 the right side of (5.1) becomes

(5.4)
a (l-q) [l_(a)oo(aq)oo]q (I- )(la )(la )(la ;)(la 7). a)oo()ooq

This agrees with (4.1) since

b c d eaq(1- E)(1- E)(l- E)(l- E)(l- a]-)lim a0(s) lim an s q2 +
s--,q2 n---,O 2(1 q)

lim bl (8) lim bn (8 q2).
s---q n--- l

We can also consider the terminating case of (5.1) by taking into account
Lemma 6.

Remark 1. If in 2 we make the replacements a --. Aa, b -- Aq/b, c --. Aq/c,
d -- Aq/d, e --. aei, f ae-, and let A --. cx3, then we obtain solutions to the
recurrence for Askey-Wilson polynomials [1] with s abcd qm, m 1, 2,... [7]. By
applying the above limit to Corollaries 7, 8, and 9, we recover equations (22), (23),
and (24), respectively, of Gupta and Masson [7]. Note that [7, eqs. (22) and (23)] give
the q-analogue of aamanujan’s Entries 35 and 39 [3], [13], while Corollaries 7 and 8
are the q-analogues of Corollaries 6 and 7 of [15].
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Remark 2. The Corollary 8 case s q is particularly interesting since the ap-
proximants of the continued fraction

1 2bl b2 q(aq)() 2
ao al a2 a2(

are then given explicitly in terms of X(n) and Xn(2). To see this we note that the initial
conditions

2X1) aoX(oD =0

X2(2) alX2) --0

which follow from (2.7), (2.8), (2.9) and (2.12) when s q, together with the recur-
rence (2.6), imply that for s q

y(2) y(1)1 2bl b2 bn -LnTl=0 n > 0.
ao al a2 an y(1) y(2)

Remark 3. In the limit as m --* cx) (s qm __. O) Corollary 9 yields a new
continued fraction result given by

co -c -c2 q(1-)(1-)(1-)(1-)

b’ c’ d’ e
’q

where

(5.6)

aqn+l) aqn+1 (1 a
Cn [(1- (1- c )(1-aqn+l-d ,] _qn+l)e

q(1 qn)(1 aqn)(1 aqn+)(1 a2qn+ibcde )
+ a2q2n+2 (1 b)(1 bcdeC)(1 d)(1 e)] /(1 aqn+)

a n a n (l_aq)(l_aqn)(1d’=q(1-q’) (1--q ) (1--q ) - e

a2qn+l )bcde
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A direct proof is obtained by applying our methods to the contiguous relation

a2q2
+ O,

where

W =W(a; b,c,d,e,])

(a, qvZ, -qv/, b, c, d, e, f a2q2 )=87 /’d- aq aq aq aq q,
bcdefVt Vt b c d e j

The contiguous relation (5.7) is obtained from (2.5) by taking the limit g --, 0 with
fg a3q2/(bcdeh) and then replacing h q-n by f. However, the termination of the
preceding 87 is not necessary.
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SOME q-BETA INTEGRALS ON SU(n) AND Sp(n) THAT
GENERALIZE THE ASKEY-WILSON AND NASRALLAH-RAHMAN

INTEGRALS*

ROBERT A. GUSTAFSONt

Abstract. SU(n) and Sp(n) generalizations of a q-beta integral of Nasrallah-Pahman are
evaluated. Selberg’s beta integral can be deduced as a special limiting case of the Sp(n) integral.
Extensions of the q-Macdonald-Morris constant term identities for the affine root systems of types
S(BCn), S(Bn), S(Bn)V, S(Cn), SC(Cn)V, and S(Dn) can also be obtained from the Sp(n) integral.
There are some additional integral evaluations for Sp(2) and Sp(3).

Key words, multivariate beta integrals, q-beta integrals, Selberg’s beta integral, Macdonald-
Morris conjecture

AMS subject classifications. 33A15, 33A30, 33A65, 33A75

1. Introduction. Askey and Wilson [1] evaluated an important integral asso-
ciated to a family of orthogonal polynomials in five parameters. This integral can
be viewed as a q-analog of the classical beta integral. Later, Nasrallah and Rahman
[8] and Rahman [9] extended the Askey-Wilson integral by introducing an additional
parameter.

Let q be a real number, 0 < q < 1. For any complex number c define

[c]oo [c; q]oo H (1 cqk).
k=0

THEOREM 1.1 (Nasrallah-Rahman). Let a E C, 1

_
i

_
5, with lal 1. Then

2 H a
1 [ =1 oo =1 oo dz

(1.2) JT
i=1

where the unit circle T is taken in the positive direction.
Setting a5 0 in (1.2), the identity (1.2) reduces to the Askey-Wilson integral.
In this paper we evaluate integrals associated to the groups Sp(n) and SU(n),

which generalize the Nasrallah-Rahman integral. In the Sp(n) case the integrals also
generalize the Selberg beta integral [10] (see also [2]) and the Askey-Wilson qoSelberg
integral of [2]. In the SU(n) case the integral does not generalize the Selberg beta
integral but gives a new kind of SU(n) relative of the Sp(n) q-beta integral. In 4
of this paper some integrals particular to Sp(2) and Sp(3) are also evaluated by a
method similar to the general Sp(n) integral evaluation.

There is a theory of multivariate basic hypergeometric series corresponding to
the integrals in this paper. If we let the parameter q tend to 1 (at least formally),
there are also corresponding multivariate Mellin-Barnes-type integrals and ordinary
hypergeometric series. These topics are developed in [5].

Received by the editors September 13, 1992; accepted for publication (in revised form) March
13, 1993.
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Finally, we mention that in the Sp(n) integrals (2.2) that follow the parameters
can be specialized to obtain new extensions of the q-Macdonald-Morris constant-term
conjectures [6], [7] for the infinite families of affine root systems of types S(BCn),
S(Sn), S(Bn)v, S(Cn), S(Cn)v, and S(Dn), where n > 1 (when defined) and for
arbitrary parameter q. As an illustration of this extension consider the affine root
system of type S(Bn) for n > 1. Setting a3 -1, aa -ql/2, a5 _q/2 in (2.2) and
using [c2] oo [c] oo I-c]o [q/2c] [-q/2c]o for c e C, one obtains

n

H [tJ][t-J][aa2b2’-2qtj][axa2b2n-2qt-]2 dtj
j=x tj H [aktj][akt-]

(1.3) k=

n { [b][b2n+2_qaa][q_]

where ax, a2, b e e, m{lal, lazl, Ibl} < 1, d Tn is the n-fold direct product of
the unit circle traversed in the positive direction. If we set a2 0, (1.3) reduces to an
identity that is equivalent to the q-Mdonald-Morris constant-term conjecture for
S (see [2]).

2. A q-beta integral on Sp(n). We give extension of the q-Selberg inteal
eluated in [2]. In the on,dimensional ce this reduces to inteal eluated by
Nrallahdman [8], [9]. The proof of this inteal identity is simil to that in

THEOREM 2.1. Letn 1 anda,... ,a, b, q e C withm{la[,..., lah[, Ibm, lql} <
1. Set A 5H= a. fiT is the n-fold dict product of the unit circle {t CI ltl 1}
traversed in the positive diction, then we have

1

(2ri)n
j<kn

(2.2)

Proof. Since the n- 1 case of (2.2) is proved in [9l, we may assume that n _> 2.
Denote the integral on the left-hand side of (2.2) by In(a,... ,as; b; q). Let c E C,
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]-[’2n+3[cj} < 1 for 1 < j < 2n + 3. Set C lXj=l c. In [3, Thm. 4.1] we have evaluated
the integral

H {[tj/;" 1] oo [;;ltk] oo [$jk] [;15k-1]}
1 f <n

=1

(2.3) n(H [q]oo [21oo [Czjloo[Cl]oo dz

= zj

2n+3

2n! H [Cc-I]
i:l

[ql H
With notation in the preceding, consider the inteal

(2.4)

H {[J;;1] [$;itk] [tJSk] [t;It;l]}

(27ri)2n-1 .--I " 5

H H[aktj][akt71]
j=lk=l

H {[SjS;1][8;18k][SjSk][818;1]}
l_j<k_n--1

n n--1

H H{[bl/28ktj][bl/28-lt’J]o[bl/28kt’l][bl/28-lt1]}
j=l k--1

n tJbn-1 ai tlbn-1 ai

H i--1 o i:1 o dtj,
j:l

tj

where b1/2 is any fixed square root of b. In the integral (2.4) we may use iden-
tity (2.3) to evaluate the interior integral either with respect to the set of variables
{s1,..., sn-} or, by changing the order of integration, with respect to the set of
variables {t1,..., tn}. Equating the resulting integrals, we obtain
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"[q]-l[b] I,(ax,..., a; b; q)

5
(2.5) 2nn! Hibn-lAa[1]

i--1

[ql"-[b]- I [aa]o
In-l (albl/2, a5bl/2; b; q).

We finish the proof of identity (2.2) by doing induction on n, using identity (2.5) and
the Nasrallah-Rahman integral for the case n 1.

3. An analogous q-beta integral on SU(n). We evaluate an SU(n) integral
that is analogous to the Sp(n) integral in (2.2). Actually, the SU(n) integral eval-
uation is slightly different for even n and for odd n, n > 1. In the one-dimensional
(SU(2)) case this integral reduces to the Nasrallah-Rahman integral [8], [9]. In the
SU(3) case the integral reduces to one evaluated in [3, Tam. 2.1] (see also [4]).

THEOREM 3.1. Let n >_ 1 and a, b, cl, c2, c3, dl, d2 e C, with max{lal, Ibl, Ic11, Ic21,
Ic31, Idl], Id21, Iql} < 1. Then

(3.2a)

1 /T(2ri)2n-I

l_i<j_2n j--1 i=1 k=l

dzl dz2n-1
Zl Z2n-- 1

2[ 2](27)! H a2n-2bn-ldj H c’i
j=l i=1 o

[ql-l[bn-ldld2] H [a"-Icic.]o[a"]o[b"]

H [(ab)n+j-2cickdld2]
l<i<k<3-- 2

j=l H H[(ab)J-lcidk]
i=l k=l

3]n--1 H ’+-2b’+-ld l-Ic’
k=l i=1

j---1 [(ab)J]o[aJbi-ldld2]o H [a’-lbicick]
1<i<k<3
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2nwhere I]j=l zj 1 and the integral in each variable z,... ,z2n- is over the unit
circle T taken in the positive direction. We also have

(3.2b)
2n+l 2n+l [H [ZiZ] H zj(ab)
i,--1 32]

H [azizJ][bzlz;11 H[cizj] H[dkzI]
l_i(j<_2n+l j--1 i---1 k--1

dZl dz2n
Zl Z2n

[2n + 1)! a2n- 1bn- ci dk a2n- bn ci
i=1 k-1 oo i-1

[q]2nH[ooanc]oo H[bndk]oo an-I ci
i=l k--1 i--1 oo

n
an+-2bn+j-ldk ci H [(ab)n+j-lcickdld2]

k----1 o
3 2

j--1 [(ab)Jloo[aJb_ldld2]o H [aJ-lbJcickl H H[(ab)J-lcidk]
i<_i<k<_3 /=1 k=l

]-[2n+lwhere =1 z 1 and the integral in each variable zx,..., z2n is over the unit circle
in the positive direction.

Proof of (3.2a). Since the n 1 case of (3.2a) is proved in [9], we may assume
that n >_ 2. Let a,b E C, lal, Ibl < 1, for 1

_
i

_
hand 1

_
j

_
n+l. Set

n .l--[n+lA Hi--1 a and B j-1 b. Then in [3, Thm. 2.1] we have evaluated the integral

n+l n

7’ H [5;1AB]H[a,BI
j=l i=i

n+l n n+l

j=l i=l j=l

where nHk--1 Zk 1. With notation as in the preceding, consider the integral



446 ROBERT A. GUSTAFSON

(3.4)

[t-i --1 --1J][i j ]:["%SJ][Si$-l]:[$-lSj]:[$-lsj 1]c}
[b1/2Z-18j]o [b1/2Z-18-1]o}

"= zi(ab)n-2dld2 ck

j-1

jan-3/2 Ck
k,--1 oo

3

H [a-ll2cklJ][a-ll2ckt-f1]
k--1

[-lan--3/2 1 ] [ fi ]Ck sjan-2bn-3/2dld2 Ck
k=l oo k=l oo

[ [8jan-2b-1/2 Ck 8lan-2b-1/2

[ 3]8lan-2bn-3/2dld2 H Ck [;32"]o[;2]o[832"]o[82]o
2

H[b-1/2disj]o [b-1/2di8711o
i--1

dtjds_____A dZl
tjsj 2;1

dz2n-1

Z2n-- 1

2n al/2 bl/2where IIj:l zj 1 and are any fixed square roots of a, b, respectively. Ap-
plying identity (2.3) twice, we evaluate the interior integrals in (3.4) by first integrating
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with respect to the set of variables {tl,..., t,} and then integrating with respect to the
variables {Sl,..., s,}. The resulting integral in the variables {zl,..., z2,-I } is, up to
factors independent of {zl,..., z2n-1 }, just the integral on the left-hand side of (3.2a).
On the other hand, by reversing the order of integration we may evaluate (3.4) by
applying identity (3.3) to first integrate with respect to the variables {zl,...
then applying (2.3) to integrate with respect to the variables {Sl,..., s, }, and finally
applying (2.2) to integrate with respect to the variables {tl,... ,t,}. The resulting
identity is (3.2a). This completes the proof of (3.2a).

Proof of (3.2b). The proof of identity (3.2b) is entirely ,similar to that of (3.2a).
The only difference is that, instead of the integral (3.4), we consider the integral

[t;Itj]o[$;it-1]o[Si8j]o[8is-l]o[8;18j]c[8=z18;l]c}
bl/2Z-I8j]o[b1/2z-18-I]o}

2.+1
zj(ab)2n-ldld2 H ck

L k=l oo

i=1 [c3zjl=[b-’n-dld’--’-2zjl---=[a’"----lC-z;l]

[a"clc2tj]o [anClc2t- lo [bndld28j]o [bndld28-l]o
2

H([a-1/2Ck$j][a-i/2akt;l][b-I/2dksj][b-I/2dks-I])
k:l

dz2n

]--[2n+lwhere x lj--1 Zj 1 and the notation is as for (3.4). D

4. Some q-beta integrals on Sp(2) and Sp(3). In Sp(2) and Sp(3) we can
evaluate some integrals related to (2.2) that do not generalize to Sp(n). The proofs
involve substituting variables in place of the parameters al,..., a4 in (2.2) and inte-
grating by using Fubini’s theorem.

THEOREM 4.1. With notation as in Theorem 2.1, let al,a2,bl,b2,q E C, with



448 ROBERT A. GUSTAFSON

1 /T2 2

[tlt’l] [t"lt2] [tlt2] ItS-lt1]
(27ri)2

YI [Sktll][kt’l2l[bktlt2l[kt’ll]
k--I

(4.2)

2 2[t]o[t-2]odt"H2
j=l H[atjloo[akt-l]ootj

k--1

8[(ala2blb2)21oo [bl]oo [b2] oo
2

oo oo[q]2 [ala2]oo[blb2] [ala2blb2looH[ablb2]oo[ala2bk]oo 2

k-1

Proof. Consider the integral on the left-hand side of (2.2) for n 2. Let a5 0,
a3 b/2z, at b2/2z-, and b b. Multiply the integral by [z2]o[z-2]o/z, and
integrate with respect to z along the unit circle traversed in the positive direction.
We obtain the integral

(4.3)

1 /T [tltl][trlt2][tlt2][tIt]
(2ri)3 [bltltl]oo[blt;lt2]oo[bltlt2]oo[blt;ltl]oo

2 [tloo[t2]oodtII 2
j--1 [b12/2ztj]oo[b12/2zt-l]o[bl/2z_ltjloo[b12/2ztT1]oo H([aktj][akt-1])tj

k=l

[Z2]o0 [Z--2]O
dz.

Use identity (2.2) to evaluate the integral (4.3) with respect to the variables tl and t2
first, and then use (2.2) (the Askey-Wilson integral) again to integrate with respect
to z. Now reverse the order of integration, and evaluate the integral (4.3) with respect
to z first. The resulting identity is (4.2). [:]

THEOREM 4.4. With notation as in the preceding, let bl,b2, b3,q C, with
max{Ibl, Ib21, Ib31, Iql} < 1. Then we have

1 IT2 3

[tltl][tlt2l[tlt2] [t-lt]o H2 [t]oo[t-2]oodtJtj(2ri)2
H[bktlt][bktt2][bktlt2][bkttl] =
k--1

8[qblb2b3]oo 3

[ql II [bb] [bl
l_j<k_3
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/I/2 --iProof. Set a b/2z and a2 3 in the integral on the left-hand side of
(4.2). Multiply the resulting integral by [z2]oo[z-2]oo/z, and integrate with respect to
z along the contour T. Just as before, using (4.2) and (2.2) to evaluate the integrals
and reversing the order of integration, we obtain identity (4.5). [:1

THEOREM 4.6. With notation as in Theorem 2.1, let bl, b2, q E C with max{Ibll,
Ib21, Iql} < 1. We have

--1

3!23
[qbb]oo 3 [bl]oo [b21oo

[bbu]oo [bb2loo [bb]oo [b2 b22]oo .l-I []i)’]oo"
Proof. Set al bl/2Ul, a2 b/2 l/2u a4 2 2u2, a3 b 1 /1/2.-1 and a5 0

in (2.2). Multiply by [UlU1]oo [ulu2]oo[UlU2]oo[ulul]oo 1-Ij=12 [ua2.]oo [u2]oodujlug,
and integrate with respect to the variables u and u2 along T2. Using (4.5) and (2.2)
to evaluate the integrals and reversing the order of integration, we obtain identity
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ON THE STRUVE TRANSFORMATION*

P. HEYWOOD AND P.G. ROONEY

Abstract. The Struve or u transformation is defined for suitable functions by

where Hu is the Struve function. It is known to be bounded on weighted L, spaces with weights
tptt--1 if 1

_
p < o, tt >_ "(p), and u+ 1/2 < tt + -. Inversion formulas have been given for T/ but

with the added restriction that # > -(y + 1/2). Here inversion formulas are given for p

_
-(y + 1/2).

Key words. Struve function, Mellin transformation, multiplier

AMS subject classification. 44A15

1. Introduction. The spaces, are defined for 1 _< p _< cx) to consist of those
Lebesgue-measurable functions f on (0, c) such that Ilfll,p < o, where

Ilfll,
If()ld/

ess sup I
>o

1 _<p< ,

If X and Y are Banach spaces, we denote by [X, Y] the collection of bounded op-
erators from X to Y, IX, X] being abbreviated to IX]. Also, we denote by
the collection of functions, continuous and compactly supported on (0, c); clearly,
,p Lp((0, cx)),xm’-I dx), and thus, or from [7, Lemma 2.2], 0 is dense in
for 1

_
p < oo. Furthermore, if 1 <_ r

_
o, the conjugate index r is defined by

1/r + lira= 1.
In earlier papers [4], [9] we considered the Struve transformation 7 defined for

feCoby

(7-[f)(x) (xt)l/2H(xt)f(t) dr,

where H(z) is the Struve function defined by

,,(z) (-1)’(z/2)"+2’+l/(F(m + )r( + . + )).
m---O

In [91 it is shown that if 1 < p < , u+1/2 < # < u+, and p _> 7(P) where
7(P) max(lip, lipS), then 7/ E [mp,1_mq] for all q _> p such that q >_ l/p,
whereas the boundedness on :,1 is given in [4], being essentially the same range
ofboundedness, with 7(1) 1. Note that if 1 <_ p _< c, then 1/2 _< 7(P) -< 1,
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with equality at the lower endpoint if and only if p 2. Since, for boundedness,- < 7(P) < # < + 25-, our boundedness result requires that > -2.
Inversion formulas for are given in [4] and [9]. The inversion formula given in

[4, Tam. 6.1] is valid for 1 _< p < cx), # _> (p), and max(v+ 1/2,-(v+ 1/2)) < # < v+ ,
whereas that given in [9, Thin. 6.3] is valid on a subset of this range of # and . Thus
no inversion formulas have been given for -(p) _< # <_ -( - 1/2), # < -}- , and in
this paper we shall find such formulas for this range of/ and v. Also, when < 1 we
shall need an inversion formula for 7 that is somewhat different from the one given
in [4], and we shall develop it.

It transpires that the case # -(v+ 1/2)is a special case. For, as noted in [9, Thm.
5.2], the range of the Struve transformation of order on ,p is the same as that of
the Hankel transformation of order + 1 on :,p, except possibly when # -(v+ 1/2),
and in order to find inversion formulas for this case we must investigate the range of
7-/. This causes our program in this paper to divide naturally into three cases. In 2
we deal with the range # -(+ 1/2), # < min(1, v-t- ), and we prove two theorems,
one of which is for a part of the range already covered in [4] but which we will need
later. Sections 3-5 are devoted to the case # -( + 1/2). In 3 we show that the
range of the Struve transformation in this case is a proper subset of the range of the
Hankel transformation of order + 1, and we characterize that range. In 4 we find
an inversion formula for the case # -( + 1/2), # - 1/2, and in 5 we deal with the
case # -(y + 1/2), # 1/2. It seems strange that this last case should be the most
elusive since the conditions yield -1, so that the problem is that of inverting 7_
on /2,2 L2(0, o), where one usually expects things to be simpler.

Throughout the paper we use the notation f-,oo and f-0, which are explained in
[11, 1.7]. This causes some of the formulas taken from [1] and, [2] to look somewhat
different since those formulas are often improper Riemann integrals. In particular, we
will have

(7S)(x) (xt)/N(xt)f(t) dt

whenever this last integral converges. Other notations used include A for

cot(r)/r( + 2),

and m(s), which is defined by

m(s) 2-l/r((u + s + +
One of our tools in this work will be the Mellin transformation [, whose prop-

erties are summarized in [9, 1].
12. Inversion for/z --(+ ). In this section we prove two inversion theorems

for the range < min(1, u + ), which e valid when > m(-(u + ), u + ) and
< -(u+ ), respectively. The range of d u in the first theorem is actually within

that for which [4, Thm. 6.1] is valid, but the form obtained here is considerably simpler
then the form in that theorem, and we shall need the result obtained later.

THEOREM 2.1. Suppose f ,, where 1 < p < , (p), andm(-(u+),
+ ) < <1. Then for almost all x > O

f(X) X-(vT1/2)XvT1/2 (xt)l/2gv+l (xt)(f)(t).
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Proo]. Note that the conditions imply that --32 < < -1/2, and thus y + > 1,
so that # < + -52. Fix x > 0, and let g(t) t-/2Y+(xt). By [1, eqs. 7.2.1(4)
and 7.13.1(4)], g(t) O(t+/2) + O(t--3/2) t 0+, with a modification when

-1, and g(t) O(t-1) t . The conditions on thus ensure that g e ,p,,
and [9, Tam. 5.3], in which there is a misprint for m((p), (q)), yields

(2.1) f(t)(g)(t) dt g(t)(f)(t) dt

since + < < + .
But then [2, eq. 11.3(2)] givesg since - < < -, and by putting this value

into (2.1) we have

t+/I(t) dt + t-/Y+(t)(l)(t) dt

+/ (t)/Y+(t)(I)(t),
and ghe resulg follows on differengiagion.

Pot ghe inversion when < -(u + ), we firsg need a lemma.
LNN 2.2. g N, < rain(l,--(u + ), + ), then

lira

Proof. By inteting ound rectangle with vertices tiRdv+-2niR
d letting R nd n , the limit in the preceding is equal to the sum of the residues
of the inted to the le of the line e s . The inted, lly written out, is

This h two sets of simple poles: t .. (. + ) 2nd t t= :.+ 2n,
where 0, 1, Note that it follows om the conditions on that -2 < < -1,
om which it follows that the dierent sets of poles hve no members in common.
Also, om the hypotheses, s0 > but s. < V, 1, 2,..., while f < , 0,
l, The residue t s= is eu to u-l cot.(-1)=(u/)’++"/(r( + + )!),
d the residue t f. is equ to u-l csc.(-1)=(ul)-@+)+"l(r(-)!). Hence

lim
1 f#+i (. 1/2) / +

u-/ co ru ’(-1)’(/2)++"/(r(u + n + 2)n!)

+ csc ru
n--0

u-/(co r(u + 1)&+(u) A(u/2)"+ cscr(u + 1)J_(,+())

,i/,-- 1/2 (yl,,+ (,i/,) -A(ul2) ). rl
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THEOREM 2.3. Suppose that f E g,p, where 1 < p < cx, # >_ (p), and
min (1,- (v + 1/2), v + ). Then for almost all x > 0

f(X) X-"-1/2 Xv+l/2 (:gt)l/2{yu+l(Xt) Au(xt/2)u+l}(Tluf)(t)T.

Proof. Note that since -( + 1/2) > # >_ 7(P) -> 1/2, < -1 and, similarly, > -2.
-2v+lLet h(u) u-1/2(Yv/l(U) Av(u/ j. We shall prove that, under the condi-

tions of the theorem,

(2.3) t+l/2f(t) dt ,,/3/2 h(xt)(7"lf)(t) dr,

which on differentiating yields the desired result, and we prove this first on 1/2,2
L2(0, cx)).

Suppose then that f E 1/2,2. Note that if

()( 1)/(3)H(s)=m(s)tan s-v- v+-s
then H(1/2 + it) e L2(R), and hence by [12, Thm. 71] and Lemma 2.2, h e 1/2,2 and
(jh)(s) g(s). Thus if hx(t) h(xt) for x > 0 and hx e 1/2,2, from elementary
considerations (Jth)(s) x-SH(s). Also, from [9], /f e/:1/2,2- Hence from [12,
Whm. 72]

x+3/ h(xt)(7"lf)(t) dt
Xv/3/2 /I/2/ioo27ri 1/2-,o

(]4h=)(s)(J7-lf)(1 s) ds

27ri J1/2-oo
x-SH(s)m(1 s)tan - + - s (Jf)(s) ds

Xv/3/2f1/2/‘ (3)27ri J1/2-,o
x-S(JVlf)(s)/ -F s ds,

since m(s)m(1 s) 1 and tan ( + s) cot (s u- 1/2). Also, if for
x > O, k(t) O, 0 < t < x, and k(t) t+1/2, t > x, then clearly k E 1/2,2 and
(jAkx)(s) xS++l/2/(s + v + 1/2). Hence from [12, Whm. 72]

1 fl/2/ioo (j/Ik)(1 s)(Jt4f)(s) dstv+l/2f(t) dt

xv/3/2 fll2/ioo x-S(f)(s)/( + s)ds,
2i

1and thus (2.3) holds when p 2 and # .
However, under the conditions of the theorem, for each x > 0 both sides of (2.3)

represent bounded linear functionals on ,p. Clearly, k 1-,p, since + 23- <- and thus the left-hand side of (2.3) represents such a functional. Also, h(u)2

O(U/5/2) --O-(y/3/2)) as U -- 0/, and h(u) O(u-1) + O(u+1/2) as u --. c, and
thus h ,,. Hence
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o h(xt)(7-lf)(t) dtl < [o Ith(xt)lp’ d-]
1/p’

where K is a bound for the norm of :H and thus the right-hand side of (2.2) also
represents a bounded linear functional on ,p. Hence (2.3) holds for the values of
and u stated in the theorem, and the theorem is proved.

The reader should note that ][][-3/2(z) -J3/2(z), so that ://-3/2 is just minus
the Hankel transformation of order -32, and that then, since Y-1/2(z) J1/2(z) and

3A_3/2 O, this gives another inversion of the Hankel transformation of order

3. Range of "/ when D --( + ). In this section we discuss the range
of ?/ when u -(u + 1/2). To this end we use the properties of the even and odd
Hilbert transformations H+ and H_, which are summarized in [9, 3], and of the
Hankel transformation H, u > -1, and the extended Hankel transformation H,
u < -1, studied in [4], [5], [7]-[9]; also, Ma, where c e llR, denotes the operator on
complex-valued functions on (0, cx) defined by

(Maf)(t) tar(t).

Clearly, M is an isometric isomorphism of L:,n onto ,_,p.
In each of the lemmas and theorems of this section we assume that T(p) _< #

-( -t- 1/2) < u -t- , which gives u > -. It should be noted that this implies that
u _< -1, with u -1 only ifT(p) 1/2, and thusp 2. Also, it implies that
u q- 1/2 _< -1/2 < T(p) _< #, and thus # is in the range for boundedness of 7 on L:,p.
It further implies that p > 1, for since > -, -(u / 1/2) < 1, and thus T(p) < 1 and
hence p > 1.

We begin by proving a lemma followed by a theorem that shows immediately that
the case in which # -(u-{- 1/2) is fundamentally different from those cases considered
in 2 and from which we immediately obtain, as a corollary, that 7(L:,p) is a proper
subset of H+_ (,p).

LEMMA 3.1. Suppose l < p < oc ands(p) <_ # -(u q- 1/2) < u-{- . Then on
l,p

(3.1) ?iv HM_(+/2)H-M+/2

if- < u < -l, and

(3.2) 7-I_ M_/2H+MI/2H1.

Proof. Note that - < u <_ -1. It is sufficient to prove the relations when
p 2 since L:,2 is dense in L:,p, ?(p) _> "7(2), and each side of (3.1) and (3.2) is
a bounded linear transformation from L:, to Ll_,p. From [9, Thm. 5.2] the left-
hand side of (3.1) is so bounded. Also, as noted, M+/2 maps L:,p boundedly onto
-(+z/2),p, and from [9, Thm. 3.1], H_ maps -(+/2),p boundedly into itself
since 1 <_ u- (u q- 1/2) < 2. Further, M-(+1/2) maps L:_(+t/2), boundedly onto
L:,p, and finally, from [8, Thm. 1], H maps ,p boundedly into _,p since the

7integer m of that theorem is one and our hypotheses ensure that 7(P) _< # < u q- .
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Then by [8, Thm. 1] and [9, eqs. 1.10, 2.3, and Thms. 3.1 and 5.2], if f 6 ,,2 and
Re s 1/2, then

(JllHvM-(v+l/2)H-Mv+l/2f)(s) mv(s)(fldM_(v+l/2)H-M+l/2f)(1 s)

mv(s)(JliH_Mv+l/2f)(1 s (. + 1/2))

mu(s)cot (1 s (, + 1/2))(JiiMu+l/2f)(1 s (, + 1/2))

m(s)cot (1 s (- + 1/2))(jPlf)(1 s)

m(s)tan (s + (. + 1/2))(Nf)(l s)

(f)(s).

Hence (3.1) holds on ,2 and thus on, for the range of values shown. The proof
of (3.2) is similar.

THEOREM 3.2. Suppose f E ,p, where 1
Then the integral

tu+l/2(uf)(t) dt
0

converges and equals zero.

Pro@ If < -1, then om (3.1),f H, where M_(+u2)H_M+I/2f.
As noted in the proof of Lemma 3.1, M_(u+I/2)H-M+/2
H(,,). But om [5, Thm. 6.31, with/= 1,

t+ll2(H)(t) dt
o

converges and equals zero, which is the result to be proved in this ce.
If -1, then , sothatp 2. But thenom (3.2), if

L2(0, ), -lf M-1/2H+, where M1/2Hlf. Now by [12, Chap. 8], H1
[L2(0, )] and thus e 0,2, and thus by [3, Cor. 4.3]

o
(H+)(t)

converges d equals zero, which is agn the result to be proved since (H+)(t)/t

COROLLARY 3.3. Suppose 1 < p < , (p) --(+ ) < + . Then
(,p) is a proper subset of H+(,p).

Proof. In [9, Thm. 5.1] is defined to be H+S, where S is a trsformation
that, for the values of and for which is bounded, maps ,p boundedly onto
itself. Hence, (,p) H+(,p). Let f(x),, and from [2; eq. 8.5(12)], (H+f)(x) x/2g+(x). om Theorem 3.2, if
(,) H+(,p), then

t’+K+(x) 0,dx
o

which is impossible since the inteand is positive]
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Since /(Z:,) is a proper subset of H+(,p), it is of interest to find exactly
what subset it is, and the following theorem characterizes it.

THEOREM 3.4. Suppose 1 < p < o and T(p) <- # -( + 1/2) < + . Then
g 7-l(,) if and only if

e
(b) I50
(c) o H+(u,p), where (x) x-u+x/2 fo t+/2g(t) dr.
Proof. Suppose first that-23- < u < -1. If g T/(/:u,) then g

some f e u,p, and thus from (3.1), g Hue, where MuH_M_uf. Now
M_uf e F2u,p, and thus since 1 < 2# < 2, from [9, Whm. 3.1(b)], H_M_uf
and thus :u," Hence g e H(u,), and it follows from [5, Whm. 6.5], since in
this case l 1, that g e H+2(i:u,), (b) holds, and o e H+2(u,). But from
[10, Tam. 1], since u > -, H+2(Z:u,n) H+(Z:u,) and thus (a) and (c) also hold.

Conversely, if g satisfies (a), (b), and (c), then, since from [10, Whm. 1],
H+(:u,) H+2(:u,) and since l 1, g satisfies (a), (b), and (c) of [5, Tam.
6.5], and thus there is a e /:u,p, so that g H. Since from [9, Whm. 3.1(b)],
H_ e [2u,], and maps 2u, one-to-one onto itself, from [11, Whm. 42.-H], H_- exists
and H_- e [Z:2u,p]. Let f MuHZM_. Then f e , and MuH_M_f
and thus, by using (3.1), g HMuH_M_uf 7-luf so that g e

Suppose next that -1. Then # 1/2 and p 2, so that :u, 1/2,2"
Suppose g e /-(/2,2). Then from (3.2), M/2g H+Mx/2Hf H+, where

Mx/2Hf. But from [6, Whm. 1], since :/2,2 L2(0, cx)), Hf e :/2,2 and
1thus e/:0,2. But then, from [3, Tam. 4,4], M/2g e 0,2, f_o(M/2g)(t) dt/t

fo t-/2g(t) dt converges, that is, (b) holds, and k e :0,2, where

0 0
;-1/2g(;) dr.

Hence g e /2,2, and since, from [6], H0(/2,2) /:/2.2, (a) holds. Also, o
M_/2k, so that 0 Z:/2,2 H0(/2,2) and (c) holds.

Conversely, suppose g satisfies (a), (b), and (c). Then, since H0(:/2,2) /2,2,
M/2g satisfies (i), (ii), and (iii) of [3, Tam. 4.4] with p 2 and thus M/2g
H+, where 0,2. But then M_/2 :/2,2 H(/2,2), and thus there
is an f Z:/2,2, so that M_/2 Hf. It follows then that g M_/2H+
M_/2H+M/2Hf _f and g _1(1/2,2).

1 14. Inversion when D --(D + ), D . Theorem 4.2, which follows, d
its coroll give two inversion formul for in this ce. However, we first need a
lemma.

LEMMA 4.1. Suppose that f ,p, whe 1 < p < , - < < -1, and
-( + ). Then as a O+

(4.1) a’+ ;-I/2f(t)]H[v+I (at) d: ---+ O.

Proof. Given e > 0, choose R so large that

liP



ON THE STRUVE TRANSFORMATION 457

Since ]HI+I (t) + - 0+, there is a constant KR such
that I+1 (t)l <_ KRt+2 for 0 _< t _< R. If 0 < a < 1, we then have

R
a"+ t-/UIHI.+(at)f(t) dt

R
<_ KRa2u+3 ’-I-3/2lf()[ dt.

Moreover, by using HSlder’s inequality, since tt -(v + 1/2),

Here A is finite since u+XH+(u) O(u2+3) as u --, 0+ and since ]BI+x (u)
O(u-/2) + O(u) O(u-/2) as u --. , so that u++(u) O(u+/2) as

Combining these estimates, we find that

au’l-I t-I/2Hu.l_1 (at)f(t) dt

_
Ae -I- KRa2u-l-3 t+a/21f(t)[ dr,

Hence as a --, 0+ the upper limit of the left-hand side is less than Ae, and since e is
arbitrary, (4.1) follows.

We now can prove the following inversion theorem and its corollary.
THEOREM 4.2. Suppose that f E ,p, where 1 < p < cx, # -( + 1/2) >_ 7(P),

and + < # < 1. Then for almost all x > 0

dt
/(2g) X-/-1/2

d t/-F1/2 (xt)l/2yu+l(xt)(Tluf)(t)_.

Proof. It is easy to see that # < + , so that 7f exists. Suppose first that
p > 7(p), and choose e > 0 but sufficiently small that #- e > max(7(p),
and # + e < min(1, + 5/2). Define fl and f2 by f f’X(t,o) and f2
Then f2 E +e,p and f 6 :_e,p, and thus we can apply Theorems 2.1 and 2.3,
respectively, and it follows that for almost all x > 0

(4.3) f2(x) x--/2 d-xU+/2 (xt)l/2Yu+ (xt)(Tluf2)(t)
dt

dx t

and

dt
f (x) x--i/2 dx+/2dx (xt)/2{Y+ (xt) A(xt/2)+} (Ttfl)(t)-"
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In view of Theorem 3.2, we can write this last formula as

(4.4) fl (x) x-V-1/2 dxv+l/2 (xt)l/2Y+l (xt)(1-Gfl)(t)
dt

dx J -o -But for fixed x > 0, (xt)l/2Y+l(xt) is bounded for t >_ 1, and Hhlder’s inequality
gives

and the last two integrals are finite since ?-Gfl E :,v and tt < 1. Thus we do not
need the arrow on the upper limit of integration in (4.4). Then, adding (4.3) and the
modified (4.4), we have the result.

If #- V(p), (4.3) still holds but (4.4) does not since now #- e < 7(P). Now we
apply (2.1) to fl and g, where

[g.(t) t-1/2 Yv+l(xt) A x(0,o)(t)],
x and a being fixed positive numbers. As in the proof of Theorem 2.3, g,(t)
O(t+5/2)+O(t--3/2) as t - 0+ and g(t) O(1/t) as t --. (x, and so the conditions
that ensure that gx E t,,v’ are tt + v + > 0, # < v + , and tt < 1. The second and
third of these are among our hypotheses, while tt -(v + 1/2) yields tt + v + 2.
Thus (2.1) yields

(4.5) (?’Gfl)(t)gx(t) dt fl (t)(?-Gg.)(t) dt.

In view of Theorem 3.2, we can write the left-hand side of (4.5) in the form

o
t-1/2y+l(xt)(T{fl)(t) dt A - v+l ]_’ 1/2t+ (Tlfl)(t)dt,

o

and the second term tends to zero as a --. 0+. We can write the right-hand side of
(4.5) in the form

Ii (t)(nh)(t) dt A (t)(7-Gka)(t) dt,

where h(t) t-1/2Y+l(xt) and ka(t) t+l/2X(O,a)(t), provided we show that one
of the two integrals exists. From our hypotheses, - < v < -1. Hence from [2, eq.
11.3(2)] the first integral exists and equals

-x--1 t+1/2fl (t) dr,

this integral existing since Hhlder’s inequality gives

t’+/l(t)l dt <_ It’(t)l" t

since # > v + -3
2
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By [2, eq. 11.2(2)], (Tlk)(t) t-v-a/2(at)+lH+l(at) since u > -23-, and hence
the second term in (4.6) reduces to

+1
t-1/2fl(t)lHI+l(at) dt,

and as a -- 0+ this tends to zero by Lemma 4.1. Thus if we let a tend to zero in
(4.5), we find that

t-1/2y+l(xt)(’fl)(t dt- -x--1 t+l/2fl(t dr,
o

which, on differentiation, yields

gY+l/2fl(X

almost everywhere on (0, c). Multiplying this by x--1/2 and then adding it to (4.3),
we obtain (4.2).

COROLLARY 4.3. Under the same hypotheses,

almost everywhere on (0,
Proof. Theorem 3.2 shows that the integrals on the right of (4.2) and (4.7) are

equal, and it is easy to see that the integral in (4.7) does not need an arrow at its
lower limit. [:]

5. Inversion of 7-1 on I,2 (0, oo). We now consider the problem of inverting
7 on ,p in the case for which # v + and for which the singularity condition,
# -(v / 1/2), applies. For the two conditions to hold simultaneously we must have

-1 and # 1/2; thus 7(P)= 1/2, so that p 2 and ,p is 1/2,2 L2(0, oo). First
we prove a lemma.

LEMMA 5.1. /f f E L2(0, oo), then as a -.

t-1/2Ho(at)f(t) dt --, O.

Proof. Let K denote {fo t-llo(t)12dt} 1/2, which is finite since o(t) O(t) as

t --. 0 and N0(t) O(t-1/2) as t --. oc. Given e > 0, choose 5 so small that

[jo5 [f(t) 2 dt]
1/2

Then, using Schwarz’s inequality and the substitution u at, we see that

lt-i/2Ho(at)f(t)l dt < t-lifo(at)[ dt. If(t)12dt < K,
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while

Hence

It-1/2No(at)f(t)l dt <_ I]fll2" u-ll]Hi0(u)l2 du

t-/2]HIo(at)f(t) dt

from which it follows that

< Ke + llfl12 u-lllH[o(u)l 2 du

/olim t-1/2Ho(at)f(t) dt <_ Ke,

and the result follows. El
THEOREM 5.2. /] f E L2(0, oo), then for almost all x > 0

f(x) x/2
d t-U2(Yo(xt) Yo(t))(7-l-I)(t) dr.

Proof. Let a and x be fixed positive numbers, and let

ga(t) t-t/2(yo(xt) Yo(t) 2r- log xx(o,a)(t)).
F om 7.2.a(33)],

as t 0+, where 7 is Euler’s constt. Hence ga(t) O(ta/21ogt) t 0+; Mso,
om [1, eq. 7.13.1(4)], ga(t) O(t-1) t . Hence ga(t) L2(0, ), =d thus if
f e L2(0, ), om [9, eq. (5.9)]

(.1) l(t)(_)(t) dr,= ,(t)(_l)(t) dr.

Now, om [2, eqs. 11.2(2) d .a()l

(-9)() --/(X(,)() X(,)() + 2-

y-1/2(X(1,x)(y -(2r-1 log x)]Hlo(ay)).

Each term of this last line is in L2(0, oo), and thus we can write the left-hand side of
(5.1) in the form

y-1/2f(y) dy- 27r-1 log x y-1/2Ho(ay)f(y) dy,

and we can write the right-hand side as

t-V2(Yo(xt) Yo(t))(7-l_f)(t) dt- 2r- log x t-V2(7-l_,f)(t) dt
0 o
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since the last integral exists by Theorem 3.2. If we now let a --. x) in (5.1) and use
Lemma 5.1 and Theorem 3.2, it follows that

y--1/2f(y) dy t-/2(yo(xt) Yo(t))(7-lf)(t)
o

and the result follows on differentiating. U
Finally, we have the following corollary, whose proof is similar to that of

Corollary 4.3.
COROLLARY 5.3. If f E L2(0, o:)), then for almost all x > 0

f(37) xl/2 d t-1/2(yo(xt) Yo(t) 2"-1 log x)(_f)(t) dr.
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ASYMPTOTICS OF POLLACZEK POLYNOMIALS AND THEIR
ZEROS*
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Abstract. An asymptotic expression for the large n behavior of Pollaczek polynomials of degree
n and argument cos(8/v/n) is derived. This is applied to find the second term in the asymptotic
expansion of the zeros of the Pollaczek polynomials and it also solves a problem of Richard Askey.
Some new analytic properties of a confluent Horn function are also proved.
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1. Introduction. The Pollaczek polynomials are generated by [7, VI eq. (5.2)]

(1 1) P)’ b) := :=_l(X; a, O, Po(x;a,b) 1,

(1.2)
(n -t- 1)Pn+l(X; a, b) 2[x(a -t- ) -+- n) + b]P(x; a, b)

-( + )P:_(; , b), n>0.

The Pollaczek polynomials are orthogonal when either > 0 and + a > 0 hold or
0 > A > -1/2 and 0 < 1 + + a < 1 are valid. The parameter b is assumed to be real.
For a discussion of the nature of the orthogonality see [2] and [6]. The Pollaczek (or
Pollaczek-Szegh) polynomials have the explicit representation (see [7, Chap. VI eq.
(5.6)] or [.0, i0.21)

(1.3) P:(cos0; , b) ()’
n! 2F1 (-n, + it(O); 2A; 1 e-2i),

where

t(0) := (a cos + b)/sin.
When a b 0 the Pollaczek polynomials reduce to the familiar ultraspherical (or
Gegenbauer) polynomials [21, 4.7], [20, Chap. 17]. Novikoff wrote a dissertation
[17] on the Pollaczek polynomials, where he found the main term in the asymptotic
development of their zeros. Let {xn,k(A, a, b) 1 <_ k <_ n} be the zeros of a Pollaczek
polynomial (Phi(x; a, b)} arranged as

(1.5) 1 > x,(A,a,b) > xn,2(A,a,b) > > xn,n(A,a,b) > -1.

It is more convenient to analyze the 0 zeros {0n,k(A, a, b)},

(1.6) xn,k(A, a, b) cos(On,k(), a, b)).

Novikoff proved that if A 1/2 and (a, b) (0, 0), then for any fixed k we have

(1.7) On,k(1/2, a, b) -- V/2(a + b) as n --, c.
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1993. This research was partially supported by National Science Foundation grants DMS 8814026
and DMS 8912423.
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This is in contrast with the case of ultraspherical polynomials when a b 0,

nOn,k(A, 0, 0) ---, J-l/2,k as n --,

where jv,k is the kth positive zero of a Bessell function Jv(z). The Pollaczek poly-
nomials are orthogonal with all their zeros in (-1, 1) if and only if A > 0 and either
a > Ibl, or a b _> 0 hold; see Theorems 6.1 and 6.2 in [6]. In both cases the Pollaczek
polynomials will be orthogonal with respect to an absolutely continuous measure sup-
ported on [-1, 1]. In the other cases of orthogonality we cannot assume that the x
zeros can be arranged as in (1.5). This situation will be discussed in 5. One of the
reasons for the interest in the Pollaczek polynomials and their zeros is that they do
not belong to the Szeg5 class [2] and as such their 0 zeros are not uniform on the
semicircle. The spectral properties of the Pollaczek polynomials also proved to be
very interesting [2], [6].

It is not clear that Novikoff’s methods can be used to extend (1.7) to general
A > 0. Askey [1] conjectured that the next term in the asymptotic expansion of On,k
will involve zeros of a certain transcendental function. The purpose of this paper is to
solve Askey’s problem. In the process of solving Askey’s problem we discovered new
properties of a special confluent Horn function 2 [9, p. 225].

Define an even entire transcendental function F(z, c) by

(1.8)
1

F(z, c) "= (1 v2)-leCV2 cos(vz)dv.

THEOREM 1. Let A > 0 and a, b be real and define (n > 0 by

(1.9) .=
2(a + b)

n + V/2(a 4- b) n-3/2 4- o(n-3/2).

Then the asymptotic relationship

(1.10)
lim Pn (cosn; a,b) (2(a 4- b) )

-/2

n--,oo n

1--e-a-bF(, a + b)

exp(-rv/n(a+b)/2)

holds uniformly on compact subsets o.f the complex plane.
In 2 we will prove Theorem 1. Our proof uses the representation (1.3) and the

integral representation [20, 30, p. 47]

(1.11) f02F1 (a, b; c; z) r(b)r( b) ub-(1 U)-b-(1 uz)-adu,

provided Re(c) > Re(b) > 0. If a is a not a negative integer we need the additional
assumption Izl < 1.

In 3 we shall prove that the zeros of the function F(z, c) are real and either
simple or double, if c _> 0 and A > 0. This will be stated as Theorem 3. We shall also
study some analytic properties of the function F(z, c) including differential recurrence
relations and a differential equation satisfied by F(z, c). We conjecture that all the
zeros of F(z, c) are simple for c _> 0 and A > 0, but we have not been able to prove
this conjecture. In 4 we shall prove Theorem 2.
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THEOREM 2. Assume that a and b are real such that either a > Ibl or a b >_ 0
hold. If > 0 and (a, b) t (0, 0), then

(1.12) n,k(A, a, b) i2(an+ b) {1 + k(A, a + b) }V/2(a + b)n
+ O(n-1)

holds for k 1, 2,..., where

(1.13)

are the positive zeros of the function F(z, c).
In 4 we shall also establish results concerning zeros of functions that are finite

Fourier cosine transforms.
Theorem 2 solves a problem of Askey [1] and gives a new derivation of Novikoff’s

unpublished asymptotic results [17] and extends them from A 1/2 to A > 0. In 5 we
shall give an alternate asymptotic formula when the assumptions of Theorem 2 are
not valid but the Pollaczek polynomials are orthogonal. We will also mention several
remarks.

2. Proof of Theorem 1. Using (1.3), (1.4), and (1.11) we find

Pax (cos ; a, b)
/ 2A)/n! fo u+’t()-l(1 u)-’t()-[1 u(1 e-2’)]ndu.r( + (0))r( (0))

We used F(2A + (). Set u- (1 + v)/2 to obtain the more convenient
integral representation

Thus

(2.1) !lr( + it(O))l
r(2A + )(co0) 22-lPn(cos 0; a, b) An(O) / An(-O),

with

/o (11)")v)_1 +v(2.2) An(O) := (1 (1 ivtanO)ndv.
v

To determine the large n behavior of An(O/v/n), write the integrand in (2.2) after
replacing 0 by O/v/n in the form

(l-v2)- l+Ve
1-v

exp[2iv t(O/v/-) + n log(1 iv tan(O/V))].
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Recall the definition of t(O/v/n in (1.4) and note that

2ivt(e/x/n) + nlog[1 ivtan(O/v/n)] iv(n//e)[2(a + b) ] + vO/2
+O(:/v/), -+.

Thus we have

(2.3). An(O/x/-) "= (1 v2)X-tgn(v)dv,

where

gn(v):=exp v + [2(a+b)-02]+it(0/V/-)log e-2Vl-vl+V +0(1/)

If 0 in (2.3) is allowed to depend on n but tends to a finite limit other th [2(a+b)] /2
n , the the right side of (2.3) will tend to zero. This follows kom the Riemann-

Lebese lemma and the ymptotic method of stationy phe [18]. On the other
hd, if O2 2(a + b) + [2(a + b)/nl/ + w d wnn 0 n , then there
is a chce that An(Sn-/2) will tend to a finite limit. Indeed, with n in (1.9) we
have

(2.4) An(n) FA(, a + b) + O(1/) n .
To prove this, consider the integal

In(O) := (1- v)- exp {( + b)v + i(v + gt(O/)log(e-(1 + v)/(1 v))} dr.

hus

i(0) (, + )

+ (1 v)a-e(+)v’+i {exp[it(O/)log(e-(1 + v)/(1 v))] 1} dr.

o degermine ghe lge n behavior of I we need go ehge iablesd ingeage by

’( := -(1 -p{( +’ + i}, (1 .= 0,

() := - +I( + ) I( ).

Ingeage by ps o ge

I(O) (,+ b) it(O/) w(v)exp[it(O/)u(v)]u’(v)dv.

Now apply he meghod of sgaiony phe [18, 1.2 and 1., pp. 10101] go see

(0) (,+ b) 0 .
By adding and subgracging In(O) o A(n) and keeping rack of he error germ in he
ympgogic forms ghag are used, one can establish (2.4). herefore,

r( + 1) (cos) (,+ b)(2")r’nt + 2)lr(1 + it(())l(cos( - -
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But as n -. c, nl-2F(n + 1)/F(2A + n) 1 [9, 1.18, eq. (4)], and log(cos Cn)-n
-n log[1 (n)2/2] - a + b. Futhermore, if x and y are real, then

[9, 1.18, eq. (6)]. The substitution of the last three asymptotic forms in (2.5) estab-
lishes (1.10) and completes the proof of Theorem 1.

3. Properties of F. When A > 0 and c _> 0 we can introduce Pollaczek pa-
rameters a and b as a c, b 0, so the corresponding polynomials will be orthogonal
with respect to a measure supported on [-1, 1]; see Szeg5 [21]. In this case all the
zeros are real.

THEOREM 3. If > 0 and c _> 0, then all the zeros ofF(z, c) are real and simple
or double.

Proof. Let Cn n(A,C) be as in (1.9). On compact subsets of the complex
plane, F(, c) is the uniform limit of constant multiples Pollaczek polynomials with
parameters A, c, 0, and argument cos Cn. But the aforementioned Pollaczek polyno-
mials have real and simple 0 zeros, hence also have real and simple zeros. By
Hurwitz’s theorem, Theorem 14.3.4 in [12, p. 205], the limiting function must have
only real zeros. We will see that F(z, c) satisfies a third-order differential equation;
see (3.12). From (3.12) it follows that if F(z, c) and its first two derivatives vanish
at z z0, then all the derivatives of the entire function F(z, c) will also vanish at
z0, a contradiction. This completes the proof of Theorem 3.

One can identify F(z,c) as a confluent Horn function. To see this replace
exp (cv2) and cos vz by their Maclaurin series expansions; then set u v2 and
integrate term by term. The result is

1 Cn(--1)mz2mo1F(z, c) . (2m)!

where we used F(a + n)/r(a) (a) and (2m)! 22mm!(1/2)m. Now set s m + n
to get

F(A)F(3/2) 1/28c8 ( Z2 )(3.1) F(z, c) F(A + 1/2) 8=0 (A + 1/2)8s! 1F1 -s; 1/2; cc
Apply the Kummer transformation [20, 69, p. 125]

(3.2) F1 (a; b; z) ez 1F1 (b a; b; -z)

to the F1 in (3.1) to obtain

(3.3) F(,) (1/2)8c8 (s+ 1/2)k ( z2)r( + 1/:)
exp cc

8=0 (A + 1/2)8s! k[(1/2)k -cc
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Therefore, F is related to a confluent Horn function 2 [9, 5.7.1, p. 225] via

(3.4) F,(z,c) [r()r()/r( + 1/2)]exp(z2/(4c))2(1/2,A + 1/2, 1/2,c,-z2/(4c)).
Observe that the expansion (3.1) is a Fourier Hermite expansion, since [10, (10.13.2),
(10.12.14)1

H2n(x) (-1)n22nn[L(n-1/2)(x2) -(--1)n22n(1/2)n iFl(-n; 1/2;x2).

Therefore (3.1) is equivalent to the Fourier-Hermite expansion

(.) f (zv’-i, ) r(a)r(/z) (-c/4)"
r( + /) -o !( + 1/)H()"

Recall the Poisson integral representation [22, 3.3, (3)]

(3.6) F(v + 1/2)J(z) (1 t2)-/2 cos(zt)dt.

Thus

F(, 0) r(3/)r()(/)-l/_,/().
This suggests expding F(z, c) in terms of Bessel functions. We stt with (1.8),
replace exp (2) by ec exp I-c(1- v2)], then expand the latter exponential in powers
of 1 v2. The resulting intes c be evaluated by (3.6). The fin result is

(3.7) F(z,c) eF(A) (2)-/ ( c)() g+_/()
n0

The functions F(z, c) generalize Bessel functions, so we e guided in our study
of F(z, c) by properties of Bessel functions. As a first step we derive differential
recurrence relations for the function F(z, c). The corresponding differential operators
raise and lower the pameter A. Differentiate (1.8) twice with respect to x to get the
first differential recurrence relation

d:
(a.S) df(,) f+(,)- f(,).

The second is

d2 d
F(x, c) (2A 1)F(x, c) 2(A 1)F_ (x, c)(a.) :F(,)

To prove (3.9) first sume A > 2 and replace (1- v2)- by (1- v2)(1- v2)-2 in
the inteand in (1.8). Thus

1 1 v)-[F(x,c) F_(x,c) + (-2v)(1 cos(vxllav.

An inteation by pts gives

2(- 1)F(,)= 2(- 1)F_(,)- (1- v)- cos(vx)]dv
a
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and, after simple manipulations we establish (3.9) for A > 2. The latter restriction
can be weakened to A > 1 by analytic continuation. Set

d D2(3.10) D’=xx, LI:=I+ L2 :- 2cD2 xD (2A 1)I,

where I is the identity operator. The operators L1 and L2 raise and lower the pa-
rameter A. It is interesting to note that I, L, and L2 form a Lie algebra. Let L3
represent multiplication by x2. The operators I, L, L2, and L3 form a Lie algebra iso-
morphic to su(1, 1). Thus {I, L, L2, L3} provide a new realization for su(1, 1). This
is a somewhat surprising fact because the group theoretic results known to date dealt
with Horn functions as solutions of second-order partial differential equations and as
such missed this connection. Furthermore, this suggests that the Pollaczek polyno-
mials are matrix elements of representations of a larger Lie group that degenerates to
SU(1,1) by a group contraction.

The next step is to derive an analog of the Bessel differential equation. Differen-
tiate (.8); then integrate by parts to obtain the differential recurrence relation

Now eliminate FA.}.1 between (3.8) and (3.11). The result is the differential equation

(3.12) + A) 0.

The differential equation satisfied by u := iFi(-; u -t- 1,-x2/4) is [20, (3), p. 109]

xu" + (2u + 1)u’ + xu O.

It is clear that (3.12) reduces to the above differential equation when c --* 0 and
1A=u+.

It is important to note that we treat the function FA(z, c) as a function of one
variable, namely z. Although a confluent Horn function %2 (a, b, c,x, y) satisfies a
homogeneous second-order partial differential equation; FA(z, c), as a function of z,
does not seem to satisfy a homogeneous second-order ordinary differential equation.

4. Zeros of finite Fourier cosine transforms. We first outline a proof of
Theorem 2.

Proof o:f Theorem 2. Hurwitz’s theorem, Theorem 14.3.4 in Hille [12, p. 205],
asserts that if {f(z)} is a sequence of holomorphic functions in a domain D and
f(z) converges to f(z) uniformly in D, then for every > 0, there is Ne such that
f(z), for n > N, has the same number of zeros in the disc Iz- a] < as f has.
Theorem 2 follows from the latter fact and Theorem 1.

We follow the notation in Pdlya [19] and define

/0 11(4.1) U() "= J’(t) cos(t)dt, V() .= J’(t) sin(t)dt.

We assume that the integrals in (4.1) exist. Langer [14] denotes U(z) and V(z) by
Ca(z) and 8(z), respectively.

THEOREM 4 (Pdlya [19]). Let f(t) be a nonnegative, nondecreasing function on

[0, 1). Then zeros V(z) and Y(z) are all real and simple and each interval (nr, (n +



ASYMPTOTICS OF ZEROS 469

1)Tr) contains one and only one zeros of V(z). If in addition f(t) is convex, then U(z)
has one and only one zero in each interval ((n- 1/2)Tr, nTr),n-- 1,2,

To prove Theorem 4, Pdlya first noted that U(z) and V(z) are uniform limits, on
compact sets, of the trigonometric polynomials

n--1
1 f(j/n)eJ/n, cos(jz/n) and

1- - f(j/n)e/’2 sin(jz/n),
j=o j=o

respectively, as n --. oo and used a trigonometric version of Kakeya’s theorem and
Hurwitz’s theorem to establish the reality of the zeros of U(z) and V(z). P61ya proved
the positivity of the Wronskian of U(x) and Y(x), that is,

U(x)V’(x)- U’(x)V(x) > 0 for real x.

The above inequality shows that the zeros of U(z)and V(z) are simple.
It is worth mentioning that one can show that U(z) has an odd number of zeros

in every interval ((n 1/2)7r, nTr), n > 0 as follows. Let x (m + a/2)r, where m is
a positive integer and 0 < a < 1. Then

1 f2m+’

2m + a Jo
f(u/(2m + a))cos -Tru du.

The above integral may be written in the form

2m+a
(--1)kVk + (--1)mWm

k--1

where

2k

f (1)"= (-1) +
2k-2

2m-t-a

f:= (-1)m f(u/(2m + a)) cos -Tru du.

2m

Now use

2k 2k-1 2k

2k-2 2k-2 2k-1

and set u 2k- 1- U in the first integral and u 2k- 1 + U in the second integral
to get

Vk=/{’(2k-lTU)2m + a -’(2k-l-U))sin(TrU)4- a
o

It is clear that the integrand of the least integral is positive and increases with k. It is
also clear that Wm >_ O. Thus sgn U((m / a/2)zr) (-1)m and the proof is complete.
This proof parallels a proof of Lommel’s theorem given in Watson [22, 15.2]. Watson
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attributes the proof of Lommel’s theorem to Lommel and is based on an idea that
goes back to Bessel. P61ya [19] used a different agrument to prove the same result.

When f(t) (1-t2)-1/2, U(z) will be a constant multiple of z-J(z) and The-
orem 4 is applicable when -1/2 < u _< 1/2. This is Lommel’s theorem [22, 15.2]. When
f(t) (1 t2)A-1 exp(ct2), 0 < A _< 1, c _> 0, Theorem 4 is also applicable and in this
case U(z) FA (z, c). The version of Theorem 4 mention in [14] is Theorem 12 on page
234 and contains an obvious misprint, where "non" is deleted from "nondecreasing."

The next theorem was motivated by problem 6 of 17 in Chapter IX of Dieudonnd
[8]. Its proof requires the following lemma.

LEMMA 1. The zeros of the function A sin z- B(cosz)/z has infinitely many
zeros and they are all real and simple provided that AB > O.

This is the case u -1/2 of a result involving zeros of AJ(z) + Bz(J(z))’; see
[10, 7.9, p. 59].

THEOREM 5. Let f(t) be a real valued twice continuously differentiable function
on [0, 1] such that f’(1)f(1) < 0, and let (xn 1 <_ n < } be the positive zeros of

g(z) :-- f(1) sinz + f’(1)(cosz)/z.

Define U(z) as in (4.1) and assume f’(O) O. Then
(i) The function zU(z) has infinitely many zeros.
(ii) For suI ciently large R,R Ior any n,g(z) and zU(z) have the same

number of zeros in [z < R.
(iii) The zeros of zU(z) in the right halfplane can be indezed as {z, 1 < n < oo}

such that z,, xn 0 as n --, oo.

Proof. Integrate by parts twice to get

zU(z) f(1) sinz + f’(1)(cosz)/z + G(z),

where

1 .01 f,!G(z) := -. (t)cos(zt)dt.

Clearly the function f(1) sinz + f’(1)(cosz)/z is odd and its zeros coincide with the
zeros of

zf(1)/f’(1)+cotz.

From the graphs of zf(1)/f’(1) and cot z it is easy to see that Xn/l > nT, n >_ O, and
xn+l nTr --+ 0 as n -- oo. Given r, it is clear that there is a constant C such that

IC(z)l _< c l " lllzl and I/’(1)(cos )/zl _< C l  ’ l/Izl Izl _>

It is also clear that

(4.3) [sin z sin2 x + sinh2y, z x + iy.

Thus if llm zl > a, then sinzl > e-a(sinh a)elt’ z,. This shows that Ig( )l > IG()I
for sufficiently large z if Ilm z is bounded away from zero. If Ilm z is near zero and x
is bounded away from x and nTr, then (4.2) and (4.3) show that Ig(z)l >_ IG(z)l holds
on circles centered at z 0 with sufficiently large radii, provided they are bounded
away from the set of zeros of g(z) and the integer multiples of 7r. Parts (i) and (ii)
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now follow from Rouchds’ theorem [8, 9.17]. Part (iii) also follows from Rouchds’
theorem applied to a square contour centered at xn with vertices (x :k , +/-i), where
e is positive and none of the point r, 2r,... is inside or on the boundary of the square.

COROLLARY 1. Under the assumptions of Theorem 5 the zeros of zU(z) are all
simple, except, possibly, ]or finitely many zeros.

Theorem 5 and Corollary 1 are applicable when f(t) (1 +- t2)-1 exp(ct2),
if > 0, A _> 3, and cz < A- 1.

5. Other cases of orthogonal Pollaczek polynomials. The Pollaczek poly-
nomials are orthogonal with respect to a positive measure if and only if

(5.1)(i) A>0 and A+a>0, or (ii) -1/2<A<0 and -l<A+a<0.

It is then natural to extend Theorems 1 and 2 to the full range of parameters in (5.1)
and also to study the large n behavior of On,n-} for fixed k. It is easy to see from
(1.2) or (1.3) that

Pn (-x; a, b) (-1)nPn(x; a,-b).

Therefore,

On,n-(A, a, b) 7r On,(Tr, a,-b)

and the asymptotics of On,n-k(A, a, b) follows from Theorem 2 if a > [b[ and A > 0.
Our methods do not seem be able to treat cases with A < 0, so we will focus our

attention on case (i) in (5.1). In view of (5.2) there is no loss of generality in assuming
b _> 0, so will restrict ourselves to

(5.4) A > 0, b _> 0.

Recall that the measure that the Pollaczek polynomials are orthogonal with re-
spect to is absolutely continuous if and only if A > 0 and either a > Ib[ or a b _> 0;
otherwise it will have a nontrivial discrete part. Thus the cases not covered by Theo-
rem 2 all have discrete spectrum. We will follow the notation in [6] and denote the set
of mass points by D*. The set D* has been characterized in all cases of orthogonality.
Define sequences {An}, {xn}, and {yn} by

(.)
-ab + (n + ,)x/-n -ab- (n +, (, + ,) + b ,, , , (, + ,)

, , (, +)
When (5.4) holds the set D* can be described as follows:

(5.6) Region I*-(i)"= {(A, a, b)" 0 <_ a < b, b >_ 0, A > 0}, D* {xn’n >_ 0},

(.z)
Region II*-(i) := {(A, a, b)"-b

_
a < 0, A > 0, A+a > 0, b _> 0}, D* {xn "n_> 0},

(5.s)
Region II*-(ii).= { (A, a, b)" a < -b, A > 0, b > 0}, D* {xn n >_ 0}tA{yn’n >_ 0}.

In all regions Xn and Yn are as in (5.5) and they satisfy xn < xn+ < -1, 1 < Yn+ < Yn
for all n. Since the kth smallest zero Xn,n-k(A, a, b) will tend to xk as n -- oc and, in
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region II*-(ii), xn,k -- Yk as n -. oc, then in order to study the limiting behavior of
zeros that remain in [-1, 1] we must restrict ourselves to regions I*-(i) and II*-(i).

THEOREM 6. Assume that a, b, and A satisfy (5.4) and either 0 <_ a < b or
-b <_ a < b. If (a, b) (0, 0), then

(5.9) On,k(,, a, b) /2(and- b)
d- k(A,na d- b)

d- O(n-3/2) as n o

holds for k 1,2,..., where the k’s are the zeros ofF(z,a+b) ordered as in (1.13).
The proof of Theorem 6 is similar to the proof we gave for Theorem 2 and will

be omitted.
The Liouville-Green or WKB asymptotic method [18] is a powerful tool for de-

termining the asymptotic behavior of solutions of second-order differential equations.
The Pollaczek polynomials satisfy the three-term recurrence relation (1.2), which is
a second-order difference equation. It is highly desirable to have a discrete analog
of Liouville-Green (WKB) method with uniform error bounds, which can be applied
to the Pollaczek polynomials. One difficulty is that the limiting function F(z, c)
does not seem to satisfy a three-term recurrence relation. It is easy to derive a four-
term recursion relation for F(z, c) from the differential recurrence relations (3.8) and
(3.9). The works [5] and [11] formulated discrete analogs of the Liouville-Green but
we still do not have uniform asymptotic estimates for these discrete Liouville-Green
approximation methods.

The discrete analogs of the functions V(z) and Y(z) of (4.1) are exponential sums.
The survey article [14] surveys the results on zeros of exponential sums and integrals
up to 1931. For later developments see [3], [15], and [16]. In [4], Boas comments on

[19] and provides valuable information and references on zeros of exponential sums
and integrals.

It is clear that the function F(z, c) has a companion function

V2))t-- l
{
cv2G(z, c) (1 sin(vz)dv.

This suggests a further study of the functions F and G similar to the Polya’s
investigations of the U and V functions [19].
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ASYMPTOTIC REMAINDERS*
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Abstract. It is shown that the remainders in a variety of asymptotic series can be estimated
uniformly by the same integral.

Key words, approximation, uniform asymptotics
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1. Introduction. The determination of estimates for the remainders in asymp-
totic expansions has been the subject of intensive research in the last few years. It
may be said to have originated in the book by Dingle (1973), in which divergent series
were summed by Borel integrals. It has come to the fore recently because of the desire
to improve the uniform validity of asymptotic formulae and, in particular, to provide
smooth transitions across Stokes lines. Berry (1989), following Dingle, suggested that
the transition could always be accomplished by a suitable error function but did not
furnish a rigorous derivation.

Most attempts to supply a rigorous foundation have centered on specific integral
representations. For instance, Boyd (1990) used Stieltjes transforms, Jones (1990)
and Olver (1990), (1991a), (1991b) used Laplace transforms, Vrsell (1990) discussed
Watson’s lemma, and Paris (1991), (1992) found profit in Mellin-Barnes integrals.
The transition functions that have been discovered to have the widest validity are
not error functions themselves but are the incomplete gamma function and related
functions. However, all of these functions turn out to behave like an error function
near a Stokes line, so that the universality suggested by Berry and Dingle does appear
to be justified.

In the meantime, Berry (1990), (1991a), (19915) continued to find more and more
places where the remainder of a series can be estimated by an error function in the
neighborhood of a Stokes line. One of his papers (1991a), in particular, considers
some highly divergent series. Series that are solutions of certain differential equations
have been examined by Paris (1992) (see also Paris and Wood (1985)), but, on the
whole there have been few investigations that deal directly with series, as opposed to
integral representations, especially those of the type that Berry has looked at.

Therefore, it seemed appropriate to see what progress could be made by starting
from a series representation, and some results are given in this paper. The method is
flexible and is capable of many generalizations, but here we shall limit the theorems to
the more straightforward applications and leave the generalizations to another paper
(Jones (1993)).

In some of the proofs simplification is achieved by nonstandard analysis. In this
context the symbol

_
is used between quantities that differ by an infinitesimal. Also,

$ will denote a generic infinitesimal and is not necessarily the same whenever it occurs.
Thus it is legitimate to write

24:--4:, ln(1/ 4:) $, b-$
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when b is limited. However, if w is unlimited, talr must be retained unaltered since it
may be anything from infinitesimal to unlimited.

The nonstandard analysis is based on the set theory of Nelson (1977). Nelson
provides an algorithm that reduces a nonstandard statement to a classical one. In
essence, the argument goes like this in our context. Suppose that for all infinitesimal, f() --- 0, where f is a standard function. Then, for any standard > 0,

for all infinitesimal . Hence for all standard r/ > 0 there is 8 > 0 such that (*)
holds for all I1 _< . Since this statement contains no free parameters other than the
standard f and r/, the transfer principle permits the classical statement that for all
r/> 0 there is > 0 such that (*) is valid for all [[ _< .

For the convenience of the reader the nonstandard results used most frequently
in subsequent sections are collected in Appendices A and B.

Estimates of the remainder in a series have been considered for many years, and
some early formulae did not involve the error function. Nevertheless, it is shown in 2
that both the early estimate and the error function are different ways of approximating
a certain integral. It is conjectured, therefore, that this integral is the real universal
character in the assessment of remainders. Supporting evidence is supplied in 3 and
4, where power series are studied under fairly weak conditions on the coefficients.

Asymptotic series are introduced in 5, and a key theorem concerning them is
proved. This permits the demonstration in 6 that many asymptotic power series
have remainders that can be expressed in terms of the integral just described. One or
two extensions are mentioned, but further details are deferred to another paper.

2. A universal link. The aim of this section is to reconcile what appear, at
first sight, to be two totally different ways in which the series ’n=0 anzn performs.
A classical result due to Izumi (1927) (see also Witchmarsh (1939)) states that if
an/an+l 1 as n ---, ,

’nm_._0 amzm Z

anzn Z 1

provided that Iz >_ 1 + > 1. Similar behavior was obtained by Olver (1974) for some
divergent series when Izl was small. One conjectures that (z- 1)-1 might represent
a characteristic way for power series to behave. On the other hand, the research of
Berry suggests that the error function has a universal role. It is not immediately clear
how this apparent conflict is resolved.

Our proposal for the reconciliation between these seemingly different points of
view is to regard them as aspects of the integral

t’e-
dt(1) g(#’ el 1 + s----

and to suggest that J is the proper universal function to adopt. For simplicity, # will
be taken to be real and positive in the following.

When is small, the integral in (1) has the following asymptotic representation
(see Olver (1991b) and Jones (1990)) for 0 _> ph >_ -3r/2 (0 _< ph (l/e) _< 3r/2)"
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(2)

where

1 + - e#ro

du

and H(x) is the Heaviside step function. Also,

1 _l_ln((3) r)---1 / # ]

The sign of r0 is determined first when ph -r, being negative when #11 > 1 and
positive when #Is[ < 1. For other values of ph the sign of r0 is fixed by continuity.
Thus when ph becomes less than -r, with #Is[ > 1, r0 moves into the second
quadrant and Im (r0) > 0; in fact, Im (r0) > 0 when ph s < -r. Likewise, when
ph > -7, Im (r0) < 0. Although (2) refers to one range of ph , another can be
covered easily by taking a complex conjugate. For example, when 0 < ph < 3r/2,

where

el/e [erfc {-ir2 (-)l/2) -2H(ph

1 2 1
Inr2 --1

De \-]
and Im (r2) > 0 for ph e < 7, whereas Im (r2) < 0 for ph e > r.

While (2) reveals the relation of (1) to the error function, the connection with the
Izumi kind of behavior is provided by the following theorem.

LINK THEOREM. Let 0 and ]ph s] < , whe is a positive standard
number. Then

j(,) (i
1 +e

for limited .
Before proceeding to the proof, we observe that if ph e > -r d [r0l/2] >> 1,

the error nction in (2) can be replied by its conventional ymptotics because
Im (r0) < 0. The net result is that

J(p,e) (2.)1/2plnp-p
l+e

If Stirling’s formula for lge

{(1) }
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is invoked, a formula similar to that in the Link Theorem is obtained. Consequently,
there are circumstances in which the estimates of J in the Link Theorem and (2)
agree. In fact, (2) continues to reproduce the same formula when ph < -r because
the change in the asymptotic behavior of the error function caused by Im (r0) >
0 is canceled by the contribution from the Heaviside step function. A numerical
comparison is provided in Appendix C.

Proof. Consider first the case in which # is limited. When t is limited, te is
infinitesimal and 1 + t - 1. Moreover, there is a finite K for any t such that

l+et
< Kte-t

since I1 + st _> sin i. It follows from Lemma A.2 that

J(#,) #!(1 +$)
1 + #s

since #
_

0 when # is limited.
Next, suppose that # is unlimited but that # is limited. Make the substitution

t-/zu, so that the integral becomes

#+1 0 exp{#(lnl-+- #euU u) ) du.

Let O 1/#1/4, so that O is, in fact, infinitesimal. For u _> 1 + O, -1 + 1/u <_
-/(1 + ) and hence

lnu-u < ln(1 + 8)- 1- 8- 8(u- 1- 8)
lq-8

Also, because # is unlimited, Stirling’s formula (4) gives

(s)
#,+1 fo exp{#(lnu u)} du
#! Jl+o l+#u

K-}-I_< ! exp{(# + 1) ln(1 + 8) #(1 + 8) ln(#8)}

(1_<Kexp -ln#+O-lnO -< #1/4 -0’

K being adjusted as necessary to absorb finite constants.
For u <_ 1- 0, -1 + 1/u >_ 0/(1- 0), so that

lnu- u < In(l- 8) 1+ 8-
8(1- 8- u)

1-8

Consequently,

(6) -[-1 fl--O exp{/(ln u
du

#! Jo 1 + (1 )<_Kexp -ln#-O-lnO _0.

From (5) and (6)we can deduce

/z-[-1 r/oo exp{#(lnu- u)} du z-{-1/’/lq-0 exp{#(lnu- u)} du + #1 + #eu a 1-0 1 + #euJ0
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Now, in the integrand on the right 1/(1 / #eu) (1 + $)/(1 + #) because u never
differs from unity by more than and because

#0 0
1 + #e

<
sin

O.

Moreover, the interval of integration is limited, and so, by Lemma A.1,

fl+O exp{#(ln u u)} du 1 f exp{#(ln u u)} du

by repetition of he mens laming o (g) d (6). he proof of ghe heorem is
concluded.

Ig is eviden
ghey enjoy properties simil
mos general sgaemeng ig is rspeng gha ghe following gheorem can be proved by
repeaging ghe preceding sgeps.

]or 1- 0 u 1 + O, then

]or limited e.
ormula (2) demonstrates hag J(, e) hhe error-Nncion behavior expected by

BerrN where ghe Link heorem shows he sorg of funegion obgNned by Iumi. hus
J(, e) gs ingermediy begween ghe wo kinds of behavior dh he abiligy
go encomps bogh.

ghe universal ncion for esimaging ympgogie remainders
ogher wo. Againsg ghag ig musg be sNd ghag ghe ogher gwo e, in generN, much eier
go compuge han is J(, e). Bug, given J(, e), here is no re,on why i should no be
replied by either ofhe appromaions when gha is appropriate. Ig is also of ineresg
ha, in cireumsganees in which boghapproximaions e shp, ghe combination of
(2) d ghe Link hrem offers a good appromagion go ghe error funcgion.

We urn now
esgimagion of remainders.

In N1 subsequeng secgions will denoge a posigive sandd number, which is not
necessily ghe same in M1 places.. Behavor

Sm(Z) nl am(Z) nl
:0 :m

For our purposes it will be suffieient to sume that

a=+x 1 +$/n/
an



ASYMPTOTIC REMAINDERS 479

for unlimited n. This condition is not so restrictive as it might appear at first sight.
If z were replaced by z/c it could be changed to

an+l =c-/n1/2.
an

If, then, c is taken to be e, it is permissible to have an growing exponentially by, say,
picking an nn/n!

THEOREM 2. Let an+l/an 1 + -/n1/2 when n is unlimited. Let w be an
unlimited positive integer and let < ph z < 27r d, where is a standard positive
number. Then there is an unlimited A such that

1 + aoza(z)
1 z/w

for Izl <
Proof. Write

awzw

where

w!wnaw+n
(w +

On account of (4) and Lemma B.1,

(7) bn=exp (wwn)l/2--w1/2 +n-- w+n+ In 1+
Suppose now that Izl < w + dw1/2, where d is positive limited. It is convenient to

denote d/w1/2 by D. The series will be split now into two parts, that in which n _> w
and that in which n < w 1, where w is the next integer above w7/12.

When n > w,
n ( ( 1) (1_t_)Ibn() l_<2exp n+nD- w+n+- In n)

after Lemma B.2 is invoked and an infinitesimal in d is absorbed. The function

( wt___) 1/2D-In 1+
t+w

diminishes steadily as t increases from 0; since ln(1 + w’/w) > w’/w- ll2(w’lw)2 it
is less than -w/2w when t w because of the magnitude of w and d being limited.
Consequently,

( 1)(n)n+nD- w+n+- In 1+
lw’ (1) (_)<-wm(n- w)- w+w+ In 1+ +Dw+w<
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since all other terms are dominated by w’n/4w on using the logarithmic inequality
again. Hence

o n 2 exp(_w,2/4w)
(8) Ibn(wz-) < 1-exp(-w’/4w) < (a5/12 exp ----- -- 0.

Now

’--2

’n,--O

Since b0 1 and it has been established already that b:,_ (z/w)" is infinitesimal,

(9)

To estimate the series on the right of (9) note that

bn bn+l bn I 1 wao.,+n+l } { n+l
(w + n + l)a,,,+, b

w + n + l

Recalling (7), we have

(10) < w-q/2 + exp wqT/2
n---0

From (10) it is clear that when n is limited, a term is infinitesimal. As regards the
sum, we take advantage of the definition of the Riemann integral, namely,

b

(11) f(x)dx st f(nh)h,
a<_nh<b

with h infinitesimal (st means standard part). The selection h llw112 ensures that
the sum in (10) is bounded by

Invoking Lemma A.4 we see that the sum of the series on the right of (9) is infinitesimal
and that

w’--I

(1-) bn(:) =1+-/-.
l’l,---O

The combination of this result and (8) demonstrates the theorem when [z <_ w+dw112
with d limited.

Consider now the set of integers n E N for which

w!(1 z/w)a,,,(z)
-1

1
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(Izl- < . By what has been proved, this set contains all standard
integers n. Since there is no set consisting solely of all the standard integers, there
must be an unlimited A for which these relations hold with A in the place of n. Since
1/A is infinitesimal, the proof of the theorem is finished. D

Another way of stating Theorem 2 is

o
anZn 1 + 4- aoz

1

This may also be rewritten, by means of the Link Theorem, as

oo anzn(13) Z n!
n--O

8w_l(Z) T (l_t_4.) awz"’ ( ze-i )(w!)’’J w,"w2"’

Thus there are two ways of expressing the remainder in the series.
It should also be noted that the condition 5 < ph z < 27r- can be relaxed

in Theorem 2. It is required only to prevent z/w from approaching to within an
infinitesimal distance of 1. Therefore, if the condition that Iz/w 11 be greater than
some positive standard number is imposed, the phase of z can be left unrestricted.

4. Behavior of series for higher z. In this section we consider the series of
3, when Izl _> w + dw1/2, with d a limited positive number.

THEOREM 3. With the same conditions on an, w, and ph z as in Theorem 2,

1 + ao,,z
s_(z)

1 z/w"
for Izl > w + dw/2, d being standard positive.

Proof. Set

w-1

n--0

where

(w 1)!w=-+1a
n!ao_

When n is a standard integer, (4) and Lemma B.2 supply

Z < exp n + Inw-w+$w/2 _<exp -w 0
since Iz/wl > 1 and n + 1 < w. Hence, for standard m

C,’ ( z ),-,,’+
By Robinson’s lemma there is an unlimited M such that M/w

_
0 and

M

(14) ZC, -0.
n’-’O
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As in Theorem 2,

w--1
Z Z

n=M-}-I

n--w+l w--2
z

n=M-}-i

since C-1 1. Moreover,

w--2

n=M+l m=0

From (4) and Lemma B. 1

rn+l_<exp (w_l)/
2m
--m- w-m-: In 1-m -mln

Since I/1 > 1 + d/wt12 and since ln(1 x) > -x/(1 x), we infer that

(16)
Z m7 md< exp 2wt/2

Furthermore,

from Lemma B.1 in Appendix B. Combining this with (16), we have

(m 1 ) (rod)4- exp
a dl/2

This shows, on the one hand, that terms in (15) with limited m are infinitesimal and,
on the other hand, that the sum of the series is less than

(1 + t)e-ta/4 dt

by (11). Lemma A.4 now reveals that the series in (15) is infinitesimal.
Bringing together all the estimates, we obtain

w--1

i- C =$

n=O

By drawing on ao - aw-1, the statement of the theorem is confirmed and the proof
is complete.

Again, the constraint on the phase of z can be dropped so long as z/w differs
from unity by a standard positive quantity.

Although both Theorems 2 and 3 indicate a singularity at z w, it cannot be
inferred that there is a simple pole there. For instance, ez has an 1, which meets
the conditions of the theorems, but ez has no singularity at z w.
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To conclude this section we give a proof of Izumi’s result along these lines.
THEOREM 4. If Izl > 1 + , positive standard,

Proof. Let

w-1 lq-Z anzn 1--Z
n--O

awzw

w-1 w-1
1 anzn____Zdnzn_w/1

aT-1zW-1
n=0 n=0

where dn an/aw-1. As in Theorem 3, there is an unlimited M such that the terms
for n _< M give an infinitesimal contribution. Also,

W--1 w--M--2

dngn-w+l Z dw-l-mZ-rn.
n=M+l m=0

For limited m, dw-l-m --- 1, whereas for any m

-m (1 +:/:)
m

Idw-l-mz <
1 + 5

Since (1 + )/(1 + 6) < 1, this is a convergent sequence and, by Lemma A.4,

,.,,-M-2
lq- ( 1 ) (lq-)z

dw-l-mz-m 1- 1/z
1- zw_M_’--"--’- Z- 1

m--0

The proof of the theorem is now complete.

5. Asymptotic series. Denote the series Y]m__o Cruzm, Cm being standard, by
F(z), and denote a typical remainder by Rn(z), so that

If

n

t(z) F(z)-
m--O

(17) +
for all standard n when z

_
0, it will be said that Cruzm is an asymptotic series

for F as z --, 0 and the usual notation,

will be used. Restrictions on ph z may be imposed, and then the series will be
asymptotic only for the relevant phases of z.

On this basis, the Maclaurin series of any function with derivatives continuous at
the origin is asymptotic. For

n

F(e)- Z F(m)(o)=
m!
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with 0 </9’ < 1. Since F(’+l)(tg’e) (1 +$)F(n+I)(0), the assertion is confirmed.
THEOREM 5. Let rn=o Crnzrn be an asymptotic sees as z

and suppose that

f(ei) < Aer

with A and standard for r > O. Then

m[C
0

is an asymptotic sees as 0 for ]ph -a r/2-, with standard and positive.
Proof. Let s be infinitesimal, d let ph e a- , where ]] r/2- . Define

e
() ] e-tF(et)dt.

0

The inteal exists by virtue of the hothesis on the oh of Fd 7]e being less
th sin 5, because 7 is stdd, where is infinitesimal. thermore,

n--1 e

0

It ece to bow owb bee]
) whe dd. o ]mted, O, d o b (17)

he eqede] ow ol]ow om emm. ovded th theedcbe

e e.e O, ivoe (17), d he

< (1 + ICnl)un exp(-ucos).n

When te is not infinitesimal u must be unlimited d

e__(et) e_ { --1

en F(et)- C(et)
mO

+

because n is limited. It is now evident that for M1 u

nnd Lemma A.2 cnn be npplied. The proof of he heorem is terminned.. Uniform rmainders. The series examined in 3 d 4 is now discussed
further. The formuln for he remainder in Theorem 2, coupled wih he Link Theorem,
suggests hn
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(w,)2

for Izl < w + Aw1/2. If (19) is true, it is of wider validity than is the estimate of
Theorem 2 for the remainder; it furnishes a transition that is uniform with respect
to variations for ph z. Similar remarks can be made for Theorems 3 and 4. However,
it is not transparent that (19) is uniformly valid. It is tempting to try verification
by analytic continuation, but that course is not open without more knowledge of the
analytical properties of the infinitesimals, though some progress might be achieved,
within certain limitations, with standard parts. Therefore, uniform remainders will
be derived by a different procedure.

Let

f(z)= E-.(-z)n, F(z)- Ean(-z)n.
n--O n--O

The properties of the an ensure that f(z) is an entire function and that F(z) has a
standard radius of convergence of unity. Indeed, f(z) is of exponential type. More
can be said when F(z) is regular at a point of its circle of convergence and can be
continued beyond it. For then it is known (see Titchmarsh (1939)) that, if E is regular
in crossing the circle of convergence in the direction of eia,

(20) If(ten’)[ < Me"t

for any nonnegative t with r/standard and r/< 1. One consequence of (20) is that

(21) F(z) e-tf(zt)dt

for Izl < 1/y and ph z a. Let 0 be standard positive and such that 1/y > 1 + 5o.
THEOREM 6. Suppose that IF(teia)l < Aet for all nonnegative t and some

such that I1 <_ r- . Then, when Izl <_ 1/- o and ph z

w--1

F(z) E an(-z)n + (1 +$)-. (-z)J (w, )
w--1

E an(--z)n T
1

--0

Proof. By virtue of (21)
w--1 oo

-. (-zt)dt.

On account of Theorems 2 and 3, the integral can be written as

ao O fooO (l +-I-)e-tt
--.l,-z) 1 + zt/w

dt +
+Ao/)llzl

e-tf(zt)dt.

The second integral is infinitesimal from (20) and the assumption on Izl. The first
integral leads to the first statement of the theorem by means of Lemma A.2. The
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second statement can be inferred from the Link Theorem. There is nothing more to
prove.

Actually, the exponential growth of F has not been used in the proof; it would
have been sufficient to assume that F could be continued analytically across its circle
of convergence in the direction of eia. However, for the purposes of the next theorem
it is convenient to make just one assumption about F.

THEOREM 7. If F satisfies the conditions o] Theorem 6, then for infinitesimal
oo

m{am(--)m m’am(--e)m + an(--e)n(1 +$)
m--O m--O

{’H(ph )g(phJ(n,e) + el/e

--’H(-ph )H(o ph )} ]
for every n e N and Iph e- a _< r/2- 8.

Proo]. Define ’(e) as in Theorem 5, so that it represents the asymptotic series
on the left of the equation in the theorem.

When n is limited, Theorem 5 shows that the remainder is (n!an + $)(_)n.
Since ne is infinitesimal, J(n, ) is effectively n! (see 2) and the terms involving the
Heaviside step functions are infinitesimal when they are present. Accordingly, there
is agreement with the statement of the theorem.

When n is unlimited, Theorem 4 and the second statement of Theorem 6 indicate
that

:() -!a.(-)" + (-)(1 +:) d+ -F()d.
m=O Jo 1 + et J(+)e/lel

The final integral is infinitesimal, as in Theorem 6. In the second term the contour of
integration can be deformed into the real axis, possibly capturing a pole in the process.
The net result is the formula of the theorem, and the proof has been completed.

Theorems 6 and 7 reveal how the remainders in certain series may be represented
in the same universal manner by means of the function J. In many practical cases
one may expect F to comply with the conditions of Theorem 6 for a continuum of
values of a, so that the conclusions of the two theorems will hold for wider ranges of
ph z and ph than they may appear to at first sight. Also, analytic continuation may
permit less restriction on/ than has been implemented in Theorem 5, with consequent
relaxation of the constraint on ph .

Other series can give rise to remainders that can be expressed in terms of J. For
instance, suppose that

f() a(-)
-0

and that F is still of exponential growth at infinity. The argument of Theorem 7 can
be repeated, and the remainder will entail

t"e-t 1

+ stt {J(., is) + J(.,-is)}.
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Thus the error function will have an important role in the transition through a Stokes
line for the associated asymptotic series.

Another type of series in which the error function comes in has terms originating
from logarithms. For example, let ’(e) in Theorem 7 be redefined as

ooe
Y() / e-tF(et) In t dr.

0

The terms in the asymptotie series are calculated easily, and the remainder will contain
the factor

0
j(#,).

0#
It is plain from (2) that the partial derivative will not eliminate the error function nor
introduce any new transcendental functions. Clearly, more complicated definitions of

" could be used, but the details are left to the paper, Jones (1993), already referred
to.

Appendix A. In this appendix are derived some approximations that are re-
quired in the main text.

The first is a simple result, but it is quoted so frequently that it is worth a
reference.

LEMMA A.1. If f(x) -- 0 for all x of an interval, then

sup If()l O.

Proof. For any standard b > 0, If(x)[ < b for every x of the interval by hypoth-
esis. Hence sup If(x)[ < b, and, since b is any positive standard number, the lemma
follows.

LEMMA A.2. Let
L(O, o) such that If(x)l <_ h(x), Ig(x)l g h(x) ]or all x e . Then

f(x)dx
_

g(x)dx.

Proof. Let n be a positive limited integer. Then

{f(x)- g(x)}dx <_ 4-dx <_ :I-n

by Lemma A.1. The right-hand side is infinitesimal since n is limited. Therefore, by
Robinson’s lemma there is an unlimited , such that

f(x)dx
_

g(x)dx.

Furthermore,

{f(x) g(x)}dx _< 2 h(x)dx
_

0

sinee h L(O, oo). Addition of these formulas eompletes the proof.
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A slight variant of Lemma A.2 is sometimes useful.
LEMMA A.3. /] f(x) 4-h(x) or all limited x, h(x) e L(O, o) and If(x)l <_ h(x)

.for all x E R, then

f(x)dx h(x)dx.

Proof. The argument goes along the same lines as that of Lemma A.2, but it
starts from

]o
n

f(x)dx h(x)dx.

Infinite series can be handled in the same way. Since the principle of proof is
virtually unchanged, only the lemmas themselves will be stated.

LEMMA A.4. Let an - bn .for all limited integers n. Suppose that n=o Cn is a
standard convergent series such that lanl <_ Cn, Ibnl <_ Cn or all n N. Then

Zan"’_Zbn.
n=0 n=0

LEMMA A.5. Let an $Cn for all limited integers n, _,n__o Cn convergent and
la.I <_ C for all n N, then

’ a, =t
n=0 =0

Appendix B. Here some of the properties of an when an+x/an 1 +$/n1/2 for
unlimited n are elucidated.

With n unlimited and m a positive integer,
(B.1)

n+m--1 n+m--1 -I- $ 1lnan+m Y lnap+l Z In 1A" Z p/2 -’’/: pf/2an app--n p--n p----n p--n

on account of Lemma A.1. Now

n+m--1 in+m--1n+m dt 1 dt
tU2 < pf/ <

n Jn--1 "-/2
p--n

so that

n+m--1

(n+m)1/2-n1/2 < Z
p"-n

1 1/2
2pl/2 < (n + m- 1) (n- 1) 1/2.

Since the two sides of the inequality differ by an infinitesimal multiple, it can be
asserted that

n+m-1 1Z 2pl/2
p’--n
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Inserting this result into (B.1), we have the following lemma.
LEMMA B.1. I] n is unlimited and if m is a positive integer,

and

+

an+m
an

The second statement is a consequence of the inequality

m
(n + m)1 n12 <

2nX/

The expression for an+m/an in Lemma B.1 suggests that an exp($n1/2) for
unlimited n. That this is true can be proved as follows.

If n is unlimited and q is a standard integer, q/n
_

0 and (ln aq)/n1/2 O.
Therefore, by Robinson’s lemma there is an unlimited Q such that Q/n

_
0 and that

(ln aQ)/n/2
_

O. Therefore,

In an In + In aQ :(n12 Q/2) + In aQ

from Lemma B.1. By virtue of the definition of Q, the conjectured expression for an
is confirmed.

LEMMA B.2. I.f n is unlimited

an exp(4:n/2).

Appendix C. This appendix gives a couple of comparisons of the numerical
values of the two approximations for J. The parameters chosen are # 3, I 0.5
and # 6, II 0.1, with the phase of e going from 0 to -6/5 in steps of r/10.
These are relatively moderate values of the parameters and offer a severe test for
the formulae. In particular, is nowhere near the infinitesimal specified in the Link
Theorem. Nevertheless, the performance of the formulas can be regarded as very
satisfactory.

The first column under each pair of parameters in Table 1 shows the ratio of
relation (2) to the function in the Link Theorem. The second column gives the ration
of (2) to J, but no effort was made to evaluate J by analytic continuation when
ph e -r. As can be seen from the table, the agreement of the Link Theorem
prediction worsens as ph diminishes, whereas that of (2) improves. Yet, at the
smaller value of II the two do not vary by much, the main difference being in the
phase predicted. Overall, it can be concluded that (2) is always reliable and that
the simpler result of the Link Theorem should be perfectly adequate for ballpark
estimates so long as I is not too large.
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TABLE 1

Phase

of e (2)/Link
0.944 0.003i
0.938 0.004i
0.929 0.007i
0.918 0.010i
0.903 0.016i
0.881 0.025i
0.849 0.041i
0.800 0.071i
0.723 0.131i
0.605 0.264i
0.440
0.605 + 0.264i
0.723 + 0.131i

JeJ 0.5 #--6, I1 o.1

(2)/J (2)/Link (2)/J
0.972 + 0.007i
0.969 + 0.008i
0.965 + 0.011i
0.960 + 0.014i
0.953 + 0.021i
0.944 + 0.031i
0.930 + 0.049i
0.913 + 0.084i
0.892 + 0.158i
0.890 + 0.329i
1.039
0.890 0.329i
0.892 0.158i

1.021 0.003i
1.016 0.002i
1.012 0.001i
1.009 0.00li
1.006
1.004
1.003
1.002
1.001
1

1
1

1.009 + 0.007i
1.007 + 0.005i
1.005 + 0.004i
1.004 + 0.003i
1.002 + 0.003i
1.001 + 0.002i
1.001 + 0.002i
1 + 0.001i
1 + 0.001i
1

1 0.001i
1 0.001i
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APPLICATION OF SZEGO POLYNOMIALS TO
FREQUENCY ANALYSIS*

WILLIAM B. JONESt, OLAV NJSTADt, AND HAAKON WAADELAND
Abstract. This paper is concerned with the frequency analysis problem of determining unknown

frequencies wj from a sample of N observed values of a time signal xv,l, that is, the superposition
of I sinusoidal waves. In recent work [Jones, Njstad, Thron, and Waadeland, Journal CAM, 46
(1993), pp. 217-228], [Pan and Sail, J. Approx. Theory, 71 (1992), pp. 239-251] it has been shown
that, for 1

_
I < o and k

_
2I(+1), limN-.oo zj(k, N,I) eiwj for 2I(+1) zeros z(k,N,i)

of the kth degree Szeg6 polynomials Pk(N,l;Z) orthogonal on the unit circle with respect to a
distribution function N,I(O) determined by the signal XN,l. Hence the wj can be approximated
by computing Arg zj(k,N,l). In the present paper the Szeg6 polynomial method is extended to
apply to signals ZN,I with 1

_
I

_
oo. It is shown that as the amplitudes laj] of high-order

sinusoidal waves approach zero and as N oo, zj(k, N,I) e is obtained. It is proved that
the sequence of distribution functions {@N,I(O)/N} converges in the weak star sense to a function
@oo,I(0) as N co. That result is used to establish the convergence of a sequence of two-point Pad
approximants to a Carathodory function Foo,I(z). The significance of this for frequency analysis
lies in the fact that Pk(N,l;Z) is the polynomial denominator of a two-point Pad approximant,
and the critical points ei are the poles of Fooj(z). Results from numerical examples are given to
illustrate the use of the method.

Key words, frequency analysis, orthogonal polynomials, Pad approximants

AMS subject classifications. 33C45, 40A15, 41A21

1. Introduction. Recently, attention has been focused on the study of Szeg5
polynomials Pk(N,I; z) associated with discrete time signals XN,i
of the form

I

(jeiwm,
N,(m) j:_

0 elsewhere,

0 < m < N, (X,N,I(O) t 0),

where

(1.1b) 1 _< N <_

(1.1c) Wo O, 0 < w -w_ < 7r, w # w for j # k,

(l.ld)
0 <_ C0 _< r0, 0 < ICII

_
rl, 0 <_ ]aj[ <_ rj, aj _j, rj r_j for j >_ 1

(see, e.g., [3], [4], [8], [9], [10], [18], [19]). In those papers "I" was taken to be a
natural number. In the present paper we consider all I such that 1 <_ I <_ x; hence
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this additional requirement is imposed:

I I

j=-x k---I

csc(#+

which itself implies

(1.2)
I

We denote by Pn(N,I; z) the monic nth degree Szeg5 polynomial orthogonal on the
unit circle with respect to the distribution function end(0) defined as follows.

(a) If 1 < N < oo and 1 < I < oo, then r,l(0) is an absolutely continuous
function on [-Tr, 7r], such that

N-1
1

iXN,z(e,O)12(1.3) CN,I(0) " XN,I(Z) :: E T’N,I(TIZ)Z-rn’

which implies

(1.4) ,i(-0) ,i(0)

(b) For N oo and 1

for -r <O<r.

(1.5) oo,I(0) :-- _< 0 _<

Thus, if 1 <_ I < oo, oo,i(0) is a step function with jumps Icjl2 at the points 0 wj.
Determination of the unknown normalized frequencies wj from the values of the

signal XN,l(m) is called the frequency analysis problem. It arises in the study of
physical phenomena described by functions G(t) of time t (seconds) of the form

(1.6)

I

G(t) y ce’2, y=-f_>0, a=_eC

for j >_ 1, fo O, ao >_ O.

Using equally spaced instants of time tm mat, m 0, 1, 2,..., we obtain from
(1.1a) and (1.6) that

XN,1(m) G(tm) for 0 _< m < N and w 27thAt for j > t.

Since our study restricts wj to 0 < wj < 7r for j > 1, we must have

(1.Tb) 0 < At < - i.e., 0 < fj < - for j >_ 1.

Thus the choice of a sampling interval At imposes a limit on the frequencies fj that
can be found. equency alysis problems arise om phenomena such human
speech [14], oce tides [20], and r.
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The following related conjecture on the asymptotics of Szeg5 polynomial zeros
was introduced in [4]" For 1 _< I < oo, as n and N tend to infinity (in a manner to
be determined), the no(I) :- 21 + L zeros zj(n, CN,I) of P,,(N,I; Z) of largest moduli
approach the critical points ei, j +/-l, +/-2,..., +/-I and also ei 1 if L 1. Here
L :- 1 if c0 > 0 and L := 0 if s0 0.

This conjecture has recently been verified by results of two papers [S] and [19] for
n fixed, n >_ no(I), and N --. oo. In both papers it is shown that for each n >_ no(I)
there exists an arrangement of the zeros zj(n, CN,X) such that

(1.8a) lim Zj(, CN,I) eiw j +/-1,+/-2, +/-I,
]V--+OO

(1.8b) lim zo(n, CNj) ei 1 if L 1 (i.e., so > 0).

It can be easily seen from the proof in [19] that for each n > no(I), there exists a
number An, with 0 < An < 1, such that for all of the remaining n- nO(I) zeros
z(n, CN,I) of Pn(NJ; z), we have

(1.9) [z(n, CN,)[ _< M < 1 for all 1 _< N < oo.

Thus, for N large enough, those zeros of Pn(N,I; z) which can be used to find the
unknown frequencies can be distinguished from the other zeros. The Szeg5 polyno-
mial method of solving frequency analysis problems (FAP) consists of computing the
polynomials pn(N,I;Z) and its zeros z(n,N,I), or at least the ones nearest the
unit circle Izl 1. This method has been shown [3], [4] to be a reformulation of
the Wiener-Levinson method [13], [24] based on linear prediction and digital filters.
Other methods for solving the FAP are discussed in [1], [12], [20], and [21].

In the present paper we assume that 1 < I < oo and that {w} and {r} are
sequences of numbers satisfying (1.1c, d, e). The results we obtain apply to all
signals XN,I in (1.1a), where {aj}/i satisfies (1.1d). Although one cannot expect to
determine infinitely many frequencies by a polynomial method, it is shown (4) that
under certain conditions one can approximate frequencies wj associated with relatively
large amplitudes laj[. More specifically we show (Theorem 4.1) that for each K, with
1 <_ g < I _< oo, the zeros z(no(g), CNJ) of pno(K)(bN,i; Z) Can be arranged so that

(I.I0)

lim zj(no(K) CN,I) e j +/-1, +/-2, +/-K, o(K, I) := IlN---oo
(K, I)---*0 j=K+I

Therefore, for o(K,I) small enough and N large enough, Arg zj(no(K),Nj) is an
approximation of w for each j +/-1, +/-2,..., +/-K.

Computational results are considered in 5 for an example where I 4 and I11
is much larger than other amplitudes. The first four rows of the table Table 2a
(k 2, 4, 6, S, corresponding to g 1, 2, 3, 4) illustrate (1.10) for j +/-1. Further
evidence supporting the applicability of the Szeg5 polynomial method is described in

3. It is shown (Theorem 3.2) that, for 1 <_ I <_ oo,

1 P2k+ (N,I; Z) I ei,
(1.11) -.lim Q2k+(N,I; z) Foo,i(z) =-’7’ +_ Zz for Izl > 1,
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where P2k+I(N,X; z)/Q2:+l (N,I; z) is the (2k + 1)th (two-point Pad) approximant
of a positive PC-continued fraction (3.8) associated with the signal XN,I. The signif-
icance of this result for frequency analysis lies in the fact that

z)

and hence (1.11) suggests that, under suitable conditions, zeros zj(k,g,i) of
P(N,x; z) approach singularities of the Carathodory function F,z(z). This result
is of interest for its own sake since, together with Theorem 4.1, it provides informa-
tion on the location of the poles of two-point Pad approximants for a large class of
Carathodory functions. Our proof of Theorem 3.2 makes use of a weak star conver-
gence result (Theorem 2.1): CN,i/N - )x,I as N (x) for all 1 _< I _< cx3. This
result extends a similar theorem given in [4, Thm. 7] for 1 < I < x3.

In the remainder of this introduction we summarize known properties of Szeg5
polynomials that are subsequently used. Further results of Szeg5 polynomials can be
found in [5], [7], [15], [17], and [23].

The ruth moments #(m’D with respect to CN,Z are defined by

(1.13) #(mN’I) e-imtdCN,i(O), m O, +1, =h2,..., 1 < N, I < o.

They can be computed by the following formulas valid for 1 _< I <

N. lzN,I(k)XN, + m), m >_ 0
(1.14a) #(mN’I) =0 for 1 < N < o,

(N,X)
it_m ,m<0

I

(1.14b) #(m’I) ’ Ioql2e’’’#m m 0, +1, +2,... for N oo.

For [1 <_ N < x),l <_ I < cx31 and for [N oo, I x3] the bisequence
{(mN’I)}mc___cx is positive definite, that is,

-, #(g.x) and A(N’) := T() (N I) > 0, n 0, 1 2

where the Toeplit determinants T(’) (N, I) are defined by

(N.) _1T(o) (N, I) := 1, T)(N, I) := aet,m+_n).n=o, k 1, 2, ,..., 1 N, I

Pot IN , 1 _< I < ], {’/==_ is positive no(I)-definie, since

g(:,1) =, (oo,) A(,x) T(0).--*n+l(x,I) > 0

=0.no(I)A-1

For 1 _< N, I <_ oc we define

for 0 <_ n <_ no(I) 1,

(f, g)N,, "= f(ei)g(eie)d,r-(O)
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The monic Szeg5 polynomials Pn(N,I;Z) and reciprocal (reversed) polynomials
P(N,I; z) := z’pn(g,I; 1/) z’pn(N,I; Z-1) are defined by Po(g,I; z)
P(N,I; Z) 1 and, for 1 < n < no(I) + 1 where no(c) := cx), by

1
Pn(N,I; Z) A(N,I)

"-n-

1
z):=

#(oN,I) #!Nl,I) (N,I)

#N,I) .(oN,I) (N,I)
--n+l

(g,I)
#!Nl,I)n--I P’n--2

1 z z

(N,I) #N,I)--n+l -n+2

Zn Zn-1 1

They satisfy orthogonality relations, for 1 < n < no(I) + 1,

(1.18a) { 0.
A(nN,I) /A N,I)

I’-*n--1

0<re<n-l,

mn,

(1.18b) m { A(nN’I)/A(N’I), I’--’n-1

O,

mO,

l<m<n.

These yield the recurrence relations

6(N’I)* ()N,I;Z)(1 19a) p,(N,I;Z) zp,-(N,I;Z) + , ,.,_ 1 < n < no(I)+ 1,

(1.19b) p(,; z) 6N’")zp,_t(N,; z) + p_t(,; z), 1 <_n<no(I)+l,

where the reflection coefficients 5(nN’I) := Pn(N,I;O) satisfy

n--1

E qn-I,N,I) (N,I)

(1.20) 8(n’I) (-1)nT(n-)(N’l) j=o I _< n < no(1)+l,
Tn() (N, I) n-

(n-l,N,I), (N,I)
qj -+-,,

.=0

where j=0-I qj(’-’N’I)zJ "= Pn-I(N,I; Z). Levinson’s algorithm utilizes (1.18) and

(1.19) to compute successively the 6(nN’D and qn-.,N,I).
2. Weak star convergence. Before giving the main results of this section (The-

orems 2.1 and 2.2), we describe a family of signals XN,I satisfying conditions (1.1) with
I cx and with w0 0 being the limit of an infinite sequence of frequencies wj.
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Example 2.1. Let {rj} and {wj } be defined by

1 1
(2.1) r0:=0, rj= and w= for j 4-1, 4-2,

2 7rWe show that {rj } and {wj} satisfy (1.1e). Since x < sin x for 0 < x < 5, it follows
that for all integers m and n such that 0 m - -n - O,

sin( i 1+)

1

2 1 1 71".

Therefore,

--.r-- <
sin( 2 m--1

Additional examples can be verified in a similar manner.
THEOREM 2.1 (weak star convergence). For each 1 G I G oo, as N --. oo,

To prove (2.2) it suffices to show that for every function f(O) continuous on

(2.3) --,o,:,lim 1 f_ f(O)d,,(O)= : f(O)do,,,,(O)= Icjl2f(j),
r r j I

For use in our proof we recall a few well-known results and prove one basic lemma.
From [22], e.g., it is known that, for w e [-r, 7r] and N 1, 2, 3,...

(2.4) /: [sin N(E-) ]
2

L
d0=

Hence, by Schwarz’s inequality,

sinN()
1

dO,
L i dO [12d0] ’

Furthermore (also from [22]),

(2.6)
N--,cx 27[’N ,w--e. sin(g--) f(O)dO f(w), I > 0, g’2 > 0.

From sin1 21 sin/2 cos /21 < 21 sin /21, one obtains

(2.7) sin 21 > 1/2l sin ql.
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For convenience we introduce the notation

sin N(-) sin N(2P-)(2.8) SN(O,,) :=
sin(_)sin(_

LEMMA 2.2. There exists a number K > 0 such that for all -r < < < r and
N 1,2,3,...

(2.9) ISg($’a’3)ld{? <- sin’a-a"t--}

Proof. Since the integrand is a periodic function of 0 with period 2r, we have

Is(o, , )la0 ISr(O, , )la0 fo al e .
We set "= #- so that 0 < < 2d consider the chge of iables # +
Then it suffices to prove that there ests K > 0 such that for all 0 < < 2r,
N 1,2,3,...,

(.1o ls(, o, lle i(l"
om (2.g) we ow ghag one c find a Ko > 0 such ghag for N 1 and 7 N,

(2.11) sinN(2
sin() do _< K0v/ and /: sin N(:z)

sin(:Z)

We divide the interval [-r, r] into two parts [-r, r] A U B, A := I-V/2, V/2],
B := [-r, r]\A. First we consider the part of the integral (2.10) over the set B. Since

we obtain by (2.7)

and hence

B [7:" 2
2 < I1 < ’l [" < Il < l,

sin221>sin4>1/2sin22 for alloEB,

2Ko(2.12) {v(, o, )ldo <_
sin()

To deal with the part of the integral (2.10) over A we consider two cases.
Case 1. Suppose 0 < 7 -< r. Then (37/4) g - (7/4); hence

A := [- - l [" l [" -l
and, for all A,

sin()l min[sin , sin(- )] sin > sin .
Then for all N 1 and 0 < r,

(2.13) fAISN(,O,)ld< l fAsinN()do<2Ksin sin() sin22
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Case 2. Suppose r < 7 < 2r. We set

7’:=2r-7 so that0<7<r.
Then by (2.13), for all N _> 1 and r < 7 < 2r, there exists a K1 > 0 such that (with

.=

sin ’ sin :
2 2

Combining (2.12), (2.13), and (2.14) yields (2.10).
Proo] o/Theorem 2.1. By (1.1), (1.3), and (2.8), we have for all 1 < N < o and

1<I<o0,

1

Therefore,
(2.16)

r I- r
f(O)dCN, (O) 2rN r :,,=-I

2
keiN(W

SN(O, w:i, wk)dO.

We first show that the order of integration and summation in (2.16) can be inter-
changed (even if I o0). Let j and k be any to integers such that wj < wk(j,k E
[--I, II). Let M be chosen such that If(0)l < M for E [-r, r]. Then by Lemma 2.2
there exists a K > 0 such that

MKv/-
for N 1 2, 3(2.17) If(O)Sn(O,w,w)ldO <

sin(

Therefore by condition (1.1e) and the assumption rj r_j and w -w_

(2.18)

Sn(0, w., w,)dO

I I

<
/2rN rrk csc()l 0 as N --.

j=--i# k=-I
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(Note that the double sum is equal to the double sum in (1.1e).) By (2.4)

It follows from (2.18) and (2.19) and an application of Fubini’s theorem [16] that
the order of integration and summation in (2.16) can be interchanged. From this we
obtain, for N > 1,

(2.20)

f(O)dCN,I(O)N

SN(O,w,w)dO.

By (2.18) the second sum on the right side of (2.20) tends to zero as N --. cx. By
(2.6) the first sum on the right side of (2.20) approaches, as N --. c,

I

IcolU.f(wo)= f
from which we can conclude that (2.3) holds.

THEOREM 2.3 (uniform convergence). For each 1 <_ N <_ o,

CN,I(O) -----* CN,oo(0) --7r < 0 _< 7r, as I ---, o, uniformly.

Proof. First we consider N o. Let e > 0 be given. By (1.2) there exists a
number Io(e) such that

I.1>Io()

Then for all I, Io(e) <_ I < cx,

(2.23) Ioo,(0)- o,z(O)l- I,I _< I,I2 _< II2 < e.
<o j>x j>i0()

Thus (2.21) holds for N c.
Next we consider 1 _< N < c. Then by (2.15), the triangle inequality, and

1 eiN(w-O)

1 ei(’J -)

N-1

eim(w-O)
rn=0

< N,

it can be seen that
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2-- a
j=-oo

1 ei(W-)
1 e{N(w-O)

1 e{@-)

=-oo 1 e(-)
1 eiN(w-O)

=-I
1 e{(-)

1 eiN(w-O)

1 ei( -0)- 1 eiN(-O)

=-oo 1 e{(-)

I
1 eiN(w-O)E aj
1 ei(-)

}
}

Let e > 0 be given. By (1.2) there exists a number I0(e) such that

E rj< eTroo for all I >_ I0().
I1>I N2 r

It follows from (2.24) that for all I >_ I0(e),

Ck (O)l <
for all 0 E [-Tr, 7r]. From this result the uniform convergence of bN,I(O) follows for
N<oo. D

3. Moment generating functions. In this section we consider the function of
a complex variable

iO .+ z
dCN,i(O),(3.1) FN,I(Z) "=

r eiO---’-- Z 1 <N,I<oo, Izl# 1,

where CN,Z(O) is a distribution function of the form (1.3) or (1.5). Each such function
FN,I(Z) belongs to the class of normalized Carthodory functions (see, e.g., [5] and [7]).
For completeness some properties of the functions (3.1) are summarized in Theorem
3.1. In view of (3.4) we refer to FN,I(Z) as the moment generating function for CN,I(O).
A related convergence result is described by Theorem 3.2.

THEOREM 3.1. (a) For each N and I such that 1 < N, I < o, FN,I(Z) is
holomorphic for Iz 1 and satisfies the following properties:

(3.2) > o,
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(3.3) Re FN,z(z) > 0 for Izl < 1 and Re FN,I(Z) < 0 for Izl > 1,

(3.4)

L(oN z := p(oN’I + 2 #(kN’"r z :for z < 1,

FN,I(Z)
L(ooN’’) (z) := -.(oN’I) 2Z p(N,I)z_ for Izl > 1,

k=l

(3.5) F, () =-FN,(z) yor Izl # 1.

(b) For each I such that 1 <_ I <_ ,
(3.6)

I

Fo,z(z) Z I:1e’’’ +ze- z

Proof. It is readily seen that

(3.7a)
e + z
eio z

+ Izl<- I1 -Izll
fo I1 # I,/9 5 [-Tr, 7r],

< 0 for Izl > 1.(3.rb) Re eo z
> 0 for Izl < 1 and Re k,- z

First suppose that N and I satisfy 1 _< N < c and 1 < I _< o. It follows from
(1.3), (3.1), and well known properties of functions defined by integrals that FN,(z)
is holomorphic for Iz # 1. Equation (3.2) is an immediate consequence of (1.3)
and (1.13). Assertion (3.3) follows from (1.3), (3.1), and (3.7b). The power series
expansions in (3.4) are obtained from (1.13), substitution of

ei0 z

1 + 2Ze-ikzk’ zl < 1,
k=l

--1 2Z ei/0z-/c’ Izl > 1,

into (3.1) and then term-by-term integration. To verify (3.5) we use (1.4), (3.1), and
:= -/9 to obtain

FN,I
r eiO z-1 dbN,i(O) r z e-iO N’I(O)dO

e + z
,i(o)dqo =--FN,I(z).. e Z

Next we consider N cx) and 1 < I <_ . The series representation (3.6) follows
from (1.5) and (3.1). If 1 <_ I <_ x3, then (3.2), (3.3), (3.4), and (3.5) can be deduced
from (1.14b), (3.6), and (3.7).
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For each N and I such that [1 <_ N < o and 1 <_ I <_ ] or [N x and I o],
we consider the positive PC fraction (Perron-Carathodory continued fraction)

where

N-1

(3.s) o(’’’) := ,(o"’) I,,,()] > 0.
m--O

The nth numerator Pn(N,I; z) and denominator Qn(N,I; z) of (3.8) are defined by

(3.9a) Po(g,I; z) := --PI(N,I; z) := 50(N’I), QO(N,I; z):--Q(,I; z):-- 1,

(3.9b)

[ ] [ ]P2.(u,;) 6(u,) P.-l(U,;)
Q.(,,; z) Q._(,; z)

P2n_2()N,i; z) ]+ n>l,
Q,-(v,; )

P-+(,;) (,o
Q.+(,;) Q.(,; z)

+(I_[6N,.)]2)z[p2n_L(N,I;Z)]’Q2n-(.u,I;z)
n>l.

The close connection between Szeg5 polynomials and PC fractions (3.8) can be seen
from

(3.10) pn(N,I;Z) Q2n+l(g,I;Z), p(N,I;Z) Q2n(g,I;z), n >_ O,

which can be deduced by means of (1.19) and (3.9).
If N o and 1 _< I < oo, the corresponding PC fraction is the terminating one

(3.11a)

where

(3.11b)
I

(o,:,,x)6(o’) := o I.1

2di(o’I) 1 (1 16’I)
1 + 5oo,I)z + cx),I) + +

1 (1 ,(oo,)
l"no(I)--I ]2)Z 1

+ (oo,X) + (oo,0 ’no()--IZ Vno(i)_ Vo(i

I,(’x) 1.6’ := p(oo,;0), 1 < , < ,o(I), ,-o

The nth numerators and denominators of (3.11) are defined by (3.9) with N o,
1 _< n _< 2n0(I)+ 1. We recall [8, eq. (2.11)] that
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(3.12)
I

Pno(l)(o,I;Z) Q2no(I)+(o,I;Z) (z 1)L H(z e’)(z e-’)
j=l

L z) (--1)iQ2no(I)(,i; z).=(--1) Pno(I)(,I;
THEOREM 3.2. For each I such that 1 <_ I < oo,

(3.13a)

1 P2k+l (N,I; Z) I

(3.13b) z:lim - Q2k+I()N,I; Z
--Foo,I(Z)-

j=-I
[aj[2 +- zZ for [z[ > 1.

Proof. From results given in [7, Thm. 3.21 and [11, Thm. 3.1] we know that for
each z with ]z < 1,

(3.a) P,(,,;z) a0(")ll*+
Q2k(N,I; Z) --FN,I(Z) <

1- ]z[ 2
1 < N < oo, 1 < I < oo, k > 1.

By (1.1) and (3.8b) there exists a constant A > 0, such that

(3.15) 0 < (0N’I) <_ AN for 1 < N < oo and 1 _< I _< oo.

It follows from (3.14) and (3.15) that, for 1 _< N < cx) and 1 _< I <_ c,

(3.16)
1 P2k(/)N,I; Z)- Q2k(N,I; Z) Fo,i(z) 4AIzl+< +1 -Izl2 FN,I(Z) Fo,I(Z)

By weak star convergence (Theorem 2.1) we have, for 1 _< I _< oo,

(3.17)

1
lim -FN,I(Z)
N---o

lim
1 /; ei+z

N---,oo -’ r eiO Z

eiO + z
d(N,I)(0)

eiO Z

F,(z), Izl 1.

Now the assertion (3.13a) follows from (3.16) and (3.17). We can obtain (3.13b) from
(3.13a), (3.5), and

P2k()N,I; Z)
Q2k(N,I;Z)

P2kTI (N,I; Z-1)
Q2k+I(N,I;Z-1) (see, e.g., [6]).

4. Asymptotics of zeros.
THEOREM 4.1. Let I be such that 2 <_ I <_ oo and let {rj}Ii and {Wj}ii be

sequences of real numbers satisfying (1.1c, d, e). For every discrete time signal XN,I
of the form (1.1) let Pn(N,I; Z) denote the monic nth degree Szeg5 polynomial (1.17)
associated with XN,I. Then for each K with 1 <_ K < I the zeros zj(no(K), Cg,I) of
Pno(g)(N,l; Z) can be arranged so that

(4.1a) lim
a(K,I)--*O

zj(no(K), Cg,I) e j +/-1,+2,...,+/-K,
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and

(4.1b) lim
(K,I)---*0

where

zo(no(K), Cg,I) ei 1

(4.1c) a(K,I):= E [%l.

if L 1(i. e., c0 > 0),

j=K+I

Our proof of Theorem 4.1 makes use of the following lemmas.
LEMMA 4.2. For each 1 < N < o and 1 < I <

(4.2b)

#(mg’I) NIZ(m’1) + Mm(N, I), m 0, +1, +2,...,

I

Mm(N, I) := E cj,n(m, N)%an m#(,n’I),
j,n=--I

(4.3)

I’N-,-!,. N+-cj,n(m,N) "= e [ 2 z+ o.
sin[(N- m)( w+w’2 )] CSC(W’f+wn2 )’

IM,(N,I)I < Mm(I) := Iml

(4.4) Mm(I) < Mm(I + 1) <_ Mm(x)) < cx), 1 < I < oo, m 0,+1, :k2,

Proof. Substitute (1.1a) into (1.14a) and interchange the order of summation.
Rearranging the terms and using (1.14b) gives (4.2). Equation (4.3) is a consequence
of

(4.5) cj,n(m,N)= cnj(m,g), Ic-.-.(m.g)l Ic..(m.g)l <_ c. := Icsc(+’2, )l.

and (4.4) follows from (4.3) and (1.1e).
LEMMA 4.3. For 2 <_ I <

(4.6) /.t(’I) (m’I-1) + 21c,1 cos(,,,,m), m O,-4-1, 4-2,

Proof. Apply (1.14b). El
LEMMA 4.4. For 1 <_ N < o0, 2 g I < cx, and m O, 4-1, 4-2,...,

(4.7’t) /(mN’I) f/,(mN’I-1) "1-Io,lV(N,I),

where

(4.7b) U(N,I) 2(N m)]cwI cos(im) +
I

j=-l+l
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(4.8a) IVm(N,I)I <_ 4 E
j=--l+l

c,r =: V(I) < V(I + 1) < lim V(I)=: V(cx)) < o

Proof. Apply (4.5) and Lemmas 4.2 and 4.3 to obtain (4.7). Then use (1.1e) and
(4.7) to obtain (4.8). [:l

LEMMA 4.5. For 1 g N < o, 1 g I < cx), k >_ 1, m 0,1,+/-2,..., let
C(m) g, I) be defined by

(4.9) Tk(m)N}(N’ I) T(m) (cx, I) + "}(m)N’tN’ I)
Then for each k >_ 1 and m E Z, there exist numbers. G(km) (I) and G("0 (o) such that,
for all 1 <_ N < oo and all sequences {%}I satisfying (1.1 c, d, e),

(4.10) IG(’) (N, I)I <_ G() (I) <_ G(’) (oo) < c.

(N,I) k-1Proof. Substituting (4.2a) into T(m)(N,I) := ae,(#m+_n)j,n=o, we see that

G(m) (N, I) is a sum of terms, each a product of (k-j) factors of the form Mm(g, I)/g
and j factors of the form #(o,I) I’=-I [OtJ[2e’wp, 0 < j < k- 1. Since

it follows from Lemma 4.2 that each such product is of the form

H(m) (I) (and H(m) (oo)) being a number independent of j and N (and I). Summing
these products yield (4.10). D

LEMMA 4.6. For 1 <_ N < o, 2 <_ I < oo, k >_ 1,m 0,+/-1,+/-2,..., let

W(m) (N, I) be defined by

(4.11) T(k") (N, I) T(m) (N,
N} N} + Icul (N, I).

Then for each k >_ 1 and m

_
Z, there exist numbers W(m) (I) and W(m) (oo) such

that for all 1 < N < c and all sequences {%}z__ satis]ying (1 lc, d, e)!

(4.12) IW(’) (N,I)I
_
W(’O (I) <_ W(’) (c) < oo.

(N,I) xk-1Proof. By substituting (4.7a) into T(km) (N, I) := (ler,(llm+j_n)j,n=O, one can show

that w(m)(N,I) is a sum of terms, each a product of (k- j) factors of the form
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IazlUv(N,I)/N and j factors of the form #(v’I-)/N (oo,I-)
p + M(N,I- 1)/N.

By Lemmas 4.2 and 4.4 each such product is of the form

Izlk-a)-k, (N, I), where ,’l(m)k,j (N, I)l ym) (I) <_ ym)(),

"k ()) being a number independem of j and N (d I). Summing
these products yields (4.12).

LEMMA 4.7. For 1 N < and 1 I < let Sn(N, I) be defined by

(a.) , ,+, 1 n no(I).

Then the est numbers n(I) and
satising (1.1c, d, e) with a fixed and ]a] > O,

(4.4) I$(Y,I)] $(I) $() < , n no(I).

Proof. By (1.20), (4.13), d (4.9) with k n

$(N,)N ’ ’ (-) [ TO(N,) TO(,)
(-1)T(,)V-(N, ) T-(,)V(N, )
N N-TO(N,)TO(,)

(-1) T(,)V-’(N, ) T-’(,)V(N, )
v(,0)T(,)N (T0(,

The denominator is positive.
rthermore, T)(,I) h a positive lower bound for all 0

2, 3,... d all 1 I (continuity and compactness).
Thus, by Lemma 4.5 we get

T(,)V-() + T-(,)V() $()$(N,) ="

T)(,I)infN(T)(,I) + N

and

G(n-)(o) sup>e_h T()(,I)+ G()(cx))sup>__ [Tn(-)(o, I)[

inf _>e. [T()(cx),I)(T(n)(c,I)+
:= (oo)< .

(Remark: The/-condition is equivalent to the condition no(I) >_ n.)
LEMMA 4.8. For 1 <_ N < oc, 2 <_ I < x and n >_ 1, let 5n(N, I) be defined by

(4.15) 5n(N,I) (.N,-) + [a[,(N, I).

Then there exist numbers 5n(I) and 5n(oo) such that for all 1 <_ N < oo and all {a}
satisfying (1.1c, d, e) with a fixed and [a[ > 0,

(4.16) IS,,(N,I)] _< 8,,(I) _< .(oo), n 1,2,3,
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An argument for proving Lemma 4.8 can be given that it is completely analogous
to that given for Lemma 4.7. Hence it is omitted.

LEMMA 4.9. For 1

_
N < oo, 1

_
I < oo, 1

_
n

_
no(I), 0

_
j <_ n, let 1n’N’l)

be defined by

(4.17)

q + N Pn(N,X; Z):= qj 1 _< N _< oo
j=0

Then there exist numbers tj(n, I) and lj(n, oo) such that ]or all 1 <_ N < oo and
all {} satisfying (1.1 c, d, e) with 1 fixed and I(1 > O,

(4.18) 14J"’,’) < 4(,, I) <_ jj(n, cx)), o <_ j <_ n, 1 <_ n <_ no(I), 1 <_ I <

Proof. From the recurrence relations (1.19) we obtain the recurrence relations

(4.19)
q0(’N’O 6(,), qj(n-l,N,I) (nN,I) t,(n-l,N,l)-1 "

for 1 _< j _< n- 1, q(nn’N’I) 1,

valid for all 1 _< N < o, n

_
1. The relations (4.19) are also valid for n oo, 1 _<

I < oo, 1

_
n <_ no(I). Our proof is by induction on n. First we have, since

6(’) (,;0),

q0(,,) (,) (2,) + n(N, I) ,,(n,,I) (on’N’I)
N =0 +,

where (on’N’I) n(N, I), hence by Lemma 4.7,

14(o’’v’)l _< IS(N, I)1 _< $,(I)-: 4o(n,I) <_ $,(c)-: 4o(n, o).

Therefore, for j 0 Lemma 4.9’s assertions hold for all n

_
1. For n 1 the assertion

(1,N,I) ql,oo,I) 1.in (4.18) also holds for j 1, since q
We assume (induction hypothesis) that for some integer n

_
1, there exist num-

bers tj(m,I) and j(m, oo) such that for all 1 _< N < oo and {a} satisfying (1.1c, d,
e) and 1 fixed 101[ > 0,

(4.20) 14’’)1 <_ 4(m,I) < 4(m, l <_j <_m, l _m _n-1.

Then, by (4.19), (4.20), (4.17), and (4.13),

qn,oo,I) N

where

n(N,I)) [ (n--l,oo,I) ,,(n-l,N,I)
N kq-l-j -I"q--l--J )
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+.(I) L,._I_ I/ tn-l-j(n- 1,I)] =: t(n,I)

<_ :(n 1, oo) + n-l-(n 1, oo)

(n-l,oo,D (n- 1 o)] =" j(n,+$.(o) up _1_ I+.-,-
l_<I<oo

.(n-- 1,oo,I) ^(n--1,x,oo)Here we have used the fact that I.’)1 _< 1 and limI_o q-l- q-l-
Iq(n-l,oo,I)exists and hence supl<i<oo n-l- < oo. It follows that (4.20) also holds for

rr o []

< N < oo, 2 < I < oo and n > 1, let (1n’N’I) be defined byLEMMA 4.10. For 1

Then there exist numbers (l(n, I) and (l(n, oo) such that for all 1 < N < c and all
{a} satisfying (1.1 e, d, e) with al fixed, Ixl > 0,

(4.22) Iq"’Na)l < qj(n, I) < q(n, oo), 0 < j < n, 1 <_ I < oo.

A proof for this lemma can be given that it is completely analogous to that given
for Lemma 4.9. Hence it is omitted.

LEMMA 4.11. Let XN,Z denote a discrete time signal of the form (1.1), where
1 < N < oo and 1 < I < oo. Let Pn(g,I;Z) denote the monic nth degree Szeg6
polynomial (1.11) associated with XN,I. Let n(N,;Z) and n(N,;Z) be defined,
for l < N < oo,2 < I < oo, l <_n < no(I), by

(4.23)
O.(N.; Z) .(.oo.; Z) + N

(a) Then for all 0 < R < oo there exist numbers n(I, R), n(00, R), n(I, R), and
/bn(oo, R) such that for all 1 <_ N < oo and all {(j} satisfying (1.1 c, d, e) with
fixed, I,11 > 0,

(4.24) In(N,I; z)l -< n(I, R) <_ n(O, R), I.(N,I;Z)I <-- n(I,R) <_ n(oo, R)

for 2 <_ I < oo, 1 <_ n <_ no(I), Izl s R.
(b) For all I, K, and R such that 2 <_ I < oo, 1 < K < I, there exist positive

numbers no(K)(R) and no(K)(R) such that for 1 < N < oo and Izl < R,



APPLICATIONS OF SZEG POLYNOMIALS 509

K

po()(,,; ) ( ) 1]( ’)( -’)

I

< o()(,R) I1 + o()(R).
j:K-I-1

Remark. The assertion involving n(N,I; z) holds also for I o. This can be
seen by letting I --. o in the first part of (4.23) and (4.24) and using the fact that
limi_o Pn(g,I; z) Pn(N,o; Z).

Proof. (a) By Lemma 4.9 we have for [z[ _< R and 1 <_ N < o, 1 <_ n <_ no(I),

1 ^(n,N,l)

j=O

A similar proof for the second part of (a) can be given and hence is omitted.
(b) First we assume that 2 _< I < o. By Lemma 4.11(a) we obtain for Izl _< R

and 1 _< N < cx,

K

Pno(K) (N,I; Z) (Z 1)L H(Z e’w )(z e-’w
j=l

[Pno(K)(N,I; 2;) Pno(K)(oo,K; Z)

I

j--K+1

pno(K) (/N,j Z) pno(K) (/N,j_l Z)

+ [P.o(K)(N,K; ) P.o(K)(o,K; )1

j=K+I

1
I1 [no(K)(N,j; Z) @ - I"o(K)(N,K; z)l

I
1< lal.o(K)(j,R) + --no(K)(K,R)

j=K-I-1

I

no(K)(O),) I,:=1 +
j=K+I

To see that this result also holds for I o we let I --, o in (4.25) and use the fact
that limi_o Pno(g)(g,I; Z) Pno(K)(N,cx; Z). [-]
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Proof o] Theorem 4.1. By Lemma 4.11(b) the functions Pno(K)(N,X; z) converge
to (z- 1)L I]K. l(Z- e)(z- e-) uniformly on each compact set Izl < R as
N --+ o and a(K, I) --. 0. The assertions (4.1) follow from this and an application of
Hurwitz’s theorem [2, Thm. 14.3.4].

5. Computional results. To illustrate the approximations given by the Szeg5
polynomial method, we consider signals XN,4 of the form (1.4), where I 4 and the
(xj and wj are as follows in Table 1.

TABLE 1

j 0 1 2 3 4
5

0 100 1 1, 1

We let zl (k, N,4) denote the zero of Pk(N,4; z) nearest to eiwx where Pk(N,4; z)
is the Szeg5 polynomial (1.17) associated with xN,4. Values of zl (k, N,4) were com-
puted for the degrees k 2, 4, 6, 8, 10, 20, 30, 40, 50 and for various sample sizes N
ranging from N 100 to N 3000. Values of Arg zl (k, N,4) used to approximate
wl r/4 0.785398164 (for k _< 8 not meaning convergence) are given in Table
2a and values of the number of significant digits of these approximations are given
in Table 2b. Values of Izl(k, N,4)- ei’l are given in Table 3. For these examples
no(I) n0(4) 8, since L 0 (i.e., s0 0). By the convergence results (1.8) stated
in 1, for all k _> n0(4) S, Zl(k, N,4) --+ iwx and hence Arg zl(k, N,4) r/4 as
N - cx. The numerical results in Tables 2 and 3 are consistent with this. For degree
k < n0(4) 8 the method gives approximations of wl r/4 with significant digits
ranging from 1 to 4 depending on the choices of k and N. For each fixed N, as k takes
on the values 2, 4, 6, the significant digits (Table 2b) are nondecreasing. Moreover,
for each fixed k(- 2, 4, 6) the significant digits in Table 2b are nondecreasing as N
increases from 100 to 1000, with one exception at k 6 and N 401. These results
are all consistent with the assertions of Theorem 4.1.

TABLE 2a
Values o] Arg Zl(k, N,4), where zl(k, bN,4) 8 the zero of pk(bN,4;z) nearest to the c’itical

point eiwl ,Wl 0.7853 98164. Signifint digits a underlin.

k\N
2
4
6
8
10
20
30
40
50

100 202 401
0.8_054 40 0.79__05 98 0.79__06 49
0.7905 81 0.7860 77 0.786615’

0.7853 830.7855 29 0.78__52 78

0.7859 11
0.784159 0.7855 21 0.7851 59

0.785433 0.785427
0.7849 56
0.786054
0.7847 45
0.771308

0.7852 83
0.785317
0.785___4 89
0.7894 09

0.7853 22
0.785381
0.7853 95
0.7853 87

601 1000
0.78__9107 0.7876 92
0.786213 0.7858 77
0.785___3 43 0.78__53 29
0.78__52 68 0.78__53 00’
0.7854 49 0.785410
0.7853 21 0.7853 70
0.78__53 48 0.7853 39
0.785433 0.785426
0.7853 59 0.7853 73
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TABLE 2b
Number of significant digits in the approximation of Wl r/4 "-- 0.785398164 by Arg

zl(k, N,4) where Zl (k, N,4) is the zero of Pk(N,4; z) nearest to the critical point ei1

k\N 100 202 401 601 1000
2 1 2 2 2 2
4 2 2 2 2 2
6 2 3 4 3 3
8 1 2 3 3 3
10 2 4 4 4 4
20 1’ 3 3 3 4
30 2 3 4 3 3
40 1 3 5 4 4
50 1 2 4 4 4

TABLE 3
Values of ]Zl (k, bN,4) eitl [, where 1 0.785398164 and Zl (k, bN,4) /8 the zero of

Pk(bN,4; Z) nearest to eiwl N sample size of observed signal :VN,4; k degree of the Szeg6
polynomial Pk (bN,4; z).

k\N 100 202 401 601 1000 2000 3000
2 0.03591 0.01167 0.00957 0.00684 0.00426
4 0.01034 0.00477 0.00247 0.00168 0.00099
6 0.00829 0.00521 0.00196 0.00134 0.00080
8 0.01104 0.00521 0.00258 0.00175 0.00106 0.00055 0.00037
10 0.01175 0.00522 0.00271 0.00184 0.00112 0.00058 0.00040
20 0.01265 0.00540 0.00259 0.00166 0.00098 0.00047 0.00031
30 0.01523 0.00575 0.00268 0.00181 0.00106 0.00055 0.00037
40 0.01835 0.00617 0.00275 0.00173 0.00102 0.00048 0.00032
50 0.02699 0.00683 0.00293 0.00188 0.00107 0.00052 0.00035

Acknowledgments. The authors wish to thank Anne C. Jones for able assis-
tance in computing the numerical examples.
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MODELS OF Q-ALGEBRA REPRESENTATIONS:
THE GROUP OF PLANE MOTIONS*

E. G. KALNINSt, W. MILLER, JR.$, AND S. MUKHERJEE

Abstract. This paper continues a study of one- and two-variable function space models of
irreducible representations of q-analogs of Lie enveloping algebras, motivated by recurrence relations
satisfied by q-hypergeometric functions. The algebra considered is the Lie algebra m(2) of the group
of plane motions. It is shown that various q-analogs of the exponential function can be used to mimic
the exponential mapping from a Lie algebra to its Lie group, and the corresponding matrix elements
of the group operators are computed on these representation spaces. This local approach applies
to more general families of special functions, e.g., those with complex arguments and parameters,
than does the quantum group approach. A simple one-variable model of the infinite-dimensional
irreducible representations is used to compute the Clebsch-Gordan coefficients for m(2) considered
as a true quantum algebra. The authors derive a generalization of Koelink’s addition formula for
Hahn-Exton q-Bessel functions. It is interpreted here as the expansion of the matrix elements of a
group operator in a tensor product basis in terms of the matrix elements in a reduced basis.

Key words, basic hypergeometric functions, q-algebras, quantum groups, motion group,
Clebsch-Gordan series

AMS subject classifications. 33A75, 33A65, 20N99

1. Introduction. This paper continues the study of function space models of
irreducible representations of q-algebras [8]. These algebras and models are motivated
by recurrence relations satisfied by q-hypergeometric functions [2], [9]. Here, we con-
sider the irreducible representations of the Lie algebra m(2) of the group M(2) of plane
motions. We replace the usual exponential-function mapping from the Lie algebra to
the Lie group by the q-exponential mappings Eq and eq. In place of the usual matrix
elements on the group (arising from an irreducible representation), which are express-
ible in terms of Bessel functions of integer order, we find four types of matrix elements
expressible in terms of the Jackson and the Hahn-Exton q-Bessel functions. These
q-matrix elements do not satisfy group homomorphism properties, and so they do not
lead to addition theorems in the usual sense. However, they do satisfy orthogonality
relations. (This was shown earlier by Koornwinder and Swarttouw [15].) Further-
more, in analogy with true group representation theory, we can show that each of the
four families of matrix elements determines a two-variable model for irreducible rep-
resentations of m(2). By q-exponentiating these models we get q-analogs of addition
theorems for Bessel functions.

In 3 we use the definition of m(2) as a true quantum algebra and take the
tensor product of two infinite-dimensional unitary irreducible representations of this
quantum algebra. The tensor product decomposes into a direct sum of irreducible
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representations (rather than a direct integral, as in the q 1 case), and the decom-
position is nonunique. Focusing our attention on the two simplest decompositions
of the infinite-parameter family of choices, we compute the corresponding Clebsch-
Gordon coefficients. Special cases of the unitarity relations for the Clebsch-Gordon
coefficients are the q-Hankel orthogonality relations. Moreover, expressing the matrix
elements of the group operators in the tensor-product basis as a linear combination of
the matrix elements in the basis adapted to the direct sum decomposition, by means
of the Clebsch-Gordon coefficients, we obtain a generalization of Koelink’s addition
theorem for Hahn-Exton q-Bessel functions.

Our approach to the derivation and understanding of q-series identities is based on
the study of q-algebras as q-analogs of Lie algebras [7]. Essentially, we are attempting
to find q-analogs of the theory relating Lie algebra and local Lie transformation groups.
A similar approach has been adopted by Floreanini and Vinet [3]-[5]. This is an
alternative to the elegant papers [10]-[17] that are based primarily on the theory of
quantum groups. The main justification of the local approach is that it is more general;
it applies to more general families of special functions than does the quantum group
approach.

The notation used for q-series in this paper follows that of Gasper and Rahman
[6]. We wish to thank the referee for suggestions that considerably improved the
exposition and accuracy of 2.

2. Matrix elements of m(2) representations. The three-dimensional Lie al-
gebra m(2) is determined by its generators H, E+, E_, which obey the commutation
relations

[H, E+] E+,
(2.1) [E+, E_] 0.

[H,E_] -E_,

The irreducible representations Q(w, mo) are characterized by the complex numbers
w and m0, with w 0 and 0 _< m0 < 1. The spectrum of H corresponding to
Q(w, too) is the set S {m0 + n" n E Z}, and the complex representation space has
basis vectors f,, m E S, such that

E+fm Vdfm+l, H.fm mfm, E+E-fm o)2fm,

where C =_ E+E_ is an invariant operator. Note that the representations Q(w, too)
and Q(-w, m0) are equivalent.

A simple realization of Q(w, too) is given by the operators

d
(2.3) H=m0+z-v-, E+=wz, E_:-

az z

acting on the space of all linear combinations of the functions zn, z a complex variable,
n Z, with basis vectors .fro(z) zn, where m m0 + n.

The representations (w) Q(w, 0) with w > 0 are of special interest. In this case
we can introduce an inner product such that (fn, fn,) n,, n, n Z. On the dense
subspace K: of all finite linear combinations of the basis vectors we have

(E+f f’) (f E_f’) (Hf, f’) (f Hf’)
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for all f, f E K:, so that H H* and E* E_ In terms of the operators (2.3) we4-
can obtain a realization of (w) and its Hilbert-space structure by setting z e:

d
H -i,

1 /2rIf, f’) - f(e)f’(e0) dO.

Matrix elements Tm’m of the complex motion group in the representation Q(w, mo)
are typically defined by the expansions

(2.6)

with m, m’ e S [3], [5], [19]. The group multiplication property of the operators on
the left-hand side of (2.6) leads to addition theorems for the matrix elements. For
convenience in the computations to follow we shall limit ourselves to the case in which- 0 and w is real. For this case we have Tm,m(OZ,/) - Tm,m(t:r.,/, O) - Tn,n(o, ),
where m m0 + n, m m0-4-nt, i.e., the representations Q(w, too) and (w) have
exactly the same matrix elements. (The extension of the matrix elements to complex
w will usually be obvious.)

With the q-analogs of the exponential function

(2.7)
q(Z) Z (q; q)t (x; q)oo’ I1 < 1,

k=O

k=o
(q; q)t: (-x; q)

we use the model (2.3) to define the following q-analogs of matrix elements of (w):

I,,,ml < 1,

[wa[ < 1,

Here, 0 < q < 1 and a, fl . Since E E_, we have

(2.9)
’n (0,/) =(eq(/E+)eq(E_)fn, fn’)

--(fn, eq(E+)eq(/E_ fn,
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T.(,E)(, ) (E,),. =.., (,1,

(2.11) rp(E,E), (,)=-, (L).

Furthermore, since eq(z)Eq(-X) 1, we have the identities

(Note that our operator derivations of these formulas and of many formulas to follow
lead automatically to formal power series identities in the group parameters. These
identities must then be examined case by case to determine when the series are con-
vergent as analytic functions of the group parameters.) Using the model (2.3) to treat
(2.8) as generating functions for the matrix elements and computing the coefficients
of zn’ in the resulting expressions, we obtain the explicit results:

(2.15)

(qn-n’+1 q)+(aw)n-n’ q(n-n’)(n-n’-I)/2T.(+,E)’n (a, ) (q; q)

( 0
X II qn-n’+l ;q,

(qn’-n+l q)o(iW)n’-n ( 0
(q; q)o II qn’-n+l ;q’--OOd2

(2.16) ,(,E),. (,, ) .., (, ),

E,. (,f)
(qn-n’+I; q)(aw)n-n’ q(n-n’)(n-n’-l)/2

(q; q)

X 01 qn-n’+l ;q’aw2qn-n’

If af 0, we can express these results in terms of the Jackson q-Bessel functions
[6, p. 25],

(qr’+l;q)o (z) r’ ( 0, 0 _)Jr(1)(z; q)
(q; q)oo 21 qv+l ;q,-
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(2.18) g(2) (z; q) (q; q)o 5 01 q+1 ;q,----

g(2) (z; q) (-z2/4; q)oJ(1) (z; q),

and the Hahn-Exton q-Bessel function [15],

(q+l;q)zll ( 0(2.19) J(z; q) (q; q) q+l ;q, qz2

Indeed, setting a irei, ire-i, we see that in terms of the new complex
coordinates Jr, ei] we have

e(+)(-’)
+(e.e) (a. fl) T(e.e) [r. ei] .(2) (2rw; q)"n’n "n’n (_r2w2; q) n-n’

T(,)
(2.20) ’n [r,e] e’(-)(n’-n)q(n’-n)/2Jn,_(rwq-];q),

T(,),n [r,e] e(+)(n-n’)q(n-n’)/2Jn-n,(rwq-];q),
T(,E), [,’] ,+,).-’)q-’)/g,(q-;q).

(Note that J_(z; q) (-1)nq/2Jn(zq/2; q), .1(_(z; q) (-1)nJ2) (z; q) for integer
n.)

The matr elements Tn,n(a,) theelves define models of the representations
(w). We c see this directly om the commutation relations (2.1). It is a simple
consequence of these relations d eq(X) (x; q)2, Eq(x) (-x; q) that

(i- T)q(ZS+)q(S_),(ZE+)(E_)E+

1
(I- Ta)eq(E+)eq(aE,),eq(S+)eq(aE_)E_

where I is the identity operator d.Tg(a,) g(a, q) for a ction g(a, ). Thus

w(,)

(2.22)

wT(,) 1
(I T T(’) (a, ).

Simile]y, the relations

1
(I-(+)(-)+=(2.2)

q(+)q(_)_ =(;1 l)q(+)q(_

yield

(2.24)
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In the same way we find

and

(2.26)
.Jrr’

E E
Ol

q
V1 l"lrl" E E Oln,n+l "--’ ]..nn

,z7’(’) (a,)
q
(T;1 l"lrr’(E’E) (0l, ).,.nt,n_l --" ].ntn

Furthermore, induction with respect to k+g yields [H, at/kEk+ _])Ek g ot
,kEk+E_,t

and this implies

[H, eq(lE+)eq(ozE_)] ((9 otOa)e.q(E_b)e.q(otE_),

so that

Similarly,

(2.27)

for all the remaining cases.
Thus, denoting operators

(2.28)

we see that the following sets of operators and basis functions each define a two-
variable realization of relations (2.2) and hence a realization of the representation

Moreover, from the explicit expressions (2.14) for the matrix elements Tn,n(oz,/) it
is easy to verify that relations (2.2) remain valid for -n m0, a complex number
with 0 < m0 < 1, w a nonzero complex number, and n an integer. Thus the
four families (2.29) provide realizations of all the representations Q(w, m0), although
for m0 0 the basis functions are no longer matrix elements. (Indeed, each of the
families (2.29a)-(2.29d) defines two realizations of Q(w, mo) for m0 0, one where
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the q-Bessel functions are expressed in terms of the subscript n- n and one where
they are expressed in terms of n n. For m0 0 these expressions coincide.)

Before passing on to a deeper consideration of these models we note that the
identities (2.12) and (2.13) for c/ 0 are essentially the following identities for q-
Bessel functions [15, eqs. (2.14), (2.10)]:

qq/2J(2) (rq-1/2 q) 5no(-r2/4; q)o,(2.30a) Z J(2-)n(r;

(2.30b) qeJe+n(r; q)Je+n,(r; q) 5n,,q-n, Irl < q-1/2.
=-

The identities (2.30a) can be further generalized by considering matrix element rela-
tions of the form

(2.12’) Sn’n(, 7) Z (e,e)-., (", Z)T([’) (-., "),

where ,(,) =(E(E+)(ZE+)A,

={ 0/a/.,_. ifn’-n < 0,

tq;q).,_. (-; q)n’-n otherwise.

(There axe relations of a similax type for the E_ operator.) These identities yield a
q-analog of the Hansen-Lommel orthogonality relations [10], [11]. Indeed, if we set

Jr, 7 -irqn’-n- in (2.12’), we see that the le-hd side of this equation
vishes unless n n. rthermore, with the choice 2rw zqn’/2, m - the
expression becomes Koelink’s formula:

1(2) (.n/2 q)q(mTn)(m+n-1)/4m+n’(2) (zqn,/2;q)q(m+n,)(m+n,_)/am+nx"

=,(-zq=/4; q).

As additional examples the identities

,, (7, a) Z S,,e(-f, a)Te(’E) (%/),
=-o

(a,) Z Sn,(, /)T(,:’) (a, -’)

yield q-analogs of the Lommel relations:

OO

:o (q; q) .n+

(z ) (zql/2)J(x2;q)jjm+j(zq(m+j)/2;q),xmJm _qm/2;q =Z x2 (q;q)j
.=0
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where m is an integer.
We can use the relations (2.22), (2.24)-(2.26) to derive addition theorems for

the basis functions T,(a,/), including the cases in which n -m0 is complex
number. First of all, note that for m, s complex numbers)

(2.31) eq(7z)xm xm
(-q-m+t7/x; q) Eq(kz)xs x"

(-/x; q)
(-qT/x;q) (-qs/x;q)"

Now consider the operator eq(+)Eq(a_) applied to the basis function f-o
(,E)

(2.32)
(E,)e(+)E(

_
_,o,0(,
(qmo+; q) q,C:-i)/2w2kokk(_q-,+,.//; q)(-/c; q)

)
convergent for Iq,of/al < 1, Icvw= < 1. Since

(2.33)

from (2.8b), or

(2.33’)

xmo(qmo+;q)(qz/xy;q) (qmo+lz/xy, qx/yz )(q;q)oo(qm+lz/xy;q)oo 21 qmo+l ;q, xyz

E y"J.(z; qlJ.o+.(x; q), ]q’o+z/xyl < 1, Ixyzl < 1,

this can be considered as an addition theorem for the T(_,eo!n basis functions that
generalizes the Lommel and Graf addition theorems for ordinary Bessel functions, [15,
eq. (4.5)], [18], [20], [22]. In [15, eq. (4.10)] (for integer m0) and in [5] (for complex
m0) the addition theorem corresponding to

(2.34)

is worked out. The result is

(2.34’)

(_) (qz/xy; q)(qmo+l; q) q.-,o+lz/xy
(qm+lz/xY; q)oo (q; q)oo 21 qmo+l

Iqmo+lz/xyl < 1, Ix:l < 4.
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To better understand and to extend identities (2.33) we note that, formally at
least, the operators eq(’+), Eq(a_), and U are symmetry operators for the q-
difference equation

(2.35)

That is, these operators map solutions of the equations to new solutions. Thus if
(a,/) is a solution, then so are eq(’y+)Eq()(a,) ’(a,/) and H(a,).

It is easy to check that the only solution of (2.35) and H A for complex
(noninteger) A, such that r- is analytic in r at r 0, is (a,//) q[r,t]
tJ(rwq-1/2; q), unique up to multiplication by a constant. Here, a irt,
ir/t. (For) n, an integer, the only solution ), analytic in r at r 0 is n
tnJn(rwq-i/2;q).) Thus if k(a,f) is analytic in the variables R r, S rt at
R 0, then it must have an expansion of the form [2]

(2.36) ’ Ec’xtJ’x(rq-/2; q)’

where the c are complex constants. Expression (2.33) is a special case of this expan-
sion.

It is easy to see from (2.31) that the operators eq(7+), Eq(_) do commute

with/+ and/_a when acting on monomials mas, and so modulo convergence prob-
lems are symmetry operators mapping analytic solutions of/+/a_ 2 to analytic
solutions. Now, instead of the definition Eq(kx)xs xs(-/x; q)o/(-qs/x; q)o,
let us adopt the definition ( 0)

(2.37) Eq(,z_),xs sqS(S-)/2 -q-s+x/; q)o
(-qx/;q)o

For s an integer these definitions coincide, but they are distinct for s complex. It
is again easy to verify that

so that Eq(E_) is also a symmetry operator. As an example of the use of this
observation consider

(2.38)
q’ --Eq [c .a ,I’(E,e) (a, )k--) --mo,O

(w)mo (qmo+ q)qmo(mo-D/2(_q-mo+ia/; q)
(q;q)(-qa/;q)o 1 qmo+1

Thus we have

(2.39) (-q-o+irt/;q) (-qo/irt )(-qirt/;q)o 11 qmo+l ;q’r2w2 E cntnJn(rwq-ll2;q).
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Now set t sir and let r --. 0 in (2.39). We obtain cn (-iq3/2/w)n(q-m; q)oo/
(q-too+n; q)oo for n 0, 1, Similarly, if we set t sr and let r --. 0, we find the
same expression for cn with -n 0, 1, Thus

(q--too q)
(q-mo+n;q)o

Jn(z;q)’

0 < Ix[ < 1.

Similarly, applying the symmetry operator Eq(a_)’ to the basis function T(e’)
--mo,O

we obtain the identity

(2.41)
(q-mory;q)oo (qmo+/ry,(ry; q)oo 21 qmo+ q, _r2 yn (q-mo; q)oo jn(1)(2r;q)

n=-oo
(q-too+n; q)oo

0 < lYl, ]r21 < 1, ]ry] < 1.

Also, we can apply the symmetry operator

eq(/+),nm mq-m(m-D/2 (-n/; q)oo
(-qm/7;q)oo’

rather than eq(’J+), to obtain new identities.

3. Tensor products. In addition to the standard definition of the tensor product
of two irreducible representations (wl) and (w2) of m(2), there is a definition given by
the nontrivial Hopf algebra structure in which the coproduct is [1], [4], [11]

(3.1)
F+ A(E+) E+ (R) q-1/2H + q1/2H (R) E+,
F_ A(E_) E_ (R) q-1/2H + q1/2H (R) E_,
L =A(H) H(R)I+I(R)H.

The operators F+, L satisfy the same commutation relations as the operators E+, H:

(3.2) [L, F+] +F+, IF+, F_] 0.

The standard definition is obtained by letting q 1 in (3.1). Each irreducible repre-
sentation (wl), (w2)is defined on L2[0, 2r] by the prescription (2.5). To make sense of
the operators (3.1) on a dense subspace of the tensor-product space L[0, 2r] (R) L[0, 2r]
we proceed as follows. The Hilbert-space inner product is

<f, g) (271.)2 f(01,02)(01,02) dOld02.

An orthonormal basis is {fnl=2 ei(nl+n22),nj 0,=t:1,+2,... }. In terms of this
basis a general element f of the Hilbert space can be expanded as

(3.3)
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where lamn.l2 < c, k nl + n2, n nl, O =/91 -/92, (I) =/92, and Ank amn2.
Now set z e, t e. Since L A(H) -JOy t-lOt, it is clear that the
eigenvalues of L are k0 0, +/-1, +/-2,... and that the corresponding eigenspace of
L[0, 27r] (R) L[0, 27r] consists of those square integrable functions f for which Ank 0 if
k k0. The operators (3.2) make sense on the dense subspace K: of the Hilbert space
consisting of finite sums of functions f[z,t] fk[z]t, (z,t) e 2, (fie’, e’]
f(01,/92) belongs to the Hilbert space) such that each fk[z] is analytic except possibly
for an essential singularity at z 0 and a countable number of poles in the complex
plane (not on the unit circle Izl- 1). Then

F+f[z, t] =wlztf[zql/, tq-1/] + wztf[zql/, t],

(3.4) F_ y[z, t] wl=-f[zql/2, tq-1/2] + f[zql/2, t],

Ly[z,t]
1

=-iOtY[z, t].

We further require that F+f[eo, ev] and F+F_f[eo, ev] are square integrable. For-
mally, the invariant operator A(E+E_) F+F_ takes the form

F+F_f[z, t] (wT-1 + wlw2 (zql/2 + zql/21) T-1/2 -l- to22I) Tzf[z, t

Thus if f satisfies

(3.5) F+F_f Af, Lf kf,

it should have the form f[z, t] gk[z]tk, where

((3.6) (wlq-/2 + wzql/) wlq-k/ + Zql./2 g[zq] Xg[z].

To decompose the tensor-product representation into irreducible representations
it is sensible to require that the domain of definition of the preceding operators be
adjusted so that on this domain F+ is the adjoint of F- and L, K F+F_ are
symmetric. Then we extend the domain to make K self-adjoint. Let us consider the
restriction K of K to the subspace of functions of the form fk[z, t] gk[z]t, so that
Lfk kfk. Then

w )T(3.7) Kk (wlq-k/2 -Jr w2zq1/2) wlq-k/2 -+- zql/2

and the induced Hilbert-space inner product is

1
g[z]_ff,[z_l

dz
(3.8) (g, gt)

=1

where g[z] y[]. It follows that

(3.9) (g a, a’) (a, g a’) + R(a, a’),

where R(g, g’) is the sum of residues of the function z-l(wlq-k/2+w2zq-1/2)(wlq-k/2+
w2ql/2/z)g[z]-ff’[q/z] in the annulus q < Izl < 1. Thus Kk will be symmetric on
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a domain :D such that R(g, g) 0 for all g, g E :D. This shows that the role of
boundary conditions for symmetric operators is played here by the placement of zeros
and poles for the elements of

There is an infinite parameter family of self-adjoint operators associated with the
symbol (3.7). We shall focus on those two of the self-adjoint operators (and their
spectral resolutions) that are the simplest in structure. The first corresponds to the
orthonormal basis of eigenvectors

(_q(+k)/2w2/wz; q)
p O, 1,

with eigenlues ) wq. The second h an orthonormal bis of eigenvectors

q)
Z p O, 1,

with eigenlues A2) wq. Setting f)[z, t] hJ)[z]tk, j 1, 2, we have

p,kl

() (J) () ,2. (J)

Th

i.e., in each case the tensor product decomposes into a direct sum of irreducible rep-
resentations. (This is dramatically different from the case q 1 in which the tensor-
product representation is unique and the spectrum of K is continuous [22, p. 224].)

As an indication of the multiplicity of possible self-adjoint operators and resulting
spectral decompositions, consider the function

(3.14) S)[z]

for A a nonzero real constant. Note that 1. Now S),[zq] A2S[z]
()so the sets {S)[z].pk }, j 1, 2, are each orthonormal bases of L2[0, 2r] (R) L2[0,

consisting of eigenvectors ofK with eigenvalues A2wq’. Furthermore, the sets (f()
S)[z2]f( } satisfy relations (3.12) with wj replaced by wjA2.

The Clebsch-Gordan coefficients for the tensor product corresponding to the spec-
tral resolution (3.10) are defined by

11,1 1,2-" 00

Clearly, these coefficients vanish unless k nl + n2. The orthogonality of the two
bases implies the identities

(3.16) wl w2 P
(1)

n n k n n k
1’ 11,2
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where nl A-n2 n + n k. Explicitly,

(3.17)

wl w2 P](1)nl n2 k (-1)v+n-q(V+n)/2Jv+n (q-1/2bk; q)

sk--1 (qb;q)oq(+l)/2(-qbk)P+n(-1)
(q;q)o(q;q)t

where k nl + t2, bk q(l+k)/2w2/Wl, and sk >_ 0 is the smallest integer such that
qsbk < 1. (We assume that bk qn for any integer n.) Indeed, the case sk 0 of
(3.17) follows from (3.15), and this result can be written as a complex contour integral.
The case sk > 0 can be obtained from this result by shifting the contour.

Similarly, the Clebsch-Gordan coefficients for the tensor product corresponding
to the spectral resolution (3.11) are defined by

(2) (Ol, o2)= wl w2 P
(2)

Z nl n2 k
7%1 7%2:--O

They satisfy orthogonality relations analogous to (3.16) and are given explicitly by
(3.17), where now bk q(1-k)/2wl/w2 and n2 is replaced by

With respect to the tensor-product basis {f(R)f’ } the operator eq(F+)Eq(aF_)
has matrix elements

Tmm;nn (a, ) (eq(A(E+))Eq(aA(E_))f: (R) f, fm (R) fg)

(w)m-n(w2)m-n
(qm-n+x; q)(qm-na+; q)
(q; q)q(mm+n-2nm)/2

( 0 ) ( 0 )x qm-n+ ;q’-awq-m qm-n+ ;q’-awqn

or, in coordinates Jr, t],

(3.18)

(_q-/2it)n,+.,--mJm-., (rwq-(m’+)/2; q)Jm,-n, (rw2q(n-)/2; q).

To see this most simply, recall that if X and Y are linear operators such that
YX qXY, then [6, p. 28],

k (q; q)k XY-(Y + X)k Z (q; q)e(q; q)k-e

eq(X + Y) eq(X)eq(Y), Eq(X + Y) Eq(Y)Eq(X).

Thus, using the facts thag E+q1/2H q- 1/2 q1/2E+, E_q1/2 q q1/2E_ for these
representations, we have

eq(F+)Eq(aF_)
-H--eq(E+ (R) q-1/2H)Eq(oE_ (R) q-2 )eq(tq1/2H (R) E+)Eq(aqH (R) E_),
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so that the matrix elements with respect to the tensor-product basis are given by

Tm m ;n n )Eq(c q-m /2E-

From the definition of the Clebsch-Gordan coefficients we see immediately that
the identities

(3.19)

TITITt2;?%IT$ (0, ) Z 0")1 602 p (J)
T(e,E),wq’/2

p------oO

x j= 1,2
ml m2 ml -I- m2

must hold. Choosing j I and taking the special case for which q(1+m1+m2)/2w2/w1 <
1 and q(l+nl+n2)/2co2/Wl < 1, we obtain the identity

(_q)nj=_n(Sq-u; q2)Jn(RSqn; q2)

(3.20) qkJk_n(Rqu; q2)J(Sq-u; q2)Jk(Rqu+; q2),

which is valid for 0 < Rqu+x+ < 1, 0 < Rqu+l < 1, 0 <_ S, and n,x, y integers. The
case S qz of this formula for z an integer is the addition theorem for Hahn-Exton
q-Bessel functions derived by Koelink by using the theory of quantum groups, [10],
[2]. For an analytic proof of Koelink’s formula, see [20].
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SOME RESULTS ON CO-RECURSIVE ASSOCIATED LAGUERRE
AND JACOBI POLYNOMIALS*

JEAN LETESSIERt

Abstract. The author presents results on co-recursive associated Laguerre and Jacobi polyno-
mials which are of interest for the solution of the Chapman-Kolmogorov equations of some birth and
death processes with or without absorption. Explicit forms, generating functions, and absolutely
continuous parts of the spectral measures are given. Fourth-order differential equations satisfied by
the polynomials with a special attention to some simple limiting cases are derived.

Key words, orthogonal polynomials, birth and death processes, hypergeometric functions

AMS subject classifications. 33A65, 60J80, 33A30

1. Introduction. Starting from a sequence of orthogonal polynomials
defined by the recurrence relation

(1.1) Pn+2(x) (x n+I)Pn+I(X) n+lPn(x), n >_ O,

and the initial conditions

P0( ) - Z0,

with/n, / E C, and /n t 0, several modifications were considered:
(i) Associated polynomials arise when we replace n by n + c in the coefficients

/n and 7n (keeping 7 t 0). If c is an integer k these polynomials are called associated
of order k. The associated polynomials of order one are the numerator polynomials;

(ii) Co-recursive polynomials arise when we replace/0 by/0 + #;

(iii) Perturbed polynomials arise when we replace 71 by A/1, (A > 0);
(iv) Co-recursive polynomials of these perturbed polynomials arise when the two

previous modifications are made together;
(v) Generalized co-recursive and perturbed polynomials arise when we change

/ and/or at any level n.
In the study of birth and death processes, orthogonal polynomials, in particular

all the hypergeometric families of the Askey scheme [1], [19] and their corresponding
associated families, play a primordial role in the Karlin-McGregor solution of the
Chapman-Kolmogorov equation [111, [16]

(1.3) pmn(t) e-XtPm(x)Pn(x)d(x).

In certain birth and death processes, zero-related polynomials [12], [13], [14] arise in a
natural way. Zero-related polynomials are special co-recursive associated polynomials.

More generally, co-recursive and generalized co-recursive polynomials are involved
in the solution of the Chapman-Kolmogorov equation of birth and death processes
with absorption or killing [11], [17], [18].

The purpose of this paper is to present some results on co-recursive, associated
Laguerre and Jacobi polynomials which are of special interest in the study of birth and
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death processes with linear and rational rates, respectively. The Laguerre polynomial
families are involved in processes for which the birth and death rates are of the form

(1.4) An n + a + c + 1, n-}-I n + c + 1, n _> 0, #0 c- #.

The Jacobi polynomial families are involved when the rates are of the form

2(n+c+a-}--t- 1)(n + c+/ + 1)(1.5a) An (2n -}- 2c + ( +/ -}- 1)(2n + 2c -}- a -t-/ -t- 2)’
n >_ 0,

2(, + )(, + + ,)(1.5b) #n (2n / 2c + c //)(2n / 2c + c + f -{- 1)’
n > O,

(1.5c) 2c(c + )
#0 (2c + a + f)(2c + a +/ + 1) #"

In both cases #0 0 correspond to the "honest" [24] linear processes (i.e., pro-
cesses for which the sum of the probabilities Pmn(t) is equal to 1). Cases #0 Const.- 0 correspond to processes with absorption and are not "honest." However, if #0 c
in the Laguerre case or/zo 2c(c + c)/(2c + a + f)(2c + + f + 1) in the Jacobi
case, the corresponding processes are simply solved using associated polynomials.

In 2 we explain the method used by applying it to the Laguerre case. In 2.1
we give an explicit expression for the co-recursive associated Laguerre (CAL) poly-
nomials. In 2.2 we derive a generating function of them and we find the absolutely
continuous part of the spectral measure. Section 2.3 is devoted to the derivation,
using the Orr’s method, of a fourth-order differential equation satisfied by the CAL
polynomials. In 2.4 we present results obtained in some limiting cases, among which
is a new simple case of associated Laguerre polynomials.

In 3 we briefly present some results corresponding to the Jacobi case. In 3.1 we
give an explicit expression for the co-recursive associated Jacobi (CAJ) polynomials.
In 3.2 we present a generating function and in 3.3 we give the absolutely continuous
component of the spectral measure. Section 3.5 is devoted to some limiting cases
of CAJ polynomials for which we give fourth-order differential equations that they
satisfy. In 3.6 we give some concluding remarks.

We use the notation of [7] for the special functions used in this work. We do
not give validity conditions on the parameters of the used hypergeometric functions,
analytic continuations, or limiting processes giving, in general, valid formulas. We
use Slater’s notation [29] for the product of F functions:

(1.6) F ,, ,fq fir(o,)
i=1 / i=1

2. The case of Laguerre polynomials. Replacing n by nTc in the recurrence
relation of the Laguerre polynomials we obtain the recurrence relation satisfied by the
associated Laguerre polynomials L(x; c)"

(2.1) (2n + 2c + c + 1 x)pn (n + c + 1)pn+l + (n + c + ol)pn_1

To complete the definition of the polynomials Lg(x; c) the initial condition

(2.2) L-l(X; c) 0, L(x; c) 1
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has to be imposed. These polynomials are orthogonal with respect to a positive
measure when (n + c)(n + a + c) > 0, for all n > 0. (See [2] for details.)

Note that if we consider the monic polynomials L,(x; c) defined by

(2.3) Lna(x; c) (--1)n(C + 1)nL(x; c),

they satisfy the recurrence relation

(2.4) (x 2n 2c a 1)L(x; c) L+l(x; c) + (n + c)(n + c + c0Lna_l(X; c),

We can see that this recurrence is invariant in the transformation T defined by

2.1. Explicit representation of the CAL polynomials. Equations (2.1) and
(2.2) give for L(x; c),

1
(2.6) L?(x; c) (x 2c o 1).

c+l

The CAL polynomials L,(x; c,#) satisfy the same recurrence relation (2.1) with a
shift # on the monic polynomial of first degree, i.e.,

1
(2.7) L?(x; c, #)

c + 1
(x + # 2c o. 1).

To obtain L(x; c,#) with (2.1) we have to impose the initial condition for the CAL
polynomials

(2.8) La_l(X; c, #) /t

c + a’ L(x; c, #) O.

Even for c + a --* 0 this initial condition in the recurrence relations (2.1) leads to
(.).

We know two linearly independent solutions of (2.1) in terms of confluent hyper-
geometric functions:

(c+a+l)n (-n-c) (-n-c-o)(2.9) u,
(c+l)n

tgt
l+a ;x and vn tFt 1-a ;x

Writing the polynomials L’(x; c, #) as a linear combination

Lna (x; c, #) Au, + Bv,

and using the initial condition (2.8) we obtain

(2.11) A cq- a - c- a

where A may be calculated using contiguous relations of confluent hypergeometric
functions [7, pp. 253-254]

(2.12) A u_vo uov-1 -e:.
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With the help of the relation

a ;x -ZIF1 ;x --(/-Z)2F2{-%Z-+l
k

we can write the CAL polynomis

(2.14)

Lg(x; c, ) (c + 1)n (1 / T)

x# c- e(c + 1),F \ 1 +, c
; 1- ;

his represenagion is ghe one we use go derive ghe fourgh-order differeniN equagion
in 2.. Ig is vNid only for 0, 1, 2,... bug ghese resgriegions can be removed by
limiting processes.

Nollowing ghe meghod in [2] we e find explieig represengagion. We
grsform ghe N in (2.11) ing Nummer’s grsformagion [7, p.

(2.15) F (:;x) e F c
-x

Then we use the formula

(2.16) F (;x)F (;-x)= =o (a)kxk3F2k’(b) (-, 1-k-_k a, db’C ;1
for the four products in (2.10).

Applying the teterm relation [4, eq. (2), p. 15] to the four resulting 3F2(1)
gives a sum of two terms that we c oup to obtain the explicit form

L(x; c, ,) (c + + 1)n n (-n)k
n{ (c + 1)k(c + a + 1)k

k=0

xFa +k+l,c++k+l,G;1 ,
where

G

Take care of the limiting processes when n k and when c or c + c 0. The
representation (2.17) can also be proved using the generating function (2.22).

2.2. Generating function, spectral measure. Let F(x, w) be a generating
function of the CAL polynomials L’(x; c, #),

(2.19) F(x, w) Z wnLan (x; c, #).
n--O

The recurrence relation (2.1) and the initial condition (2.8) lead to the following
differential equation for F(x, w),

w(1 w)2-wF(X w) + [(1 w)(c (c + o + 1)w) + xwlF(x, w) c w.
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The function F(x, w) is normalized by the condition F(x, 0) 1 and due to the
orthogonality of the L(x; c, ) we have the boundary condition

(2.21) F(x, w)d(x) 1,

where de(x) is the spectral measure.
The solution of the differential equation (2.20) which is bounded at w 0 is easily

obtained, for c > 0, following the same method as in [12]"

F(x, w) w-C(l w)-a- exp -I W

/oX uc-l(1 U)c--I(c- p;U)exp
1 u

Changing variables according to

T Z
(2.23) u w

1+-’ l+z’
and integrating both sides of (2.22) with respect to de(x), taking (2.21) into account,
leads to

(2.24)

z

re--l(1 -- T)-1-a-c[c T ’(c #)] exp [-x(z T)ld’d(x).

Taking the Laplace transform of the above identity we obtain, for the Stieltjes
transform of the measure de(x), the relationship

de(x)"(v) + v (c,--c; p) -{- (c tt)(c -4- 1, 1 o; p)’

which we can rewrite formaly, using the expression of the Tricomi function in terms
of generalized hypergeometric functions [7, p. 257], on the form

-{- , c(c+a) )(2.26) s(p) pC(c + 1 1 a;p)3F1 (c+
+ 1

-1

where the principal branch of the 3F1 is considered one of the functions. The
function (a,b;p) having no zeros for argpl _< r the denominator of (2.25) has no
zeros in this region at least for # _< c.

The CAL polynomials belong to the Laguerre-Hahn family of orthogonal poly-
nomials and are of class zero [22]. It is easily verified that the Stieltjes transform s(p)
of the measure, calculated in (2.25), is a solution of the Riccati equation

(2.27) ps’(p) [#p (c #)(a + c #)] s2(p) + [p + a + 2(c #)l s(p) 1.

The absolutely continuous part of the measure de(x) can be computed using the
Perron-Stieltjes inversion formula. Details of the method are in [10] and we obtain

(2.28) ’(x)--
1 x"e-x

r(c + 1)r(c + a + 1) I(c, _a; xe,r) + (c -/)(c -I- 1,1 a; ="
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We can formally write

(2.29) ’(x)
X,a/2Ce-X

r(c + 1, c + c + 1)
,c+c, / 1

3F1

The CAL polynomials L’(x; c, #) satisfy the orthogonality relation, valid at least
for # <_ c, c>_ 0, a+c > -1,

L’ (x; c, #)Ln(x; c, #)de(x) + + 1)n
(c+

2.3. Fourth-order differential equation. The CAL polynomials verify a dif-
ferential equation of fourth order [3], [22]. One way to obtain this fourth-order dif-
ferential equation is to start from their explicit form (2.14). The right-hand side of
(2.14) is a sum of two products of a 1F1 times a 2F2. The 1F1 are solutions of a
second-order differential equation, but for the 2F2 a third-order equation is expected.
In fact, the 2F2 involved in (2.14) are of the form

(2.31) y(x) 2F2 (b’e + l )d,e ;x

which can be shown with little effort to be a solution of the second-order differential
equation

(2.32)
x[(b- e)x + e(d e 1)]y"(x) {(b e)x2 / [e(2d e 2) + b(1 d)lx

ed(d- e 1)}y’(x) b[(b- e)x
/ (e + 1)(d- e 1)]y(x) 0.

So we can use the Orr method to obtain the differential equation satisfied by the
products involved in (2.14) [23]. Let us notice that because ofthe second product being
obtained by the transformation T of the first product, the fourth-order differential
equation will have to be invariant under this transformation.

The function

Y: e-lF1 1- o
x

is a solution of

(2.33) xy" + (1 a + x)y’ + (1 + n + c)y O,

and the function

(-c,#-c+l )Z 2F2 k i +c,p- c ;x

of
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Changing the functions y and z to y fv and z gw with

(2.353)
(2.35b) [(- .)( +- .) + .11/2-,-
we obtain the normal form of the differential equations (2.33) and (2.34):

(2.36) v + Iv 0, w" + Jw O.

The product u vw is a solution of the fourth-order differential equation (see [30,
p. 146])

(2.37)

Finally, we obtain the needed equation for the CAL polynomials setting y(x) fgu.
Details of these calculations are very difficult to write explicitly and were achieved

with the help of the MAPLE computer algebra [6]. Although with this help the fourth-
order differential equation for the CAL polynomials is not easy to find. We give it as
a curiosity:

(2.38) u(’) () + u()() + u()() + ,()() + cou() 0,

with

(2.39a)
(2.39b)
(2.39c)
(2.39d)
(2.39e)

ca x2(2Ax2 + Bx + 2C),
c3 2x(3Ax2 + 2Bx + 5C),
c2 -2Ax’ + Dx3 T Ex2 T Fx + G,
cl -4Ax3 / Hx2 -4Ax3 + Ix + J,
co n(n + 1)(2Ax2 + gx + 2L),

where

A- #2(1 + 2n),
S #(2(1 + 4n)#2 (4(1 + 2n)(2c + a) 1)# + 2c(3 + 4n)(c + a)),
C (c- #)(c + a #)(2ntt2 ((1 + 2n)(2c + () + 1)# + 2c(n + 1)(c + a)),
n -#(2(1 + 4n)#2 (2(1 + 2n)(8c + 43 + 1 + 2n) 1)# + 2c(3 + 4n)(c + a)),
E -4n#4+((1 + 4n)(4n + 12c + 63 + 3) + 3)tt3

-2(1 + 2n)((2c + a)(4n + 12c + 63 + 2) 2c(c + a) 1)#2

+c(c + a)((3 + 4n)(nn + 12c + 63 + 1) + 3)tt 4c2(c + )2(n -I- 1),
F 8n(2c + a + n + 1)#a

-((1 + 4n)((2c + a)(4n + 12c + 63 + 3)-8c(c + a)-1/2) + lOc + 53 + 5/2)3

+((1 + 4n)(((x2 + 6c(c + a)(2n + 8c + 43 + 3/2) (2c + a)(12c(c + a) + 1/2))
+(23 + 6c(c + a) 1/4)(4c + 23 + 23/6) 25/63 + 71/24)

-2c(c + a)((1 + 4n)((2c + a)(2n + 4c + 23 + 3/2) + 23 1/4)
+(2c + c0(8c + 4c + 5/2) + 232 7/4)tt
+82( +)(+ )( + 2 + ),
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-e(. )( + e)(- ,)( +. ,)(e(- ,)( +.
-(2c + a + 1) + 2c(c + )),

U 2(-2(5n + 1)2 +((1 + 2n)(n + 12c + 6a + 1/2)-3/2)-2c(c + a)(5n + 4)),
I -12n4 + 2((n + 1/5)(8n + 40c + 20a + 7/5) + 93/25)3

+2(-(1 + 2n)((2c + a)(4n + 12c + 6a + 2) + 10c(c + a) 1) 6c 3a)2

+e( + )((a/ + .)(s. + a0 + 0. + aa/) +/), 1(+ ):(. + ),
j a(, )(, .)(a.(. + +. + 1), + (-1/a( + .)((: + .)(. + s

+a + a) + s( + .) + s) /e- /a.), + a( + )(. + 1)(. + + .)),
K ,(e(a. ),: (a(1 + .)( + .) a), + (a. + )( + .)),
L (- ,)( +. ,)(e(n ), (( + n)(+ .) + a), + (- + e)( + -)).

Note the invice of the differential equation (2.38) by the trsformation T defined
i. (.).

2.4. Pticul ces. We now give the different results corresponding to lim-
iting ces of special interest.

2.4.1. Limit c 0. In this limit we obtain om (2.14) the crecursive Laerre
polynomials.

(.a0)

L(x;0,)= n Fkl_,_ ;x F l+;x

he limig 0 in (2.40) leMs bk go ghe elision Layette polynomiNs. An explicig
form is

(-
n[ k[(1 + a)k=O(.al)

(--)x 1+ (l+)(++)a k
;1

d ghe corresponding absolugely conginuous pg of ghe meure is given for 0,
>-1, by

(2.42) ’(x) [1 -/g(1, 1 c; xe-ir)[-2-’1"(1 +
where the limit # 0 is also straightforward.

It is easy to see that the differential equation (2.38) satisfied by the co-recursive
Laguerre polynomials can be factorized in the limit c 0 to obtain the fourth-order
factorized (2+2) differential equation

(2.43)
[xA(x)D2 + {(2 + a x)A(x) xB(x)}D

+ (n 1)A(x) + (x a 1)B(x) + C(x)]
[xD2 + (x + 1 a)D + n + 1] Lna (x; 0, #) 0,



536 JEAN LETESSIER

where D d/dx and

(2.44b)
(.aac)

A(x) 3x + 2(x a + ){2n(x a + ) + x a 1},
B(x) 1 + 2x 2a + 2(1 + 4n)(x a + #),
C() ( + ){ + ( +)} +( +).

The comparison with the differential equation given in [27, eq. 34-35] requires some
attention because of a few misprints.

2.4.2. Limit c --a. In this limit we obtain a special class of CAL polynomials
corresponding to the associated Laguerre polynomials for which

n{
(2.45) Lg(x;-a)

(1 a’nL-a(x)’)
We can write the L(x;-o, #) as

which gives (2.45) in the limit # 0. Except for the global factor n!/(1 o)n, (2.46)
is obtained from (2.40) changing a to -a. The corresponding measure and differential
equation are obtained in the same way as 2.4.1. An explicit form is

(.aT)
(_,)L’(x;-a, u) Zk!(1 a)k

k=0

#( )x l+(l+k)(l_+k) (1 + k n, 1 a, 1
3F2 , k-c+2, k+2

2.4.3. Limit D 0. In this limit we obtain the associated Laguerre polynomials
studied in [2] and [12]:

(2.48) L’(x,c)--

with the measure

"(P’tx) F(1 + c, 1 + c + a)
i,kc 1 a; xe-,r)1-2i

An explicit form is
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The limit c 0 leads back to the Laguerre polynomial case. The coefficients of the
differential equation (2.38) satisfied by the associated Laguerre polynomials are now
very simple:

(2.51) ca x2, c3 5x, c2 -x(x-2F)-a2 +4, cl 3(F-x), co n(n+2),
with F n + 2c + c. This differential equation was first given by Hahn [9, eq. 22].
See [25] and [27] for the special factorizable case c 1 and [5] and [26] when c is an
integer.

2.4.4. Limit D c. In this limit we obtain the so-called zero-related Laguerre
polynomials studied in [12]. Note the symmetry T of the monic polynomials is now
broken:

(c/l)n 1F ;x F l+a ;x

(.)

a(a+ l)
x F1 +a;x 1FI 1-a ;x

and the measure

(2.53)

Again the limit c- 0 leads back to the Laguerre polynomial case.
The explicit form (2.17) simplifies into

n! Z (c q- 1)k(c + c + 1)k
k=0

xF + k + l,e + o + k + l ;1

The coefficients of the differential equation satisfied by the zero-related Laguerre
polynomials are

(2.55a)
(2.55b)

(2.c)
(2.55d)

c4 x2(2(2n + 1)x + D), c3 2x(3(2n + 1)x + 2D),
c2 -2(2n + 1)x3 + (8n(F + 1) + 8c + D)x2

(4(a2 1)n- 2a2 n(4c + 1) 1)x- 1/4n(n2 9),
Cl 8(2n + 1)x= 4(2n(F + 1) + 2c D)x 2n(n(n + 3) + 6c + 2D),
co n(n + 1)(2(2n + 1)x + 3D),

with

(2.56) F n + 2c + a, D 1 + 2(,

and are no longer invariant under the transformation T.

2.4.5. Limit D c+ ex. This is a new simple case of CAL polynomials lacking
in [12]-
(=.)

F ;x F 1-a ;x

+ (c+ a)(c+ a + i)n
a(1-a)(c+l)n xF1 2-a ;x 1F1 l+a ;x



538 JEAN LETESSIER

and using [7, (10), p. 258] the measure is obtained:

(2.5s)

In this case the limit c- 0 does not lead back to the Laguerre polynomial case but
to the co-recursive Laguerre one with # c.

The explicit form is

(2.59)

The coefficients of the differential equation (2.38) satisfied by the polynomials
(x, c) are obtained from (2.55), (2.56), changing only D 1 + 2c by D 1 2c.

3. The case of Jacobi polynomials. We now present some results on the CAJ
polynomials. The recurrence relation of the associated Jacobi polynomials P’f(x; c)
is [31]

(3.1)
(2n + 2c + a +/ + 1)[(2n + 2c + a +/ + 2)(2n + 2c + + f)x + a2 _/21pn

2(n + c + 1)(n + c + c +/ + 1)(2n + 2c + c + )Pn+I
+ + + + + + + +

We can note the invariance of the recurrence relation (3.2) under the transformation
T defined by

(3.2)

All polynomials satisfying (3.2), for which the initial conditions are symmetric in c
and/ and invariant under T have the property

(3.3) p-a,-(x, c + + ) p’’(x, c).

As in [31] we use the more convenient shifted polynomials defined as

(3.4) R’f (x; c) Pna’f(2x 1; c).

Due also to the properties of the recurrence relation (3.2) we have

R’(x; c) (-1)nR’a(1 x; c).

3.1. Explicit representation for the CAJ polynomials. A solution of the
recurrence relation satisfied by the R,(x; c) in terms of the hypergeometric function
is [21, p. 280]

c, n -l- c -l- o + ,6 -1- 1 )(c+ a + 1)n2F ;1 x(3.6) un (c + 1)n 1 + c



CO-RECURSIVE ASSOCIATED LAGUERRE AND JACOBI POLYNOMIALS 539

and another linearly independent solution is given by

(c + + l)n (-n c- o ,n + c + l
o(3.7) v,=7"u,= (c+a+f+l)F ;1-x

The functions un and x-t(1 x)-’vn are two independent solutions of the second-
order differential equation

(3.8)
x(1 x)y"(x) -}- [1 +/- (a + f + 2)x]y’(x)

"1" n -I- c) n .-I- c -.1-- o -- -I- 1)y(x) 0.

The associated Jacobi polynomials are defined by (3.2) and the initial condition

(3.9) p_a[ (x; c) 0, p$,t(x; c) 1.

For P’(x; c), this gives

P?’f(x; c) (2c + a + f + 1)(2c + a + f + 2)

(3.10)
2(c + 1)(c + a + f + 1)

[ - ]+ (2c + a + f)(2c + a + f + 2)

The CAJ polynomials Pn
on the first monic polynomial. This corresponds to the initial condition on the shifted
CAJ polynomials R,(x; c, #):

(3.11) R’f(x; c, #) D _(2c + + f/)(2c + + f + 1)
2(c + a)(c +/) #, R’’f(x; c, #) 1.

If c + a
on the value of x in P’f(x; c).

As in 2.1 writing

(3.12) R’(x; c, #) Au, + Sv,

and using (3.11) we obtain

1
[Duo u_]

1
[Dvo(3.13) A

where A is easily calculated using the fact that un and x-(1- x)-’vn are two
independent solutions of (3.8),

(2 +(.4) -0 0- -(+ )(+ ).
The condition A 0 leads to a 0 and 2c + a + f/ 0. We can note the invariance
of D under T and can note that B TA.

Grouping the two 2F involved in the expression (3.13) of A gives

(3.15) A c +
a(2c+a+) 1-a,F ;1-x
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with

(3.16) F c[D(c 4- ) c- a ]
D(c 4- ) 4- c

and the CAJ polynomials could be written as

(.1)

Ran’(x; c, It) (1 4- T’)
c 4- a 4- D(c 4- Z) (c 4- or) (c 4- a 4-
(2 + + ) ( + 1).

)<3F2 1-a,F ;1-x 2F1 1 +a ;1-x

We will use this expression of the CAJ polynomials in 3.4 to obtMn a fourth-order
differentiM equation of them.

sforming the 2F(1- x)in (3.12) by [7, eq. 1, p. 108] one obtns, with little
algebra,

(3.18)

(2c + + )
x
(c+ a + + 1),F1 1-fl ;x

x [e+DNe (-e,e+++X)1+; _N(X-e,e++)]1+;
his formula generNies ghe formula of [1, eq. 28] go ghe ee ofhe CAJ polomi.
As ghe elieig form of ghe eL polomi (2.14) ghe represengagion (.17) d
(.18) e id only for 0, 1, 2... d 0, 1, 2... bug e be eended
by limiging processes.

We obgNn explicig formula following ghe meghod in [1]. We firsg use [7, eq.
14, p. 87] for eh produeg of N in (.18) go obgNn fo series involving gma
negiod e Fa. or wo of ghem we use [4, eq. 1, p. g6]. he ne sgep is go use
[4, eq. , p. 62] gwiee for eh Na. Aer numerous ecellagions only gwo series of
Fa remNn. We e oup go obgNn ghe following explicig form:

(+ + + 1)( + + 1) @ (-)( + + + + )R’O(; 7(-1) n[(c + + + 1)n =o (c + 1)(c + + 1)k

(k-n,n+k+2c+a++ 1,c,c+,G+ 1

xsF4 c+k+l,c++k+l,2c+a++l,G ;1. xk,

where

(3.20) v 2( + Z)(2 + + Z)
2( + Z) + (2 + + Z)(2c + + Z + 1)"

3.2. Generating function. One c obtain a generating nction of the CAJ
polynomials following the se strate in [31] for the sociated one. Let G(x, w)
be a generating nction of R.(x; c, )-

( + 1),( + + + )""R,’;(.=1) (, w) ).
,=0 n(2c+a+B+ 2),
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Starting from the form (3.17) for the R’,(x; c, #) it follows that

and using [31, Thin. 4] we obtain

(3.22)

G(x, w) (1 + T’) c / a + D(c + )
(2c + + )

x (c + a) w(Z + 1)
-c- a- ,c,F + 1

3F2 1 a, F

2FI(-c’c-{-T[Tll+a ;---l-Z) 2F1 (c + a + I, c + a + f + 1
2c + a + f + 2

where

,);l+Z2

1- V/(1 / w)2- 4wx 1 + V/(1 + w)2- 4wx
(3.23) Zl Z2

W W

which generalize the already exotic generating function [31, eq. 75].
3.3. Spectral measure. The Stieltjes transform of the measure of the shifted

associated Jacobi polynomials R,(x; c) is [31, eqs. 63-64]

(3.24) 12F1,2c+a+f+2;.()
1

2F1 ,2c+a+;P

The CAJ polynomials R,f(x; c, #) satisfy the same recurrence relations as the
R,,f(x; c) with a shift # on the first monic polynomials

(3.25) R,(x; c, #) R,(x; c) (2c+c+f+ 1)(2c+c + f-{- 2)
2(c -t- 1)(c + c + fl -t- 1)

Using continued J-fractions [14], [8], [28] whose denominators are n,(x; c, #)
and Rna,f (x; c), we can derive the following for the Stieltjes transform of the measure
of the CAJ polynomials:

(3.26)
" ())-:s(p; #) s(p) (I - :s

fc+ l,c+fl+ 1 pl_)F

p2F1
,2c+ c q- f -t- 2F1 ,2c+ c-+- f + 2

which using contiguous relations we can also write as
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(3.27)

s(p; #) 2F1 .2c + a +/ + 2

x
2e+ o+

Grouping the 2F1 in (3.28) gives the compact formula

cq-l, cq--}-i )[ c,c-+-/,(7+1 1)]
-1

(3.28) s(p;#)=2Flk,2c+a+/+2; 3F2k,2c+a+/+l,G;
where G is given by (3.20). A sufficient condition for the positivity of the denominator
in (3.28) on (1, oo)is

(3.29) c >_ 0, c > -/, c, > -1, # _>

but other conditions are possible.

+ Z)
(2c + +/)(2c + a +/ + 1)’

To obtain the absolutely continuous part of the spectral measure we need to
evaluate s+(p; #) s-(p; #), where s+ are the values of s above and below the cut
[0,1]. Using the analytic continuation [7, eq. 2, p. 108] for each 2F1 in (3.26) we find,
for the spectral measure of the CAJ polynomials,

c,c-+- e.) c+l, cq-q-1 )
-2

’(x) (1 X)oT,q-2c 2El 2c T T; T 2El 2c + + + 2

(1 )+2c 3F2 2c + + D + 1, G;

valid at let under the conditions (3.29).
3.4. Fourth-order differenti equation. The method used to obtain the dif-

ferenti equation satisfied by the R,(x; c,) is the se in 2.3. In (3.17) the
hypergeometric nction 2F1 is solution of (3.8) d the 3F2 is of the form

F2 (a’ b’ e + l )d,e ;x

which is also a solution of the second-order differenti equation

(3.31)
x(x 1)[(a e)(b e)x + e(d e 1)]
+ { (a e)(b e)(a + b + 1)x2 + [e(a + b + 1)(24 e 2) d(ab + e2) + ab] x

+ de(e d + 1)} y’(x) + ab [(a e)(b e)x + (e + 1)(d e 1)] y(x) O.

We don’t write the fourth-order differential equation hardly obtained by symbolic
MAPLE computation. The coefficients are at most of degree eight in x, and it would
take several pages to write them. We give the results only in the following limiting
cases.
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3.5. Particular cases.

3.5.1. Laguerre case limit. The limit giving the CAL polynomial case is ob-
tained by the replacement

(a.a) --’ -- ,
-t-’

in Pg’(;e,#). The representation (a.17) is the more suitable to obtain the form
of the CAL polynomials (2.14) using Kummer’s transformation (2.115) for one of the
confluent hypergeometric functions and his generali.ation

(3.33) 2F
e + 1 x -a- + 1

ce ;X e 2F2 e-a
(--)C e--a

for one of the 2F2. Note that (3.33) gives (2.15) in the limit e --. o.

3.5.2. Limit c 0. In this limit we obtain the co-recursive Jacobi polynomials.
An explicit form is

(3.34)

Ran,(x; #) (_i)n ( + l)n (--n)k(n + a + + 1)z
n! k!( q- l)k

k=O

2(k + 1)(/ q- k + 1) 4F3 k + 2,/ + k + 2, c + + 2 ;1

and the spectral measure is given by

(3.35) ’(x) (1 x)ax 1 + -x2F1
The limit # 0 leads back to the Jacobi polynomials.

The fourth-order differential equation satisfied by the co-recursive Laguerre poly-
nomials can be factorized in the limit c 0 to obtain, as in [27], the factorized (2+2)
differential equation

0 [(1 x2)A(x)D2 -I- { (Z oz. (a q.- Z q 4)x)A(x) (1 x2)B(x)} D
q- {n(n q- oz --I-. -.t- 1) (c -I- -t- 2)} A(x)

(3.36) + {/ ( (a + + 2)x} B(x) + C(x)]
[(1 x2)D2 + {(a +/ 2)x + a -/}D

q- n(n -I- oz -I.- -I- 1) + -+- ] nna’9(x;
where

A(x) 2(c +/)2(2n + l)(n + a + + i/2)x2 + 2(c +/)(4n(n + a + + i)
(-,(1 + + Z) + Z) + (1 + + )(-,( + Z + 2) + 2 2Z))

+4,(n + + Z + 1)(-t,(1 + + Z) + a Z)=
-( + Z)(-2,(1 + + ) (Z ) 2(Z )= 3 3Z)

a() -( + Z)(( + Z)(a,(n + + Z + ) + 3 + 3Z) + 8,(n + + Z + )
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X (--#(1 + c + f) + c --/) 2(c +/ + 2)(1 + a +)+ (a )(3a + 3 + 4))
C(x) -(a + )((a + )(a + + 2)(2n(n + a + + 1) + a + 1)x2

+ 2(( + + + )(-( + + )( + a) + 2( )( + 2))

( ) +s +) + ( + )((. ): 3 3 s)).

3.5.3. Limit c --a . Due to the T iniance of (3.2) we obtain in this
limit the special ce of CAJ polynomials for which

(3.3) g,"(;- ,) ",-(; ).

All the results e obtained kom 3.5.2 by chging a to -a and to -.
3,5,4. Limit c --, The explicit form (3.19) simplifies in the se way in

the ce c 0. One obtains

g,.(; _,) (_1). ( + 1). (-.)(. +. + 1)
(. + 1)

=0
(1 )

(3.38) x ( 1 + ( ")(" + + + 1)
2(+ 1)(:-+)

k+2,2-+k,-+2 ;1

Comping ghis form wigh ghe explicig form of ghe ereeursive Jacobi polynomiNs
(.4) one sees

( + 1)R’O(; -,) ( + 1)(1 )R’-o(; )"

Ofeose, ghe speegral meuredghe fourgh-order differential equatione obgNned

om (.g) d (.86), ehging o -.
.g.g. Lmt e --. his ee is ghe T grsform of ghe preceding ee. All

ghe resulgs e obgained om .g.4 by changing go -d go -.
.g.. Lmt . In ghis limig we obgain ghe sociaged Jobi polynomiNs

studied in [all. he form [al, eq. a] is obtain directly using (.18) bu a slightly
differeng form is

(3.40)

R’’(x; c) (1 - T’) (c + ()(c + ( +/) (c + ( + 1)n
a(2c -t- c +/) (c + 1).

X2Fl(i-c-Oz-’cl-a ;1-x)(-n-c,n-t-c-t-a--I-Ti2F11Ta

The explicit form [31, eq. 19] is easily obtained starting from (3.19) with G 2cWaTf,
the 5Fa reducing to a aF3. Obviously the limit c 0 leads back to the Jacobi
polynomials.

The coefficients of the differential equation (2.38) satisfied by the associated Ja-
cobi polynomials are

(3.41a) ca x2(x- 1)2, c3 5x(x- 1)(2x- 1),
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(3.41b)
(a.a c)
(3.41d)
with

c2 (24 (n + 1)2 A) x(x 1) Bx 2 + 4,

Cl -3/2 ((3A / (n + 3)(n- 1))(2x 1) + B),
co n(n + 2)A,

(3.42) A (C / n + 1)(C / n 1), B (a f)(a / ), C 2c -t- a //.

This result was first given by Hahn [9, eq. 20]. Note the T’ invariance of A, B, and
C leading to the invariance of the ci, more obvious than in [31, eq. 47-48].

3.5.7. Limit / 2c(c + a)/(2c + f + a)(2c + f + a + 1). In this limit the
symmetry T is broken. We obtain the zero-related Jacobi polynomials studied in
[15]. An explicit form is

(3.43)
(2c -I- c -I- f -I- 1)n(/ -I- c -I- 1)n - (--n)k(n -I- 2c -I- (x -I- -I- 1)k7’(x; (-1)n n!(c + a +/ + 1)n ZL.,k=O (c + 1)k(c +/ + 1)

xFa\ e+k+l,c++k+ 2c+c++1 ;1

The limit e 0 leads back to the Jacobi polynomials and the limit defined in (.2)
gives the .ero-related Laguerre polynomials (2.4.4), using Kummer’s transformations.
The spectral measure is

(3.44) ’(x) (1 x)axf+2c 2F1 ,2c -t- c +/ -t- 1

The coefficients of the differential equation (2.38) satisfied by the polynomials
Tn,f(x; c) are

(3.454) ca x2(x- 1)2(Ax -t- D),
(3.45b) c3 x(x 1) (8Ax2 3(A 3D)x 4D),
(3.45c) c2 -1/2A(A -t- 2C2-29)x3 + (1/2A(A --t- 2C2- 2B-23) D(C2-19)) x2

-1/4 (A(D + 1)(D 3) 20(2C2 2B -t- D 35)) x 1/40(O2 9),
(3.45d) Cl -A(A -I- 262-5)x2+ 1/4 (A(A --t- 2C2- 2B 50-5)-30(4C2-11)) x

+1/40 ((D / 3)A -t- 6C2 68 -{- 30 15),
(3.45e) co 2n(n q- 1)(C q- n)(C q- n -}- 1)(Ax + 3D),
where B and C are defined in (3.42) and

(3.46) A (2n -t- 1)(1 / 2C / 2n), D 1 / 2f.
3.5.8. Limit / 2(C + f)(c + a q- f})/(f} + a + 2c)(f + x + 2c + 1). This

case is the T transform of the case in 3.5.7. The explicit form is

(3.47)
(2c -I- c -I-/ -I- 1)n(c -I- c + l)n X- (--n)k(n -I- 2c -I- -I- -I- i)’(x; c) (-1)n n!(c + 1)n Zlk=0 (c + a + f + 1)k(c + a +

aF3\(k-n’n+k+2c++D+l’c++’c++lc+o++k+l,c+o+k+l,2c+o++l ;1) x.
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The limit (3.32) leads back to the Laguerre case in 2.4.5 and the limit c 0 to the
co-recursive Jacobi polynomials with # 2/(a -t- -t- 1). The spectral measure is

(1 z)=z+= =F1 \c++g+ 1 z

The coefficients of the differential equation (2.38) satisfied by the polynomials
R,(x; c) are obtained from (3.45), (3.46), changing only D- 1-t-2g by D- 1- 2.

3.5.9. Limit/ --2c(c + )/(2e + t + l)(2e + c + + 1). The symmetry
T’ is also broken. We obtain a new simple case of CAJ polynomials. An explicit form
is

(3.49)
(2c q- c q- -{- l)n(/ -l- c + l)n (--n)k(n q-- 2c q- q- q- 1)k(-i)n n!(c --I-- c -I- g --I’- 1). / (c -I- 1)(c --I- g -I-- 1)

k-O

Ik- n,n+ k + 2c+a +g+ 1, c,c+g ) x
,

xaF3 \c+k+ 1, c++k + 1,2c+a ++ 1 ;1

and the spectral measure is

(3.50) ’(x) (1 x)tx/+2c 2F1 2c + a + g + 1 -The coefficients of the differential equation (2.38) satisfied by the polynomials

(3.51a) c4 x2(x- 1)2 (A(x- i) D),
(3.51b) c3 x(x- i) (8Ax2 (13A + 9D)x + 5A + 5D),
(3.51c) c2 -1/2A(A + 2C2 29)x3 + (A(A + 2C2 B 32) + D(C2 19)) x2

-1/2 (A(A + 2C2 + 22 2B 43) + D(2C2 2B D 41)) x
+(2 4)(A + D),

(3.51d) Cl -2A(A + 2C 5)x=
+1/2 (A(TA + 14C2 28 + 50 35) + D(3C2 33)) x
-A(3/2A + 3C2 S- 2a2 7) 3D(C2 B- 1/20 3),

(3.51e) Co n(n q- l)(C q- n)(C q- n q- l)(A(x i) 3D),

where B and C are defined in (3.42) and

(3.52) A (2n + 1)(1 + 2C + 2n), D 1 + 2a.

3.5.10. Limit/ --2(c + a)(c + t + )/(2c + t + )(2c + a + + 1). This
case is the T’ transform of the case in 3.5.9. The explicit form is

(2c q- c q-/ q- l)n(c q- c q- l)n (--n)k(n q- 2c q- o q- q- 1)(-1)n n!(c q- l)n =o (c q- c q- q- l)k(c q- ( q-

(k-n,n+k+2c+a+g+l,c+a+,c+a )xkx4F3 kcq_a+g+k + l,c+a+k+ 1,2c+a ++ 1 ;I
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and the spectral measure

(3.54) ’(x) (1 x)"-2xf+2c+2 (c/ 1, c+/+ 1 eiE)
The coefficients of the differential equation (2.38) satisfied by the polynomials

tna’(x; c) are obtained from (3.51), (3.52) by changing only D 1-}-2c by D 1-2c.

3.6. Conclusion. We end with brief remarks. In this article we have studied
properties of the co-recursive associated Laguerre and Jacobi polynomials that are of
interest in the resolution of some birth and death processes with and without absorp-
tion. For a few values of the co-recursivity parameter we obtain polynomial families
for which the results are of the same complexity as the corresponding associated poly-
nomials. For the CAL polynomials we find the two expected cases corresponding to
# =/0 (zero-related polynomials) and the new dual case/z :k-1 [20]. For the CAJ
polynomials, due to the properties (3.3) and (3.5), we have two more cases corre-
sponding to # -T#0 and # -T_1, where the transformation T is defined
by

(3.55)

In some cases the fourth-order differential equations satisfied by the polynomials
studied above are factorizable (co-recursive and associated of order one), but we do
not find factorization either for the co-recursive associated polynomials or for the
associated one. Of course, this is not a proof that the conjectures on this factorizability
made in [27] are wrong.

Acknowledgments. The author thanks Galliano Valent and Pascal Maroni for
stimulating discussions during the preparation of this article.
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BOUNDS AND MONOTONICITIES
FOR THE ZEROS OF DERIVATIVES

OF ULTRASPHERICAL BESSEL FUNCTIONS*

LEE LORCHt AND PETER SZEGO
() of [r--v+lJv+/_l(X)]t P-}- > 0, where Jv(x) denotesAbstract. The positive zeros

the standard Bessel function, arise in the study of the eigenvalues of Neumann Laplacians in N
dimensions [M. S. Ashbaugh and R. D. Benguria, SIAM J. Math. Anal., 24 (1993), pp. 557-570].
The case 1 is particularly relevant. To pave the way for these applications, the authors present

(t).dvhere inter alia (i) lower and upper bounds for p() and (ii) an explicit representation for spyk /
The latter implies that ,() is increasing in v for fixed k, , provided v -t- > 1

Key words, eigenvalues, Bessel functions, zeros, monotonicity

AMS subject classification. 33C40

1. Background and statement of results. In the course of their study [1]
of eigenvalues of Neumann Laplacians in higher dimensions, Ashbaugh and Benguria
require information concerning the zeros of [x-v+lJv+_l(X)], where Jv(x) is the
usual Bessel function of the first kind and order v; is independent of v. For
convenience of reference, they propose calling x-+lJ+_l(X) an "ultraspherica
Bessel function," since this function becomes (apart from the multiplicative factor
X/) the standard spherical Bessel function when and g 0, 1, 2, 3, We
adopt their nomenclature here [1].

The purpose of this note is to establish results that Ashbaugh and Benguria have
found relevant to their work. They have particular use for the case g 1, y

n,1 n 1, 2, 3,... and so we provide explicit statements below for this case.

By v we mean the kth positive zero of [x-v+lJ,+_(x)]’; ,(1) will be simplyFvk
,(0) j,k, where j,k is the kth positivedenoted by Pvk. Furthermore, we note that

zero of Jr(x), since [3, 3.2, p. 45] [x-VJ,(x)]’=-Jv+(x)/xv.
We shall establish the following properties:

(1) 2( +)( + + 1) < < 2(v + t)v+2+1
, > O, v > -1, v+ > O;

in particular,

4 2(I’) 2v + < P,,I < 2v + 2, v > -i
v+3

We need (2) and (3) as an alternative lower bound for [p(]2. It is weaker than the
lower bound provided in (1) for the case ( 1) required by Ashbaugh and Benguria,
but stronger when > 2 and is sufficiently large.

(I") >2v+ -2t, v+>O, >0.
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This inequality will show that the denominators in (2) and a fortiori in (2’) are
positive.

Withp(0 .(0 t+>l we have

dp()
(2) dr,

when, with p Pt,k, t > 0,

(2’)
dp p 1 { joV J2 (t) dt j2 (p) }d p2 (2r,- 1) j2(p)

2
t

From (1") and (2) it follows, for each k 1, 2,..., that

t,t: >0, r,+> 1.(3) dt

From (1’) and (2’) it follows, for each k 1, 2,..., that

dpvk
(3’) d, > O, r, > O.

As a consequence of (3), which establishes that .(e) is an increasing function of v
for each fixed k 1, 2, 3,..., Ashbaugh and Benguria [1] can infer that each Neumann
eigenvalue of the unit ball in n dimensions (n > 2) increases with the dimension.

2. A preliminary result. Common to the proofs of (1), (1’), (2), and (2’) will
be the equation

(4) )
and the special case 1

(4’) PkJ(Pk)= (-- l)J(Pk).

This is an immediate consequence of the differentiation formula

xd {J+_l(X)} xxx x’-1 J,+-I (x) (t 1)J,+t-1 (x)

and the definition of (t)

3. Proof of (1) and (1’). First we establish the lower bounds in (1) and
To do so, we consider (i) J++l (P(I)) > 0, a case which occurs whenever t > 1, as is

clear from (4), and (ii) J+t+l (P()) < 0.
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To case (i) we apply the unnumbered formula following [3, 15.3 (2), p. 486] with
x p() Taking (4) into account, this becomes

0< p( J.’ (p())- 2( + g)/1 -( + g-1)( +g-t-1)/ (p())

-/1 2(u + )(u + + 1) / (u l)J,+_ (p)

Recalling that p) < j+t-l,1, so that J+t-1 (P) > 0, this verifies the first

inequality in (1) in ce (i).
In ce (ii), we have p g++,. But [3, 15.3 (3), p. 486] (j)2 > y2 + 2,

so that

>

which exceeds the lower bound stated in (1). This completes ce (ii).
The upper bound in (1) c be inferred om the unnumbered formula immediately

above [3, 15.3 (4), p. 486] with repled by + g- 1, x by p, d then using
(4), this gives

+ t- + +

The le member is positive, since p < j+t-,, when + g- 1 > -1, i.e., when

The upper bounds in (1) d (1’) follow immediately.
Remark 1. om the upper bound in (1) we find that

lim p) 0 jl p(0)
--+0

v>-l.

Thus, p( is not continuous at 0 for any fixed v > -1. From (1) we see that
pvl --. 0 as v --. -1+, and, more generally, from (1) we see that p( --. 0 as v --. -+.

()Remark 2. Equation (4) implies that J+t-x(p) 0, k 1, 2,..., since the
Bessel differential equation has a finite singularity only at x 0, so that J+_(x)
and J+-x (x) can vanish simultaneously only at x 0.

4. Proof of (1"). The lower bound given by (1") will be obtained from the
differential equation, satisfied by y- J+t_(x)/x-:

x2y" + (2y 1)xy’ + (x2 2 2+ 2)y 0.

This is the form to which [3, 4.31(19), p. 98] specializes when in the latter (x) is
taken to be x, # to be 1 , and the occurring in [3] is replaced by +- 1.

In the course of the proof, we shall use a simple and presumably already recorded
property of a class of differential equations to which (5) belongs. We state and prove
it here for completeness.
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LEMMA. Let x yield a positive maximum of the function y(x) that satisfies
the differential equation

+ + o,

where co(x), al(x), a2(x) are differentiable functions such that ao() > 0 and a’2() >
O. Then y"() < O.

Proof. Clearly, y"() < 0. Suppose, par impossible, that y"() 0. Differenti-
ating the given differential equation and then putting x would give rise to the
equation

+ 0.

This equation shows, in the light of the lemma’s hypotheses, that y’"() < 0.
Thus, there exists 8 > 0 such that y"(x) decreases in - i < x < to 0. Hence
y"(x) > 0, - 8 < x < , so that y’(x) increases to 0, - 8 < x < , i.e., y’(x) <
0, -8 < x < . But this implies that y(x) decreases to its maximum y(), a manifest
impossibility. This proves the lemma.

Now we revert to the special case (5) and note that its solution y(x) J+e-1 (x)/
x-1 > 0, 0 < x < j+e-l,1, since (as assumed for (1")) / > 0. Thus, P(e)l, the
first positive zero of y’(x), yields a positive maximum. From the lemma, y"(p() < O.
Putting x p( in (5) concludes the proof of (1"), since y(p() > O.

Remark 3. The lemma, which would otherwise be unnecessary, establishes strict
inequality in (1"). This is required to permit the division in (2) and (2’) and the
positivity asserted in (3) and (3’).

Remark 4. There are equations of type (5) possessing nontrivial solutions y having
positive maxima y() for which y"() 0. With twice differentiable coefficients
co(x), al(x),a2(x) such that a0() > 0 as in the lemma, but with a2() a() 0
and a() > 0, it follows that y"() y"’() 0 and y(a)() < 0. Thus, it suffices to
select the solution for which y() 1, y’() 0.

One such example is a special case of a transformation, due to Lommel [see
3, 4.31(9), p. 97], of Bessel’s differential equation. This case gives the equation
y" / 4x2y 0. The initial conditions y(0) 21/a/F(43-), y’(0) 0 yield the unique
solution y Ixll/2J_ y, y, y(a)1/4(X2) Here (0) (0) 0, (0) -8 < 0, so that
x 0 yields a positive maximum at x 0 but with y"(0) 0.

5. Proof of formulae (2) and (2’). Formula (2) was put in the form stated
to facilitate the specialization into (2’) for which applications are at hand [1]. To
simplify the notation employed in the proof of (2), we put

(e)
# - 1, q

so that (2) can be stated, since q2 2p + g2, # + > 0, as

Thus, (4) becomes

(4") -#Jt,+e(q) + qJt,+e(q) O.



DERIVATIVES OF ULTRASPHERICAL BESSEL FUNCTIONS 553

Differentiating this with respect to # yields

_j+t(q) t.tO (x) + q
x=q x=q

+(1 I.t)J;+t(q)
dq dq j,,+ o,

or, collecting terms,

dq j, j,,
d-- { (1 I.t) +(q) + q t+(q) } Jt,+.(q) + # O#

x--q

x--q

In the left member of (6), we replace J’+(q) in terms of Jt,+(q) and J+(q)’ via
Bessel’s differential equation and then with J+.(q) in terms of Jt,+.(q) by means of
(4"). Thus,

dq ,, dq { 2#f, + f,2 q2
Jg+e(q) }(7) d-- ((1 I.t)Jg+(q) + qJt,+t(q) } -g q

The right member of (6) can be transformed via the identity [2, p. 247]

which we may evaluate between the limits of 0 and q. The lower limit on the left
vanishes since # -4- g > 0. Hence,

}q
Jt’+e(q) OJ+e(x) J+(q) tog2(/.t + g) O# x--q x--q

q (x)
dx.J’4-.

x

In this equation, the factor J’g+t(q) can be expressed in terms of Jt+t(q) by (4").
Hence, since J+t(q) : O,

OJ+t(x) 2(# + e) [q Jt(x)
q o, JoO =q =q

dx.

This evaluation, together with (6) and (7), establishes (2") and also (2) and (2’).
6. Proof of (a) and (3’). Now that (1"), (2), and (2’) have been demonstrated,

the signs in (3) and (3’) readily follow. The transition is accomplished with the use
of the identity [3, 5.51 (5), p. 152], valid for + l- 1 > 0,

-p() 2

2( 1 + e) J J+- dx 2 (p(t)) 2 j2 (p()
x y+-1 yT-lWn )"

n=l

This is positive, so that the sign of dp(t)/dt is, according to (2), the same as the sign
of (t)]2 ((2t- 2)g + g2), when + l > 1, i.e., positive, from (1").
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1. Introduction. Let f be a function.on [-1, 1], and

inf [If- Pn[IL[-1,1]E(f) ee_<

be its best approximation by polynomials of degree at most n in the Lp metric. One
of the central questions in the constructive theory of approximation is to characterize
E,(f), in terms of structural properties of the function f. Even though the analo-
gous problem for trigonometric approximation has been classical for a long time, the
characterization problem for algebraic polynomial approximation was only solved in
the eighties [15], [16], [17], [11] due to the complex nature of the behavior of the best
approximating polynomials around the endpoints +1. Eventually, as the complete
analogue of the trigonometric case, the following result was proved [11, Chap. 8]: let
o(x) x/1- x2, and

w(f, 5)p-- sup [IA7,fll,,
O<h<$

where

k=0

is the rth symmetric difference of f with increment t (= hop(x) in the definition of
w) and where we set A’f(x) 0 if any of the arguments in its defining expression
does not belong to [-1, 1]. Then for a positive integer r we have

(1)En(f)p Cw f,-
p

and its converse

r f,
1

Cn-r kr- Ekw n p k--1
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In particular, for 0 < a < r,

En(f)p O(n-a) w(f, 5)p O(ba).

The situation is even more complicated if we discuss weighted polynomial approx-
imation:

En(f)w,p inf IIw(f P)llp,
deg Pn _n

namely the problem has only been solved for Jacobi-like weights ([11, Thms. 8.2.1
and 8.2.4]) with a weighted modulus of smoothness that is similar in spirit to the w
above.

Let us only discuss the case of Jacobi weights

w(x) (1 x)’(1 + x)f

with a,/ > 0. We set for n-- 1, 2,...

( 1)w,(x)= x/1-x+-
n

and

x/1 +x+

The crux of the matter is the Jackson-Favard type estimate

(1) En(f)w,p <

with a matching converse Markov-Bernstein inequality

(2) II,, _< Cn"II .P, II,,, degPn _< n.

The rest belongs to the theory of interpolation spaces and to characterizations of
weighted g-functionals (see [11, Chap. 8]). By now there are several different proce-
dures known for proving (2) (see [21], [18], [19], and [11, Whm. 8.4.7]), but the only
existing way to get to (1) is by transforming the problem to the trigonometric case
and to use quite complicated estimates based on Riesz’s interpolation formula [11,
Chap. 8].

In the present paper we offer an alternative approach to (1). The method was
developed by Freud [13], [14] in connection with exponential weights on the whole
real line, in which case he based his approach on the orthogonal polynomials that
now carry his name. We shall use Jacobi expansions in our method with respect to
the weight w2. Many steps will be the same as Freud’s case, but, unlike Freud, we
have to overcome the additional difficulty of the weight entering our formulas.

A crucial step in Freud’s method is the boundedness of (C, 1) means of the ex-
pansions in question in the appropriate weighted spaces, which is also valid for Jacobi
expansions for all parameter values a, _> 0. This is where our work gets connected
with the research of Askey, who has many remarkable discoveries concerning Cesaro
means of Jacobi expansions (see [1]-[10]).
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2. Some facts concerning Jacobi polynomials. Let

w(x) (1 x)a(1 + x)/
be a Jacobi weight with c, / > -1/2. We consider the Jacobi polynomials

pn(x) %x
n +"’, % > 0

associated with w2 (sic!), i.e., for which

PrPrn 5,m, n, m O, 1,w2

We shall need a few classical results for them, all taken from Szeg6’s book [22].
In what follows we shall write A - B if A O(B) and A B if A O(B) and

S O(A).
First of all, uniformly in n and x [-1, 1],

(see [22, Thm. 7.32.21 and recall that Pn(23’2e) in [221 has to be normalized by the
factor h’2/) of [22, eq. (4.3.3)] to get p). For any fixed c > 0,

(4) p,(cosO) b sin cos {cos(NO+7) +O((nsinO)-l)}

for

where

C C
-<8<rr--
n n

N n + (2 + 2/ + 1)/2, (7=- 2+ ,
and b, tends to a finite and positive limit as n --+ oo (see [22, Thm. 8.21.13]); further-
more, say around +1,

(5) pn(cos8) n2"+1/2, 0 _< 8 _< c
n

for sufficiently small c (see [22, Thm. 8.21.12]).
These easily imply for the so-called Christoffel function

the uniform estimate

(cf. also [20]).

)’(W2’X) )n(X) :--" IPk(X)2}, k=0
-1

2
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We shall also need that for a, > -1,

(8) (,) ()().
n

To prove this we have to recall (see [12]) that for any weight v on [-1, 1],

A,(v x)- inf
1 f: p2v"

degP.<n-: P2n(x) J-1

Since w <_ wn, this formula immediately gives

()V()(,x) > (,) >
n

where, at the last step we applied (7) for w rather than w2.
Equation (7) also shows that if (P7*} are the orthonormal Jacobi polynomials

with respect to the weight

w(x)/2/p(x) (1 x)Ca-1)/2(1 + x)(-)/2,

then

1 Ep:, (x)2R,/() - k--O

is a polynomial of degree at most n/2 with

1n/() ()"
Hence

An wn x) -, inf
1

degQ,.,/2<n/2 2 2 (Rn/2Q, n/2)2wnR,/(),/()
inf

1 Q/w,(x)
alQ.i.<,# Ql(X)

where ag he verylg sNp we again used (7) for he Legendre weight

1 (1 x)(1 + x).
Finally, it easily follows from the formula [22, eq. (4.5.5)] that

_() +() d( )i_()

(1 )+ O (Ip-l()l + Ip()l + Ip+l(x)l)

uniformly in n and x E [-1, 1], where {dk } is a positive sequence converging to 1, and
p:_l(x) is the (k- 1)st Jacobi polynomial associated with the weight

w2(x)2(x) (1 x)2a+1(l + x)2f+:.
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This formula immediately implies

(9)
n n+l 1 p2,_(X,E(Pk_l(X --Pk+l(X))2 " (1 x2)2v:(x)-1 - E (k - 1)2

k=l k=0

where A is the Christoffel function associated with the system {p(x)}. The first
term on the right is (see (7))

(10) (1 X2)2);(X)-1 -{

while for the second term we easily get from (3) that it is

For 0 _< x < 1 we break the last sum into two parts with the ranges 1 <_ k <_ ol(x)
and the rest. When 0 < a _< 1/4 this yields

n--t--1 1
::()

1 1 1 1E 22 " E kl-4a 1)4a+1
q- E k--SW2n(X)n(x)k (kvq

k--i k=l

because for n + 1 _> k > OI(x) we have

1 1
x/1-x+ v/1-x+-’n

2 2and so Wk(X)k(x Wn(X)On(X). Finally, both sums on the right are of the order

When a > 1/4 similar consideration gives

1 0=I(X)
1

(/’1_Z+)4.-1 E 1+

The argument is similar when -1 _< x <_ 0.
Our estimates proved so far show that

1

n+l 1 2(11) E (k + 1)2pk(x)
k:0

This, (9), and (10) finally yield

(12)
n

E(Pk_1 (X) Pk+I (X))2 "
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The last fact we need on the Jacobi polynomials,is that the leading coefficients
satisfy

(13)

(see [22, eq. (4.5.1), eq. (3.2.2)]).

"fk 1

k+l 2

3. Boundedness of (C, 1) means in weighted norms. Let f be a function
such that the integrals for the Fourier coefficients

an(f) fw2

1

exist. These give rise to the expansion

with partial sums

f(x) cn(f)pn(x)
n--O

k

Sk(f,x) cj(f)pj(x).

The (C, 1) means are then defined as

n

n
k--1

We shall need the following in the proof of (1).
STATEMENT 3.1. Ifw(x) (1--x)((1-+-X)/ with(, > 0, then for any i <_ p <_ oo

(14)

with a constant C depending only on and .
Proof. First we consider the case p oo. From here the Statement for p 1 will

follow by standard duality argument, although it causes some difficulty that on the
left of (14) not the weight w but wn appears. The case 1 < p < oo follows then by
interpolation.

3.1. The ease p o. Suppose that Ilwfll[_x,] <_ 1, and x E [-1, 1] is arbitrary.
We write

If

and

f.(t) f.,(t)= o
if Ix t < qon (x)/n,
otherwise,

{ f(t)/(x t)F.(t) F.,(t)
0

if I: tl > <,o,,(z)ln,
otherwise.

k

Kk (x, t) ZPJ (x)pj (t)
j=o

. p+()p(t) p()p+ (t)
/k+ x t
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is the reproducing kernel for the system {pj }, then

Sk(f,x) f fn(t)Kk(x,t)w2(t)dt

4- ./k. (c(Fn)p+l (x) c+(Fn)p(x)) I(x) 4- J(x),

where

c(F=) / F(t)p(t)w(t)dt

are the Fourier coefficients of Fn with respect to {Pk }. We estimate the two terms in
the expression of Sk separately.

For Ik(x) we can write in view of [[wf][ _< 1

(15)

IZ(=)l <_ I IK(=,t)l(t)dt

_<2 {n:x)) 1/2 (fK(z,t)w2(t)dt) x/2

2(n:X)) 1/2
-1/2 Wn(x)’l+ ()

provided k _< n, where in the last step we used (7).
For /kl’k4-1 in Jk we use (13) to obtain

In

1
Jk(x) -(cl(F,)plz+l (X) Ok_F1

( IPk-I-1 () IPk(T’)l).._j(kl j2)+ 0 Ick(Fn)[ (k + 1)2 + ICk+l(Fn)[ (k + 1)2 (x) + (x).

n

n
k=l

the sum of the"errors" --J2)(g) Call be estimated as

Z IJ(2) (x) < c(Fn)2
k4

k=l \k=l

Making use of Bessel’s inequality, IIw$ll _< 1 and (11), this can be continued as

(/ ) 1/2 l

" Fn(t)2w(t)2dt w,(x)

-tl>,.(=)/, I tl2
dt

w=(x)

() < 2 ’ 1

() ()"
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The sum of the first terms in Jk(x) is half of

n

2 ()() (F=)v:() +(F=)v=()
k--1

+ E ck(Fn)(Pk+l (x) pk_i (x)).
k--2

For the last expression we obtain from the Schwarz inequality, Bessel inequality,
and (12)

n

(F=)(V+() v_())

A similar argument gives that

- (i Fn(t)2w(t)2dt)
n

Wn(X)

n
Il(F)w()l ()"

As for the term Ic,/x(F)llp(z)l, we write with (3)

(17)
Ic/(F)llP(x)l -<

and so the inequality

(18)
-l>v:(=)/- Iz tl/(t)

which we prove in a short while, gives the estimate

n

Collecting our estimates we finally arrive at

1
(x9) I(; )1

provided IIwIll < 1, by which the inequality

(20) II,,,,,<,’,,(S) II<><> <- CII,,,SlI<><>

has been verified.
It remains to show (18) to complete the case p cx). Suppose for example that

0 _< x < 1. If x > 1 -4In2, then the integral is obviously bounded by

l_n-2L 1

" (1 t)5/4
dt n1/2 noln/2(x).
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If, however, 0 _< x < 1- 4/n2, then we write for the the integral

where we used that non(x) >_ 1, and (logu)/u is bounded for u
We shall also need that

(21)

If we go through the preceding proof we can see that there are three places where
the assumption Ilwflloo <_ 1 is used, and these are when we estimated the integrals

and

Ik(x) fx_l_<=(x)/n f(t)Kk(x, t)w2(t)dt,

’() :=
-1>,o(/ (- t)

at

R(x) := f-l>.(,,,)/
and for these we got the estimates

(22)

If()P"+:()lw() dt,

(23)

and

(24)

(see (15)-(18)).
Since

n(x) n(t) when I 1 < v()
n

together with the first one we can also get

(25) n(x)ilk(x)i-iiWnf, (n(X)) 1/2
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To prove the analogue of (23) we write

(26) on(x)Bn(x)

_
llwnonfll

-l>,,(z)/n (x- )2n($)2
dt n(x).

Here the estimate of the integral is similar to that of (18). In fact, suppose 0 <_ x < 1.
Then the integral can be restricted to 0 _< t _< 1, because the integral over this range
majorizes that of over the range -1

_
t

_
0. If x > 1 -4In2, then the integral is

bounded by

n n2<2 n 1

o.(1 o.() ()"

Similarly, for all 0 _< x < 1,

1 1 n 1
dt - n2 "-,(

(check this separately for x > 1 -81.-2 and for x _< 1 -8ii-2). If, however, 0 _< x <
1 4In2, then for the rest of the integral we write

(1 x)2"

Since 0 _< x

_
1 -4/n2, we have

1 2 n 11
log(n2 (1 x)) -< log(n2o.(x))(1 x)2 P(x)4 n(x) O2n (x)

because ncpn(x) >_ 1, and (logu)lu is bounded for u e [1, oo).
Thus, we get

(27) o,(x)Bn(x) <_ II,,,.v,Sll

Finally, the analogue of (24), namely, that

(28) w2(t)
Ix-

can be verified with the method that we used in the proof of (18).
Using (25), (27), and (28)instead of (22)-(24) we can prove (21) with the same

argument that we used for (20). In fact, the rest of the proof is the same, word for
word, as before.
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3.2. The case p 1. To obtain (14) for p 1 from the same inequality with
p cx), we use a standard duality argument. But first we need the following: if Pm
is a polynomial of degree at most m, then for every c > 0 there is a constant C such
that

(29)

Actually we shall need this inequality only for some c > 0, but once it is verified with
a c > 0, we can get it for larger and larger c’s (and eventually for all c) by dilation
and iteration. Thus, let c > 0 be a small number.

The Chebyshev-Markov inequality (2) implies

(30)

We write

Q,(x) := P,(x) P,(x(1 cm-2)) P(t) dr,
(1--cm-2)

and use the fact that

(31) win(x)
1 <y(c) if]x-y<,()

where y(c) 0 c 0. Wec eily get om thisd (30) combined with HSlder’s
inequality, that

where e(c) 0 c 0. This, together with (31), implies

Ilw((1 -2))pm(x(1 -2))1p > llwmPmllp

for sufficiently small c, d this is the se (29).
Let us now return to (14) with p 1. We use (29), and observe that on the

inter [-1 + c/n2, 1 c/n2] we have w(x) wn(x). Hence

l--c/n

Ilwa(I)ll C w(t)ia(f,t)ldt
-l+c/n

C sup an(L t)g(t)w2(t)dt,
wglll 1

where the supremum is ten for N1 g that ish outside the interval

[-1 + cln2, 1 cln2]
.d tie I111 S 1. Co.ti.ui thi i.uuity, we et om (la) ith

Ilw(/)lll s c sup f(t)a(g, t)w2(t)dt
g

g cup IIalllllll, cIISlI,.
g
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3.3. Completion of the proof. From the cases p 1 and p cx we get (14)
for all 1 _< p <_ c by the Riesz-Thorin theorem. D

We shall also need the delayed arithmetic means of the Jacobi expansion of a
function f defined as

(32) Pn(f, x) 2a2n(f, x) an(f, x).
For any polynomial Pn of degree at most n we have

(33)

and for any ] the function pn(], x) is a polynomial of degree at most 2n. Furthermore,
we get from (14)

(34)
for all f and p.

4. Proof of the Jackson-Favard type estimate (1). We closely follow the
method of Freud [13], [14]. This consists of the following steps built on one another.

Step 1. Weighted approximation in L1 metric of a piecewise constant function
with a single jump.

Step 2. Approximation of functions of bounded variation in L1 metric.
Step 3. A Bohr-type inequality.
Step 4. The L case of (1), and a similar estimate for some linear means.
Step 5. Interpolation of the L1 and L cases, and iteration of the obtained

estimate.
The individual steps are not too long, and they go as follows.

4.1. Step 1. Approximation of _P in L1. Let

_0 if -l<_t<_,r(t) [ 1 if <t<l.
It is well known (see [12]) that

(35) En(r)w,,1 < [n/2]_l.2(wn, ) / ,[n/2].l_2(wn, t)dF(t).

4.2. Step 2. Approximation of functions of bounded variation in L1. If
f is a right continuous function of bounded variation, and

(fm(X)----f(-1)4.E f -1+-- -f -1 4-

then fm --* f in L1 [-1, 1] and

k-m 1)] r-l+k/m(X),
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and for m --. x we obtain

(36)

1/-- w,(t)o,(t)ldJ’(t)l,

where, at the very last step we made use of (8).
4.3. Step 3. A Bohr-type inequality. We show that if

for every polynomial Pn of degree at most n, then

(37) wn(x)

Without loss of generality let 0 _< x < 1, and consider first the case
1- 1In2. Let

w-2(t) if t e [O,x],Cx(t)
0 otherwise.

With an appropriate polynomial P of degree at most n

] g(,)((,) P(,))(,)d,

and if we use (36) for the weight walton (w/)n rather than for wn, then we can
continue this as

1( 1 1- llglloo () /
w,,(o) /o

x )
Here

1

hence for 0 _< x < 1 1In2,

- dt-
w(t)(t)

1 1 1
dt - W(x) -(1 t)a+1 ()

Since wn(x) wn(O), (37) follows from the previous computations.
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To prove (37) for the case 1 1/n2 _< x _< 1, as well, we write

Ilwn (f Pn (f))]]oo []wn ((f Pn) Pn (f Pn)) I]oo
(3s) 1

w- En(f)w,,,oo -II ncPnf II,
n

where in the last but one step we applied the main result of 3, namely (14).
4.5. Step 5. Interpolation of the L and L cases and iteration of the

estimate obtained. We know from Step 2 that with some appropriate Pn,

[Iw,(f- p(f))ll [Iw ((f- Pn) p(f- P))I[1
(39) 1

w
n

where we once more utilized (14).
om (38) d (39) we get for y 1 p by interpolation,

1
n

apply interpolation to the operator defined for h wnnf
Th(x) (f(x) pn(f,x))wn(x)

( h(t) ( h(t)
(t)v (t)

dt
(t)v(t)

This yields

dr;x)) w,(x).

1
WE2n(f)w,,p "< --]l nnf lip,

n

g(t)dt - + n+
_/ (- 1/:) + IIvall

-/
1 1

which is what we needed to prove.

4.4. Step 4. The L ce of (1). Set

g f’ P[n/2]-l(f’, x),

where the pk(f;x)’s e the means defined in (32). We obtain kom (33) that the
preceding lemma can be applied to g with n replied by In/2] 1. This yields

1

1
w

where ag ghe 1 sgep we used (21).
Since o(P) P for eve polynomial

he preceding esfimage wigh some appropriage P
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and hence

1
J
r, 1

wEn(f)wn,p <__ E2[n/2](f)w[n/2],, -< -llw[,12]o[,12] II -II,.,. ,.,.,,o,.,.f II,

which in turn implies by subtracting an appropriate polynomial of degree at most
n- 1 from f that

1
En(f)wn,p-. En_l

n

This is already in a form that can be iterated (note that wn(x) wn-l(x)), and we
obtain

1

for every m >_ 1, which shows that

1

as we claimed in (1).
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THE C ROGERS-SELBERG IDENTITY*

STEPHEN C. MILNE?

Abstract. In this paper the classical Rogers-Selberg identity is extended to the setting of
multiple basic hypergeometric series very well poised on symplectic C groups. The C Rogers-
Selberg identity is deduced from the C q-Whipple transformation. Schur functions and q-Kostka
polynomials are then used to simplify the balanced "sum side" of these identities. A study of several
special limiting cases then provides an elegant generalization of how the classical Rogers-Selberg
identity is simplified termwise in the standard analytical proofs of the Rogers-Ramanujan identities.
For C2, explicit Rogers-Ramanujan-type identities are obtained. One of these gives a new expansion,
involving q-Kostka polynomials, of the product side of one of Bressoud’s (mod 6) Rogers-Ramanujan
identities. It is also found that a similar analysis applied to the C terminating 6b5 summation
theorem leads to a C extension of Sylvester’s identity. Special limiting C2 and C3 cases of this
identity give new expansions of the products in the simplest classical Kac-Peterson identities. The
work in this paper is motivated by the unitary A case and the classical case corresponding to A1 or,
equivalently, to U(2).

Key words, multiple basic hypergeometric series, very well poised on symplectic groups C’,
terminating 6b5 summation theorem, C’ q-Whipple transformation, Rogers-Rmnanujan identities,
Kac-Peterson identities, Schur functions, q-Kostka polynomials

AMS subject classifications, primary 33D70, 05A19; secondary 05E05, 05A17

1. Introduction. The purpose of this paper is to extend the classical Rogers-
Selberg identity to the setting of multiple basic hypergeometric series very well poised
on symplectic C groups [Gus89], [LM91], [ML92a], [ML92b], and then to study sev-
eral special limiting cases. The motivation for this work was to extend the analy-
sis in Watson’s [Wat29a] proof of the Rogers-Ramanujan identities to the C case.
This program depends on the C q-Whipple transformation from [ML92b], which we
stated in Theorem A.3 of Appendix A. Our analysis provides an elegant C gener-
alization of how the classical Rogers-Selberg identity is simplified termwise in the
standard analytical proofs of the Rogers-Ramanujan identities. For C2 we are able to
obtain explicit Rogers-Ramanujan-type identities. One of these gives a new expan-
sion, involving q-Kostka polynomials, of the product side of one of Bressoud’s (mod 6)
Rogers-Ramanujan identities [Bre80].

Our work on the C case is motivated by the previous analysis of the unitary
A or, equivalently, the V(g / 1) case from [Mi188b], [Mi189], [Mi192]. The classical
case of this work corresponds to A1 or, equivalently, to U(2). The ordinary (q 1)
case of some of the multiple series in [MilS8a], [MilSSb], [Mi189] first appeared in
certain applications of mathematical physics and the unitary groups U(n + 1) or,
equivalently, An. This earlier work on the theory of Wigner coefficients for SU(n) was
due to Biedenharn, Holman, and Louck [BL68], [BL81a], [BL81b], [Ho180], [HBL76].
They showed in [nolS0], [HBL76] how the classical work on ordinary hypergeometric
series is intimately related to the irreducible representations of the compact group
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state.edu) This research was partially supported by National Security Agency grant MDA 904-91:
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At this point it is useful to recall the classical Rogers-Selberg identity.
Let q be a complex number such that Iql < 1. Define

(1.1a) (a)oo --- (a; q)oo H (1 aqk),
k>0

(1.1b) (c)n --= (a; q)n := (a)o / (aq’)

For products of q-shifted factorials we use the more compact notation

(1.2) (ai, a2, am; q)oo (ai q) (a2; q) (am; q)

We then have the classical Rogers-Selberg identity [GR90, p. 37, eq. (2.7.6)] in

1 +Z (aq; q)k-1 (1- aq2k)

k=l
(q; q)k

oo ak
(aq; q)oo Z (q; q)kk=O

(_l)k a2k qk(hk-1)/2

Most of the standard analytical proofs [And76], [AndS6], [Bai351, [GR90], [HW791,
[Sla66], [Wat29a] of the Rogers-Ramanujan identities first established (1.3). Watson
[Wat29a] obtains (1.3) as a special limiting case of his q-analog of Whipple’s [Whi24],
[Whi26] classical transformation of a very well poised 7F6(1) into a balanced aF3(1).
Setting a 1 or a q in (1.3), they next observe that the left side of (1.3) simplifies
termwise into a theta function, which can be summed by Jacobi’s [Jac29] well-known
triple-product identity in Theorem A.5 of Appendix A. They then immediately obtain
the classical Rogers-Ramanujan identities land76, Chap. 7], [Rog94]

o
qk: 1

(1.4) Z (q; q)k (q; qh)o (qa; qh)o
k=0

and

oo qk+k
(1.5) Z (q;q)k

k--O
(q2; qh) (q3; q)o

respectively.
In Theorem 2.1 of 2 we obtain the Ct Rogers-Selberg identity from a limiting

case of the Ct q-Whipple transformation in Theorem A.3. The single parameter a
in (1.3) becomes the parameters xl,... ,xt in Theorem 2.1. We then appeal to the
symmetric function and q-difference-equation techniques of [Mi192] to rewrite the bal-
anced multiple sum (2.2c) on the right side of Theorem 2.1 as the sum of products of
q-Kostka polynomials K(2-)(q) and Schur functions st,(xl,..., x) in Corollary 2.21.
This facilitates specializing the Xl,..., x in Theorem 2.1.

The q -. q, xk qk-1 specialization of the Ct Rogers-Selberg identity in 3
generalizes what happens to (1.3) when a 1. The resulting termwise simplifica-
tion of (2.22a) is given by Lemma 3.2. Keeping in mind the standard formula for
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the specialized Schur function s(1, q,... qt-1), we then arrive at the specialized C
Rogers-Selberg identity in Theorem 3.23. For g 2 we are able to express (3.24a) as a
double Laurent series, which is then factored into the product of two one-dimensional
theta functions. Each of these is then summed by the Jacobi triple-product identity
(A.6). That is, for C2 we obtain the explicit Rogers-Ramanujan-type identity in The-
orem 3.26. The sum in (3.27a) gives a new expansion, involving q-Kostka polynomials
g(2m_y,y)(2.) (q2), of one of Bressoud’s (mod 6) Rogers-Ramanujan identities [Bre80].
Theorem 3.26 is the C2 generalization of the first Rogers-Ramanujan identity in (1.4).
Other specializations of the l 2 case of (2.22a), such as (q - q2, Xl -. q, x2 - q2}
and {q - q, xl x2 q}, do not factor into a single, simple infinite product. Thus
(1.5) does not extend to the C2 case. Moreover, the multiple sum (3.24a) does not
appear to factor into a single, simple infinite product when > 3.

We find in 4 that a limiting case of the C terminating 65 summation in Theorem
A.1 gives the Ct Sylvester identity in Theorem 4.1. The same calculation that is
performed in the proof of Lemma 3.2 then specializes Theorem 4.1 into the C Euler
pentagonal-number theorem in (4.4). The 2 and 3 cases of Theorem 4.3 lead to
new expansions of the infinite products (q; q)oo, (q2; q2)oo, and (q; q), which appear
in the simplest classical Kac-Peterson identities [Rog94], [nec59], [KP80], [And84a],
[Bre86].

In 5 we show that the (q - q, xl x2 1} specialization of the t 2 case of
(2.22a) can be transformed into the one-dimensional Laurent series (5.13), which is
then summed by appealing to the derivative of the quintuple-product identity (A.8).
We then have the xl x2 1 C2 Rogers-Ramanujan identity in Theorem 5.15. Just
as for (3.24a), the xl xt 1 case of (2.22a) does not appear to factor into a
single, simple infinite product when >_ 3. However, as illustrated by Corollary 5.20,
this specialization of (2.22a) should be equivalent to multiple Laurent series similar to
those in [Mac72, Appendix I].

2. Ct Rogers-Selberg identities. Motivated by Watson’s [Wat29a] proof of
the Rogers-Ramanujan identities, we begin this section with the following theorem.

THEOIEM 2.1 (first version of Ct Rogers-Selberg identity). Let xl,..., x be
indeterminate, t > 1, 0 < Iql < 1, and suppose that none of the denominators in (2.2)
vanishes. Then

_>o 1<r<8<
1 . 1

k=l2,...

HIl-xq2u’] fi
k=l r,s--1

X (--1)(yl-I-’"-I’Y) H-k(-1-4)Yk-(Yl-F’"-I-Y)
k--1

(2.2a) [qU2+2ua+...+Ct-1)u qCC+a)/2)Cu+...+/)-C/2)Cul+...+u)] }
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(2.2c)

k=l,2,...,

Proof. Apply the relation (a)n (-a)’q() (a-iqi-")n to the appropriate factors
in (A.4), simplify, and then take the limits b -- 0, f --. 0, a -o oo, a -- oo, and
N1 --, oo,... Ne --* oo in Theorem A.3, while appealing to the dominated convergence
theorem. To check the convergence of (2.23), first observe that by using the product
formula for a Vandermonde determinant and some algebra,

(2.3)
l<_r<s_<e

II a(k) H q(a-l(k)
k--i aE,8 k--1 k--1

Then, interchange summation and apply the multiple power-series-ratio test [AK26],
[norS9], [MS73] to each of the resulting f! inner multiple sums.

For (2.2c) we use the comparison test and the same argument applied to the
dominating multiple series determined by replacing

(2.4a) q(e+2) [(")+...+("’)] q_(=x+..+-,)

(2.4b) q(m+.-.+m)-((e+1 /2 (m +.-.-+-mt ).

This last step depends on the identity

(2.)

Remark. The g 1 case of (2.2) is the classical Rogers-Selberg identity in (1.3),
in which a x2.

The analytical and combinatorial techniques in [Mi192] lead to a substantial sim-
plification of the multiple sum in (2.2c), once we sum over the diagonals

(2.6) ml +". + me m for m _> 0.
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For convenience, we work with the slightly more general diagonal sum determined

qm2T2ma+...T(g--1)me q(+b)[(’l)+...+(’e)] k=lH Xk j
It is clear that (2.2c) equals

(2.8) Z [G](m) (q; 2; $1,..., X).

The first step in simplifying (2.8) is to show that [G] (q; b; Xl,... ,;z) satisfies
the q-difference equation in the following lemma.

LEMMA 2.9. Let [G] (q;b;x,... ,xe) be determined by (2.7), with f. > 1 and
m > 1. We then have

(2.10a) [(](m) (q; b; 1,-.-, IE)

q Xgp+b-1-- (--1)t-1
1--qm H(Xr--XP)-1

p--1 r=l

(2.10b) x [C])_ (q; b;xiq’,v,... ,xqt,v),

where 6r,s is 1 if r s and is 0 otherwise.
Proof. The analysis is identical to that in [Mi192, 3]. Substitute (2.7) into

(2.10b), and simplify. Group together all terms such that (ml,..., mp+ 1,..., mr) is
the same -tuple as (wl,... wp,... w) for some p. We then obtain the double sum

(2.11a)

( 1 ](_l)(+l)m (l...)-m qm q-(’)
1 ’

w>_ l<_r<<_
1 x r,=l \ Ir, ]w

Wl+...+wg--m

(2.11b)

qW:+wa+...+(,-D=, q<’+b>[(’)+"’+(7)] k:lH =k J
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(2.11c)

X E(I qW,) H i -p=l k=l

It is immediate that the sum in (2.11c) is the yi qw case of

(2.12) 1-YlYg’"Ye=E(1-YP) H [X_p_--__xkyk]
p=l --1 [ Xp Xk

where the {xi} are distinct. Direct, elementary proofs of (2.12) appear in [Mi188a, 8].
Hence the sum in (2.11c) equals

1 qwl+...+wt 1 qm,

and the proof of Lemma 2.9 is complete.
We next use [Mi192] to write the solution of the q-difference equation (2.10) in

terms of Schur functions s(xl,... ,x) and q-Kostka polynomials K(q).
Let A (A1, A2,... At,... be a partition of nonnegative integers in decreasing

order, A1 _> A2 _> _> At..., such that only finitely many of the A are nonzero.
The sum of the nonzero parts A is denoted by IAI, and the length (A) is the number
of nonzero parts of A. If IAI n, we write A - n. The partition with exactly m
parts, each equal to b, is (bin). The conjugate partition to A is denoted by A’, where
A’ (A’I’A2"’" A(I)) and A is the number of parts Aj in A that are >_ i.

Given a partition A (A1,... At) of length

(2.13) 8A(X) 8,h(gl,... ,g):-- det(xj+-j)
det(x-j)

is the Schur function [Mac79] corresponding to the partition A. (Here, det(a) denotes
the determinant of an g g matrix with (i, j)th entry a). The Schur function s(x)
is a symmetric polynomial in Xl,... xt with nonnegative integer coefficients.

The q-Kostka polynomials K(q) are the entries of the connection coefficient
matrix K(q) between Schur functions s(x) and Hall-Littlewood polynomials P(x; q).
The matrix K(q) is strictly upper unitriangular with rows and columns indexed by
partitions in reverse lexicographic order, so that (n) comes first and (1n) comes last.
The entries K(q) of g(q) are polynomials in q with nonnegative integer coefficients.
We have

(2.14) s(x) E Kt’(q)Pt’(x; q)"

It turns out that K(0) is the identity matrix and that K(1) _-- K is the Kostka connec-
tion coefficient matrix between Schur functions and monomial symmetric functions.
Many additional properties of g(q) can be found in [Mac79, Chap. 3].

If (2.10) is kept in mind, it follows that the (bin), n ., z x, 0 case
of [Mi192, Thms. 4.29 and 4.34] applied to

(2.15) [F] (q; b; Xl,..., X) :’-- q-m (q)m [G] (q; b; Xl,..., X),

leads to the following lemma.
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LEMMA 2.16. Let [G] (q; b; Xl,... ,xe) be determined by (2.7), with g >_ 1 and
m > 1. We then have

am
(q) Kt,(b,,,)(q) s,(x,...
m

t(t,)<_t

where # > (bm) denotes the dominance of the partial sums of the parts of # over those

Remark. If e(#) > , then s(xi,... ,xt) 0. Also note that {Kg(b,.)(q)} is a
column of K(q) corresponding to (bin).

Remark. By equation (4.37b) and [Mi192, Tam. 4.34], combined with [Mac79,
Ex. 1, p. 18], we have

(2.18) (1; b;1 1) (hb(1, 1))’ /|+b- 1}m\[F] ’*** \ b /

where hb(Xl,... xe) is the bth homogeneous symmetric function of x,... x.
Remark. If 1, then the sum in (2.17) is taken over the single partition

/z (bin). From of [Mac79, ex. 1, p. 130] we have

(2.19) K(bm)(b,)(q) qb(’),

and, consequently,

qm+b(’)
xbm"(2.20) [c12 (q; b;

Relation (2.8) and the b 2 case of Lemma 2.16 now immediately give the
following corollary.

COROLLARY 2.21 (second version of Ct Rogers-Selberg identity). Let x,... xt
be indeterminate, > 1, 0 < Iql < 1, and suppose that none of the denominators in
(2.22) vanishes. Then

(2.22a)

(2.22b)
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(2.22c) x
qm

m--O ,>(2n)
1l=2m
n(,)<

Kgc2.)(q) 81z(Xl,... ,Xg,),

where I >_ (2m) denotes the dominance of the partial sums of the parts of # over those
o (2).

Remark. It is clear from (2.20), with b 2, that the g 1 case of (2.22) is also
the classical Rogers-Selberg identity in (1.3) in which a x.

For illustration purposes we conclude this section with the m 0, 1, 2, 3 cases of
the inner sum in (2.22c). That is, we give [F] (q; 2; x) for m 0, 1, 2, 3. We use the
notation s(x) =_ s(xl,... ,x) and the tables of the q-Kostka polynomials K(q)
from [Mac79, pp. 126-127]. We have the following:

(2.23a)
(2.235)
(2.23c)

(2.23d)

By [Mi192, Thm. 4.34], [F] (q;b;xi,... ,xt) is the A (bm) case of Hx(x;O,q),
which is a natural q-analog of the complete homogeneous symmetric function h(x).

3. The specialized C Rogers-Selberg identity. Motivated by [Mi192, Thms.
1.19 and 1.21] we rewrite the

(3.1) q-qt and xk-qk- fork--l, 2,...,

case of Corollary 2.21. This generalizes a key simplification of the Rogers-Selberg
identity in the standard analytical proof of the Rogers-Ramanujan identities. We
first simplify (2.22a) and then deal with (2.22b) and (2.22c).

We begin with the following lemma.
LEMMA 3.2 (Ct Rogers-Selberg product-side simplification). Let 0 < Iql < 1 and. > 1. Then the (3.1) case o] (2.22a) can be termwise rewritten as

(3.3)

(q; q)2-kl H (1 + q/-l+’u)
t>_o k--1 k--2
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Proof. We first find that the (3.1) case of the yl,..., yt > 0 term in (2.22a)
simplifies to

(3.4)

H (q;q)2-kl H(1 + q-+)
k--1 k--1

H [(qt qs-r+tv.)(1 qr+s-2+tu+tu.)]
l_<r<s<_

[(_l)(y+...+yt) q(t+4l(yu+2ya+...+(t-1)y)]

[q(t(t+a)/2)(u+...+y)q(1/2-t’)(y,+...+yt)] ).
Before applying (3.1), we used

(3.5) (21) (ql),( ) -and noted that

(3.6)

We then used, in the following order, the relations

H (1 qs-r)- n (q;q)-l;
l<r<s<_t k--1

(3.8)
t--1

n (1--qr+S-2)-l=H(qk;q)-l
l<_r<s<_ k---1

(3.9) t -1 -1H (qt+r-s; q )u, H (qk; q)’u
r,s--1 k--1

(3.10b)

(q; q)yl-1 H (qS-1; q.)y, (q; q)yl-1
s-’2

H (qk+s-2; qt)u (qk-1;q)ty
s---1

(3.11) H (1 q2k-2+2,y) H [(1 + qk-l+ty) (1 qk-l+y)].
k:l k:l

At this point a crucial simplification was provided by

(3.12a) [(1 qtYl) (q; q)yl-1] / (q; q), 1
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and

(3.12b) [(1 qk-l+.U)(qk-1;q)y,] / (qk;q)ty (1 qk-i)

if k 2, 3,..., L The classical case of (3.12) just amounts to setting 1 in (3.12a).
Finally, we arrived at (3.4) by observing that

(1 qk)
(q; q)2_l(3.13) (q; q)l (qk; q)k (1 q2k)

for k 1,2,... ,- 1.
A similar calculation shows that (3.4) also holds for y2,... ye >_ 0 and yl > 0.

1If yl 0, we do not need (3.5). In this case, we obtain (3.4) multiplied by 5"
Let (1 + qeu’)T(yl,... ,yr.) be given by (3.4). Then the (3.1) case of (2.22a)

becomes

(3.14) T(0, y2,... ,y)+ (1 +qUl)T(yl,... ,y).
y2,... ,y>0 2 >o

11>0

It is not hard to see that

(3.15) q-e’lT(-yl, y2, y) T(yl, ye).

Thus (3.14) equals

(3.16) Z qulT(yl, Y2, Y.),
2,’" ,>_0

and the proof is complete. D
We now consider the products in (2.22b). An elementary calculation shows that

(3.17a) H (q+2k-2; q)oo H (q+r+s-2; qt)oo
k=l l_<r<s_<

(3.17b)

2m

YI (ql+2k; q)oo

2m-1
(q2m; q2)o i’I (ql+2k; q)oo

forg=l+2m, m_>0,

fore=2m, m>_l.

To simplify the (3.1) case of (2.22c) we need an explicit formula for the specialized
Schur function sx(1, q,... ,qt-1), which appears in [Mac79], [StaT1].

Consider the Ferrets diagram of ) in which the rows and columns are arranged
as in a matrix with the ith row consisting of A cells. For a given cell x (i, j) E
we define the hook length h(x) and content c(x) as follows:

(3.18) h(x) =_ h(i,j):= (A,- i) + (A’j -j) + 1,

where A’ is the partition conjugate to A and

(3.19) c(x) := j i.
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Note that h(x) is the number of cells to the right of, on, or below the cell in the (i, j)
position and that c(x) measures how far the cell (i, j) is from the main diagonal.

Given (3.18) and (3.19), we have

(3.20) sx(1, q,..., q-l) qn(X) H (1 q,+c(z))

ze (1 qh(z))

n(%) Z(i- I)i.
i>I

We axe now ready to rewrite the (3.1) case of Corollary 2.21, in which we have
multiplied both sides by

-1

(3.22) H (q; q)2k"
k=l

Lemma 3.2 and equations (3.17) and (3.20) immediately imply that (2.22) is trans-
formed into the following theorem.

THEOREM 3.23 (specialized C Rogers-Selberg identity). Let 0 < Iql < x and
> 1. We then have

{fi(l+q/-1+)
9. t>o k=2
--<I<

(3.24b)

where

(3.25)

m-1
(q; q)o+1 YI (q; q)2k

k--1P(; q)
m-1

(q2; q2)o (q; q)o 1-[ (q; q)2k-’
k--1

:for l + 2m, m>0,

:for g 2m, m > 1.

Remark. The products in (3.25) axe the product side of the specialized C Euler
pentagonal number theorem 4.3 in 4.

Remark. The 1 case of (3.24a) is [GR90, eq. (2.7.7), p. 37], which is summed
by the Jacobi triple-product identity in (A.6) in Appendix A to complete one of the
standard proofs of the first Rogers-Ramanujan identity in (1.4).

The 2 case of (3.24) leads to the following theorem.
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THEOREM 3.26 (q -* q2, Xl -* 1, X2 -* q C2 Rogers-Ramanujan identity). Let
0 < Iql < 1. We then have

Proof. The sum in (3.27a) is immediate from the 2 case of (3.24b) once we
note that the set of m + 1 partitions in the inner sum of (3.24b) is given by

(3.28) ((2m, 0), (2m 1,1),..., (m, m)}.

The m 1 case of (3.28) works since K(12)(2)(q) 0.
The product in (3.27b) is a consequence of

(3.29) (_q3, _q9, q12; q12)o
(q6; q6)o
(q3; q6)o

and the simplification in the following lemma.
LEMMA 3.30. The 2 case of (3.24a) can be factored into the infinite product

(3.31) (_q3, _q9, q12; q12)o (q; q)oo"

Proof. Write the 2 case of (3.24a) as

(3.32)

(3.33)

It is not hard to see that

(3.34) S(yl,--Y2 1) ql+2y2S(yl, Y2) for Y2

_
0.

Thus, applying (3.34) to (3.33) gives

E S(y,y2),
o<yl ,Y2<o

which, in turn, is equal to

(3.35a)

(3.35b)
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The two double Laurent series in (3.35b) cancel termwise under the transforma-
tion

yl -+ -yl and y2 -y2 1,

leaving us with (3.35a). Interchanging yl and y2 in the first series in (3.35a) enables
us to factor (3.35a) into the product

I-- 2--

The first factor in (3.36) can be summed by the q -, q12 and z -, _q3 case of the
Jacobi triple product identity in (A.6) in Appendix A to give

(3.37) (_q3, _q9, q12; q12)o

The second factor in (3.36) is just the sum side of the Euler pentagonal number
theorem in which the terms are grouped into even or odd index of summation. That
is, the q - q3 and z -, ql/2 case of (A.6) implies that the second factor in (3.36) is

(3.38) (q; q)oo

Gordon IGor61] has observed that the second factor in (3.36) can also be summed
directly by the q -. q4 and z -, -q case of the quintuple-product identity in (A.8) of
Appendix A.

Multiplying (3.37) and (3.38) completes the proof.
The proof of Theorem 3.26 is also complete.
The product in (3.27b) also appears in the r 1 and k 3 case of Bressoud’s

multisum Rogers-Ramanujan identity in [SreS0, eq. (3.4)]. This case of Sressoud’s
identity is

(3.39)

Clearly, the sums in (3.27a) and (3.39) are equal. It is also possible that the ruth
diagonal sum in (3.39) over m + m2 m equals the inner sum in (3.27a). We have
verified this equality for m 1, 2, 3. If true, it appears to be nontrivial. For future
reference we note the following conjecture.

CONJECTURE 3.40. Let m be any positive integer. We then have

[](3.41a) q2m2 Zq-mU+() (_q-m; q)v m

=0 Y q

m

(a.41b) Z qu(1- q2m-2u+l)

u=0 (1 q) K(2m-’u)(2")(q2)’

where [m ]q i8 the polynomial in q known as the q-binomial coecientY

Y q (q; q) (q; q)m-u
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Equation (3.41) is quite striking in view of Kirillov’s formula [Kir88, Thm. 3.1]
for the general q-Kostka polynomial K\p,l(q) as a multiple sum of products of q-
binomial coefficients. A special case of Kirillov’s formula gives K(2m_v,)(2,)(q2) as a
sum over the set of partitions {A IA - y, 2A1 _< m}, where the term corresponding to
A is a suitable power of q times a product of g(A) q-binomial coefficients, each in base
q2.

It is not hard to see that the limit as q --. 1- of both sides of (3.41) is 3".
Bressoud also provided an elegant combinatorial interpretation of his general

Rogers-Ramanujan identity in [Bre80, eq. (3.4)]. The special case corresponding to
(3.39) is as follows:

For all positive integers n, the partitions of n into parts not congruent to 0, =i=l
(mod 6) on the product side are equinumerous with the partitions of n into parts, say,
bl +.-. + bs, such that b >_ b+, b bi+2

_
2; if bi bi+ _< 1, then bi + bi+ is even

and all parts are >_ 2 on the sum side.
The same combinatorial interpretation holds for (3.27).
Just as in the classical A case [And84b] it should be possible to iterate the C2

Bailey lemma in [ML92a] and embed Theorem 3.26 into an infinite family of such
identities.

For _> 3 it is not possible to write (3.24a) as an g-dimensional Laurent series.
After multiplying out

l] (1 + ’ ),
k--2

we do have the termwise symmetry determined by

(3.43) yk - -yk for k 1,2,... ,
in (3.24a), but (3.43) gives all integer shifts only for f 1 and 2.

The multiple sum (3.24a) does not appear to factor into a single, simple infinite
product when >_ 3. We have found, for f 3 and 4, that Euler’s infinite-product-
representation algorithm (EIPRA) land86, p. 104] applied to the power series in q
determined by (3.24a) yields an infinite product

(3.44) H (1 qrt)-a,
n-’l

in which the art’s have no simple pattern and lartl --, o. Any power series with
constant term 1 and integer coefficients can be uniquely expressed by (3.44). It is still
possible that (3.24a) can by written as a finite linear combination of simple infinite
products when g > 3.

A further combinatorial examination of (3.24a) should be facilitated by applying
the xk _qk-l+.y case of the Weyl denominator formula [Bre87], [Mac79, pp. 46-47]
for the root system Be to expand the product

[(qu qs-r+ev,) (1 qr+s-2+eu,.+v,)]

into an alternating sum of 2g! monomials.
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4. The C Euler pentagonal number theorem. In this section we study C
generalizations of the classical Euler pentagonal number theorem. We also consider
the C2 cases of these general identities.

In the same way that we derived Theorem 2.1 from Theorem A.3 in Appendix A
we find that taking the limit b -, 0, a - cx), and N1 --* cx),... N --, c in Theorem
A.1 leads to the following theorem.

THEOREM 4.1 (the unspecialized C Sylvester’s identity). Let xl,... x be
indeterminate, . > 1, 0 < Iql < 1, and suppose that none of the denominators in (4.2)
vanishes. Then

(4.2b)

k=l,2,...,/

Remark. The t ! case of (4.2) is Sylvester’s identity in lAnd76, Thm. 9.2,
x2q-1p. 140] in which we take x- 1

The same calculation that was performed in the proof of Lemma 3.2, followed by
(3.17), enables us to transform the (3.1) case of (4.2) into the following lemma.

THEOREM 4.3 (first C Euler pentagonal number theorem). Let 0 < Iql < 1 and
> 1. We then have

/2 I/ >0 k=2

(4.4b)

Remark. The/ 1 case of (4.4) is Euler’s pentagonal number theorem in lAnd76,
Cor. 1.7, p. 11].
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Remark. The Bt Weyl denominator formula can also be used to expand the
products in the sum in (4.4a).

For g 2 we are able to write (4.4a) as an alternating sum of four double Lau-
rent series. Two of these series cancel termwise. This is the same analysis that was
performed in the proof of Lemma 3.30 that expresses (3.24a) as the difference of two
double Laurent series. Keeping in mind the g 2 case of (4.4b), we then obtain the
following corollary.

COROLLARY 4.5 (second C2 Euler pentagonal number theorem). Let 0 < [q[ < 1.
We then have

Each double Laurent series in (4.6) is the square of a theta function, which can
be summed by the Jacobi triple-product identity (A.6) in Appendix A. It is then clear
that (4.6) becomes the following corollary.

COROLLARY 4.7. Let 0 < Iq[ < 1. Then

(4.8b),

(q, q2, q3, qa, qh, q6, qT; qS) (q2, qa, q6; qS)o

8 2 8 2(_q3, _qh;q )oo q (--q, _qT;q

The product side of Corollary 4.5 also appears in the Kac-Peterson-type identities

(4.9b)

(q;q)oo (q2;q2)o E (--1)2q(y22-s12+2)/2’
1 ,2

(q;q)oo (q2;q2)o E (--1)m+y2q(y22-2y+Y)/2’
1 ,2

(q;q)oo (q2;q2)o E (--1)Y2q(2y22--Y+2y2+Y1)/2"
12

Equation (4.9a) is the original Kac-Peterson identity in [KP80, final equation].
Andrews [AndS4a] derived (4.9a) and (4.9b) by computing the constant term in the
series expansion of a certain infinite product by two very different methods. Bressoud
[Bre86] used q-Hermite polynomial expansion techniques of L. J. Rogers to prove (4.9b)
and (4.9c). The sums in (4.9a) and (4.95) are termwise transformed into each other
in [And84a, 4]. This is useful since (4.9b) is much easier to prove than is (4.9a).

We give much simpler termwise transformations between the sums in (4.9a) and
(4.9b), and those in (4.9b) and (4.9c).

We first transform (4.9b) into (4.9a) by considering a suitable mapping T1 of one
index of summation set into the other.

If yl E 0 is even, then T maps the vertical half-line {(y, a+2y)I( >_ 0} onto the
vertical half-line {(y/2, a+2yl)Is _> 0}, and if yl > 0 is odd, then T maps the vertical
half-line {(yl, +2yl)Ia _> 0} onto the half-line {(+ (1 +yl)/2, 3+ 1 +2y)Ic >_ 0}
of slope 3. Moreover, T1 preserves symmetry with respect to the y2-axis.
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It is not hard to see that T1 maps ((yl, Y2)lY2 --> 21Yl I} one-to-one onto

An explicit formula for T1 is given by, y2) if y > 0 is even,
(4.10a) T(y, y2) :=

(y2 3 1) if 0 is odd,yl + , 3y2 -4y -b y >

and

(4.10b)

By checking the same cases and symmetry needed to define T, it is not hard to
see that

(4.11)

where the general terms in the sums in (4.9b) and (4.94) are denoted by F2(yl, y2) and
Fa(yl, y2), respectively. That is, the sums in (4.95) and (4.94) are termwise equivalent.

We next transform (4.9b) into (4.9c). If y > 0, let T2 map the vertical half-line
{(yl, a + 2yl) [a

_
0} onto the half-line {( + 1, a + yl)[a

_
0}, and if yl

_
0, let T2

map the vertical half-line {(y, a-2yl)[a 0} onto the half-line {(-a, a-y)[a 0}.
It is cle that T2 maps {(yl, y2)]y2 2[yl[} ontone onto {(yl, y2)[y2 [y[}.
The trsformation T2 is given explicitly by

(1 -b y2 2yl, y2 yl) if y > 0,
(4.12) T2(yl, y2):=

(-2y -y2, y + y2) if y _< 0.

Just as for T1, it easily follows that

U:)

where the general terms in the sums in (4.9b) and (4.9c) are F2(y, y2) and F(y, y2),
respectively. Thus the sums in (4.9b) and (4.9c) are termwise equivalent.

The collection of all the terms in the sum side of (4.6), before any cancellation,
is not a subset of all of the terms in any of (4.9a)-(4.9c), and vice versa. This is quite
a contrast to the fact that the sums in (4.9a)-(4.9c) are termwise equivalent to one
another. The equality of the sum side of (4.6) with the sums in (4.9) is not trivial.

The 3 case of Theorem 4.3 gives an expansion of (q; q) that is not termwise
equivalent to the sum in the identity

(4.14) (q;q)= (_l)Ul+u2q(y-ay+u2+yl)/2.
Yl ,;2

Equation (4.14) was first stated and proved by Rogers in [Rog94, p. 323], and was
subsequently re-proved in different ways by Hecke [Hec59, eq. (7), p. 425], Kac and
Peterson [KP80], Andrews [And844], and Bressoud [Bre86].
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5. The xl ---x2 1 C2 Rogers-Ramanujan identity. In this section we
consider the xl x2 1 and 2 specialization of Corollary 2.21 and Theorem 4.1
and the xl x2 x3 1 and 3 specialization of Corollary 2.21.

It is useful to first observe that the limit as x, x2 -- 1 of

is (ql q.), provided that yl, y2 > 0 and y y2. It is then not hard to see that we
have the following lemma.

LEMMA 5.1. Let R(yl,... ,y) be the general term in either (2.22a) or (4.2a),
where >_ 2. If y, y2 > O, let

(5.2) L(y, y2) lim R(yl, yt),
gl,2--l

where the notation L(yl, y2) suppresses dependence on y3,.. y, as well as x3,... x.
Then L(yl, y2) exists, L(yl yl O, and

(5.3) L(y,y2) (qvl -q2)Q(y,y2) if y y2,

where Q(y, y2) is symmetric in yl and y2. Thus we also have

L(y, y2) + L(y2, y) 0 if y y2.

It is clear from Lemma 5.1 that if R(yl,..., y) is the general term in either
(2.22a) or (4.2a), with >_ 2, then

(5.5) lira R(y, yt) lim Z R(yl, yt).
k--.1 trk--*l

k--l,2,...,l yk_O k----l,2,..., I/1 2--0
k--1,2,..., I13,...

As the first application of (5.5) we have the following lemma.
LEMMA 5.6. The Xl x2 1 and 2 case of (2.22a) can be .factored into the

infinite product

Proof. By (5.5) we have to consider only the terms R(yl, y2) of (2.22a) in which
yt y2 0, y 0, or y2 0. That is, we can start with

(s.s) + 0) + a(0,
y_l

with xl 1. Simplifying (5.8) gives

(5.9a) 1 -
(5.9b)

q3u-u ]- (q)u (q/x2)u_l (qx2)u_ly>l

{ I I
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The limit as x2 --. 1 of the factors in (5.9a) is

q3y -y

(5.10) ’2(q)u-

An elementary calculation involving l’HSpital’s rule and log differentiation shows
that the limit as x2 -- 1 of the factors in (5.9b) is

(5.11) 2 [ 2q2 ](q)u_l (1 q2u) (1 6y) +. (1 q2u)

Thus, multiplying (5.10) and (5.11), we see that the limit of the term in (5.9) is

(5.12) (6y + 1)q3u+u + (-6y + 1)q3u-u.

It is now clear that the xl x2 1 and 2 case of (2.22a) is the Laurent series

(5.13) Z (6y + 1)q3u+u.

Taking q - q2 in the quintuple product identity (A.8) in Appendix A, differenti-
ating both sides with respect to z, setting z -1, and simplifying yields

(5.14) Z (6y + 1)q3+u --(q2; q2)3oo (q2; qa). [3

y’----oo

Remark. Equation (5.14), with q2 _, q, was proved, substantially as in the
preceeding, by Gordon in IGor61, eq. (11)]. A more recent exposition appears in
[BB87, pp. 306-307]. The q2 _. q case of (5.14) is also equivalent to Macdonald’s BCI
identity in [Mac72, p. 93 and Appendix I, Type BC1, eq. 6(a)].

It is now not hard to see that the x x2 1 and 2 case of Corollary 2.21
can be written as the following theorem.

THEOREM 5.15 (the x x2 1 C2 Rogers-Ramanujan identity). Let 0 < Iql <
1. We then have

moo qm Z(2m 2y+1) (q).(_q;q2)
1 + Z (q)m K(2m-y’Y)(2")(q; q2)

m=l u=0

Proof. Apply Lemma 5.6 to (2.22a), recall (3.28), note the q 1 and 2 case
of (3.20), and then simplify.

The pro-duct side of (5.16) also arises in (q; q) times the simple specialization of
the Jacobi triple-product identity, (A.6) of Appendix A in which q -. q2 and z -1.
We have

(5.17)
(_q; q2) 1

oo

(q; q2)oo (q; q)oo m-__,oqm:"
Equation (5.17) is just equivalent to a classical identity of Gauss in [And76, eq. (2.2.12),
p. 23I.
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Equating the sum sides of (5.16) and (5.17) immediately gives

(5.18) 1 + 2 Zqm2 (q) 1 + Z (q)m Z(2m 2y + 1)K(2m-u,u)(2,)(q)
m=l m=l y=O

The Xl x2 1 and 2 specialization of Theorem 4.1 turns out to be

(5.19) (q)3 1 + Z(4y + 1)q2v2+, + Z(-4y +

which is equivalent to both Jacobi’s [HW79, Thm. 357, p. 285] expansion for (q) and
also to Macdonald’s [Mac72, Eq. (0.7), p. 93]. The derivation of (5.19) from Theorem
4.1 is exactly the same as the analysis, up to (5.13), in the proof of Lemma 5.6.

(21)The Xl x 1 case of Theorem 4.1 provides an expansion for (q)o It
should be possible to show directly that such expansions are equivalent to the C or

B identities in [Mac72, Appendix I].
We conclude this section with the Xl x2 x3 1 and 3 specialization of

Corollary 2.21 in the following corollary.
COROLLARY 5.20 (the Xl x2 x3 1 C3 Rogers-Selberg identity). Let

0<lql<l. We then have

(5.21a)

(5.21b)

Proof. Equation (5.21b) is immediate. To establish (5.21a) we carry out a very
long elementary calculation that is analogous to the proof of Lemma 5.6, up to (5.13).

First, by Lemma 5.1 we only need to look at the terms in (2.22a) corresponding
to the following cases:

(5.22a) Yl 0 and y2, y3 > 0,

(5.22b) y2:0 and Yl,Y3 >0.

(5.23a) Yl > 0 and y2 Y3 0,

(5.23b) y2>0 and yl=y3=0,

(5.23c) y3>0 and yl=y2=0.

(5.24) Yl Y2 Y3 0.

We compute the limit as Xl,X2,X3 "--+ 1 of each of the cases (5.22)-(5.24) sep-
arately. First, relabel the terms in (5.22a) and (5.225) by y2 -* yl, y3 -* y2, and
yl - yl, y3 y2, respectively. We then compute the limit of the sum of the terms in
(5.22). Set Xl 1 and then calculate the limit as x2 --* 1. We obtain an expression
depending on x3, where 0 < yl _< y2. At this point we can just set x3 1 whenever
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0 < yl y2. We obtain four terms, which correspond to (5.21a) with yl y2 7 0 or
yl -y2 7 0. Otherwise, if.0 < yl 7 y2, we compute the limit as x3 --+ 1 of the sum
of our expressions corresponding to (yl, y2) and (y2, yl). After a lengthly calculation
we obtain eight terms, each indexed by 0 < yl < y2, which account for all the terms
in (5.21a) except those in which yl 0, y2 0, or yl 4-y2.

Next, consider the limit of the sum of the three terms in (5.23), once we have
relabeled each by yi - y. Set x 1, and then compute the limit as X2,X3 1". We
end up with four terms, indexed by 0 < y, which account for the terms in (5.21a) in
which yl 0, or y2 -0, but (yt, y2) 7 (0, 0).

Finally, just note that the y y2 y3 0 case of (2.22a) is 1. rn
Just as for (3.24a), the double Laurent series (5.21a) does not factor into a simple

infinite product. We obtain (3.44) in which the a,’s alternate in sign, they have no
simple pattern, and la,l -- o. A similar situation probably holds when _> 3.

Nonetheless, the Xl xt 1 case of (2.22a) should be multiple Laurent
series similar to those in [Mac72, Appendix If.

Appendix A: Background information. The main results in this paper de-
pend on the Ct terminating very well poised 65 summation theorem from [Gus89],
[LM91] and the Ct q-Whipple transformation from [ML92b].

We start with the following theorem.
THEOREM A.1 (the Ct terminating 65 summation theorem). Let a,b and

x,... ,xt be indeterminate, let Ni be nonnegative integers for i 1,2,... ,, with
g. >_ 1, and suppose that none of the denominators in (A.2) vanishes. Then

(A.2b)

Proof. We derive (A2) in [LM91] from Gustafson’s Ct 66 summation theorem
[Gus89, Thm. 5.1]. Specializations serve to terminate Gustafson’s Ct 66 summation
from below and then from above. These yield the Ct 65 summation theorem and
then (A2), respectively.

A summary of the substitutions that transform Gustafson’s Ct 66 illtO Theorem
A.1 is given by

ai -. aiq-z -. q-Nq-Z _+ q-NX7,1
at+ a;

for i 1,2,... ,t;
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b - bq-z - ql-z
_
qx

b+ -* b;
qz _, xi. [3

for i= 1, 2,...

Remark. The g 1 case of (A2) is the classical terminating 65 summation in
[GR90, eq. (II.21), p. 238] in which a -. x21, n -. N1, b -, axl, and c -. qxlb-1. That
is, they are equivalent.

See [LM91, 2] for the detailed proof of Theorem 2.5.
The unspecialized C Sylvester identity in Theor(m 4.1 of 4 is a special limiting

case of Theorem A.1.
One of the most important applications of Theorem A.1 and the C Bailey pair

inversion theorem of [LM91], [ML92a] is the following theorem.
THEOREM A.3 (The C q-Whipple transformation). Let a, b, (, /3, and x: x

be indeterminate, let N be nonnegative integers for i 1, 2,... , with > 1, and
suppose that none of the denominators in (A.4) vanishes. Then

(A.4a)

(A.4b)

Proof. We establish [ML92b, eq. (A.4)] by extending the analysis of the classical
( 1) case of [Wat29a], [GR90]. First, apply the Ct Bailey pair inversion theorem
of [Lil91], [LM91], [ML92a] to the Ct Bailey pair determined by Theorem A.1. This
gives the Ct terminating balanced 32 summation in [ML92b, Thm. 4.4].
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The rest of the proof is very similar to the At case. Multiply each term in (A.2a)
by a suitable rewriting of the product side of [ML92b, Thm. 4.4]. The resulting sum
is rewritten as (A.da). Then use [ML92b, Thm. 4.4] to replace the factors just added
by the corresponding sum. At this point, interchange summation and manipulate the
resulting inner multiple sum termwise until a shifted C very well poised 65 sum is
obtained. Use Theorem A.1 to sum this inner sum. Finally, simplify the resulting
single multiple sum termwise to obtain (A.db). El

Remark. The 1 case of (A.4) is [GR90, eq. (III.18), p. 242], in which a - x,
n N1, b -+ (xl, c - qx-, d -. axe, and e - qxb-. That is, they are
equivalent.

The first version of the C Rogers-Selberg identity in Theorem 2.1 of 2 is a
special limiting case of Theorem A.3.

The derivation of the first C2 Rogers-Ramanujan identity in Theorem 3.26 and
the theta-function identity in Corollary 4.7 require Jacobi’s [Jac29] well-known triple
product identity.

THEOREM A.5 (Jacobi triple product identity). Let Iql < 1 and z O. Then

See [GR90, p. 12] for an analytical proof of (A.6), and see lAnd76], lAnd86],
[Bai35], [GR90], [HW79], [Sla66], [Wat29a] for applications of (A.6)to classical Rogers-
Ramanujan-type identities.

The final part of the proof of the Xl x2 1 C2 Rogers-Ramanujan identity in
Theorem 5.15 relies on the following theorem.

THEOREM A.7 (quintuple-product identity). Let 0 < Iql < 1 and z O. Then

(A.8)
Z (--1)mqm(3m--D/2Z3m(1 + zqm)

q)oo

The identity (A.8) was discovered by Watson [Wat29b] and was rediscovered
by Gordon IGor61], and an equivalent identity is explicitly given by Ramanujan in
[Ram88, p. 207]. A more recent exposition can be found in [BB87], [GR90]. The
identity (A.8) is also the BC1 Macdonald identity [Mac72].

Equation (A.8) is the formulation given by [GR90, nx. 5.6, p. 134].
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Abstract. Using results on multiply monotone functions, we establish the positivity of integrals
of Bessel functions of the form

where 0 p

_
1

_ , and a,/ satisfy various conditions. In particular, the result holds if -1/2
_
a

/_ orif--a_/.

Key words. Bessel functions, characteristic functions, fractional integration, multiply mono-
tone functions, P61ya’s criterion, Riesz means
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1. Introduction. The problem of proving positivity of the Bessel function in-
tegrals,

x

(:.:) > O,

is an old one. We refer to Askey [1] and Gasper [5] for reviews of the techniques
developed for these problems, and for references to applications of those results. For
our purposes it is enough to say that much is known about the positivity of (1.1)
when p 1 or 2, but that very little seems to be available for other values of #. In
particular, the explicit formulas for the classical hypergeometric series that proved to
be extremely useful when # 1 or 2 do not appear to be as helpful for noninteger
values of #. This has, perhaps, been the main difficulty in the analysis of (1.1), despite
the need (cf. [1, p. 90]) for positivity results when 0 < # < 1.

Here, we obtain positivity results for (1.1) when 0 < # < 1. Our starting point
is the observation of Wintner [13, pp. 126 bis, tre], that if t is t or 0 according as
t > 0 or t _< 0, respectively, then for 0 </ <_ 1, the function R --. R given by
(t) (1 -Iris)+ is a characteristic function; that is, is the Fourier transform of a
probability measure. (As Loren Pitt reminded us, the fact that is a characteristic
function follows immediately from PSlya’s criterion [4]" If a function R --. R is
symmetric, convex, and satisfies (0) 1, then is a characteristic function.)

Since is integrable on R, then its inverse Fourier transform exists and is non-
negative. Therefore if 0 < # _< 1, then by the symmetry of

1

(1.2) (1 t,)cosxt dt >_ O, x > O,

*Received by the editors March 2, 1992; accepted for publication (in revised form) February 12,
1993.
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or

(xg- tg) cost dt >_ 0, x>0.

Wintner actually proves that Cg is a characteristic function by directly establishing
(1.2). Moreover, he proves that if # > 1 then (1.2) fails for some x > 0. His proof is
so simple that we cannot resist the temptation to reproduce it: After an integration
by parts, we find that (1.2) is equivalent to

(1.3) t-1 sint dt > O, x > O.

Decompose the interval (0,x) into subintervals ((n- 1)7r, nvr), n 1,2, Then
the absolute value of the contribution of the nth interval to the integral in (1.3)
is an increasing or decreasing function of n according to whether the function tt,-1
is increasing or decreasing; that is, as # > 1 or 0 < # < 1, respectively. Since
(-1)’-1 sin t is positive if (n- 1)r < t < nvr, then the nth contribution has the same
sign as (-1)n- and is therefore positive for n 1. Consequently, the integral (1.3)
is negative for some x > 0 if # > 1, and is positive for all x > 0 if 0 < # < 1. If # 1,
then (1.3) is easily seen to be valid, so that (1.3) holds for all 0 < # <_ 1.

We also note that (1.3) (and hence (1.2)) can be derived from an expansion as a
sum of squares, obtained by applying the expansion formula of Gasper [5, eq. (3.2)]
to a special case (with A 0) of [5, eq. (2.20)].

2. Results. In our first extension of (1.2), we replace the function by more
general convex functions.

PROPOSITION 2.1. Suppose that (0, cx) --, R is nonnegative, nonincreasing,
convex, and satisfies (1) 0. Then

(2.1) (t)coszt dt >_ O, x > O.

Proof. We use the results of Williamson [12], on multiply monotone functions,
to derive (2.1). In the terminology of [12], the function is 2-monotone. By [12],
Theorem 1, there exists a unique, nondecreasing function, F, which is bounded from
below, such that

(2.2) (t) (1- ut)+ dF(u), t > O.

Since (1) 0, then it follows from (2.2) that

f0 f010 (1 u)+ dF(u) (1 u)+ dF(u).

Therefore dF(u) 0 for u _< 1.
Substituting (2.2) into the integral in (2.1), using Fubini’s theorem to reverse the
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order of integration, and denoting u-ldF(u-1) by dG(u), we have

(t) cos xt dt= (1 ut)+ cos xt dF(u) dt

1 cos xt dF(u-) dt
u +

(u t)+ cosxt dG(u) dt

(u- t)cosxt ea() e

Since

( t) xt dt= -2(1- ))>_0, > >0,u cos x cos ux u O,

then (2.1) is immediately seen to be nonnegative.
The proof of Proposition 2.1 has the advantage of explicitly representing the

integral (2.1) as a nonnegative function. By choosing (t) (1- t)_, where 0 </ <
1 < A, we get the following (portion of a) result of Kuttner [8].

COROLLARY 2.2 (Kuttner [8]). For 0

(2.3) (xt* -t.) cost dt> O, x > O.

Note that (2.3) also follows from PClya’s criterion, since the function (t)
(1 tg)_ is convex for 0 </z < 1 < . When 0 </z < 2, in which case the function
may no longer be convex, Kuttner [8] proved that there exists a continuous, strictly
increasing function k(#) such that (2.3) is valid if > k(#) and invalid for A < k(#). He
also proved that k(/z) - cx as # --. 2; k(1) 1; k(/z) > #,/z # 1; and 0 < k(0+) < 1.

Substituting for cost in terms of the Bessel function J-1/2(t), (2.3) is clearly
equivalent to

(2.a) dt > O, > o.

We now extend (1.2) and (2.4) by replacing the Bessel function g_l/2(t) by Bessel
functions of a more general index.

PROPOSITION 2.3. If satisfies the hypotheses of Proposition 2.1, and , are
such that

(2.5) (x t)tJo(t) dt >_ O, x > O,

then

(t)taJ(xt) >_ O, x >dt O.

Proof. We again apply Williamson’s integral representation for . Then it follows
as before that

]o1]o(t)tJ(xt) dt (u- t)tJ(xt) dt dG(u).
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Since (2.5) is equivalent to

U(U dt >_ > O,x > O,t)taJ(xt) O,

then the result follows. [:]

There appear to be numerous conditions under which (2.5) is valid. We list all
conditions known to us in the following result.

COROLLARY 2.4. For 0 < # <_ 1 <_ ,
=(X t)taJ(t) dt >_ O,

if a and satisfy any of the following conditions"
(i) 2

3- -- _<
(ii) -1/2_<a--_<3/2;
(iii) c 0, f > -1;
(iv)
(v)

x>0,

1/2=a<f ;
-1 < < (), -1 < < 1/2, where () is defined by

t(3)Jo(t) dt O,

>_ o, t >_ O,

under the corresponding conditions on a and f. In particular, (iii) implies (2.6) by
Cooke’s inequality (cf. [5, eq. (1.1)]); (iv) implies (2.6) by [5, eq. (1.5)]; and (v) implies
(2.6) by the results of Askey and Steinig [3] and Makai [9]. Finally, (vi) follows from
[5, eq. (3.17)].

Another way to extend (2.1) is to use the fractional integration methods of Askey
[1], [2] and Gasper [5], [6].

PROPOSITION 2.5. If is as before and / > -1, then

1

(2.7) (t)t-C+1/2)J+1/2 (xt) dt >_ O, x > O.

In particular, for 0 < tt <_ 1 <_ ,
gg

(2.8) (x t)t-(+1/2)J+1/2 (t) dt >_ O, x > O.

(x- t)taJ(t) dt-- uaJ(u) du,

and then noting that

and jf,2 denotes the second positive zero of J(t).
(vi) a (o 5, o + 5, 5 >_ O, where (so, o) satisfy any of (i)-(v).
Proof. In all six cases, the conclusion is obtained by proving that (2.5) is valid

under the corresponding restriction on a and f, and then substituting (t) (1-t)+.
That (2.5) holds under (i) follows from the result of Moak [10], and (ii) follows

from Gasper [5, eq. (1.5)]. Next, (iii)-(v) all follow from the identity
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Proof. By Poisson’s integral [11, 12.11(1)],

(2.9) t-(+1/2)J+1/2 (t) c7 (1 u2) costu du,

where the positive constant c7 depends only on % In (2.1), replace x by ux, multiply
both sides by (1- u2)7, and integrate with respect to u over (0, 1); then we obtain
(2.7) after interchanging the order of integration and applying (2.9). Finally, (2.8)
follows from (2.7) in the usual way. D

From the results of [6], we know that the assumption IS _< A is necessary for
positivity of integrals of the form considered here. In particular, the proof that k(#) >
IS (IS 1) follows from the asymptotic behavior of the integral (2.3) as x - cx. In
the following result we show that, even for small x, the assumption # < A cannot be
dispensed with completely.

PROPOSITION 2.6. Suppose that IS is fixed, 0 < Is < 1. Then there exists A0,
0 < A0 < 1, such that

< 0, 0 < < o,
(2.10) (1 tt,) cos(3rt/2) dt

>0, Ao<A< 1.

Proof. Denote the integral (2.10) by (A). It is simple to check that the kernel
(A,t) - (1 tg), 0 < A,t < 1, is strictly reverse rule of order 2 (Karlin [7, p.
12]). Further, the function t - cos(3rt/2), 0 <_ t <_ 1, has one sign change. By the
fundamental theorem of variation diminishing transformations [7, p. 233], it follows
that (A) changes sign at most once on [0, 1].

By a calculation we have (0) < 0; and by Corollary 2.2, (1) > 0; hence
changes sign at least once. Therefore changes sign exactly once on [0, 1]. D

The proof also shows that (2.10) remains valid if the function cos(3rt/2) is re-
placed by cos xt, where r/2 < x < 3r/2. More generally, we can get similar results
for the situation when cosxt is replaced by tJ(xt) for suitably chosen a and/.

We conjecture that, in (2.10), A0 is a strictly increasing function of Is. Evidence
supporting this conjecture is based 0n extensive calculation of A0, the results of which
are presented partially in Table 1. The values of A0 were generated iteratively through
Romberg integration of the integral in (2.10).

0.1 0.2 0.3

)o 0.409 0.434 0.461

TABLE 1

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.489 0.519 0.551 0.583 0.618 0.654 0.692

Acknowledgments. We wish to thank Richard Askey and a referee for their
comments on an earlier version of this manuscript, and especially for noting that
results like (2.10) should be valid.
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Abstract. The authors obtain upper bounds for Jacobi polynomials which are uniform in all
the parameters involved and which contain explicit constants. This is done by a combination of some
results on generalized Christoffel functions and some estimates of Jacobi polynomials in terms of
Christoffel functions.
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1. Introduction. DEFINITION. Orthogonal Polynomials. Given w(_> 0)
L(R), pn(w) denotes the corresponding orthonormal polynomial of precise degree n
with leading coefficient "Tn(w) > O.

DEFINITION. Jacobi Weights and Jacobi Polynomials. Given a > -1 and >
-1, w is called a Jacobi weight if supp(w) [-1, 1] and w(x) (1 x)(1 + x) for
x [-1, 1]. The corresponding orthogonal polynomials (for historical reasons with
various normalizations) are called Jacobi polynomials.

For a wide class of orthogonal polynomials associated with weight functions sup-
ported in [-1, 1], the expression

asymptotically equioscillates between +/-x/-/r for x (-1,1) when n tends to x
(cf. [22, Chaps. VIII and X-XII]). Therefore it is natural to seek inequalities for
v/1 x2w(x)p2(w, x) for x e [-1,1].

Such inequalities for Jacobi polynomials involving optimal constants are truly
fascinating. They are easy to prove for the first and second (and third and fourth)
kinds of Chebysev polynomials since they are related to simple trigonometric functions.
For Legendre polynomials this is somewhat more complicated, and the appropriate
inequality was proved by Bernstein (cf. [22, eq. (7.3.8), p. 165] for Bernstein’s result
and [1] and [14] for a sharper version of it). Sernstein’s results can be extended to
Jacobi (i.e., ultraspherical or Gegenbauer) polynomials with parameters -1/2 < a

< 1/2 (cf. [22, eq. (7.33.4) and eq. (7.33.5), p. 171] and also [15] for a refinement). In
addition, for a wider range of the parameters, similar inequalities have been proved in
[13] ( > -1/2) and [7] ( > 1/2).
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For instance, Lorch [15, form. (10), p. 115] proved1

21-(n + A)-1
max [(1-x2)P(n)(x)lzE[--1,1]

for n 0, 1,... and 0 < A < 1, which, in terms of the orthonormal Jacobi polynomials,
can be stated as

ze[--1,1] r F(n + 2a + 1)
n + a +

for n 0, 1,..., and 1/2 < c < 1/2, where w(x) (1 x2

For nonsymmetric Jacobi weights much less is known. In 1988, Gatteschi [10]
extended Bernstein’s results to Jacobi polynomials with -1/2 < c,/ < 1/2. For instance,
he proved that if -1/2 < a,/ < 1/2, and c +/ > 0, then2

OE[O,{]

for n O, 1, a Again, in terms of the orthonormal Jacobi polynomials, this can be
stated as

E[0,1]

/22+1F(n + c +/ + 1)r(n + + 1)< V ;r-F( + 1)r(n + + 1) (2n + c +/ + 1)-for n 0, 1,..., where w(x) (1 x)a(1 + x) with -1/2 < c,/ < 1/2, and ( + > 0.
In a sense our goal is less ambitious than the previously mentioned inequalities in

that we do not expect to be able to obtain sharp constants with our techniques. On the
other hand, our techniques enable us to extend these Jacobi polynomial inequalities
with very explicit constants for all parameters c _> -1/2 and >_ -1/2.

DEFINITION. Generalized Polynomials. The function ] given by
k

/(z) --f I1 I1 I- 1, # 0, e c, z e c, > 0,
j:l

is called a generalized nonnegative algebraic polynomial of (generalized) degree
k

defN= rj,

and we will write f E GCAP IN.
If w(x) (1- x)(1 + x) is a Jacobi weight, then V’I- x2w(x)p2n(w, x) is a

generalized polynomial (of degree 2n+c+ + 1), and as such the framework of gener-
alized polynomials is (one of) the perfect setting for studying Jacobi polynomials. As

Here Pn() is the standard normalization of the Gegenbauer polynomials, that is, Pn()(1)
n+2:X-l and F denotes the gamma function.

2 Here Pn((’’/9) is the standard normalization of the Jacobi polynomials, that is, Pn(a’) (1)
(n+na) and F again denotes the gamma function.

3 For 0 e [, r], one can use Pn(a’lg) (-x) (-1)nPn(Xg’a) (x) to obtain an analogous inequality.
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a matter of fact, this was the primary reason for introducing generalized polynomials
in the first place (cf. [6] and [5]).

This paper is a modest attempt to demonstrate the applicability of generalized
polynomials to problems which have not yet been settled in a satisfactory way despite
more than a hundred years of undiminished interest in them.

Our method consists of two steps. First, in 2, we use generalized polynomials
to estimate the Christoffel function =oP(w), and then, in 3, we obtain a Riccati
equation which yields estimates for the ratio p2n(w)/’]=oP(W). The reason that
we have to limit ourselves to considering a _> -1/2 and fl _> -1/2 is that the function

v/1- x2w(x) for either a < -1/2 or/ < -1/2 is no longer a generalized polynomial.
Our main result is the following.

1THEOREM 1. For all Jacobi weight functions w(x) (1-x)a(1Wx)fl with a >_ -5
and > 1

-5, the inequalities

(1)

and

max

(2) max y/l x2w(x)p2(w, x) <_
aE[--1,1]

hold for n 0, 1,

4(2+V/a2+fl2)
2n+c+fl+2

Our method is therefore able to give O((a2 +2)1/2) estimates for large a2 +f12. It
is natural to ask how a sharp bound should behave. Numerically computed examples
of the actual maximum of V’I- x2w(x)p2(w, x) suggest that small values of n give
relevant information. For instance, with a- 10 and fl 2,

n 0 1 2 3 4 5 6 7 8 9 10
max 1.478 1.251 1.191 1.161 0.845 0.747 1.123 0.727 1.112 0.703 0.685.

For n 0, explicit calculation yields

max V/1--x2w(x)p(w,x)
xe[-1,1l

r(a + B + 2) X)c+I/2 X)fl_{_l/2max (I- (i 4-2=+fl+lF(a + l)r(fl + i) e[-1,1l

that is,4

max V/1 x2w(x)p(w, x) (c -- 1/2)/1/2( -I- 1/2)+1/2F( A- A- 2)
x[--l,l] (Cg + fl + 1)=++lF(a + 1)r(fl + 1)

which behaves like [(a + )/(2r)]1/2 for a and large. We expect O((a2 + 2)1/4)
bound to be valid for all n > 1.

2. Generalized Christoffel functions and generalized polynomials.
DEFINITION. Generalized Chvistoffel Functions. Given w(> 0) LI(IR) and p

(0,

A: (w, p, z) d__f inf
f,(t)

f] (]CAP ],_ j fP(z) w(t) dt, z C,

4 The maximum is ken z ( a)l(a + fl + 1).
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where n _> 1 is real, that is, n is not necessarily an integer.
Remark 2. Of course, A(w,p) =_ Ap_p+l(W, 1). As a matter of fact, this is one

of the underlying reasons for the usefulness of the concept of generalized polynomials.
The notation A(w,p) was kept for historical reasons. Eventually, the parameter p
may disappear from it.

DEFINITION. Generalized Jacobi Weights. Given a nonnegative integer m, the
function w satisfying supp(w) [-1, 1] and

m

(4) w(x) de:f (1 -x)r H Ix- aklr(1 + x)r"+" ak e ], Tk e ,
k=l

for x e [-1,1], is called a generalized Jacobi weight, and its degree is denoted by

deg(w) ad En:+01
We starg with he following.
THEOREM 3. Let w be a generalized Jacobi weight of the form (4) such that

akajforkCj, ak=l=lfork=l,2, re, T0> --, Tk > 0 for k 1,2,...,m,
and Tm+l >_ --1/2. Then, for all 0 < p < oo and n >_ 1, the generalized Christoffel
functions )(w, p) satisfy the inequality

max V/1 x2w(x) [A(w,p,x)]-1
_

(2 +pn-p+deg(w)) e.
ze[-1,1] 2r

n--1Since the reciprocal of ’k=o p(w, z) equals the right-hand side of (3) with the
infimum (that is, minimum) taken for all ordinary polynomials of degree at most n- 1,

Ep(w,x <_ [A:+l(W, 2,x)] -1 n 0, 1,...,
k=0

and thus we have the following.
COROLLARY 4. For all Jacobi weights w(x) (1- x)a(1 + x) with a >_ -1/2 and

n (2n+ a++ 2) e
(5) max V/1 x2w(x)Ep(w x) < n O, 1

x6[--I,1]
k=O

2r

holds.
Remark 5. We point out the uniformity of (5) in all parameters.
Remark 6. The corresponding lower estimates are essentially the same with a

proper interpretation of the word "essentially" (cf. [6, Thms. 2.1 and 2.2, p. 113]).
Remark 7. Of course, given e > 0, for all Jacobi weights we have

lim
v/1 x2w(x) E--0P(w, x) 1

n-*o n r

uniformly for -1 + e

_
x

_
1 -e (cf. [19, Thm. 6.2.35, p. 94]).

Question 8. It remains to be seen how to extend (5) for all Jacobi weights, with
parameters a > 1 and > 1.

Proof of Theorem 3. We start out as in the proof of [16, Thin. 6, p. 149], and we
follow closely the proof of [6, Thin. 3.2, p. 126]. If h is analytic in the unit disk, then

1 f h(u)
1- r2Udu, Izl < x 0 < r < 1.(1 -Irzl2)h(rz)

,]lul= U rz
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Hence, if P is a polynomial and 0 < p < oo, then

1 Ju IP*(u)lPldul’ Izl 1, 0 < r < 1,(1 -Irl)lP*(rz)l <_ -r __1=1

where P* is obtained from P by replacing all the zeros z* of P which are inside the
unit disk by z-*-.

Since

l+r
2

Iz-al<_lrz-al, lal>_l, Izl=l, 0_<r_<l,

we have

(1_ ir]2)(1 "+’r)pdeg(P)2 IP*(z)l" <- 11=1
IP*(u)l’ldul, Izl 1, 0<r<_ 1.

Maximizing the left-hand side here for 0 _< r _< 1 and using IP*(z)l IP(z)l for
]z 1, the inequality

< (2 +pdeg(P))e [lP()l
8r

_ IP(e’)ldO, Izl 1,

follows.
For every real trigonometric polynomial Rn of degree at most n there is an alge-

braic polynomial P2n e H2n such that R2n(O) IP2(e)12. Therefore,

< ( +u) [() IIPII( 4r j_
IRa(O)I dO

for every such trigonometric polynomial Rn.
If the multiplicity of each zero of g GCAP IN is rational, then there is q > 0

such that gq(cos-) is a nonnegative trigonometric polynomial, so that applying (6)
1 yieldswith RN gq and p

(7) ilg(cos.)llLOO() < (1 + N) e
g(cos0) dO.

4r

Once (7) holds for all g GCAP IN such that the multiplicity of each zero of g is
rational, by continuity it remains valid for all g [GCAP In. Hence,

(8) IIG(eos’)llL(m < (1 + N) e
G(cos0) dO V G e IGCAP IN4r

for every N _> 0.
Thus,

F(t) dt V V/1 (-)UF e GCAP IN+l,V/1 (’)2F
Loo([-1,1]) 27r 1

N _> 0. Applying this inequality with F fPw, Theorem 3 follows immediately.

3. Christoffel Functions and Jacobi Polynomials.
"I’ve tried A! I’ve tried B! I’ve tried C!"
Tom Wolfe, The Right Stuff.
If we want to find upper bounds for p2n from upper bounds for -p, then we

must have upper bounds for p2/-]o P, and that is precisely what is attempted here.
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THEOREM 9. Given n 1, 2,..., and a Jacobi weight w(x) (1-x)C’(l+x) with
> - d > -, () < () h o oIh oodin

nth-degree Jacobi polynomial. Then the inequalities

(2nTaTT1)(T1) --1 < x < 2Xnn(W) + 1

p(w,x) 4(2+a++D(9) Ek=oP(wn X)
< (2+a++2)2-- 2a2 l+z 1 X 2,

(2=+a++1)(a+1) 2Xln(W) 1 < x < 1,(=+=++1)(=+a+1)

hold provided -1 < 1 2 < 1 are such that (2n + a + + 2)2 2a2/(1 x) 22/
(1 + x) on the ght-hand side of the second inequality of (9) is positive in If1, f2].

Remark 10. The inequality

p(w, x) < const
1 x 1,EL0v(,)-

is well known [19, Lem. 6.2.17, p. 82] (see [18, Lem. 2.1, p. 336] for the necessary
Christoffel function estimates) but its proof is rather cumbersome. Theorem 1 of
the present paper yields a new proof with an explicit formula for the constt which
depends on a and .

Proof of Theorem 9. By Christoffel-Dbo’s formula

(,) () [v+(,)=(,) v(,)+(,)]
=0 =+l(W)

() =, ) [v=+(,)
(%)’ [ E$ ]"

Hence, we need to find an appropriate lower bound for r’ in [-1, 1], where

r() v=() v+(’)
v=+() w(,)

Here r is a rational function with simple poles at the zeros {xk=(w)}=1 of p=(w). It
h ymptotic behavior x+c for x , where c is a constant. Since r’ is positive
everhere, r must have negative residues at its poles, so that we obtain

n AkAk and r’(x) 1 + (x xk=(w))2
r() +- ()

k=l k=l

with Ak > O, k 1, 2,..., n. See the aphs of r and r (solid thick line) on upper
and lower pts of Fig. 1 an example. When -1 x < xn=(w), r is the sum of
increing functions of x, and therefore it is greater than r’(-1). When x is slightly
eater than xn(w), r’ is decreeing but it is still greater or equal than r’(-1) long

each term A/(x xn(w))2 is eater or equal than the corresponding term at -1,
that is, (x--xk=(w))2 (--1--Xk=(W))2 for k 1,... ,nor (x+l)(x--2xk=(w)--l) O,
which holds if -1 x 2 min xkn(w) + 1 2x=n(w) + 1. A simil argument shows
that r’(x) r’(1) if x 2mxk=(w)- 1 2Xl(W)- 1. This will prove the first
and third inequalities of (9) soon we get the actual values of r’(-1) and r’(1).

The bottom pt of Fig. 1 shows a graph of r’ for -1 x 1 when a 3/2,
-3/10, and n 3. A short-dhed horizontal line h been drawn between -1

and 2xnn(w) + 1 at the ordinate r’(-1). One can see that this horizontal line segment
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T Xnn

FIG. 1

lies indeed under the graph of r’. As r’(1) is a lower bound of r’ on the whole interval
[-1, 1] in the present case, only a part of the horizontal line of the ordinate r’(1) has
been drawn. Other features of this figure will be explained later.

In order to establish the second inequality of (9) and to compute r’(+l), we need
the following formulas for the orthonormal Jacobi polynomials.

(i) The recurrence relation:

(10) +()v.+(,1 .() (,),

where

.() 2 C2
(2n + a +/)(2n + / + 2)’

7(w)
=2 x,/ (n+l)(n+++l)(n++l)(n+/+l)

7n+t (w) V (2n + a +/ + 1)(2n + a + + 2)2(2n + a + + 3)

n 1,2,... (cf. [22, form. (4.5.1), p. 71] or [3, Table III.11, p. 220]).
(ii) The differential relation:

(1 x)p(w, x)

= n++- p(,)+(+++ 1)v-()--(,)

(11)
=(n+++l)

2n+++2

(2n + + + 1) V(w) (w,z)
V+l(P+
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n 1, 2,... (cf. [22, form. (4.5.7), p. 72]). Of course, each one of these formulas can
be deduced from the other one by the three-term recurrence formula.

The combination of (i) and (ii) yields (iii).
(iii) The differential equation:

(12) (1- x2)p(w, x) + [ ix (ix + + 2)x]p’n (w, x) + n(n + ix + 3+ 1)pn(w, x) 0

(cf. [22, form. (4.2.1), p. 60] or [3, form. (2.20), p. 149]).
In order to compute r’ (+/- 1), we proceed as follows. From (11),

7n(w) pn+l(W,+/-l)
r(+/-l)

7=+1(w)p.(w, +/-1)

and from (12),
+/-1)

so that we have

(n / ix / f / 1)[ix -/ +/- (2n / ix + D + 2)]
(2n / ix / D + 1)(2n + ix + f + 2)

n(n / ix + + 1)
+/-(ix / / 2) + ix f’

r’(+/-l) 7. p.+l(W,+/-l) (pn+l(W,+/-l) pn(w,+/-l))7.+1 -(::-i p.+l(W,+/-l) p.(w,+/-l)

which allows the computation of the requested special values as given in the following
table.

(13)

i/J

The values of 1/r’(- 1) and 1/r’ (1) are used in the right-hand sides of the first and
third inequalities of (9).

Now, we come to the second inequality. This one will be established through a
Riccati equation for r. Use the differential relations (11) for eliminating P’n and Pn+l
in Pa+lP, PnP,+I. This gives an equation in terms of p,2+l, PuP,+l, and p2n, so that
after some rather tedious calculations,

with

A / B(x)r(x) + Cr(x)2

1 gg2

A=(2n+a++3)/\7n+l(W)Tn(w--) )2
4
(n + 1)(n + ix + f + 1)(n + c + 1)(n +/ + 1)

(2n + ix f + 1)(2n -+- ix -{- f + 2)2

B(x) -(2n + ix + + 2)x
2n + ix +/i/+ 2

C= 2n + ix + f + 1.
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The idea is that whatever the actual value of r is, A/ Br + Cr2 will always be greater
than the absolute minimum of this trinomial, that is,

4AC- B(x)2

>
4c( 

Equality will occur whenever r(x) is equal to -B(x)/(2C), which happens once be-
tween any pair of consecutive zeros of p,, as can be seen in Fig. 1, where the graphs
of r and -B/(2C) are shown in the upper part, and the graphs of r’ and its lower
bound (dashed line) in the lower part. Working out the numerator yields

(2n + + f + 2)2 2a 2fl__- 1+ -1 < x < 1,r’(x) >_
4(2n + a +/ + 1)

and, thus the theorem follows, as long as x is restricted to an interval [1, 2] where
the above lower bound is positive. [J

Combining Theorem 3 (that is, Corollary 4) and Theorem 9, we obtain the fol-
lowing pointwise estimate for the Jacobi polynomials.

THEOREM 11. For all Jacobi weight functions w(x) (1 x)a(1 + x) with
a >_ -1/2 andS>_-1/2, we have

2 e (2n + a +/ + 2)(2n + a +/ + 1)p2n(w x) <_
rvll x2w(x) (2n + a +/ + 2)2 2 2P__L n 1, 2,...,

1--x 1-1-z

for-1 < x < 1, as long as the denominator (2n+a+-1-2)2-2a2/(1 x)-22/(1 + x)
on the right-hand side is positive. In particular, given 0 < e < 1,

2 e< 2(+f)rv/1 x2w(x) 1 (2n+a+f+2).

for -1 - e <_ x <_ 1 e and n > V/2(a2 -t-/2)/e (a + f)/2 1.
For fixed x 6 (-1, 1) and n - oo, this is no more than e x (1 + o(1)) times worse

than an optimal inequality could be. However, when x is close to =t=1, the parameter
n needs to be sufficiently large so that the estimate would become useful. The quest
for estimates valid for every n > 0 is the subject of the following investigations.

First, we deal with the first and third inequalities in (9).
LEMMA 12. When a >_ -1/2, >_ -1/2, and n > O, we have

[ (2n-t-a+f+l)(/-t- 1) (2n+a-t-/+ 1)(a+l) ]
maX[(n+a+/+l)(n+f+l) (n+a++l)(n+a+l)

< 4(I + maX(a, ))
2n+a+f+2

This is the first instance showing how the right-hand sides of (9) behaves. The
factor 2n + a + f/+ 2 has been chosen because it will reappear when (5) is used.

Proof of Lemma 12. First of all, since t/(n + t) is an increasing function for
t > -n, we only have to consider

( + + + )( + )

where -y- maX(a, f). Let i min(a,/). Then, we have to show

(2n + 7 + + 2)(2n + 9’ + + 1) _< 4(n +-y + 1)(n +-y-t-,ti -t- 1),
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when /_> i >_ -1/2 and n > 0. This is quite elementary and amounts to

2n(2 + 1) + (/+ + 1)(3/- + 2) >_ 0,

which holds since - _> and 27 + 1 _> 0. V1
In order to use the second inequality of (9), we must find a valid interval [1, 2]

containing [2xnn(w) + 1,2xln(w)- 1], so that then we would have upper bounds of
p2(w)/p(w) in the whole interval [-1, 1]. Since no simple formulas for xn(w)
and xn(w) are known, we will now find a lower bound y for xnn(w) large enough
for allowing 2y + 1 to be a valid choice in (9), and, similarly, a sufficiently small
upper bound r]2 for Xln(W).

There is much literature on bounds for the zeros of Jacobi polynomials (see, e.g.,
[22, 6.2 and 6.21, p. 116-123]), but most are useful only when a and f are between-- and 1/2 For large n, the extreme zeros behave like -1 +j/(2n2) and 1-j2a/(2n22
where j denotes the smallest positive zero of the Bessel function J [22, 8.1, p. 192].

The next theorem gives reasonably satisfactory lower and upper estimates for the
zeros of the Jacobi polynomials.

THEOREM 13. Given n 1, 2,..., the zeros {xkn(w)}’= o.f the nth-degree Jacobi
1polynomial corresponding to a Jacobi weight w(x) (1- x)(1 + x) with ( >_ -and >_ -1/2 satisfy

2/2 2a2

(15) yt -1 + _< xkn(w) <_ 2 1
N2

k l, 2, n, where N 2n + a + + l.
The proof of this theorem requires the following lemma on oscillations of solutions

of differential equations.
LEMMA 14. Let Y, Z, Y, Z, Y", Z", K, and L be continuous functions in the

open interval (a, b), with Y O, such that

Y"(x) + g(x)Y(x) O, Z"(x) + L(x)Z(x) O, x e (a, b).

(i) K(x) <_ L(x), x e (a, b),
(ii) Y’(x)Z(x) Y(x)Z’(x) -- O, x --. xo,

where xo is one of the endpoints of (a, b), and if Z(x) has no zero in (a, b), then Y
has no zero in (a, b) either.

Proof ofLemma 14. The lemma is a variant of the Sturmian comparison theorems
for solutions of second-order linear differential equations. It is almost the same as
Szegh’s comparison theorem in #16.626 of the 1980 edition of Gradshteyn and Ryzhik’s
book [11], coming from Theorem 1.82.1 of Szeg6 [22 1.82 p. 19], known as "Sturm’s
theorem for open intervals"; see also the introduction of [9].5 Here is a self-contained
proof.

Suppose that Y(xt) 0 for some xt E (a, b). Since the equations are homoge-
neous, we may assume that Z(x) > 0 on (a,b), and (x0 xl)Y’(x) > 0.6 Therefore,
Y(x) f Y’(t)dt > 0 when x is between xl and x0 and it is sufficiently close to x,

5 We thank our dear friend Luigi Gatteschi for drawing our attention to [9].
6 N.B. Y(xl) must be different from zero, otherwise Y 0.
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and

Y’(x)Z(x) Y(x)Z’(x) Y’(xl)Z(xl) + [L(t) K(t)]Y(t)Z(t) dt

keeps the sign of x0 xl with an increasing absolute value when x varies from x to
x0 (since Y(x) Z(x) fx (Z(t))-2[Y’(t)Z(t) Y(t)Z’(t)]dt keeps its positive sign),
and it cannot vanish when x --. x0. [

Proof of Theorem 13. First, one uses the fact that if all the zeros of a polynomial
Pn are real and are contained in an interval (a, b), a smaller interval containing all
the zeros is a- pn(a)/pn(a), b- pn(b)/pn(b). This is a well known theorem of the
numerical analysis of the Newton-Raphson iteration method (see, for instance, [21,
Chap. 9, p. 55]). Hence, by (13),

k 1, 2,..., n, is valid for every a > -1, f > -1, and n >_ 1 (and is exact if n 1).
However, considering only the upper bound, it behaves like 1 2(a + 1)/n2 for large
n, instead of 1- j2/(2n2), and j, behaves like a + (1.855757...)a/3 for large
(Tricomi’s formula; see [4, p. 60]). Thus, we need better estimates when either n,
or fl are large.

Since Y(x) (1 x)(a+)/2(1 + x)(+)/2pn(w,x) is a solution of Y" -t- KY 0
with

1 2 1 2 2n(n + + + 1) + (( + 1)(/ -t- 1)K(x) 4(1 x)2
-t-

4(1 + x)2 + 2(1 x2)

(cf. [22, form. (4.24.1), p. 67]), we take Z(x) (1- x)(a+l)/2(1 / x)(t+)/2 (cf.
Lemma 14), so that

1 2 1 2 ( / 1)(/ 1)L(x) 4(1 x)2 + 4(1 + x)2 - 2(1 x2)
and

L(x) K(x)
Or2 .2

4(1 + x)2 2(1 x2)
( + 1)(f + 1) (a + 1)(/ + 1) 2n(n + + + 1)

Now we turn to the upper bound in (15). Since L- K must be positive in a neigh-
borhood of 1, 2 < (x2, and since Y’Z- YZ behaves like (1 x)(a+a)/2 near 1, one
must have > -a. This implies that the method will work only when ( > 0. Let us
choose 0 and/ ;3 so that

1 [ l+xL(x)-g(x)--
4(1 x2)

a2
1-x

2a(fl + 1) 4n(n + + fl + 1)],
which is positive between 1- (2c2/(2n -t- (x)(2n -t- ( + 2f -t- 2)) < 1- (2a2/N2) and 1.
Finally, considering that the first upper bound in (16) satisfies 1 (2(a -t- 1)/n(n +
-t- / 1)) _< 1 8(a / 1)/N2 when a and _> -1/2, and that 8(a / 1) > 2(2 when-- < a < 0, we conclude that 1 (2a2/N2) is a valid upper bound.

For the lower bound in (15) one can use the symmetry property of the Jacobi

polynomials P(na’) given by Pn(’) (-x) (--1)npn(’) (X).
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It is interesting to compare (15) with formulas given in [17, p. 160] (which is
also quoted in [2, p. 1448]) stating that, when a, f, and n tend to oc in such a way
that limn--,oo a/N A and limn-,oo//N B, then the zeros remain smaller than
S2 A2 + [(1 A2 S2)2 -4A2B2] 1/2, which is indeed smaller than 1 2A2 (for an
alternative proof see [12, Thm. 8, p. 137]).

We will also need the following estimates for the second inequality of (9).
LEMMA 15. For real , , and N >_ [2((2 -b 2)]1/2, the inequality

42 4a2cg2 22 _> CN(N + 1) -1 + - _< x _< 1
N2(N + 1)2

1 x 1 + x

holds with
1

C min
2’

Proof of Lemma 15. First, since (N-b 1)2 -2a2/(1-x)- 2fl2/(1 q-x) is a concave
function of x in [-1, 1], we only have to check its values at -l+4f12/N2 and 1-4a2/N2,
which are (N+ 1)2 -a2/(1- 2f12/N2) N2/2 and (N+ 1)2 N2/2-2/(1- 2a2/N2),
respectively. Let "1 max(l(l, Ifl) and i min(Icl, I1).7 Since ’12/(1 2i2/N2) _>
i2/(1 2"12/N2), we have to find a lower bound for

N2 ’12N2(N -b 1)2 N2F(N) de__f 2 22

N(N + 1)
when N _> [2(a2 q-2)]1/2. Note that

F(N) >_

N2 "12N2 3 ’12N-b 2N
2 N2 22 1 2 N2 22

N(N + i) 2 N + 1

so that F(N) >_ 1/2 when N --, oo. F(N) is greater than 1/2 for all N _> [2(’12 + i2)] 1/2 if

G(N) de_f 3 "12N
2 N 25 >- 0

for all these values of N, that is, if ’12 is smaller than the values of the increasing
function 3N/2- 32/N, so that the least value is taken at N [2(’12 + 52)]1/2. This
happens when a2 + f2 "12 + i2 <_ 9/2, and, hence, the minimum of F(N) is 1/2 in
this case.

When c2 + f2 .12 + i2 > 9/2, we only have to search for the negative values of
G(N) in F(N) >_ 1/2 +G(N)/(N+ 1). We will show that G(N)/(N+ 1) is an increasing
function of N, that is, -G(N)/(N+ 1) is a positive decreasing function of N. Indeed,
-G(N) "12/(N-252/N)- is a decreasing function itself, as N-252/N is increasing.
Thus, the minimum of F(N) is not smaller than 1/2 + G(N)/(N + 1) _> 1/2 + G(N)/N
at N [2(’12 + t2)] 1/2 This gives G(N) 3 N and F(N) > 3/{212(’12 + 52)]1/2}2 2

3/[8(a2 -b f2)]1/2.
Now we are ready for the following.
Proof of Theorem 1. First we prove formula (1). Since it is obvious for n 0,

we can assume that n_> 1. Let N= 2n+a++l. Ifx E [-1,-1+432/N2]U
[1- 4a/N, 1], then (1) follows from Theorem 9, Lemma 12, and Theorem 13. If

7 N.B. these values and are not the same as in Lemma 12 if c or f is negative.
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N < [2(a2 + 2)]1/2, then [-1 +42/N2, 1 42/N2] is empty. If N
and x e [-1 /42/g2, 1 -4a2/g2], then (1) follows from Theorem 9 and Lemma 15.
Finally, Corollary 4 and (1) yield (2).
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REGULARIZATION OF NONLINEAR DIFFERENTIAL-
ALGEBRAIC EQUATIONS*

ROBERT E. O’MALLEY, JR. AND LEONID V. KALACHEV

Abstract. This paper illustrates how initial value problems for nonlinear differential-algebraic
equations can be regularized, i.e., converted to tractable singularly perturbed problems, by appropri-
ate introduction of a small positive parameter e. The corresponding outer limit provides the desired
solution, including consistent initial conditions. Examples are given for problems with indices one,
two, and three.

1. Introduction: The index-one problem. Consider the initial value prob-
lem

(1.1)
f(u, v, t), u(O) prescribed,

o g(u, v, t)
on some interval t _> 0 consisting of a differential equation for the m-vector u, a
corresponding initial value u(0), and an n-dimensional algebraic constraint g 0
corresponding in dimension to the unknown n-vector v. Such semiexplicit differential-
algebraic equations (DAEs) naturally arise in describing constrained mechanical sys-
tems, electrical circuits, and, indeed, a wide variety of other significant applications.
The initial value u(0) may be restricted to be consistent with the constraint, though
users and computations typically do not enforce this. Such problems have received
considerable attention recently in the numerical literature (cf. [4] and [10]), because
they cannot generally be readily integrated using standard codes for ordinary differ-
ential equations.

The simplest situation occurs when the Jacobian matrix gv is nonsingnlar for all
arguments. Then, the implicit function theorem implies that g 0 can be locally
solved for, say,

(1.2) v h(u, t).

Presuming appropriate smoothness and stability hypotheses, a solution of the initial
value problem (1.1) then becomes specified through the unique solution of the initial
value problem

(1.3) { f(u, h(u, t), t), u(O) prescribed.

An alternative solution procedure results if we first differentiate g 0 to obtain

g + g. + g O.

Solving for then shows that (1.1) is equivalent to integrating the initial value problem
for the m -t-n-dimensional system

(1.4)
--g;l(u, V,)[gu(U, V,$)f(?, V,;) -- gt(u, V, ;)],

*Received by the editors February 18, 1992; accepted for publication (in revised form) February
12, 1993. This research was supported in part by National Science Foundation grant DMS 9107197.

Department of Applied Mathematics, University of Washington, Seattle, Washington 98195.
:Department of Mathematical Sciences, University of Montana, Missoula, Montana 59812.
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with any u(0) prescribed and with v(0) being obtained as a solution of the nonlinear
equation

(1.5) g(u(O), v(O), O) 0

at t 0. We observe that the constraint manifold g 0 is invariant during an exact
integration of (1.4)-(1.5), although numerical errors may in practice result in a drift
away from the manifold. Since and 3 are obtained as functions of u, v, and t after
one differentiation of the constraint equation (because gv remains nonsingular), we
say the problem then has index one (cf. [8]).

Another simple way of solving (1.1) when gv remains nonsingular is to consider
the "nearby" singularly perturbed system

(1.6)
l(u, v, ),

-a.((0),.(0), 0) a(,., )

for small positive values of e. Note that this generalizes the pencil regularization that
was classically used for linear problems (cf. [8]). The Wikhonov-Levinson theory (cf.
[17]) for singularly perturbed initial value problems states when the unique solution
of (1.6) with the prescribed initial vector u(0) and any v(O) will have the asymptotic
form

(1.7)
,,(t, ) tro(t) + o(),
,,(t, ) 4(t) + N(,-) + o()

bounded subintervals of t > 0, where (tr) satisfies the reduced problemon vo

(1.8) [ Oo- f(Uo, l/b, t), Uo(O)--u(O),
( 0 (Uo, Vo, t)

(i.e., the DAE (1.1)), and where the initial layer corrector/o(r) will satisfy the layer
problem

(1.9)
-g.(u(O), v(O), O) do ((0), go(0) + Zo(), 0),

Zo(0) ,(0) go(0)

on the stretched interval T tie _> 0. A sufficient hypothesis is that the Jacobian

(1.10) -a;((0), .(0), 0)a.((0), ., 0)

will remain a stable matrix for any v. Then the solution/0 of (1.9) will decay to zero
as T -- X). If v(0) is consistent with the constraint, i.e., g(u(O), v(0), 0) 0, we will
take V0(0) v(0), so fo() -= 0. Otherwise, the solution (1.7) of (1.6) features an O(e)
thick initial t-layer Of nonuniform convergence within which the solution converges to
a solution of the DAE (1.1) as e -. 0. We note that the numerical integration of (1.6)
for any such v(0) is tractable (cf. [16], [20], and [1]). Our artificial introduction of
the parameter e is an example of a Tikhonov regularization (cf. [22]). We note that
Rubin and Ungar [18] introduced an analogous approach for constrained mechanical
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U C-1

FIG. 1

FIG. 2

systems with tangential initial velocities and that Boggs [2] and Boggs and Tolle [3]
develop similar approaches for optimization problems. In many physical contexts, such
e parameters can be given natural concrete interpretations (cf. the linear examples in
[12] and the circuit theory problem immediately following). Readers are referred to
[15] for a survey of related approximate methods to find consistent initial conditions
for DAEs. Kopell [14] also presents a related analytic method.

Example. Consider the RC circuit pictured in Fig. 1, with a DC voltage source
and a nonlinear resistor in series with a capacitor (see [6] for a discussion of this and
more general circuit models). Let i be the current flowing, U be the constant voltage
provided, and 3i- i3 be the voltage drop across the resistor. Then U 3i- i3 + V
and i l for a one unit capacitance. Setting v V- U yields the DAE

(1.11) {=i’0 v + 3i i3.

To have a positive voltage drop across the resistor, we’ll have to restrict the current
so that 0 < i < vf.

A natural way to solve the DAE is to first solve the constraint for i as a function
of v. Graphically, or by use of the implicit function theorem, we’ll have one of three
possibilities (as shown in Fig. 2):

qol(v) > 1 if v > -2,

i qo2(v) if-2 _< v _< 2,

qoa(v)<-I if v_<2.
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--1

1

(i(o), ,(o))

FIG. 3

The sign of in the remaining differential equation

(1.13) @ j(v)

implies that Iv(t)l will increase monotonically according to the implicit solution

v(t) dr
(1.14) t

Jr(0) oj (r)

for j 1 or 3 if Iv(0)l > 2. Otherwise, for Iv(0)l < 2, v -. 0 monotonically as t - c.
Let us, instead, introduce the singular perturbation

di(1 15)
-ae(1 i(0)) v + ai ia.

We note that the. parameter e corresponds to the introduction of a small inductance
of magnitude ae(1 i(0)) into he circuit (el. [6] or [1]). If i2(0) < 1, the Tikhonov-
Levinson result will apply as long i(t)< 1, angeeing ghe exisgence of limiging
solution (v") for finige t, which satisfies ghe DAE (1.11). We naturally

(1.16) Io 2(Vo),

for ]Vo] < 2, so the limiting solution will be determined through the initi lue
problem

(.17) fro V(), (0) ,(0).

Because of ymptotic stability, Vo(t) will tually be appropriate for all t > 0 (cf. [11])
and the solution will have the ymptotic form

,(, ) () + o(),
(.lS)

i(, ) o() + Zo() + o(),

where the initial layer correction o is a decaying solution of

(1 1) dZo (1 (0)) Z (ao(0) + o)dT 1-i2(0) o+3(1_i2(0))
on T 0 (cf. Fig. 3). Note that working with the limiting inner solution co(T)
Io(0) + 0(T) would tually be more convenient to veri the continued existence of
a0(T) and 0(T).
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If instead we had i(0) > 1, the Tikhonov-Levinson theory would apply as long
as i2 > 1, yielding a limiting solution with current Io ol(Vo(t)) and voltage
defined by 10 ol(V0) > 1, l&(0) v(0) > -2. Then, we will have to limit our
approximation to finite t intervals to keep solutions bounded. Likewise, a solution can
be obtained when i(0) < -1 and v(0) < 2.

2. The index-two problem. Consider the DAE

(2.1) * f(u, v, t),

( 0 =(,,)

when the n n matrix gv is singular with constant positive rank r < n. By possibly
reordering the constraints g 0 as

(2.2) gl (u, v, t) 0 and g2(u, v, t) O,

we can assume that the r n matrix glv has rank r. If we then order the components
of v appropriately as

(2.3) v
V2

we can even assume that the r r matrix

(2.4)
Og

is nonsingular.
OVl

Then, we will be able to locally solve gl 0 for

(2.5) Vl hi (u, v2, t),

leaving us the constrained differential system

(2.6)

with the remaining n- r constraints g2 0 expressed as G 0. It is important to
realize that G is indeed independent of v2, i.e., OG/Ov2 =- 0, since otherwise the rank
of gv would exceed its constant rank r. Of course, now we cannot solve the constraint
G 0 for v2, nor can we let u(0) be inconsistent with G(u(O), 0) 0 without expecting
an initial discontinuity.

If we now differentiate the constraint in (2.6) and use the differential equation for
u, we get the constrained differential system

& :r(u, v2, t),
o a(, t)(u,, t) + G(u, t).

If we further assume that the (n- r) (n- r) matrix

(2.s) Ou(u, t)J:v= (u, v2, t) remains nonsingular
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everywhere (cf., e.g., [7]), (2.7) is an index-one problem since its n- r constraints can
be locally uniquely solved for

(2.9) v2 h2(u, t),

and (2.7) reduces simply to the constrained differential equation

t F(u, t) =-- Z(u, h2(u, t), t),
0 G(., t),

consisting of m differential equations and the n- r constraints defined in (2.6). Since
we differentiated the constraint G 0 once to get the index-one problem (2.7), we
naturally say that the DAE (2.1) has index-two whenever (2.8) holds. We will now
further assume that m > n- r > 0.

We will now regularize the constrained differential system (2.10) by introducing
a small positive parameter e to scale a Lagrange multiplier A as a slack variable to
obtain

(2.11)
t F(u, t) + GTu (u, t)A,- G(u, t)

Note that Gear [7] effectively uses the Lagrange multiplier A for e 0. Introducing e,
however, allows us to use inconsistent initial values u(0). If we eliminate A in (2.11),
we obtain

(2.12) e --GTu (u, t)G(u, t) + eF(u, t),

which is a singular singular-perturbation problem (cf. [9] and [23]). Nonetheless we
naturally seek an asymptotic solution to the initial value problem for (2.12) in the
form

(2.13) (t, ) u(t, ) + (, ),

where the initial layer correction ((T, e) -- 0 as T t/e --. C (cf. [231 or [17]).
Alternatively, we could seek an outer solution

(2.14) U(t, ) E uj(t)e
./=0

of (2.12) for t > 0 and an inner solution

z(, ) u(, ) + (, ) Z()o

that satisfies (2.12) for all finite T and coincides asymptotically with U(eT, e) as T --, 0.

To obtain the outer solution, we successively equate coefficients of like powers of
e in (2.12). Thus, U0 must satisfy the limiting equation

GT(Uo, t)G(Uo, t) O.
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Because the m (n- r) matrix GuT has rank n- r, multiplication by Gu(Uo, t) implies
that Uo must satisfy the expected constraint

(2.16) G(Uo, t) -0.

This determines a locally unique solution Uo(t) when m n- r. For m > n- r, it
only restricts Uo to a manifold. The coefficient of e implies that U1 must satisfy the
linear equation

-GT (Uo, t)G=(Uo, t)U ]o F(Uo, t)

(since Uo satisfies (2.16)). Multiplying (2.17) from the left by Gu(Uo, t) provides

Gu(Uo, t)U1 in terms of Uo. Since differentiation of (2.16) implies that G(Uo, t)o
-Gt(Uo, t), (2.17) finally provides a differential equation

(2.18) bO [I T(Vo,
V (Vo,  )V.r(Vo,

for the desired solution Uo(t) of the DAE (2.1). We note that a differential equation
for U1 will follow analogously using the O(e2) terms in (2.12). Equation (2.18) must
be solved subject to an initial condition that satisfies the constraint G 0 at t 0.
We will get the initial value U0(0) by matching the limiting inner and outer solutions,
i.e., by taking

(2.19) Uo(0)- lim /0(T)

presuming this limit exists.
The leading term of the inner solution 0(T) must naturally satisfy the m-dimensional

nonlinear initial value problem

(2.20) do_ _GuT(fo 0)G(/o 0), /o(0)--u(0).
dT

If G(u(O), O) O, we naturally take f/0(T) U(0), SO we obtain the consistent initial
value Uo(0) u(0). More generally, any rest point fo(oo) Uo(0) will lie on the
constraint G(fo(cx)), 0) 0, presuming/o exists for all _> 0. The equation for f
will be a linearized version of (2.20).

Observe that the limiting Jacobian matrix GuT(/o(CX)), 0)G(fo(cx)), 0) for (2.20)
has n- r stable eigenvalues and m- (n- r) trivial eigenvalues. Reordering the
components of fo, if necessary, let us partition fo after its first n r rows as

(2.21) /o-
fo2

and assume that the (n r)-dimensional stable manifold for (2.20) can be described
in the form

(2.22) o2 "(/o)

(cf. the analogous use of a dynamic manifold in [13] and of invariant manifolds in
[5]). Obtaining an explicit representation (2.22) is, admittedly, a difficult problem in
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-GuG evaluatedgeneral. If we let H1(/01) represent the first n r components of T

along the stable manifold, (2.20) and (2.22) imply that/0 will necessarily have to
satisfy the initial value problem

(2.23) d/0 H(/0) /01 (0) u (0).
dT

Here, the representation (2.22) restricts the initial value u(0) to lie on the correspond-
ing (n- r)-dimensional stable manifold. Since the motion of/o is restricted to this
stable manifold during integration, the limit at infinity,/0(oo) U0(0) will necessarily
satisfy both the m (n r)-dimensional restriction

and the (n- r)-dimensional outer constraint

’(01 (OO)) 0.

The specific limit/o1(oo) might be obtained through numerical integration of (2.23)
on T >_ 0 or by solving the last n- r equations. This matching procedure thereby
defines a consistent initial re’vector Uo(0).

Example. Consider the DAE

I(u,v,w) +uz,

I(u, v, w) + vz,
;v Ia(u, v, w) + wz,

U2 - V2 -}- W2 1,

consisting of three scalar differential equations and a scalar algebraic constraint.
Though this particular problem is unmotivated, similar examples result from con-
strained mechanics. If we differentiate the constraint with respect to t, we obtain

2u(f + uz) + 2v(f2 + vz) + 2w(f3 + wz) O.

This allows us to eliminate

(2.25)

and obtain the vector system

(2.26)
A(p)f(p),

O--pTp 1

for

f-- f2
f
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1 u2 -uv -uw IA(p) -uv 1 v2 -vw

-uw -vw 1 w2

To solve the constrained system (2.26), we might use the Lagrange multiplier
1---i(pTp- 1) as in (2.11) or directly consider the regularized problem

ei9 eA(p)f(p) 2p(pTp 1).

We naturally seek an asymptotic solution of the corresponding initial value problem
in the form

(2.28) p(t, ) P(t, ) + a(-, e),

where a -- 0 as T tie --. cx. Necessarily, the outer solution P(t, e) will satisfy the
equation

(2.29) 2p(pTp- 1) e(A(P)f(P)-

as a power series in e. Thus, the leading term must satisfy the equation P0(PoTPo- 1)
0. We reject the trivial solution since it does not satisfy the expected constraint

PoTPo 1. Note that the latter implies that/50Tpo 0. The coefficient of e in (2.29)
then implies that 4PoPoTPx A(Po)f(Po)- o. Multiplying by PoT allows us to
eliminate P1 and to finally obtain the differential equation

(2.30) i:’o (I- PoP)A(Po)f(Po)

for the solution P0 of the DAE (2.26). The constraint will be an invariant manifold
for solutions of (2.30).

The corresponding inner solution

(2.31) II(’, e) P(eT, e) + a(T, e)

will necessarily satisfy the initial value problem

(2.32)
dT

-2H(HTH 1) + eA(II)f(H), II(0, e) p(0)

as a power series in e. Its leading term. Ho will satisfy the vector equation

dIIo(2.33) -2no(homo- 1)
dT

so the squared norm Do II’Ho will satisfy the scalar equation

dDo
d--- -400(D0 1).

An explicit integration yields

DO(T) IIp(o)ll = + e-4r(1- IIp(o)ll=)
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and, through the resulting linear equation for H0,

v(O)(2.34) II0(T) v/Do(T) iip(O)ll.

Thus, we obtain the consistent initial vector

v(O)(2.35) P0(0) H0(o) iip(0)ll.

This allows the DAE (2.24) to be solved by integrating the vector system (2.30) for P0
using a unit initial vector in the direction of the arbitrary p(0). The resulting initial
impulse corresponds to an initial boundary layer.

3. Some index-three examples.
(i) Consider the initial value problem

u(w2 i) + v, u(O) i,

(3.1)
6 v(w2 1) u, v(0) 2,

b u + v z, w(0) 2,

with u2+v2=1.
Since the initial conditions e inconsistent with the constraint, the solution is ex-
pected to eibit an initial impulse. Differentiating the constraint provides a hidden
constraint

(3.2) w2 1,

since u&+v6 (u2 +v2)(w2 1) w2 1 0. (Such hidden constraints e common
in higher index problems; cf. [12].) Then 0 implies that we also have the second
hidden constraint

(3.3) u + v z 0.

Eliminating zd using (3.2), we shall now consider the constrained differential system

(3.4)

W2 1with u2 + v2 1,

together with the prescribed initial conditions, which are inconsistent with both con-
straints.

We’ll now introduce scals A and Laange multipliers and a small positive
parameter e to scale them slack variables to provide us with the regulized problem

() ( )& v + A + 0,-u 2v

(3.5) +
-cA u2 +v2 1,

-e w2 1.
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Alternatively, eliminating the multipliers implies the singularly perturbed initial value
problem

e4 -2u(u2 -{- v2 1) -{- ev, u(O) 1,

e -2v(u2 / v2 1)- eu, v(O) 2,

e -2w(w2 1), w(0) 2.

It is elementary to solve this system directly by first solving the equations for w and
for r v/u2 + v2. Since O(1/e) is negative for w > 1, it follows that

(3.7) +-o(),

where 0 is the unique monotonically decreasing solution of the initial value problem

do -2"o(1 + o)(2 + "o) o(0) 1
dr

(An implicit solution is easily obtained by separating variables.) Clearly, 0 decays
exponentially to zero as T --. oo. Likewise, the initial value problem

dr
(3.8)

has a unique solution of the form

(3.9) r(t, e) 1 -t- f0(’),

where/o also decays exponentially to zero as T -- oo. Since -2(u2 + v2 1) ,
=v and ()’=-- Thus,the equations for u and v can be rewritten as () 7 r"

(3.10)
u u(0) v(0)
7 r(0---- cos t + r- sin t

and (3.9) yields

(3.)
1

(1 + f0(T))(cost -t- 2sint).(,) and v(t,e) 5(1 -t- fo())(2 cost sint).

Thus, u and v have the asymptotic form

(3.12) (, ) v0() + (, ), .(, ) y0() + (, )

with the outer solution

(3.13)
1

(cost + 2sint),Uo(t) - 1
(2 cos t sin t)Vo(t) -and an initial layer correction
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that decays exponentially to zero like 0(T). Without the regularization (3.5), it
would be quite difficult to predict the appropriate initial vector (U0(0), V0(0), Wo(0))
(1, 2, /) with which to begin a numerical integration of the original DAE.

(ii) The motion of a spherical pendulum with unit mass and length is described
by the DAE

(3.14)
Y Ay,

" Az g,

X2 + y2 + Z2 1,

where A represents the tension and g is acceleration of gravity (cf. [21]). We obtain
the additional hidden constraints

x+y+z 0,
,2 .2 .2
x +Y +z +x+yy+z’=v2+A(x2+y+z)-gz=O,

by differentiating the constraint twice. Introducing v2 as the square of the speed, we
use the latter equation to eliminate

(3.16) A gz v2.

Thus, there remains the constrained differential system

(gz v:)x,

(gz v2)y,

-g(1 z2) v2z,

x2.y2.z2_- 1,

x +y + z =0.

Note that one might attempt to solve this problem subject to arbitrary initial position
and velocity vectors that could fail to satisfy either constraint.

The geometry suggests that it would be natural to introduce spherical coordinates
using

(3.18) x rcososin0, y rsinosin0, and z rcos0.

After some nontrivial manipulations, we are able to express (3.17) as the equivalent
problem

(3.19)

( )(aco0 b i.0) ;
sin0 2qb( sin 0 + rb cos 0),

.2r r sinOcosO 2b + gsinO,

r(t) 1,

(t) =o.
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To allow arbitrary initial values for r and , we could naturally write the second-
order equation for r as a first-order system for r and u . If we then introduced
scaled slack variables/Lagrange multipliers as - r- 1 and -ey u, we’d get the
regularized problem

(3.20)

-(r 1) + u,

-u (r2 1)(g cos r2 r2
sin2 ) eru2,

r sin0 2(u sin 0 + r2
cos 0),

o2r ro sin cos 2u + g sin .
We’ll solve this system as a singularly perturbed initial value problem with r(0), u(0)
(0), 0(0), (0), 0(0), and (0) arbitrarily prescribed except that r(0)sin 0(0) # 0. We
naturally seek an asymptotic solution in the form

(3.21)

,-(t, ) 1 + ,(-, ),
,(t, ) t(’, ),
v(t, ) (t, ) + -(-, ),

o(t, ) o(t, ) + (., ),

where we ask that the functions of r tie decay to zero as r --, O in order to
provide an initial layer within which the solution of the regularized problem moves
rapidly toward the constraint manifold where r 1. This ansatz follows from the
usual Wikhonov-Levinson theory (cf. [17]) once one notes that R(t, ) _= 1 in the outer
solution for r, to which U(t, ) =- 0 corresponds.

The consistent outer solution

(3.22) (R(t, e), U(t, e), ’(t, ), O(t, e)) (1, O, O(t, e), O(t,

must satisfy the system (3.20) as a power series in . Thus, O(t, 0) O0(t) and
(I)(t, ) (I)0(t) must satisfy the coupled system

(3.23) o o cos Oo + g sin 0o,

with (I)o(0) o(0), o(0) (0), O0(0) 0(0), and 60(0) b(0). Multiplying the
first equation by sin O0 and integrating implies that

(3.24) 0 sin2 O0 (0) sin2 0(0) - C.

Physically, this means that the angular momentum about the z axis is conserved.
Substituting for 0 in the second equation and integrating the resulting equation for
O0 implies the conservation of energy statement

.2 C2
2g cos O0 + Eo,(3.25) Oo

sin20o
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where the constant Eo is specified by the initial conditions. More explicit results
follow, as usual, in terms of elliptic integrals.

The stretched system satisfied by the initial layer correction (a, f, s2, s25) follows
in a straightforward fashion. In particular, its initial terms must be decaying solutions
of the limiting problem

(3.26)

dcgo

dr
-a0, a0(0) r(0) 1,

dT
-30, 30(0) (0),

d27 2(0)[/3osinO(O)+ aob2(O)cosO(O)],(1 + a0(T)) sin0(0) dr2

(1 + ao(r))-d--T2
d2i ao2

(0) sin 9(0) cos O(0) 2fo(0).

Thus

(3.27) aO(T) e-r(r(O) 1)

will provide an initial impulse for r(t) if r(O) 1;

(3.28) fo(r) e-r(0)

will provide an initial impulse for (t) if (0) 0; and they together determine the
less important terms

(3.29)

o(r) =26(0)foo foo e-. [(r(0)- 1)b2 (o) cos 0(0) + ;(0)sin 0(0)]
(1 -4-e-s(r(O)- 1))dsdr and

o(,) e-s [(r(0) 1)2
(0) sin 0(0) cos O(0) 2(0)b(0)]

(1 + e-s(r(O)- 1))dsdr.

We note that the asymptotic structure (3.21) of the solution in spherical coordinates
directly determines that in the original Cartesian coordinates as well.
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A GENERALIZATION OF PEARCEY’S INTEGRAL*

R. B. PARISt

Abstract. This paper considers the special case of a cuspoid canonical diffraction integral
consisting of only two parameters X, Y in the form

exp[i(u2 + + Yu)]du,Xu

where m is a positive integer with m > 2. This integral is a reduced form of the general cuspoid
canonical diffraction integral involving 2m- 1 stationary phase points, and represents a generalization
of the familiar Pearcey integral with m 2. The analytic continuation of this integral to arbitrary
complex values of X, Y is considered, and its asymptotic behavior when either IXI or IYI o is
determined.

Key words, asymptotic expansions, Pearcey integral, caustics

AMS subject classifications. 41A60, 30E15, 33A70

1. Introduction. We consider a generalization of the Pearcey integral defined
by

(1.1) Pm(X, Y) exp[i(u2m -+- Xum + Yu)]du,

where X and Y are real variables and m is an integer with m >_ 2. The particular
case m 2, corresponding to the familiar Pearcey integral, arises in many physical
problems involving short wavelength phenomena, such as wave propagation and op-
tical diffraction; we refer to [4], [9], [12], and the references therein for a summary of
the recent literature on Pearcey’s integral.

The Pearcey integral belongs to the family of canonical oscillatory integrals that
are classified according to the hierarchy introduced to describe the types of singular-
ities arising in catastrophe theory. For one-dimensional integrals, the exponents are
the polynomial transformations associated with the so-called cuspoid catastrophes [3].
The general cuspoid canonical diffraction integral has the form

(1.2)

]  xpiif ( ; x_)ld , +
j-

where X__ (X1,X2,..., Xn-2) with the parameters Xk being real, and is associated
with n- 1 stationary phase or saddle points. The simplest case n 3 corresponds
to the fold catastrophe and involves two stationary points whose positions depend
on the single parameter X1. The canonical integral in this case is the well-known
Airy function. The next integral in the hierarchy has n 4 and corresponds to
the cusp catastrophe, which involves three coalescing stationary points and two real
parameters, X1 and X2. The canonical form of this integral is Pearcey’s integral. The
cases n 5 and n 6 correspond to the so-called swallowtail and butterfly integrals
and involve, respectively, four and five stationary points.

Received by the editors May 6, 1992; accepted for publication (in revised form) June 3, 1993.
Department of Mathematical and Computer Sciences, Dundee Institute of Technology, Dundee

DD1 1HG, United Kingdom.
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Comparison with (1.2) shows that Pm(X, Y) is a reduced case of I2m (X1, X2,...,
X2m--2), with XI Y, Xm X and all other parameters equal to zero. In particular,
when m 3, we have the reduced butterfly integral P(X, Y) =_ I6(Y, 0, X, 0). The
utility of integrals of the type (1.2) is hampered by the lack of detailed information
concerning the numerical values of these functions and the complexity of their large
parameter behavior. A considerable effort has been made over the last decade in an
attempt to rectify these deficiencies. Extensive work concerning the numerical evalu-
ation of the Pearcey and the swallowtail integrals has been described by Connor and
Curtis [4], [5] and Connor, Curtis, and Farelly [6]. Recent asymptotic investigations
have been undertaken by Stamnes and Spjelkavik [15], Kaminski [9], Paris [12] for the
Pearcey integral, and Kaminski [10] for the swallowtail integral (see also [17, p. 389]).

In this paper we shall be concerned with the analytic continuation of Pm(X, Y)
to complex values of X and Y. This is achieved by rotation of the path of integration
in (1.1) through an angle of r/4m and appeal to Jordan’s lemma to obtain

P(X, Y) =_ P,(, ) e/’ exp[-t’ t’ + itldt,

x Xe-Ei/a, y Yei/am,

where we have put u t exp(ri/4m). We consider the case of even and odd m
separately and define the integrals

(1.4)

so that

Im(x, y) e_t2.._xt., cos yt
dt

Jm (x, y) sin yt

(1.5) Pm(x, y) 2eIm(x, y) (m even),
(1.6) Pro(x, y) e- [{In(x, y) + iJm(x, y)}

q- {Ira (-x, y) igm(-x, y) }1 (m odd).

It is readily established from (1.3) that Pm(x, y) satisfies the symmetry and conjugacy
relations

Pm(x,y)-Pm((-)’x,-y),
(1.7) e,/ampm(x Y) e_r,/ampm((_)m.,)
where the bar denotes the complex conjugate.

Following the method described in [12] for the Pearcey integral, we shall obtain the
asymptotic behavior of Pm(x, y) for complex variables when Ixl or lYl --* oc by means
of an integral representation involving a Weber parabolic cylinder function. This
approach permits the determination of the asymptotics without reference to the above-
mentioned stationary points. We remark that this approach has also recently been
employed by Janssen [8], who has considered a different generalization of Pearcey’s
integral in the form

exp[i(ua Xu:)]J,(uY)u’+du (- < < 5/2),v

where Jv denotes the Bessel function of order v. This integral, which equals a multiple
of Pearcey’s integral when v -1/2, occurs in the problem of image formation in high
resolution electron microscopes when v 0.
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2. Preliminaries. If we denote the phase function in (1.1) by f(u;X,Y)
u2m + Xum + Yu, then the 2m 1 stationary points are given by Of/Ou O, or

(2.1)
1 m Y

u’- + Xu - + O.

For real X, Y, application of Descartes’s rule shows that there cannot be more than
three real roots of (2.1), the remaining roots being complex conjugate pairs (although
when Y 0 one of these roots is a multiple root of order m- 1 at u 0). For certain
values of X and Y two of these real roots can coalesce to form a double root. This
occurs when Of/Ou 02f/Ou2 0 and corresponds to values of X, Y lying on the
caustic

(rn-1)m-l(m)2t’ 1
(m--23 .)(2.2) ym + m 2

O, # m - ,...

2 3In the case m 2, this yields the familiar cusped caustic y2 + (X) 0 for the
Pearcey integral. For m even the caustic in (2.2) is cusped and symmetrical about the
negative X-axis, while for m odd the caustic is asymmetrical (see Fig. 1). Inside the
shaded domain in the X, Y-plane bounded by the caustic (and, in the case m odd, by
the line Y 0) there are three real, distinct stationary points which will contribute
to the asymptotic behavior of P(X, Y). Outside of this domain there is only one
real stationary point, but some complex stationary points may also contribute (cf. the
case m 2).

Y

m even

Y

rn odd

(a) (b)

FIG. 1. The caustic (2.2) in the X, Y-plane ]or (a) m even and (b) m odd. The figures indicate
the number of real, distinct stationary points.

For large values of X, Y inside the caustic the asymptotic behavior of P(X, Y)
can be obtained by the method of stationary phase as a sum of three terms. Explicit
formulation of these terms, however, is rendered difficult by the fact that the real roots
of (2.1) for general m do not seem to be expressible in closed form. The situation for
large IXI on the caustic (2.2) is more tractable since the double root can be expressed
simply as u0 [(m- 1)[X[/41z] 1/m. With the new integration variable T U/Uo, we
then have, on the caustic (when X < 0),

Pm(X, Y) Uo exp[iX*2F(T)]d’r, x* (m 1)IXl,
4#
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where

2m2

F(T) T
2m 4

Tm 4- T.

The phase function F(T) possesses a double positive stationary point at T 1 and
one negative stationary point, which we define by T -k, k > 0. Straightforward
application of the method of stationary phase (see [11, p. 96] and [17, p. 79]) then
shows that for large IX on the caustic

(2.3)

P(X, Y)

where

2m2 v/k + km
fl(k) =- F(-k) -(2ink + k2m).

It does not appear possible to determine the negative stationary point T -k
in a simple closed form, except when m 2 and m 3, when k 2 and k
2 ()1/3 1/3 --1/3() 4- () 1 0.7221199..., respectively. Values of k, together
with the corresponding values of a(k) and fl(k), are tabulated in Table 1 for m 2
to m 10. When m 2, equation (2.3) reduces to the asymptotic form obtained in

[9] and [12] for the Pearcey integral on the caustic y2 + (X)3
0.

TABLE 1
Values of k, x(k), and [J(k) for diderent values of m.

, k a(k) -(k)

2 2.000000 0.471405 24.000000
3 0.722120 0.776916 4.474513
4 1.308203 0.416058 19.043922
5 0.829336 0.836366 8.447287
6 1.181562 0.403243 21.582945
7 0.876927 0.861572 12.436018
8 1.128631 0.397539 24.989666
9 0.903778 0.875506 16.429858
10 1.099584 0.394313 28.668478

In this paper, we shall not be concerned with the asymptotic form of Pm(X, Y)
in the neighborhood of the caustic (2.2), but with the asymptotics of P(x, y) for
large Ixl or lYl. We follow the procedure described in [12] for the Pearcey integral to
transform the integrals for I,(x, y) and J,(x, y) in (1.4) into loop integrals involving
a Weber function. To do this, we employ the Mellin-Barnes integral representations,
valid for all argz:
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1

(2.4)
cosz 1

z-Sds (z 7 0),
sinz

F(s)
1

sin

where throughout C will denote a loop that starts and finishes at -oc and encircles
s 0 in the positive sense. Upon reversal of the order of integration, when Re(s) < 1,
we then find

{I }1 1 e--t-Sdt ds (y # 0).i(,) r()o -"
The inner integal (with r tm) can be evaluated in terms of the pabolic cylinder
function Dr(z), which admits the integral representation [7, p. 119]

e-/4I ( 1 )r-v-Dr(z) F(-v)
exp --T ZT dr, Re(v) < 0.

Similar arguments applied to Jm(x, y) lead to the representations when Re(s) < 1,

(2.5) I(x, u) " ’/ r()r
1

J(x, y) m 2i m

1
cos . X --s

dsD
_

y2-
1

sin

where the oop C described Uove epte the poles of F(s) and r(1/m- s/m).
These representations will form the bis of the present investigation.
om the ymptotic behavior of Dv(z) for ed z and lge Iv (see (4.4)), the

convergence of the inteals in (2.5) is seen to be controlled by the quotient of gamma
functions r(s)r(1/m- s/m)r(1/2m + s/2m). Application of Stirling’s formula
then shows that Isl on C the inteands in (2.5) are dominated by the term
exp[-(1- 1/2m)lnlsl], so that the right-hand sides of (2.5) converge for all finite
complex values of x and y ( 0).

We remark that when m 2, use of the properties of the gamma function,
followed by replacement of the viable s by 2s, shows that (1.5) and (2.5) reduce to
the alternative representation for Pecey’s integral given in [12]:

p(x,y) 2_i}e+, 1 ()2r r(s)D,_] (y/4)-"ds.

3. Asymptotics of Pm(x, y) for lge lxl. We derive the ymptotic expan-
sions ofI(x, y) and Jm (x, y) for large lxl, y finite. The analysis we present is formal,
since no attempt is made here to discuss the ymptotic nature of the vious expan-
sions; this h been seen for the Pearcey integrN ce m 2 in [12]. We substitute
the expansion for lge lzl of the parabolic cylinder function [16, p. 347], [12]

(-) 1
(a.1) D.() ’-’/ (-:)-, lz < .,
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17rwhere (a)r F(a + r)/F(a), into (2.5a), to find, when arg x < 2

(3.2)
.1/2 x- (-z)-m Z r------if--. Er(X;m)"

The coefficient functions Er(X; m) (r 0,1, 2,...) are defined by

(3.3)

E(X;.)=-//c (’ )2
2-r()r m 2 co x-"/e, x (/2)/,

where, as in (2.5), C is a loop with endpoints at -o enclosing the poles of F(s).
Straightforward evaluation of the residues at s 0,-2,-4,... then leads to the
result

(3.4)

Er(X; m) 7r-1/2Z (21!
r + + 2

oo 2k 2r)(-) r ( + +
k=O

In a similar manner, we find from (2.5b)

(3.) J(,)~ "/- (-)-"
m r! F(x;m), argxl < 2

r-----0

where the coefficient functions Fr(X; m) are defined as at (3.3) with the term cos 1/2rs
replaced by sin 1/2rs, so that

oo 2 2k 2r)F(X; m) (-1 r ( + + x(:+)/
=0

k! r (k + 1
An alternative representation involving derivatives of the coefficient function corre-
sponding to r 0 can be found in the form

d2r {X2r--I+Er(X; m) X1- dX2r E0(X; m) r 1,2,...

with an analogous expression for F(x,m). The coefficient functions Er(x;m) and
Fr(X; m) are generalized hypergeometric functions, uniformly and absolutely conver-
gent for all finite values of X- We note at this point that as Ixl -- cx), X - 0 and

E,(x;m) --r-1/2F (2r/ -) [1+O (x--)],
Fr(X;m) :Tr-1/2F (2r-t- -) yx-- [1 +O (x-)].
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We remark that in the case of Pearcey’s integral when m 2, the coefficients
Er(X; m) reduce to a particularly simple form since, from (3.4),

E0(x; ) -,
The coefficients in this case are then given by

Er(X;2)._X1/2 d2r
dx2r X2r-1/2e- =_ ar(x)e-,

where at(x) can be expressed as a Hermite polynomial

(1)at(x) r-1/2F 2r + 1F1 -2r; ;X 2-4rH4r(V)

The domain of validity (in the Poincar6 sense) of the expansions (3.2) and (3.5)
can be extended to the wider sector lard x] < r by applying a further transformation
to the integrals in (2.5) to make the specific dependence on the parameter group
X (1/2y)m/x apparent; cf. [12, 48]. We employ the Mellin-Barnes representation of
D,(z) [1, p. 688]

zVe-z2/4 1 [oo 3
D,,(z) r(-.) ._, r(t)r(-2t v)(2z)*dt, lard zl < r,

where, provided v is not a nonnegative integer, the path of integration is indented at
t 0 to separate the poles of F(t) from those of F(-2t- v). Substitution of this result
in (2.58), followed by reversal of the order of integration, then yields the alternative
representation of In(x, y) in the form

(3.7) I,(, )
r, /, 1
m 2ri

where S-t(X; m) is defined as in (3.3) and (3.4) (with r replaced by t) and the path is
indented at t 0 in order to lie to the right of the poles of F(t). It can be established
that as t- =t:io, IE_t(X, m)l e-11 exp[O(Ixtll/’)] (we omit the details), so that
(3.7) defines I,(x, y) only in the sector lard x] < r. Application of the standard
method for asymptotically evaluating Mellin-Barnes integrals [14, p. 143] then yields
the expansion given in (3.2), valid in the wider sector lard xl < 1/4r.

By means of similar arguments applied to Jm(x, y), we consequently obtain the
results

(3.s) I(, u) ---s (, u), ---s (, u)
m m

Il i. gl < -, where the formal ymptotic sums Sc’s) (x, y) are defined
by

(a.) s)(,) (-)- s’) (-)-
s(x;), (,u) F(x;).

r=O

When g(-x)] < r, we use the connection formula

(a.lO) D(-) eeD() i’-v’t
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where, in order to apply (3.1), the signs will be chosen such that both arguments of
the parabolic cylinder functions lie between +/- 1/2r. This means that we select the upper
sign in (3.10) when 1/2r < argx < r and the lower sign when -r < arg x < -1/2r.
Substitution of (3.10) in (2.5a) then yields

where, according to the above ranges of arg x,

m
eK,

K 4-i(2r)l/2e:2ri F(s) cos -rsDl._._l. e=ri/2 x , -
The expansion of the first term on the right-hd side of (3.11) in g(-x) < r

follows from (3.8) d (3.9)

(3.12) Im e"x,ey
m

The expsion of the second term can be obtained by substitution of (3.1) into the
inteal for K, at (3.2), to find

( )K (2r)/2e/8 e, x - -2r

where the coefficients cr() e defined by

() r() cos 1
2
-d, u ( )

r(s) cos rs -+-ds

d -cos (r 0, 1, 2,...)

upon ming use of (2.4). We write

C() (-)-/(),
so that Cr() involves a finite series of descending powers of /m to find

(3.13) Cr() P()cos Q() sin,
where the coefficients Pr() and Qr() are given by

Po(e) , Qo(e) o,
PI() 1 (m- 1)(2m- 1)-, Q1() 3(m- 1)-,
P() 1 5(m- 1)(Tin- 5)- + (m- 1)(2m- 1)(3m- 1)(4m- 1)-&,
Q2() 10(m- 1)- 5(m- 1)(2m- 1)(5m- 3)--,

Then, as ]x]- cx in ]arg(-x)] < 2 ,we have

)
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where the formal asymptotic sum $2(c) (x, y) is defined by

Collecting together the results in (3.5), (3.12), and (3.14), we then have the
expansions for Ixl --. oc, y finite:

(3.15)

where the upper or lower sign is chosen according as 1/2r < arg x < r or -r < arg x <
1 r, respectively.
In a similar manner, the expansion of Jm(x, y) for Ix --, oc is given by

J,,(x,y) r/x--S)(x’Y)m in largxl < r
(3.16) rl/2

(x,
m

where the formal asymptotic sum $2(s) (x, y) is defined by

(3.17) S(2S)(x’Y)-- Z (_)r (2- y)2v
r--O

with

S,()

Sr() 2r+l-- d2r ( )d2r -sin (r 0, 1,2,...),

so that

(3.18) Sr() Pr() sin + Qr() cos.
The expansion of Pro(x, y) can then be constructed from (1.5), (1.6), (3.15), and
(3.16). In the special case y 0, we see from (1.4) that Jm(x, 0) 0 and

0)
2-11m
m
r(llm)e=/SD_/,(xl/).

The expansion of Im (x, 0) in (3.15) can be shown to agree with the large-x asymptotics
of the parabolic cylinder function, when the sum Sc) (x, 0) is evaluated by a limiting
process as y --, 0.

The statement of this result in the case m 2 in [12, eq. (3.16)] is incorrect; the lower sign
should be taken when r < arg x < r and not as stated.
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In terms of the original variables X and Y, we see that negative real X corresponds
to the anti-Stokes line arg x r. Thus, for X --, -oc, Pm(X, Y) will consist of an
algebraic and an exponentially oscillatory expansion, while for X ---+ -t-oc, Pm(X, Y)
will either consist of a single algebraic expansion or a mixed algebraic and exponen-
tially oscillatory expansions according as m is even or odd. From (1.5), (1.6), (3.15),
and (3.16) we then find (upon taking the upper signs) the leading asymptotic behavior

(3.19)

Pm(X’Y) --m2X-e&F (-){1 + O (X-) }
21xl_+/-

__
(1){ ( 2)}-e 2.F 1+O X- +

m m

exp i
4

X -- +o
4)]cos Y(){l+O(X-2(m-1)/m)}, X----oc

when m is even, and

P’(X, Y) 2X-m F cos mm
(3.20) 7rl/2

+m exp i
4

{i.+.O(X-2(m-1)/m)},

---X-YF(-)sinr()}--+OmX-m

Z -- A-cx3

when m is odd, the behavior for X --+ -o being given by P’m(-X, Y); cf. (1.7a).
The above leading behavior when m is even can be seen to correspond to a single

(X --. +) and three (X --. -) stationary point contributions discussed in 2. In
the case m 2, the asymptotic behavior in (3.19) for X + agrees with that of
the Pearcey integral [12].

4. Asymptotics of P,(x, y) for lyl -* rom the symmetry property in
(1.7) it is sufficient to consider only the sector arg yl -< 1/2r. We first discuss the case
of even m 2p. Using the connection formula (3.10) in the form

(4.1) Dr(z) (2r)-1/2F(1 + v) {ervi/2D_v_l(iz) + e-rvi/2D_v_l(-iz)}
together with the new variable a given by s ma / 1, we find from (1.5) and (2.5),
when m is even, that

-Kp x, ye - +eKp -x, ye2,

where

(4.3) Kv(x’ Y) (2r)1/22ri 2a/2F(ma + 1)SinsinTrpaTra D-a-1 ida.

Here C is a loop in the a-plane with endpoints at -x, which encircles a -1/m.
As the parabolic cylinder function is an entire function of a and the integrand has no
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poles in Re(a) > 0, the restriction Re(a) < 0 imposed in the derivation of (2.5) can
be removed by analytic continuation.

We now deform C such that [a is large everywhere on C. On the expanded loop
we may employ the asymptotic expansion of the parabolic cylinder function for large
order and finite argument (cf. [12, eq. (A.10)])

(4.4) D_,,_l(Z) (1/2. +
valid for [a[--. cx in [arg a[ < r, where

A0=l, AI=--, A2=----3
The integal K,(x, y) then (formally) becomes

r=0

We now express ghe quogieng of gamma Nncgions in germs of single gma
function [2, p. 260]

(4.) r (e) 2 2/ r . + { 1 + O(-)},
1

N=m-

lid for

sinp @ei(+-r)
sin

go obgain

where

(4.7) wr --exp[ri(2r-p- 1)//z], y* 2#(y/2m)m/".

The integrals appearing in (4.6) can be evaluated asymptotically for large lY] by
means of the lemma given in [12], which we write in the following, slightly modified
form. For arbitrary complex , b, c and real a (> 0) and v, the integral

1__2ri Jc F(at + b)e"(t+) 1/2 z-t’dt

(zv+b/av+) exp [--z + az]- a2/8] E Brz-r/2’

1 [1 4(v+b c) a2/12],Bo=I, B=a
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for Iz[ --+ oo in [arg z[ < r. Application of this lemma with successively v 0, -1/2
and a -ix/(2#)1/2, c #/2 to Kp(x, y) then yields the expansion for lY[--+ cx (in
the sense of Poincar6)

(4.8)

P

eC=’/8)+O"/a’)K(x,y) E(’)(x,y) largyl <
a

E()(, ), 3r r
(re+l)m < argy <

-r(m+ 1) < arg <
3rEp) (x, y), Y 4m’

where

()(,u)
(/.) [-/(,)]/. exp [ri/4m -wry* -ix(wry*/2#)1/2 + mx2/8#]

ix(m- 1) }1 :-- (1 mx2/12#) + O(y*-)
4(2#wy )

(r 1,2,... ,p).

For odd m 2p + i, we find, from (1.6), (2.5), and (4.1), that

(4.10)

p(. v) ,c."/)+(.,/,)2__2i/c 2*/r(’ + 1)F(-a)

.{e(1/2)’mD(2)-e(-1/2)’"D(2)}y-’-lda
e(x/8)+Ori/4m) (27r) 1/2

2ri
2/Ur(ma + 1)

sin ’pa
D-a-1 +

sin

sin r(p + 1)a D_._1
sin

It is clear that the only poles of the integrand in (4.10) are those resulting from
r(ma+ 1), which are enclosed by C. The restriction Re(a) < 0 can again be removed
by analytic continuation and the loop C can consequently be expanded as in the case
m even. We therefore find

(4.11) Pm(x,y) e(x/s)+(r’/am) {Kp(-x,y) + Kp+l(x,y)} (m odd).

Then, from (4.2), (4.11), and (4.8), the expansion of Pm(x,y) for lyl -* oo,
finite, when m 2p is even, is then (in the Poincar6 sense) given by
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(4.12)

and when m 2p + 1 is odd,

(4.13)

p p+l

Pm(x,y) EE(rP)(-x,y)+ EE(rP+I)(x,y) largy < r

4m
r=l r=l

(p+l) 7 1
E,+1 (x, y),

4m
< argy < r

Ep+) (x, y), r < arg y <
2 4m"

In the sectors arg(+y)] < r/4m, Pm(X,y) is exponentially small as lyl o, while
outside of these sectors Pro(x, y) is exponentially large.

In terms of the original variables X and Y, we see that large positive Y cor-
responds to the upper boundary of the exponentially small sector argyl < r/4m.
Here, Ep(P)(-x, yei/2m) (m even) or E(P+I)(x y) (m odd) possesses oscillatory be-p-i-1

havior, with the other m- 1 expansions in (4.12) and (4.13) exponentially small and
of different degrees of subdominance. Thus, up to exponentially small terms, the
behavior of P(X, Y) for Y -- +cx, X finite, is given by

(4.14)

(-)mXY*1/2 mX2/8#]Pm(X, Y) (r/tt)1/2 (2m)-/auYc-m)/2t’ expi /4 Y* + (2#)1/2

{l+(-)m(m-i)-iXY*-1/2(4(2lt)-1+ imX2)12 +O (Y*-}),
where

Y* 2#(Y/2m)’’/t’, # m 2"
This behavior can be seen to correspond to the single real stationary point discussed
in 2, with the m- 1 subdominant contributions (not stated in (4.14)) arising from
half of the 2(m- 1) complex stationary points. When m 2, the expansion (4.14)
reduces to that of the Pearcey integral.

The approximations in (4.12) and (4.13) describe the asymptotic behavior of
P,,(x, y) for lYl --* cx) in the sense of Poincar6. As noted in 5 of [12], the method
adopted in this section is not sufficiently precise to determine the domains of validity
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of the subdominant .exponentially small terms in the above expansions and their
associated Stokes lines. This deficiency results from the manner of approximation of
the quotient of gamma functions in (4.5), which does not correctly take into account
the appearance of exponentially small terms in the large Izl behavior of F(z) across
its Stokes lines arg z =t=1/2r (see [13]).

To deal with this situation, and the case arg y +/- 1/2r, we revert to consideration
of the saddle points of the integrand in (1.3). We omit the detailed description of the
nature of the paths of steepest descent through the saddle points, which resembles
that in the case m 2 [12]. It is found that as lYl cx) there is a sequence of
Stokes lines given by arg(+y) 1,2,..., m-1, where r r(2r + 1)/4m, across
which the coefficients of the exponentially small subdominant expansions in (4.12)
and (4.13) change to become zero (the Stokes phenomenon). When m is even, the
expansions E(pP)_r(x yei/2m) ,(p) (x, ye-ri/2m) "switch off" as one crosses (inan( i--r+1
the sense of increasing argyl) 2r(r 1, 2,...,p 1) and O2r-(r l, 2,...,p),
respectively. When m is odd, a similar pattern of behavior emerges with the expan-
sions E(p+D (x, y) andp-r+ p-r+(x, y) "switching off" across the rays 02r and O2r--1 (r
1,2,... ,p), respectively. A conjugate behavior applies by virtue of (1.Tb) in the sec-
tor -1/2r _< argy < 0. In this manner the above expansions for Pm(x,y) can be
shown to extend to arg Yl < -r with (4.12a) and (4.13a) holding in the wider sector
arg Yl < 3r/4m bounded by the first pair of Stokes lines arg y +/-1.

Rather than state the complete expansion in the general case, we present, as an
illustrative example, only the specific case m 3. The Stokes lines in Re(y) > 0 in
this case are arg y +/-1/4r and arg y +/-5r/12, and we find that

(4.15)

2

P3(x, y) E1) (-x, y) 4- Z Er(2)(x, y), arg Yl <
r----1

2
1 5r

r--1

5r 1
< argy_< r,1-

1 5E2) (x, y), - _
argy < ,

where, from (4.9),

exp [-hwr(y/6)6/5- ixw) (y/6)3/5 + 3x2/20 + ri/12]

1 ixw
10

(y/6)-3/5(1 x2/10) + O (y-6/5) },
wr exp[2ri(2r p 1)/5].

The different sectorial behavior for P3(x,y) is summarized in Fig. 2. We note that
the above asymptotic approximations satisfy the conjugacy property (1.Tb) and, for
real x, to correctly predict real values of exp(-ri/12)P3(x, y) when argy +/-1/2r.
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rffi!

ETI(x,y)

z/12
Exponentially

Small

r/12

5r/12

FIG. 2. The sectorial behavior o] Pm(x,y) when m 3 in the y-plane as lyl oo in argyl _< 1/2r.
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THE PEARSON EQUATION AND THE BETA INTEGRALS*

MIZAN RAHMAN AND SERGEI K. SUSLOV

Abstract. An alternate proof of the classical beta integral is given by using the Pearson equation
whose solution converts the hypergeometric equation into a self-adjoint equation. A generalization
of this idea to difference equations on linear lattices enables a proof of Barnes’s second lemma by
using his first lemma and gives extensions of some of Ramanujan’s formulas. Similar analysis on
q-quadratic lattices gives an extension of Askey’s integral on the real line and the corresponding
basic bilateral sum of Gospel Another q-quadratic lattice gives an extension of the Askey-Wilson
integral. A quadratic lattice is used to evaluate a principal value integral on the real line, whose
q-analogue is shown to be equivalent to the Askey integral extension. A list of various beta integrals
is also presented.

Key words, beta integrals of Euler, Barnes and Ramanujan, q-beta integrals of Askey and
Wilson, Pearson equation, very well poised sums and integrals

AMS subject classifications, primary 33A15; secondary 33A10

1. Introduction. One of the most basic formulas in all of classical analysis is
Euler’s beta integral

1

(1 1) B(a,f) x_l(1_ x)_ldx r()r(z)
r(a + Z)’

Re (a,/) > 0; the integrand p(x) xa-l(1 x)-1 is the weight function associated
with the differential equation for the Jacobi polynomials (see [54])"

(1.2) x(1 x)y" + [o (c + )x]y’ n(n + o + 1)y 0,

which becomes self-adjoint when multiplied by p(x). The function p(x) is the solution
of the Pearson equation (see, e.g., [17])-

(1.3)

with a(x) x(1 x), "r(x) o (c + )x for (1.2).
There are quite a few proofs of (1.1), the earliest one by Euler dating back to 1772

(see [58]) and the latest ones by Knuth [35] in 1973 and Askey [3] in 1981. We shall
give another one in 2, not because there is any reason to believe it to be any more
elegant than the others (in fact, our proof is very similar to the one given by Askey),
but because we want to make the point that a similar technique can be applied to
other extensions of (1.1). The observation we wish to make here, and which will be a
central theme throughout the paper, is that (1.3), being a first-order linear equation in

*Received by the editors April 2, 1992; accepted for publication February 8, 1993. This work
was supported in part by Natural Sciences and Engineering Research Council of Canada grant A6197,
and was completed while the second author was visiting Carleton University from January to April,
1991 and from January to April, 1992.

Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S
5B6.

SKurchatov Institute of Atomic Energy, Moscow 123182, Russia.
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p(x), not only yields the solution in a very elementary manner but also enables one to
compute the integral over p(x), like the one in (1.1), provided there is at least one free
parameter in a(x) and/or T(X). We shall find that with appropriate generalizations of
(1.2) and (1.3), the same procedures lead us to alternate proofs of some old extensions
of (1.1) as well as to discovering new ones. But first, let us give a short list of some
known extensions of the beta integral.

First is Cauchy’s extension [19]:

(1.4)
1 t dt

2ri j_io (1 + at)x (1 bt)u
r( + 1)
r()r() --(+)--’

Re (a, b) > 0, Re (x + y) > 1, which does not resemble (1.1) but looks closer to one
of its variants:

x: t-ld;
(1.5) (1 / t)a+ B(a,).

Then there is Barnes’s first lemma [15],

r( + )r( + s)r(- s)r(d- s)ds
2ri ioo

r(a + c)r(a + d)r(b + c)r(b + d)
r(a + b + c + d)

and his second lemma [16],

(1.7)
1 fio r( + )r( + )r( + )r(1 d )r(-) ds
2ri J_ioo r(e + s)

r(a)r(b)r(c)r(1 + a d)r(1 + b- d)r(1 + c- d)
r(- )r(- )r(- )

where e a + b + c d + 1. In (1.6) the assumption is that none of the poles of
F(a / s)F(b/ s) coincide with any of the poles of F(c- s)r(d- s). In (.7) the line of
integration is the imaginary axis or a line parallel to it with indentations, if necessary,
so that the decreasing sequences of poles lie to the left, and the increasing sequences
of poles lie to the right of the contour. Askey and Roy [8] showed, by using Stirling’s
formula, how to deduce (1.1) from (1.6) in a limiting process, and hence called (1.6)
Barnes’s beta integral. It has been pointed out in [10] and [7] that the integrand in
(1.6) is the weight function for the continuous Hahn polynomials. Barnes’s second
lemma (1.7), an extension of (1.6), may likewise be considered a further extension of
(1.1), and corresponds to the continuous biorthogonality of the 4F3 rational functions
introduced in [46].

A different kind of extension was given by Ramanujan [50]"

(1.8) r( + )r( + )r(- x)r(d- x)

r(a + b + c + d 3)
F(a + c 1)F(a + d 1)F(b + c 1)F(b + d 1)’
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where Re (a + b + c + d) > 3. The integral on the left is along the real line in contrast
to (1.6) where the integral is along the imaginary axis. This is an important difference
whose significance will become clearer in later sections. Also, the integrand in (1.8) is
the reciprocal of that in (1.6) as is the expression on the right side except for a shift
in the F-functions. The system of Hahn polynomials that corresponds to the measure
in (1.8), was discussed in [4]. For other integrals of Ramanujan similar to (1.8), see
[50] and [22].

Among the formulas that we shall prove in this article is a generalization of (1.8):

r(1 $ x)(’9) r( + .)r( + ,)r( x)r(d ,)r( )
dx

F(2 c- f)(r(2 d- f)r(2 e f)

provided

r(a + c 1)F(a + d 1)r(a + e 1)r( +- 1)r(b + d 1)r(b + e 1)’

(i.i0)

(i)
(ii)
(iii)
(iv)

a+b+c+d+e+ f =5,
Im j#o,
Re (2 f) > Re (c, d, e),
a "regularizing" condition, to be stated in 5, is

also satisfied by the parameters.

There is also a generalization of Barnes’s formula (1.6) due to de Branges [18] and
Wilson [59]"

(1.11)
1 f,ioo r(= + )r( + )r( + s)r(d + s)
2i J_oo r(2s)

r(a- s)r(b- s)r(c- s)r(d- s)ds
r(-)

2r( + )r( + )r( + d)r(b + c)r( + d)r(c + d)
r(a + b + c + d)

provided that any pairwise sum of the four parameters a, b, c, d (including 2a, 2b, 2c, 2d)
is not a nonpositive integer. It is understood that the contour of integration is the
imaginary axis suitably indented to separate the increasing sequence of poles from the
decreasing one.

Askey mused in [4] whether the integral in (1.11) could be modified in the same
way as Barnes’s integral (1.6) was modified into the Ramanujan integral (1.8), and he
wished for a Ramanujan to look at this problem. Askey’s instincts were correct, of
course, for we shall prove in this paper that the desired analogue is

(.2)

r(1 q- 2s)r(1 2s)ds
r(= + )r(= )r( + )r( )r( + )r( s)r(d + s)r(d s)

r(a + b + c + d 3)
r(a + b 1)r(a + c 1)r(a + d 1)r(b + c 1)r(b + d 1)r(c + d 1)’
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but Askey was wrong about the need for a Ramanujan. Far lesser individuals like the
authors could handle the problem thanks to the ideas buried in [4] and in some of
Askey’s other works on beta integrals.

There is a third family of beta integral extensions that are not integrals at all,
rather sums, finite, infinite, or doubly infinite (commonly called bilateral series). An
important member of this family is Dougall’s sum [21]"

oo
1

(1.13) r(a + n)r(b + n)r(c n)r(d n)

r(a + b + c + d 3)
r(a + c 1)r(a + d 1)F(b + c 1)F(b + d 1)’

with Re (a + b + c + d) > 3. The connection between the formulas (1.8) and (1.13),
which are strikingly similar, was made clear by Osler’s [45] extension of (1.13):

(1.14) r(a + n)r(b + n)r(c n)r(d n)
r(a + b + c + d- 3)

F(a + c 1)F(a + d 1)F(b + c 1)F(b + d 1)’
0 < c _< 1, which approaches Ramanujan’s integral formula (1.8) in the limit a - 0,
and to (1.13) when c 1. Another Ramanujan-type extension of (1.13) is

(1.15)
a+n

r(a + a + )r( )r(+. + )r( )
1

r( +. + )r(-. n)r(d + a + n)r(d- a n)
sin2c F(a + b + c + d 3). r( +- 1)r(a + c )r(a + d 1)r(b + c )r( + d 1)r(c + d 1)’

where Re (a + b+ c+ d) > 3, which is just the 5H5 summation formula due to Dougall
[21]; see also Slater [52, III.29]. The sum in (1.15) may be considered as a discrete
version of the integral in (1.12).

Among the other discrete extensions of the beta integral are the well-known sums
due to Vandermonde, Gauss, Pfaff-Saalschiitz, Dixon, Dougall, and Bailey, for which
we refer the reader to Bailey [14] and Slater [52].

Important as all these formulas are, the sums and integrals of current interest
involve a further generalization--the so-called q-extension. The additional parameter
q enters all the formulas through the so-called q-shifted factorial

(1.16)

1,
(a;q)n--

(1-a)(1-aq)...(1-aqn-1),

(a; q)o H (1 aqn), Iql < 1,
n--0

(al,a2, ,ar; q)n 1-I(a; q)n;

n=O

n-- 1,2,...,
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the q-gamma function introduced by Thomae [55] and Jackson [31], [32]:

(q; q)o
(IFq(X) (qz; q)o

0<q<l, Rex>0;

the q-beta function

(1.18) Bq(x, y) r()r(u)
rq(x + y)

Thomae [55], [56] and Jackson’s [321 q-integrals

oo

(1.19) f(t)dqt a(1 q) E f(aqn)qn’
n--0

(1.20) f(t)dqt (1 q) E f(qn)qn;

and the q-binomial formula

(1.21) E (a; q)z" (az; q)o
.--0

(q; q)" (z; Izl < 1, Iql < 1,

due to Cauchy [20] and Heine [30]. Using (1.18) and (1.19) one can show that the
q-binomial formula leads to

(1.22) (tq; q)
Bq(x, y) tx-1 o

dqt,(tqu;q)oo

Re x > 0, y 0, -1,-2, It is easy to show that

(1.23) a--*:-lim Bq(x,y)-- jo :z--l(1 t)u-ldt

so that the q-beta integral in (1.22) can be treated as a q-analogue of the classical
beta integral in (1.1). See Gasper and Rahman [25] for a detailed analysis of the
q-analogues of some of the classical functions.

A q-analogue of the beta integral in the form (1.5), however, does not come
directly from the q-binomial formula but from an extension of it, due to Ramanujan
[29], which, in the present context, can be expressed in the form

(1.24) t_
(-atq=+u; q)oo

dqt(-at;q)o

a-q-()O(aq)Bq(x, y)/O(a),

where Re (x, y) > 0, Re a > 0, Iql < 1, and 0(aqx) is a periodic function of x of unit
period

(1.25) O(aqx) q- (aqz)z(_aqz, _ql-z/a; q)o.



THE PEARSON EQUATION AND THE BETA INTEGRALS 651

Closely related to (1.24) is another q-analogue of (1.5), again due to Ramanujan [29]:

t=.1
(-tq=+u; q)o

(-t;q)o
dt r(x)r(1- x)

r(x)rq( x)
Bq(x, y),

Re (x, y) > 0. If x is a positive integer then a limit needs to be taken. As q - 1- this
approaches the formula (1.5), but it lacks the symmetry that is self-evident in (1.5),
so Askey and Roy [8] and, independently Gasper [23], [24], found an extension of it:

(1.27) t-1
(-tq=+,-qi+u-/t; q)oo

(-t,-q/t;q)oo
dt r(c)r(1-c) Bq(x,y)rq(c)rq(1 -c)

Re (x, y) > 0, that restores the symmetry. There are a number of other q-beta integrals
that are important but will be of no particular interest for our purposes, so we refer
the reader to Andrews and Askey [2], and to Askey [3]-[6]. We shall, however, be
interested in Watson’s [57] q-analogue of Barnes’s first lemma:

(1.28) ra(a + )ra( + )ra(- s)rq(d- s)(s)qsds

qr(c d)r(1 + d c) Fq(a + c)rq(a + d)rq(b + c)rq(b + d)
Fq(d C)Fq(1 + c d) Fq(a + b + c + d)

where

(.29) (s) r[sinr(c-s)sinr(d-s)rq(c-s)rq(1-c+s)rq(d-s)rq(-d+s)l-,

so that (s+ 1) q2(S+l)-e-a(s), and in Agarwal’s [1] ,q-analogue of Barnes’s second
lemma:

(1.30)
__1[ rq(a + )ra(b + )ra( + )ra( d )ra(-)

1(s)qsds
27ri J_o Fq(e + s)

r(d)r(1 d) rq(a)rq(b)rq(c)rq(1 + a d)rq(1 + b- d)rq(1 + c d)
rq(d)rq( d) rq(e a)ra(e b)rq(e c)

where d + e a + b + c + 1, and

(1.31) 1(s) r2[sinrs sin r(d + s)Fq(s + 1)Fq(-s)Fq(d + S)rq(1 d- s)] -1,

so that 1 (8-- 1) q2s+l+d (s). For the conditions that the parameters must satisfy
in order that (1.28) and (1.30) are valid, see the original references or [25]. For a recent
proof of (1.28) that is very similar to the technique used in this paper see Kalnins and
Miller [34].

A q-analogue of (1.11) is the Askey-Wilson integral [9]:

(1.32)
1 /g (Z2’ z-2; q)o dz

2ri (az, az- bz, bz-1, cz, cz- dz, dz- q)o z

2(abcd; q)
(q, ab, ac, ad, bc, bd, cd; q)oo’
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where K is a deformation of the positively oriented unit circle so that the zeros of
(az, bz, cz, dz; q) lie outside the contour and those of (az-1, bz-, cz-, dz- q) lie
inside. Such a contour always exits if the pairwise products of the parameters a, b, c, d
(their squares included) are not of the form q-n, n 0, 1, 2,..., Iql < 1. In the case
max(lal, Ibl, Icl, Idl) < 1, Askey and Wilson [9] reduced it to a real integral formula:

h(x; 1,-1, q1/2 -q1/2
h(x; a, b, c, d)

dx 2r(abcd; q)
x/1 x2 (q, ab, ac, ad, bc, bd, cd; q)o’

where

h(x; a a2, at) h(x; al h(x; at),

(1.34) h(x; a) H (1 2axqn + a2q2n)
nO

ae- q) ifx=cosO.(aeiO

This is a remarkable formula that has sparked a great deal of research in q-
extensions of special functions generally, and of orthogonal polynomials, in particular;
for references see [25]. By specializing the parameters a q/2, b qa-(/2), c
_qf-l/2, d _ql/2, it was shown in [47] that (1.ha) approaches (1.1) in the limit
q-* 1-.

In [38] and [48] formula (1.33) was extended even further:

h(x; 1,-1, q1/2 -q1/2 g) dx
(1.35)

1 hi, i d, f) v/1 x2

2r(g/a, g/b, g/c, g/d, g/.f q)o
(q, ab, ac, ad, if, bc, bd, bf, cd, c.f dr; q)

where g abcdf, and max(lal, Ibl, Icl, Idl, Ill, Iql) < 1. See Askey [5] for an alternate
proof of (1.35). We shall give another proof of (1.35) as an illustration of the methods
of this paper.

Askey’s name seems to be attached to most of the interesting modern extensions
of the beta integral, so it is hardly surprising, but remarkable nonetheless, that he
came along, once again, to offer the following q-extension [6] of the Cauchy-form of
the beta integral:

h(i sinh u; a, b, c, d)(1.36) .-:------. - du
o h(z smh u; q, -q, q, -q)

(log q-)
(ab/q, ac/q, ad/q, bc/q, bd/q, cd/q, q; q)

(abcd/q3; q)

provided labcdq-31 < 1 and Iql < 1. This is a Ramanujan-type integral in contrast to
the Barnes-type integral (1.32). It is not difficult to apply the methods of this paper
to give an alternate proof of (1.36), but for considerations of length we will instead
give an extension of it in 9, in the same spirit as (1.35) is an extension of (1.33). We
shall see, however, that the extension is not quite as straightforward as (1.35) would
lead us to believe.

In a beautiful piece of work Gustafson [27] gave multidimensional extensions of
many of the beta integrals mentioned above, including (1.11), (1.32), and (1.36).
Interested readers should work through this paper as well as the references therein.
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The plan of the paper is as follows. In 2 we give a proof of the classical beta
integral to set the tone of the basic method that we are going to use throughout the
paper. Section 3 is a recapitulation of the finite difference schemes described in [12],
[40], [42]-[44], and [53], to point out the role that a Pearson equation type difference
equation plays in computing sums and integrals. In 4 we give an alternate proof of
Barnes’s second lemma to give the readers a taste of what our methods can do for
a formula that is less familiar than the beta integral (1.1). Section 5 is devoted to
extending the same technique to a Ramanujan-type integral on the real line. In 6 we
describe some general properties of a q-quadratic lattice and find possible solutions of
the Pearson equation for certain choices of the input function. In 7 we give a proof
of (1.35) different from the ones that have appeared before. In 8 we deal with the
basic bilateral series 88, which is both very well poised and balanced. We give an
extension of Askey’s integral (1.36) in 9. An evaluation of the integral in (1.12) as
well as an extension is given in 10. Finally we give a q-extension of the formulas of
10 in 11 and point out the connection between these results and those in 9. The
paper is concluded by giving a summary of beta integrals, old and new, arising out
of solutions of Pearson equations on various types of lattices and different kinds of
boundary conditions.

2. An evaluation of the beta integral. Let us rewrite the Pearson equation

[xa(l x)]’ cxc’-l(l x)-1 (c + )xa(l x)-1

and integrate from 0 to 1. Since Re (a,/) > 0, the left side vanishes at both ends and
so the right side gives

(2.2) I(a)
a +/I( + 1),

where we are denoting the beta integral in (1.1) by I(a), regarded as a function of a.
By iterating this formula n times we get

(2.3)

where

I(c) ( +/)(c + + 1)... (c + + n 1) I(c + n)c(c + 1)... (c + n 1)

+ + n,/),

(2.4) f(o + n, ) Xa+n--l(1 x)-ldx"

By Stirling’s formula, F(c // / n)/r(a + n) n for large n, which suggests a
transformation of the integral by x --+ 1- x followed by x ---. x/n. So we have

lim f(c + n, fl)

/n ( _)a+n--Ilira -: 1- dx x-le-xdx-- F().

This completes the proof of (1.1), which is almost identical to the proof given in [3].
Observe that this very elementary proof brings out the point quite clearly that the
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Pearson equation not only provides the solution p(x) but also helps set up a functional
equation that eventually leads to an evaluation of the integral of p(x) between the
zeros of a(x) through a knowledge of an integral of lower order. By lower order in this
particular instance means evaluating Euler’s beta integral with two parameters from
a knowledge of Euler’s gamma integral that has one parameter.

3. A finite-difference analogue of the Pearson equation. We shall start
with a discrete analogue of a hypergeometric differential equation, of which (1.2) is an
example:

AIYI(S) e(()) FA() ,V,,,(S)I
2 LAx() + W(,)J + ()= 0,

where x(s) is generally a nonuniform lattice, xk(s) x(s+k/2), k 1, 2,..., Af(s)
f(s + 1) f(s), f(s) Af(s- 1); 5(x(s)), ’(x(s)) are polynomials in x(s) of degrees
at most 2 and 1, respectively, and A is a constant. The idea of difference equations on
nonuniform lattices seems a very natural one (see, e.g., the standard Russian textbook
[51]), but a complete analysis of the solutions, particularly the polynomial solutions,
of equations like (3.1) for linear and quadratic lattices as well as their q-analogues, was
made by Soviet mathematicians Nikiforov and Uvarov [42]-[44], Nikiforov and Suslov
[41], and Nikiforov, Suslov, and Uvarov [39], [40]. See also Suslov [53], and Atakishiyev
and Suslov [11] for nonpolynomial solutions of homogeneous and nonhomogeneous
forms of (3.1).

Denoting

(3.2) vi (s)
Ay(s) Avl (s)
A()’ ""() A,()’

(3.1) can be written in a more compact form:

(3.3) a(s)v2(s 1) + T(S)Vl (S) / Ay(s) O,

where

(3.4) () e(()),
() a(()) 1/2() v ,().

If p(s) satisfies the Pearson-type equation

v[p (,,)1 p(,,),r(,) v (.-,),

with pl (s) p(s + 1)a(s + 1), then (3.3) can be expressed in a self-adjoint form:

(3.6) V [pl(8)V1(8)] "4- /p(8)y(8) O.
Vz(s)

In principle, there is no difficulty in writing down a formal solution of (3.5) in
terms of T(S) and a(s), but first we have to decide what sort of a lattice we have and
what kind of problems we are interested in. If one is concerned about preserving the
hypergeometric character of (3.3), namely, that the successive difference-derivatives of
y(s), like the ones in (3.2), also satisfy equations of the same type, then, as was shown
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in [12], the necessary and sufficient condition for that to happen is that x(s) be of the
form

(3.7)
Clq-s + C2q

Cs + Cs

if q# 1,

if q- 1,

where C1 and C2 are arbitrary constants, not both zero. Hence

(3.8) [ q-1/2 (1 q)(Clq-s C2qs),

( 2Cls + C, q=l,

implying that Vxl (s) is odd in s if x(s) is even, and vice versa. In [21 we used the
polynomial types of 5(x(s)) and ’(x(s)) to define the family of classical orthogonal
polynomials and to classify them according to the lattice type. In this paper we shall
still restrict ourselves to lattice type (3.7) but relax the requirement of 5(x(s)) and
’(x(s)) being polynomials of degrees 2 ,and 1, respectively, by allowing simple poles
in addition to the zeros that we already had. This type of Pearson equation plays a
crucial role, in the theory of biorthogonal rational functions [49].

There are two possible situations: (i) s is a discrete variable varying in unit steps
from s a to s b- 1 (it is permissible for a to be -cx3 and/or b to be +o); (ii) s
is a continuous complex variable in some domain of the complex plane.

In case (i) the Pearson equation (3.5) provides a telescoping situation, so we get
the formula

b-1

(3.9) p(b)a(b) p(a)a(a) E p(S)T(S) V x(s).
8--a

If a and b are finite, then usually they are both zeros of p(s)a(s), so the left side
vanishes and we get

b-1

(3.10) E p(s)T(s) V x(s) O.
8"--a

This can be used to prove most of the finite summation formulas (e.g., Vandermonde,
Dixon, and Dougall) and their q-analogues, but that will be of no interest to us here.
We shall instead be concerned with the situation when neither a nor b is finite and
the expression on the left side of (3.9) is not necessarily zero. We shall deal with this
case in later sections.

In the continuous case (ii) we may find a suitable contour C in the complex
s-plane that does not go through any singularities of the integrands so that (3.5) gives

(3.11) V[P (s)lds Iv p(S)T(S) V xl (s)ds.

If C has the property that

(3.12) p (s)ds =/, pi (s’)ds’,
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where C is the contour obtained from C by the shift s s- 1, then (3.11) gives

(3.13) s)T(S) Xl (s)ds = O.

Note that, by Cauchy’s theorem, (3.12) implies that there are no singularities of p (s)
between C and C.

4. Barnes’s second lemma: linear lattice x(s) s. Since Vxl (s) 1, (3.5)
takes the form

(4.1) p(s + 1) a(s) + T(S)
() ( + )

so we want a(s) and ’(s) to be such that both a(s -}- 1) and a(s) + T(S) are rational
functions of s with simple linear factors. We take

U(8) (81 8)(82 8),

T(S) (1 s3 86)(1 85 86)(8 -- 84)
1Ts--s6

(81 + 84)(82 + 84),

where s, i 1,..., 6, are some complex parameters. It is easy to verify that if these
parameters satisfy the "balance" condition

(4.3) 81 -- 82 - 83 -- 84 -- 85 -- 86 1,

then

(4.4) a(s) + T(S) (8 -- 83)(8 + 84)(8 + 85)
1q-s--s6

and hence

(4.) p(s + 1) 83)(8 + 84)(8 + 85)
(Sl 1 s)(s2 1 s)(1 T s- s6)"

This has infinitely many solutions, all differing by a periodic factor of period 1. The
solution that is appropriate for our purposes is

(4.)

Since

(4.)

r( )r( )r(3 + s)F(s4 + )r( + )
r(1 + s- s)

p,() [() + ,()]p()
F(sx s)F(s s)F(s3 + 1 + s)F(sa + 1 + )r( + 1 + s)

r(2 + s- s)

we find that there are no poles of p(s) between C, the imaginary axis, and C, the
line one unit to the left of C, provided (4.3) holds and

(4.8) Re si > 0, i 1,..., 5.
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Assuming this to be the case we then have

(4.9) /c [pl (s)]ds O.

So, by (3.13) and (4.2) we get

(4.10) /cP(s)ds-(1-s3-s6)(1-ss-s6)/s+s4p(s)ds’(81-- 84)(82 -- 84) 1 + S- S6

Let us fix the parameters sl, s2, s3, and s5, and think of p(s) as a function of s and
sa. Note that, by (4.3), s6 decreases by 1 if sa increases by 1. So, denoting

(4.11)
1 / p(s)ds I(sa),

we find that

(4.12) 2ri1/ 1 +s +s-S4s6 p(s)ds I(s4 + 1).

So, (4.10) becomes a 2-term recurrence relation

(4.13) I(s4) (1 s3 s6)(1 s5 s6) I(s4 + 1),(81 -- 84)(82 -- 84)

which, on iteration, gives

(4.14) r(, + t)r( +)I(sa) r(1 sa so)r(1 s s)A

where

(4.15)

By Stirling’s formula and (4.3),

(4.16) r(1 s s + n)r(1 s s + )r( + + )
r( + + )r( + + n)r(1 + s so + n)

nl-(sl+s+s3+sa+sS+s) 1 for large n.

Also, by Barnes’s first lemma (1.6),

(4.17)
1 /c r( )r( )r( + )r( + s)ds

2ri

r( + )r( + )r( + )r( +)
r(81 -- 82 -{- 83 -- 85)
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(Incidentally, an alternate proof of (1.6) based on somewhat similar ideas was given
by Miller [37] and Kalnins and Miller [34l. Combining (4.6), (4.11), (4.14)-(4.17), we
find that

fo r( )r( )r( + )r( + )r( + )(4.18)
-,o r( + + + t + + )

d

r( + )r( + )r( + )r( + )r( + )r( + )
r(l + , + + )r( + + + )r( + + + )

which is essentially the same as (1.7). (It would be the same if one of sl, su were zero
and the contour were indented around the origin.)

5. Extension of Ramanujan’s integral: linear lattice x(s) s. Here we
start with the same lattice and the same expressions for a(s) and r(s) as in 4 so that
the formulas (4.1)-(4.5) all hold. But now that the line of integration is the whole
real line instead of the imaginary axis, the asymptotics are entirely different, so the
appropriate solution of (4.5) is

(5.1) p(s) =_ p(s,
r(o )

r(1 + s- s)r(1 + s- s)r(1 sa s)r(1 s s)r(1 s s)"

From (4.2) and (5.1) we have

pl (s- 1) p(s)a(s)
r(o )

r(- sl)r(s- s=)r(1 sa s)r(1 st s)r(1 s s)"

To investigate the behaviour of #1 (S- 1) as s -+ -oo let us first split it into two
factors:

(.3)
where

p (s 1) --/tl (s)gl (s),

(5.4) gl(s)

and

(5.)

r(1 + Sl s)r(1 + s= )r( )
r(1 sa s)r(1 s s)r(1 s s)’

tt (s) rr- sin rr(s Sl) sin r(s s2).

Clearly, #(s:kl) #l(s) and Im(,)l < =- for all real s. Also, by (4.3) and Stirling’s
formula,

(5.6) lim 1 (8) 1.

For s near +x we take

(.7)
with

and

p(- ) ,=(,)a=(,)

r(,a + ,)r(,t + ,)r(, + ,)=(*) r(,- ,)r(,- s=)r(1 + s- s)
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(5.9) #2(s) 7r-2
sin 7r(s + s3)sin 7r(s + 84)sin 7r(s

sin 7r(s6 s)

Once again,

(5.10) lim g2(s)- 1

and #2(s 4- 1) #2(s). But now #2(s) is not bounded for all real s unless Im s6 t 0.
By defining

(5.11) f(s)ds
--IX)

M+e2

lim f(s)ds,
M,N---*o j-N-e.1

where M, N are positive integers and el, e2 are some real constants with 0 < o, e2 < 1,
we will now compute the integral f_ V[pl (s)]ds. Since

(5.12) V[Pl (s)]ds pl (s 1)ds pl (s 1)ds,
Jb aa

we have

because of the periodicity of #1 and #2. So, by (5.6) and (5.10) we get

(5.14)

From (5.5) and (5.9) it is clear that the value of # remains unchanged if we move
sa one unit up or down as long as (4.3) holds. We now replace sl, s2, s3, sa, s5, s6 by
1 a, 1 b, 1 c, 1 d, 1 e, and 1 f, respectively, and find that (3.11) leads to the
nonhomogeneous recurrence relation

(5.15) (a+d-1)(b+d-1)I(d) (2 c f)(2 e f) I(d + 1) + (2 c- f)(2 e f)’

where the balance condition (4.3) now reads

(5.16) a+b+c+d+e+ f =5,
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and

I(d)- / p(s)ds

f r(1 f- s)ds
r( + s)r(b + s)r(c- s)r(d- s)r(e- s)"

It can be shown that, if Im f 0, then

(5.18) IP()I / (-s)-2

( 8--2

so that the improper integral in (5.17) converges. Iterating (5.15) n times and then
proceeding to the limit n --, c, we find that

(5.19) I(d) r(2 c- $)r(2 e $)
r(a+-l+-V)

[ ]+d- 1,b+d- 1,1
# 3F2 ;1+ (2-c-f)(2-e-f) 3-c-f,3-e-f

where

B lim / r(a + d + n 1)r(b + d / n 1)r(1 s + n)
,--,o r(2 c $ + n)r(2 e + n)r(d- s + n)

d8

r(a + )r( + )r(- )r(- s)’

provided

(5.21) Re (2- f) > max{Re (c, d, e)}.

By Stirling’s formula and Rmnanujan’s integral (1.8), we have

(5.22) B r(2 d- f)
r(. +- 1)r(a + e 1)r(b + c 1)r(b + e 1)"

We thus have the formula

(5.23)

r(1 f x)dx
r(a + x)r(b + x)r(c- x)r(d- x)r(e- x)

r(2 c- f)r(2 d- l)r(2 e f)
F(a + c 1)F(a + d 1)F(a + e 1)F(b + c 1)F(b + d 1)F(b + e 1)

# 3F2 [a+d- 1,b+d- 1,1 ]+(2-c-f)(2-e-f) [ 3-c-f,3-e-f
;1



THE PEARSON EQUATION AND THE BETA INTEGRALS 661

where the parameters a, b, c, d, e, f satisfy the conditions (i)-(iii) in (1.10), and, by
(5.5), (5.9), and (5.14),

1/l [sin Tr(c x) sin Tr(d x) sin r(e x)
sin 7r(f + x)

sin r(a + x) sin r(b + x)] dx.
If the parameters are such that # 0, then we have the integration formula (1.9)

subject to all four conditions stated in (1.10).
By defining

oo

(5.25) Eg(s)= lim E g(s),
k,--,oo

we obtain, by a similar analysis, that

(5.26)
r(1 -/" )

r(a + a + )r( + + )r(- n)r(d a )r( )
n--wOO

r(2 c- y)r(2 d- f)r(2 e )

with

r( + 1)r(a + d 1)r(a + e 1)r(b + c 1)r(b + d 1)r(b + e 1)

#2() #1() 3F2[a + d l’ b + d l’ l ]+ (2-c- f)(2-e- f) [ 3-c- f,3-e- f
;1

(5.27) 1(O) sin r(a + c0 sin 7r(b + )/Tr2

#2() sin 7r(c a)sin 7r(d c0 sin 7r(e )/71"2 sin r(f

and the parameters satisfying the same balance condition (5.16).
Note that the sum on the left side of (5.26) and the first term on the right are

symmetrical in c, d, e but the 3F2 series is apparently not. This can be rectified by use
of the identity [14, Ex. 7, p.9S] which, along with (5.16), gives

a+d-l,b+d-l, 1; ]3F2
L 3-c- f, 3-e- f;

1

2-e- f [a+e- l,b+e- l, 1; ]2-d-f 3F2 1
3-c-f,3-d-f;
a+c-l,b+c-l, 1; ]2-c-f3F2 1

2-4-f l 3-d- f,3-e- f;
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all three 3F2’s being convergent because of (5.21). One may deduce from (5.26) the
summation formula

o (1 + a c)n(1 + a d).(1 + a e).(5.29) Z (a+a),(a+b)n(1 +-a-b-d-e),

r(o + )r( + b)r(c a)r(d o)r( )

provided

(.30)

r(a + c 1)r(a + d 1)r(a + e 1)r(a + b + c + d + e 4 c)
r(a + b + c + d 3)r(a + b + c + e 3)r(a + b + d + e 3)

r(b + c 1)r(b + d )r(b + e 1)

sin r(c a)sin 7r(d a)sin r(e a)
sin r(a + a) sin r(b + a) sin r(a + b + c + d + e a).

This is a bilateral extension of the Saalschiitz formula [52, III. 2, p. 243]. A q-extension
is given in 12.

It may be pointed out that by appropriate shift of the parameters we may set
cr 0 in (5.26), (5.27), (5.29), and (5.30), without any loss of generality.

6. The q-quadratic lattice x(s) Clq-s + C2qs. It would appear that the
q-quadratic lattice is far more complicated than the simple linear lattices considered
in the previous two sections. However, there is a symmetry in the quadratic case that
makes the analysis just as simple as in the linear cases. If we denote a C2/C1, C1 7
0, then it follows from (3.7) and (3.8) that

(6.1)
if q# 1,

if q= 1,

(6.2) (s) / V x(t)lt=-.-
VXl

( Xl(t)lt=--

if q# 1,

if q= 1,

where log a/logq, that is, a qv when q # 1, it being understood that the
constants C1, C2 are not the same in the two cases. Because of (3.4) we are then led
to the property

(6.3)
(__ ),

() + () ()
(_ .),

q#l,

q=l,

so that the Pearson equation (3.5) takes the form

p(s + 1)
p()

(__ ),
O’--1(8 - 1)

a(--s--

q#l,

q:l,

which means that we only need a(s), and not T(S) as well, to determine p(s). Following
the usual structure of the Pearson-type equations discussed in [49] we take

5

(6.5) a(s) q-2s H (qs sk)/(qS q/s6), q # 1,
k--1
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where s1,..., s6 are six complex parameters that satisfy the balance condition

(6.6) a2sls2s3sashs6 q, a C2/C qv.

In the q 1 case, the most important quadratic lattice is x(s) s2, in which case
a 0, and

(6.7)
8-- 81 82 83 84-- 85)

For now we shall restrict our analysis to the q 1 case and return to the q 1 case
later. Using (6.2), (6.3), (6.5), and (6.6) we find that

T(s) A + Bx,so X(8)

where

(6.9) qso 81 qSo q/s6 0128182838485

(6.10) A

(6.11) B

_1 5

Ca2s(1 q)(1 aqsls) II(1 ass),
k--2

_1 5
q2 86

Ca2q(1 q)(1 aqslls) II (1 qlss).
k=2

Clearly, we could have chosen any one of the five parameters sl,..., s5 as qso (with
corresponding changes in A and B), so this symmetry must be reflected in the final
results. We justify the notation so and so by pointing out that a(so) 0 and

Equations (6.4) and (6.5) give

(6.12)
p(s + 1) qas+2v+2

or

(6.13)
p(s + 1) q-4s-2-2

1 s6qs fi (1 q--"ls)
1 s6q-s-u-1 (1 qs+l/sk)

k=l

1 q-s/s6 5 (1 skqs+’)
1- qs+u+l/86 kl-I1 (1- skq-S-1)

As we shall see later the expression in (6.12) is suitable for summations and integra-
tions along the real line, while that in (6.13) is more suitable for integration along the
imaginary axis.

The general solution of (6.12) is

(6.14) p(s) po(s)

with

(6.15)
po(s + 1)

po( )

51-I= (q,+XIs, q-’-’ls; q)
(s6qs, s6q-S-u; q)o

q4S+2U+2 VsC,
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while the appropriate solution of (6.13) is

with

(6.17)

(qS+v+l/86, ql-s/86; q)o() ()
II (q+,q-;

k----1

p(s + 1) q-4S-2V-2 V s

_
C.

Since

(6.18) (0) ()
(oo)-()

ss6 (1.- qs/sl)(1 q-s-’/si)
q (1 s6qs-i)(1 s6q-s-’-i)
q (1- siqs+V)(1- siq-s)

sis6 (1 q++X/s6)(1 qi-s/s6)

we have

(6.19)

(s6qs-l s6q-s-u-1 q)o
(q2-s/s6, qs+v+2/s6; q)o

for the solutions (6.14) and (6.16), respectively.
To emphasize the fact that p(s) depends on all 5 parameters Sl,..., 85, and that

we have chosen Sl to be qso let us denote

(6.20) p(s) p(s; s).

Use of (3.5), (3.8), (6.8)-(6.11), and (6.19) then gives

[p(s + 1)a(s + 1)] 7"(s)p(s; sz) xz(s)
51-I=(1 q’sxst:)

s_zv(1 qv+Zs)p(s; 81)Sl(1 qu+lSl/S6)
q-

+ Dq-s-2(1 q+2s)p(s; qsl),

where

(6.22)

818 5H=( -ql)
q2 (1 --qv+lSl/S6)D

q+2 1-I=2(1 sks6/q)
(_ q--l/x)

the first line of (6.22) corresponding to the first two lines of (6.18) and (6.19), and the
second line to the second two lines. In either case, the sum or integral of (6.21) sets
up a 2-term recurrence relation for the sum or integral over q-s-2(1- qv+2s)p(s; s)
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as a function of Sl. It is homogeneous or nonhomogenous depending on whether or
not the sum or integral of the left side of (6.21) produces a zero.

7. Proof of formula (1.35): lattice x(s) 1/2(q-s + qs). In this section we
shall consider the integral over p(s) along a line parallel to the imaginary axis for the
symmetric lattice x(s) 1/2(q-s + q) with 0 in (6.16). We take

(7.1) sl--a, s2-b, s3-c, s4-d, ss-f

so that (6.6) gives

q
(7.2) s6 abcdf’
and (6.21 gives

(7.3)

with

V [p(s q- 1)er(s q- I)]

a-1 (1 ab)(1 ac)(1 ad)(1 af)
q-8

(1 a2bcdf) (1 q2s)p(s; a)

a-1
1 abcd) (1 -abcf) 1 abdf) (1 acdf)

(1 a2bcdf)
q-s(1 q2s)p(s; aq),

p(s) p(s; a)
(abcdfqs, abcdfq-s; q)oop(s)

(aqs aq-s, bqs, bq_s cqs, cq-s, dqs, dq_s fqs, fq-s; q)oo’
p(s + 1) q-4S-2.

Let

(7.6)
q--8

so that

(s + 1) _(1 A- q-s-l)(1 q-S-l)
q-2S-1

(l+q)(1--q8)
(1 + q--1/2)(1 A- q--l)(1 q-S-1/2)(1 q--l)

(1 + qS)(1 + qS+1/2)(1 qS)(1 qS+1/2)

with solution

p(s) (qs, _qs, q-s, _q-s, qS+1/2 _qS+1/2 q1/2-S, _q1/2-; q)oo
(q2s, q-2s; q)o,

unique, to within a unit-periodic multiplicative factor. Equations (7.4), (7.6), and
(7.8) then give

(7.9) p(s; a) (q-s qs)-I
(q28, q-2s, abcdfqs, abcdfq-s; q)oo

(aq’, aq-, bqs, bq-s, cqs, cq-s, dqs, dq-s, fqs, fq-s; q)
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which agrees with the integrand of (1.33) when f 0, so we may set that multiplicative
factor equal to 1.

We now assume that

(7.10) max(lal, Ibl, Icl, Idl, Ill) < 1, 0 < q < 1

and choose the contour C as -r/(logq-1) < Im s < r/logq-1, and consider the
boundary of the parallelogram defined by

(7.11) 0 _< Re s _< 1, -log q-1 -< Im s _<
log q-l"

Since

(7.12)

there are no poles inside the basic parallelogram in (7.11). So the integral over [p(s+
1)a(s + 1)] along the boundary of this parallelogram vanishes and hence, due to the
2ri/log q-1 periodicity of this integrand, we obtain from (7.3) the recurrence relation

(7.13)

where

(7.14)

I(a) (1 abcd)(1 abcf)(1 abdf)(1 acdf)
(1 ab)(1 ac)(1 ad)(1 af)

I(aq),

1 [ (qs, _qs, q-,,, _q-s, q1/2+S, _q1/2+S, q1/2-S, _q1/2-S; q)oo
I(a) Jc. iia-i bq---7,---,Tq-:Tq--:s b-s ,, -s --q-:--:d s d-s. q--oo

(abcdfq8, abcdfq-s; q)oo
ds.

(fqs, fq-s;q)oo

By the symmetry of the integrand in (7.14) and the transformation

(7.15) q e, 0 _< 0 _< r,

we may convert (7.13) into a recurrence relation for the real integral

(7.16)

namely,

(7.17)

h(cos 0; 1,-1, q1/2,-q1/2, abcdf)

J(a) (1 abcd)(1 abcf)(1 abdf)(1 acdf)
(1 ab)(1 ac)(1 ad)(1 af)

J(aq).

Iterating (7.17) n times and then taking the limit n cx we find that

(7.18)

where

J(a) (abcd, abcf abdf acdf q)oo
J(O)(ab, ac, ad, af; q)oo
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h(cos ; 1,-1, q1/2,-q1/2)
(7.19) J(0) -(oi,:: f)

dO

2r(bcdf;
(q, bc, bd, bf, cd, cf, df;q)o’

by (1.33).

Combining (7.18) and (7.19) completes the proof of (1.35).
It may be mentioned that a similar method can also be applied to compute the

Askey-Wilson integral (1.33). The idea is to reduce the number of parameters down
to zero by successive recursions and then compute the simple parameter-free integral

f0 h(cos0; 1,-1, q,-ql/2)dO, which can be done in a very elementary manner. See
[13] and [33] for details. See also [36] for a similar proof.

8. A very well poised bilateral sum: lattice x(s) 1/2(q- + q). We shall
now consider the sum over p(s) along the real line for the symmetric lattice x(s)- (q-s + qs) with - 0 in (6.14) We replace the parameters sl s6 by2 ’**

(8.1) 81 q/a, s2 q/b, 83 q/c, s4 q/d, s5 q/e, s6 q/f,
so that the balance condition now reads

(8.2) abcdef qb.

Use of (8.1)in (6.14) gives

(8.3)

po(s) (aqs’ aq-s’ bqs’ bq(q:+Ts’ cq-s dqs’ dq-s’ eqs’ eq-s; q)oo
/:f q-,/:f q)

Defining a bilateral sum by the same limit as in (5.25), where the complex parameter t
is not the same as the one used in 6, we find, by summing over (6.21) (after replacing
a by aq), that

f (1 ab/q)(1 ac/q)(1 ad/q)(1 ae/q) I(aq)(8.4) e(a; aq)
qa2 1 J’/qa

qU (1 bf/q)(1 cf/q)(1 df/q)(1 ef/q) I(a),
af 1 f/qa

where I(a) is the bilateral sum

(8.5) I(a) lim Z (1 q2, q-s aqs aq-" bq" bq-" cqs cq-s q)oo

(dq8, dq-, eq, eq-s; q)oo po(s)
(ql+/f, ql-s/f;q)oo

and

(8.6)
lim {po(a + )q-2-2(aq+t-1 aq--, bq+-1 bq--; q)ooca)

(cq+-1, cq--, dq’+-1, dq--, eq+-1, eq-a-t; q)o "[

lim {po(a-k)q2k-2a(aqa-k-1 aq-a+k bq--1 bq-a+k;q)o

(cqa-k-l, cq-a+k, dqa-k-l, dq-a+k, eqa-k-l, eq-a+k; q)oo
(qa-k/f, ql-a+k/f;q)o 1’
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provided the limits in (8.5) and (8.6) exist. It can be easily verified that

(8.7) e(c; aq) fe(c; a),

so we may write (8.4) as

(1 ab/q)(1 ac/q)(1 ad/q)(1 ae/q)
(8.8) I(a) (1 q2/bf)(1 q2/cf)(1 q2/df)(1 q2/ef)

I(aq)

a(1- aq/f) ( q ) e(a; a)+ (1 qU/bf)(1 q2/cf)(1 q2/df)(1 q2/ef) -a-]
Before proceeding any further we have to decide what po(s) must be in order

that the limits indicated above exist. Since po(s) must satisfy (6.15) (with y 0), it
suffices to take

(8.9) po(s) q28.

We may now split p(s)a(s) into two factors, one that converges as s --. cx and the
other that is periodic of unit period in much the same way as in 5, and find that

(8.10) e(a; a) q2a(a-1) { (aq-a, qa+i/a, bq-a, qa+/b, cq-a, qa+i/c; q)o
(dq-a, q+/d, eq-", qa+/e; q)o

(aq
(dqa-, q2-a/d, eqa-i, q2-a/e; q)

Because of (8.2) the limit in (8.5) also exists, giving us a very well poised bilateral
balanced ss series

(8.11)
I(a) q

(dq
(qa+l/.f, ql-a/f;q)oo

qt+l’-qa+l’q+l/a’qa+l/b’q+l/c’qa+l/d’q+l/e’qa+l/f q]ss ;q,
qo, _q, aqa bq, cqa dq, eqa fqa

For the definitions, notation, and properties of various types of basic hypergeometric
series see [25].

The limit of I(a), as a -- O, exists provided Ibcde < q3. This limit is

(8.12) I(0)

[qa+i,-qa+l,qa+i/b, qa+i/c, qa+i/d,q"+l/e bcde]66 q, --q’, -qa, bqa, cq, dqa, eqa

q2a2-a (q2a, ql-2a; q)o
(q, bc/q, bd/q, be/q, cd/q, ce/q, de/q; q)

(bcde/q3; q)o
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by the 6 summation formula [25, eq. (5.3.1), p. 128]. (It is also easy to give an
alternate proof of this formula by using the method of this paper.)

We now iterate (8.8) n times, take the limit n -- o, and use (8.12) to obtain the
bilateral extension to Jackson’s summation formula; see, for example, [25]:

[qa+l, _qa+, q’+/a, qa+/b, qa+/c, qa+l/d, qa+i/e, q’+/f
(8.13)ss

qa, _qa, aqa, bqa, cq,, dqa, eq,, fqa ;q’q]
(ql+2ct, ql--2a, qO4-1/f ql-ot/f; q)oo

(aq,, aq-,, bqa, bq-a, cq, cq-, dq, dq-a, eqa, eq-a; q)

(q, ab/q, ac/q, ad/q, ae/q, bc/q, bd/q, be/q, cd/q, ce/q, de/q; q)oo
(q2/af q2/bf a2/cf q2/df q2/ef q)oo

(1 aq/f)(q’+/f ql-a/f q)
f (1 q2a)(1 q2/bf)(1 q2/cf)(1 q2/df)(1 q2/ef)

(aqa, aq- bq, bq-a, cqa, cq-a dqa, dq-, eq‘, eq-a;q)oo

s7 [aq/f, q(aq/f) 1/2, -q(aq/f) 1/2, ab/q, ac/q, ad/q, ae/q, q

(aq/f 1/2, -(aq/f 1/2, qa/bf q3/cf q3/df q3/ef aq/f
q, bcde/q3]

provided

(8.14) max(labcdl, labcel, labdel, lacdel, Ibcdel) < q3.

If the parameters satisfy the "regularizing" condition e(a; a) 0, which, from (8.10),
means

(8.15)
(aq-a, qa+l/a, bq-’, qa+l/b, cq-’, qa+/c, dq-a, qa+l/d;

(aqa-l, q2-/a, bqa-, q2-a/b, cq-1, q2-a/c, dq-1, q2-a/d; q)oo

(eq-a, qa+i/e, fq-a, qa/f; q)oo
(eq,-, q2-a/e fqa, qi-,/f; q)

1,

then the second term on the right side of (8.13) drops out and we obtain the summation
formula due to Gosper [26], see also [25, Ex. 5.12, p. 135].

Clearly, (8.13) is a generalization of (5.26).
9. An extension of Askey’s integral (1.36): lattice x(s)= 1/2(q-8 _qs). In

this section we find an integral analogue of (8.13) in the same sense as (5.23) is an
integral analogue of (5.26). Since the integral is from -cx) to cx3 we have to avoid an
integrand that is odd in s, so we take x(s)= 1/2(q-s qs) with

(9.1) VXl(S)
1 -q qs).
2q

The parameter ( of 6 is then -1 so that v ri/log q. In order to preserve the same
basic character of the factors in the first term on the right side of (8.13) corresponding
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to u 0, we must take all of the parameters a,..., f purely imaginary. We choose
a(s) and T(S) exactly the same as in 8, but replace sz,..., s6 by

(9.2) 81 q/ia, s2 q/ib, s3 q/ic, sa q/id, s5 q/if, s6 q/ig

so that the balance condition (6.6) now becomes

(9.3) abcdfg _q5.

We have avoided the symbol e for a parameter since we are going to use it for the
standard exponential base a little later. Solution of the Pearson equation now has the
form

po(s) (iaqs’-iaq-s’ ibqs’-ibq-s’ icqs’-icq-s; q)oo
(-iq+Z/g, iq-/g;q)oo

(idqs, -idq-s, ifqs, -ifq-s; q)oo,

with

(9.5) po(s + 1) qas+2,

and

(9.6) p(s)a(s) po(s)q-2s(iaqs- -iaq-s, ibqs-1 -ibq-s; q)oo

(icq- -icq-, idq- -idq-, ifq- -ifq-8;
(-iqs/g, iq-s/g;q)o

As in (5.12),

(9.7 V[p(s)]ds lim ?[p(s)]ds
M,N--*o j--N-ez

p(s)a(s)ds- lim f-N-,z-x
N---oo j-N-el

p(s)a(s)ds,

where M, N are positive integers and 0 _< e, e2 < 1. Note that

(9.8) p(s)a(s) #2(s)g2(s),

where

(9.9) g2(s)

and

(9.10)

(iaqs-l, ibqs-l, icqs-, idqs-, ifqs-, -igqs; q)
(iq+Z/a, iqs+/b, iqs+X/c, iqS+X/d, iqs+/f -iq/g; q)o

#2(s) po(s)q-2s(-iaq-s, iq+/a, -ibq-, iq+/b; q)o

(-icq-s, iqs+/c, -idq-s, iqs+X/d, -ifq-s, iqs+/f; q)o
(iql-s/g,-igqs;q)oo
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so that

(9.11) #2(s / 1) #2(s) by (9.5) for all s e C.

Hence

(9.12) lira #2(s + M) #2(s), M an integer.

From (9.9) it is also clear that limM-.o g2(s + M) 1, so we have

(9.13) fM+e2+l fe2-I 01lim p(s)a(s)ds #2(s)ds
M---*oo jM+e2 e2

#2(s)ds,

by (9.11). Similarly we can show that

(9.14) fl-N-el fl-el 01lim p(s)a(s)ds 1(s)ds #1 (s)ds,
N--,oo j--N--el --.1

where

so that

#l (S) po(s)q-2S(iaqs-l, --iq2-s/a, ibqs-l, -iq2-s/b; q)o

(icq8-1, -iq2-/c, idq-1, -iq2-/d, ifq-1, -iq2-If; q)o
(-iqS/g, iql-g;q)o

(9.16) I (8 -- 1) #i (8).

Using (6.8)-(6.11) as well as (9.1)-(9.4) we now find that

T(8)p(8; a) V Xl (8)
ia tq + qS)po(s) (1 q2/ab)(1 q2/ac)(1 q2/ad)(1 q2/af)
q (1 + gq/a)

(iaq, --iaq-, ibq, -ibq-, icq, -icq-; q)o

(idq, -idq-, ifq, -ifq-; q)o
(-iqs+:/g, iql-8/g;q)o

iq
(q_ + q)po(s) (1 + bg/q)(1 + cg/q)(1 + dg/q)(1 + fg/q)

ag2 (1 + gq/a)

(iaq-1, --iaq-s-l, ibq, -ibq-, icqs, -icq-s;

(idq, -idq-, ifq, -ifq-s;
(_iqS/g, iq-/g;q)o

We now have to choose po(s) so that (9.5) holds, the integrals on the whole real
line over the two expressions on the right side of (9.17) converge, and such that the
integral over the first term tends to an Askey integral of the type (1.36) when a --. 0.
This last requirement eliminates the possibility of po(s) being of the form (8.9), so we
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must look for a unit-periodic function in which powers of qs occur inside the infinite
products only. So let us take

(9.s) p0() q-s +qs’

so that, by (9.5),

q4S+2 (s + 1) q-S + qS

(s) q-S-1 + qS+i

(s + 1) 1 + q2S
=q

p(s) 1 "4- q2S+2
( + ) ( +)( a)
()

q
(1 + a+,)( a+,),

(9.20) o(s + i) (i + iqs+l)(1 iqs+l) q4s+l
(1 + iqs)(1 iqs)

(1 4- iq+)(1 iqs+)(1 4- iqs+1/2)(1 iq+1/2)
(1 + iq-s)(1 iq-s)(1 + iq-S-1/2 )(1 iq-’-1/2

with solution

(9.21) (. 1/2_ iqs+l,_iqs+l iql_s,(s) zq’+, _zq-+s, iq1/2-S, -iq s, -iq-s; q)oo -
(_ql+2s, _q-2s; q)o,

which is unique to within a periodic factor that we may now take to be unity. Note
that (9.21) agrees with the denominator of the integrand in (1.36). Denoting

1

(9.22) #(a) [#2(s) #(s)lds

and

(9.23) I(a) / (iaqS’ -iaq-s’ ibqs’ -ibq-s’ icqs’ -icq-s; q)oo
(_ql+2s, _ql-2s; q)oo

(idqs, -idq-s ifqs, -ifq-s; q)oo
ds,

(-iqs+l/g, iq-s/g;q)oo

and then replacing a,g by aq and g/q, respectively, we find that (3.11) in this case
leads to the nonhomogeneous recurrence relation

(9.24) I(a)
qa3 (1 q/ab)(1 q/ac)(1 q/ad)(1 q/a/)
g (1 + q2/bg)(1 + q2/cg)(1 + q2/dg)(1 + q2/fg)

I(aq)

ai(1 + aq/g) I.t(aq).
(1 + q2/bg)(1 + q2/cg)(1 + q2/dg)(1 + q2/fg)
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From (9.10), (9.15), (9.18), and (9.21) it can be verified that

(9.25) #(aq) q_--_#(a).
ag

Iterating (9.24) n times and then taking the limit n --. oc, we obtain

(9.26) I(a)
(ab/q, ac/q, ad/q, af/q; q)o

lira I(aqn)(-q2/bg, -q2/cg, -q2/dg, -q2/fg; q)o
iq (1 -t- aq/g)#(a)
g (1 + q2/bg)(1 / q2/cg)(1 + q2/dg)(1 + q2/fg)

I -aq/g, q(-aq/g) 1/2,-q(-aq/g) 1/2, ab/q, ac/q, ad/q,
87

(-aq/g) 1/2,-(-aq/g) 1/2,-qa/bg,-qa/cg,-q3/dg,

a.f/q,q
q, _q2/ag

_q3/fg, -aq/g
provided the limit in (9.26) exists and the integral in (9.23) as well as the infinite
series in (9.26) converge. By (9.3), this last requirement implies that

(9.27) [bcdII < q3.

It can be shown that if, in addition, Re (abcdf) 0 and

(9.28) max(labcd] labcfl ]abdfl ]acd.fl) < q3,

then the integral in (9.23) converges and that

(9.29) lim I(aq’)

f (ibq8, -ibq-, icq, -icq-, idq, -idq-, ifq, -ifq-; q)o ds
(_ql+2s, _ql-2s; q)oo

(q, bc/q, bd/q, bf/q, cd/q, cf/q, df/q; q)oo
(bcdf/q3; q)oo

by (1.36), exists. Thus we have the extension of Askey’s formula, with qs eu,

h(i sinh u; a, b, c, d, f)(9.30)
h(i sinh u; q1/2, -q1/2, q, -q, -q/g)

du

(log q-l)
(q’ ab/q, ac/q, ad/q, af/q, bc/q, bd/q, bf/q, cd/q, cf/q, df/q; q)oo

iq

(abcd/q3, abcf/q3, abdf/q3, acdf/q3, bcdf/q3; q oo

(log q-)(1 + aq/g)#(a)
g (1 abcd/q3)(1 abcf/q3)(1 abdf/q3)(1 acdf/q3)

s7 [-aq/g, q(-aq/g) 1/2,-q(-aq/g) 1/2, ab/q, ac/q, ad/q,

(-q/) 1/2, (-q/) 1/2, -q/, -qa/, -qa/@,

af/q,q
q, bcdf/q3

_q3/fg, -aq/g



674 MIZAN RAHMAN AND SERGEI K. SUSLOV

By (9.10) and (9.15) #(a) can be expressed as a single integral

(9.31) #(a)- j01 (_q28, _ql-28; q)(igq+, igq-s, _iqs/g, _iq-s/g; q)

-(iaqs-i’ -iq2-s/a’ ibqs-’ -iq2-s/b’ icq-’ -iq2-s/c; q)
ds.

(idqs-i, -iq2-s/d, ifqs-i, -iq2-s/f, igq-s, -iqs/g; q)o

It is clear from (9.30) and (9.31) that if any one of the five parameters vanishes, then
the second term on the right side of (9.30) drops out leaving us with Askey’s formula
(9.29).

In concluding this section we would like to remark that while it would not be too
difficult to prove (8.13) by using the transformation theory of basic hypergeometric
series (see [25]), we do not know how one could discover (9.30) by the same procedure.
Formulas (5.23) and (9.30) are of the same basic character, in fact, it is not too hard
to show that (5.23) is a special limiting case of (9.30). The appearance of the second
term on the right sides of (5.23) and (9.30) is a characteristic of Ramanujan-type
integrals of higher order.

10. Proof of (1.12) and an extension: lattice x(s) s2. In this section we
will not only give a rigorous proof of (1.12) but also prove the following extension:

(10.1)

r(1 2s)F(1 / 2s)
r(a s)r(a + s)r(b s)r(b + s)r(c s)r(c + s)r(d s)r(d + s)

where

r(1 y- s)r( I + s)ds
r( ,)r( + ,)

r(2 $ a)r(2 $ b)r(2 y c)
r( + 1)r(a + c 1)r(a + d 1)r(a + e 1)r(b + c 1)

r(2 y d)r(2 y e)
F(b + d 1)r(b + e 1)r(c + d 1)r(c + e 1)r(d + e 1)

+) l+a-f
(2 f b)(2 f c)(2 f d)(2 f e)

l+a-fl+a-f,l+ 2 ,a+b- l,a+c- l,a+d- l,a+e- l, 1
7F6

1Ta-I 3 f b, 3 f c, 3 f d, 3 f e, 1 + a f2

(10.2) a+b+c+d+e+f--5, Re(2-f)> Re(a,b,c,d,e), Imf<0,

and

(10.3) () (-)
ds,

sin 2s
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with

(10.4) A(s)
sin r(a s) sin r(b s) sin r(c s) sin r(d s) sin r(e s)

71.4 sin r(f + s)

The symmetry of the second term on the right side of (10.1) can be demonstrated
by using a transformation formula for the 7F6 series (see [14]) as was done in 5.

It is true, as Askey mentioned in [4], that there is the "immediate problem" of
poles of the gamma functions in the numerator of the integrand of (1.12), but they are
simple poles and so the problem is immediately resolved by interpreting the integral
as a Cauchy principal value integral. The same is true for the integral in (10.1). All
we need to do is to find conditions so that these principal value integrals exist and
then try to evaluate them.

For the Pearson equation (6.4) we have a very simple relation with the symmetric
lattice x(s) s2:

(10.5) ( + ) (-)
p(s) a(s q- I)"

For Askey’s integral (1.12) we take

(10.6) a(s) (a- 1 q- s)(b- i q- s)(c- I q- s)(d- I q- s),

and for (10.1) we take

a(s) (a- i + s)(b- 1 + s)(c- I + s)(d- 1 + s)(e- i + s)
s-f

with a + b + c + d + e + f 5. Clearly, (10.7) reduces to (10.6) in the limit e --. oo.
The solution of (10.5) that is appropriate for our purposes is

(10.8) r(1- I- s)p(s)
sin 2rs r(a- s)r(b- s)r(c- s)r(d- s)r(e- s)

r(1- .f + s)
r(a + )r( + )r( + s)r(d + s)r( + )’

while the corresponding formula in the Askey case is
(10.9)
p (s)

sin 2rs
[r( )r( + )r(b )r( + )r( )r( + s)r(d s)r(d + s)]-

where the suffix A is used to indicate the limiting case of (10.8). Since Xl(S) 2s
and r(:)r(1 ) ./si., we find that

(10.10) r(1- 2,)r( .f- )p() v () r(=- )r(- )r(- s)r(d- )r(- )

r(1 + 2s)r(1- .f + s)
r(= + )r( + )r( + s)r(d + s)r(e + s)
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and

(i0.ii) p (s) V Zl(S) r(- )r(- )r(- s)r(d- s)
r(1 + )

r( + )r( + ,)r( + s)r(d + s)"

From (10.7) and (10.8) we also have

(:o.:)
p:(- :) p():(,)

r(1 $- ,)
sin 2rs r(a- s)F(b- s)F(c- s)F(d- s)F(e- s)

r(,- f)
r(- 1 + ,)r(- 1 +,,)r(- 1 + s)r(d- 1 + ,)r(- 1 + s)"

So, in order to investigate the asymptotic behaviour of pl (s- 1) near +o we split
pl (s 1) as follows:

(10.13) p: (s 1) sin 2rs
g(-s)A(-s)

i2.(.- 1)(.)

for Re s <0,

for Res >0,

where A(s) is defined in (10.4) and

r(1 f )r( .)r( - )r(. - .)r( d- )r( .)
r(a- ,)r(- ,)r(- s)r(d- ,)r(- s)r(1 + f- 8)

It is clear that A(s) is a periodic function of period 1 and that, by Stirling’s formula
and (10.2),

(10.15) lim g(-s)= lira g(s- 1)= 1,
8"-’+--00

the limits being valid along the real line as well as along any line parallel to it.
The factor r(1 2s)r(1 + 2s) has poles at s +/-(n + 1)/2, n 0, 1,2, In

order to avoid these poles on the real line we first use the following definition of the
doubly infinite integral:

oo

(10.16) f f(s)ds lim f f(s)ds,
N1 ’N2-’*’ J--Nl--fl

--OO Im(el +e2)=O

where N, N2 are positive integers and e:, e2 are complex numbers such that -Im e:
Im e2 < IIm fl and 0 < Re o, Re e2 < 1/2. It means that we are replacing the integral
along the real line by an integral along a parallel line just above the real axis. By
using the symmetry of the location of the poles on the real line we will eventually
prove that the limit on the right side of (10.16) is indeed equal to the integral on the
left side interpreted as a principal value integral for (1.12) and (10.1).
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(10.17)

As before, we can show that
v2+2

VPl (s)ds
Nt -et

1-N-s

N+e2 J-N-e

sin

-_ sin2t(-t)(N-t)dt’
so that

f /’.+’ ,-.x(,):(10.1S) VP, (s)ds sin 2rtdt- dt
2 --1

i Im sin

For 0 N t N 1 the inted on the right side of (10.18) h no sinlities since the
zeros of sin 2t at t 0, , 1 ecel out with those of A(t) A(-t). Since by sumption
Im f < 0, the poles of X(s) e in the lower hNf plane, so the unit-periodiciW of this

inted allows us to reduce it to inteal Nong a pallel seent of the real line.
Thus we have

Vm(s)ds ,
where A is defined in (10.3).

Let us denote

(10.19) I(a) / p(s) Xl(s)d8,
--00

where the integral is defined by (10.16), so that Im s Im e2. By the procedure
outlined in 6 and 8 it can be easily shown that I(a) satisfies the recurrence relation

(a + b 1)(a + c 1)(a + d 1)(a + e 1)(10.20) I(a) (2 f f f -) f e)I(a + 1)

+A l+a-j’
(2 f b)(2 f c)(2 f d)(2 f e)"

Iterating this formula n times and then taking the limit n --. cx3 we find that

(10.21)
r(2- I b)r(2 I c)r(2 j d)r(2 I e) Io(b, c, d, e)I(a) r(a + b- 1)r(a + c- 1)r(a + d- 1)r(a + e 1)

+A l+a-f
(2 f b)(2 f c)(2 f d)(2 f e)

l+a-f,l+ +a2"l,a+b-l,a+c-l,a+d-l,a+e-l, 1
7F

t+-I 3- I-b,3- I-c,3- I-d,3- f-e, 1 +a- f2



678 MIZAN IAHMAN AND SERGEI K. SUSLOV

where

(0.22)
Io(b, c, d, e)

f [ r(a--b- 1 -n)r(a--c- 1 -)r(a -d- 1 --n)F(a--e- 1 -n)
nlimo J F(2 f b + n)F(2 f c + n)F(2 f d + n)F(2 f e + n)

moo

r(1 f s / )r( + + ) ] r(1 2s)
r( + )r( + + ) ] r( )r(- s)r(d )r( )

r(1 + 2s)
r(b + )r( + s)r(d + )r( + )

ds.

By (10.2) and Stirling’s formula, the expression within the curly brackets is 1+O (l/n)
a -- o. So

(10.23)
r(1 2s)r(1 + 2s)dsIo(b, c, d, e) F(b- )r( + )r(- )r( + s)r(d- s)r(d + s)r(e )r( + )’

which is the same as the integral in (1.12). Gustafson [28] recently found a multidimen-
sional version of this formula, so (1.12) is essentially a special case of his. Gustafson’s
method, however, is entirely different from ours.

Let us first give a formal evaluation of this integral. The recurrence formula for
this integral is

(10.24) Io(b, c, d, e) (b+c- 1)(b+ d- 1)(b+ e- 1)
b + c + d + e 3

Io(b + 1, c, d, e),

which is obtained in a manner similar to (10.20). Since Io(b, c,d, e) is invariant with
respect to a permutation of b, c, d, e it follows that

(10.25)
F(b+ c+ d+ e- 3)Io(b, c, d, e) r(b + c 1)r(b + d 1)r(b + e 1)r(c + d 1)r(c + e 1)r(d + e 1)

M(b, c, d, e),

where M is invariant under any permutation of b, c, d, e and is unit-periodic in all
four parameters. So, iterating the recurrence relation obtained from (10.25) by taking
b --. b + 1, one can show by Stirling’s formula that M must be independent of b, and
hence must be a numerical constant. Thus,

(10.26) M --F(c + d- 1)r(c + e 1)r(d + e 1)

F(1 2s)F(1 + 2s)ds
r(- )r( + s)r(d- s)r(d + )r( )r( + )"
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Setting c d 1, e 1/2, we find that

(10.27) sinrSdsM=r =1.

This completes a formal proof of (1.12) provided that the integral is not along the real
line but along a parallel line in the upper half plane. The evaluation of M(b, c, d, e)
based on symmetry considerations is a reflection of the influence of the elegant work
of Miller [37]. See also [33].

Let us now return to the harder question of how to justify the statement we made
prior to (10.17). Let us go back to (3.11), take N1 N2 in (10.16) (which we can do
without any loss of generality), and define the contour C to be a partially indented
rectangular curve as follows:

C0 -N- Re el _( 8 _( N + Re e2, s real, indented at s

=t= n 0, 1,..., 2N- 1 with semicircles of radius
2

i < Im e2 in the upper half plane;

(10.28) CR: Res-N- Ree2, 0_ Ims_ Ime2<lImfl;

CN: a line segment parallel to the real line from N + e2 to
-N-el;

CL: Re s -N- Re e, Im s from Im (-e) to 0.

There are no singularities of PA (s) x (s) or p(s) x (s) on or inside the contour C,
so the integrals along C over both of them vanish.

Since both integrands are symmetric in s we need only to consider their asymp-
totic behaviour at -t-c. On Ct, CN, and CL

(10.29) () ()
sin r(a s) sin r(b s) sin r(c s) sin r(d s)

71"3 sin 2rs

r(1 a + s)F(1 b + s)F(1 c -t- s)F(1 d + s)
2s

r(a + )r( + )r( + s)r(d + s)

285-2(a+b-Fc-Fd)

and

(10.30)
p() v()

sin r(a s) sin r(b s)sin r(c s) sin r(d s)sin r(e s)
r3 sin 2rs sin r(f + s)

F(1 a + s)F(1 b + s)F(1 c + s)F(1 d + s)F(1 e + s)F(1 f + s)
2s

r( + )r( + )r( + s)r(d + )r( + )r(I + )
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as s --, h-cx). So the three integrals over Pa (s)xl(s) converge if 2(a+b+c+d)-5 > 1,
i.e., a + b -4- c + d > 3 while the ones over p(s) Xl(S) converge due to the conditions
(10.2). Having thus established the convergence of these integrals it is easy to see that

lim /c f(s)ds-lim /or f(s)ds-O,

where f(s) pa (S) V Xl (S) in one and p(s) V x (s) in the other. Finally, since f(s)
in either case has only simple poles on the real line, the contribution from a typical
pole sk and a semicircle C around it has the form -iTr Res f(s)[s=s. However,
f(-s) f(s), so the contributions from sk and --sk cancel out. Thus we have the
result that

(10.32) lim feo f(S)ds lim fc’ f(s)ds,
--0 N---tx

N

where f(s) p(s) Xl (s) or Pa (s) Xl(S). This completes the proof of both (1.12)
and (10.1).

II. A q-analogue of (10.1): lattice x(s) 1/2(q-s + qs). We shall now prove
that a q-analogue of (10.1) is

(11.1)
(aq-, aq, bq-, bqs, cq-, cq, dq-, dq, eq-, eq; q)oo

ds
(ql-s/f ql+s/f ql-2s, ql+2s; q)oo

(q, ab/q, ac/q, ad/q, ae/q, bc/q, bd/q, 1, dlq, lq, de/q; q)oo
(q2/af, q2/bf, q2/cf, q2/df, q2/ef; q)

(1 aq/f)
f (1 q2/bf)(1 q2/cf)(1 q2/df)(1 q2/ef)

aq/f q(aq/f 1/2, -q(aq/f 1/2, ab/q, ac/q, ad/q, ae/q, q
8’

[ (aq/f)1/2,-(aq/f)1/2,qa/bf, qa/cf, qa/df, qa/ef, aq/f
;q, q2/af]

where

(11.2) abcdef q, Iq2/fl < min(lal, Ib[, Icl, Id[, lel), Im f -y(: 0

and

(11.3)

with

(11.4)

1 ,q(8)Aq (q2---: i-2-- qsd8

/q(8) q--2s
(aq-s, bq-scq-S’ dq-s’ eq-s; q)

(ql-s/f;q)

(qs+l/a, qs+l /b, qs+l /c, qs+l /d, qs+l /e; q)o
(fqs;q)oo

The integrand on the left side of (11.1) has simple poles at s + on the real
line, with n a nonnegative integer, so the integral must be interpreted as a principal
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value integral whose existence can be proved in much the same way as in 10. We shall
also show, as in 10, that this integral has exactly the same value as the nonsingular
integral

(aq-8, aq, bq-, bq, cq-, cq, dq-, dq, eq-, eqs; q)oo
ds,(ql-s/f, ql+s/f, q1-2s, q1+2s; q)oo

where -oo < Re s < oo, Im s so > 0; so and arg fl are so related that there
are no poles of the integrand in the strip 0 < Im s _< so. In particular, if we take
so r/2 log q-l, then qso e-ologq-1 e-,ri/2 -i. This implies that we must
take arg fl > r/2 to ensure that the above integral is nonsingular.

A very interesting thing happens when we transform the integral (11.5) by the
substitution s ir/2 log q-1 t, t real. It becomes

(11.6) (iaq, -iaq-, ibq, -ibq-, icq, -icq-, idq, -idq-, ieq, -ieq-; q)o
dt

(iql+t/f, _iql-t/f, _ql+2t, _ql-2t; q)oo

which is precisely the same as the integral in (9.23) with e and f replaced by f and
-g, respectively. So, once it is proved that the integrals in (11.1) and (11.5) are the
same we have shown that

Pv / (aq-8’ aq’ bq-s’ bqs’ cq-’ cqS’ dq-’ dq’ eq-s’ eq; q)oo
ds

(q-s/f qi+s/f qi-2s, q1+2s; q)oo

the integral (11.6),

provided the parameters satisfy (11.2) and ]arg $1 > r/2. In the limit e --, 0 this
leads to the formula

(11.8) Pv / (aq-8’ aqs’ bq-S’(ql-2s,bqs’ cq-8’ql+2s;cqs’q)oodq-s’ dqs; q)oo
ds

/ (iaqt’ -iaq-t’ ibqt’ -ibq-t’ icqt’ -ieq-t’ idqt’ -idq-t; q)
dr.

(_q-t, _q+t; q)

The right side is Askey’s integral (1.36) and the left side is a q-analogue of an integral
that Askey wrote down in [4] but wished for a Ramanujan to evaluate!

Let us consider the integral

(11.9) I =/c (aq-8’ aq’ bq-s’ bq’ cq-s’ cqS’ dq-’ dqs’ eq-s’ eqs; q)oo
ds,

(qX-8/f q+s/f qX-2s, ql+2s; q)oo

where C is the same contour as described in (10.28) except that we now take Im
e2 so > 0 and larg fl > so logq-. If we denote by h(s) the integrand of (11.9)
then it can be shown that

f
(11.10) lim ] h(s)ds=

N--+oo JCR

f
lim ] h(s)ds O

N---,o JCL



682 MIZAN RAHMAN AND SERGEI K. SUSLOV

and that limN__, fc h(s)ds exists because of (11.2) when e 0, and, provided
labcd/q31 < 1 when e 0. Since there are no poles on or inside the contour C, the
integral in (11.9) vanishes, by Cauchy’s theorem. Therefore, analogous to (10.32) we
have the result

(11.11) lim/c h(s)ds N-oclim /c h(s)ds.
5--0

0 g

Because of the symmetry of h(s), the contributions from the symmetrically located
poles s =t=(k + 1)/2, k 0, 2,..., 2N 1, to the integral over Co cancel out. So we
have the formula

(11.12) f (aq-t-is’ aqt+is’ bq-t-is’ bqt+is’ cq-t-is’ cqt+i; q)o
(ql-iso-t/f ql+iso+t/f q)o

(dq-t-i’ dqt+i’ eq-t-i"’ eqt+i; q)
dt

(ql-2t-2iso ql+2t+2iso q)o

Pv (aq-t, aq bq- bq cq- cq dq- dq eq- eqt; q)
1 l+t 1 2t l+t

provided (11.2) holds and arg fl > so log q-1 > 0. The integral on the left side can
now be calculated in exactly the same way as was done in 9, which corresponds to
taking so r/(21ogq-1) and replacing e, f by f and -g, respectively. Using the
same arguments as in 9 it is easy to show that the integral on the left side of (11.12)
is independent of so except for the restriction that 0 < so < larg fl/log q-. It is
also easy to see that Aq i#(a), where #(a) is defined in (9.31) (with e, f replaced
by f,-g). Formula (11.1) then follows by use of (11.12) via (9.26) and (9.29). The
special case

(11.13)
(aq-t aqt, bq-t bqt, cq-t, cqt dq-t dqt; q)ooPv

(ql-2t, ql+2t; q)

(q, ab/q, ac/q, ad/q, be/q, bd/q, cd/q;
(abcd/q3; q)oo

labcd/q31 < 1,

then follows by taking e 0, which is clearly a q-analogue of (1.12).
12. Summary of results. In this article we have dealt with only a small subset

of the beta integrals. Readers who are interested in knowing all about them must go
through some of Askey’s papers as well as some of Ramanujan’s. The point of view that
we have taken here is that all of these formulas originate from the same source---the
Pearson equation. They vary according to the underlying lattice types, and whether
we are talking about a sum or an integral, along the real line or the imaginary axis,
but most importantly it is the asymptotic properties of the summands and integrands
near infinity that determine the final structure of the formulas. We have illustrated
these ideas with a few examples in the previous sections but there are many more (old
and new) formulas that can be proved by the same technique. For the benefit of the
readers who would like to see the whole list of formulas in one place we are adding a
few more pages to this paper.
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We will classify the beta and q-beta integrals into four broad classes according to
their lattice types: Table 1: x(s) s (linear); Table 2: x(s) Cls2 + C2 (quadratic);
Table 3: x(s) Clq-8 + C2q (q-quadratic); Table 4: x(s) q-" (q-linear). The
corresponding formulas will be subdivided into a polynomial-type formula, indicated
by a suffix P, and a rational function-type formula, indicated by a suffix R, according
to whether a(s) and/or T(s) are polynomials or rational functions.

TABLE 1
Lattice z(s) s.

Polynomial type Rational function type

(,) (,- ,)(, ,2),

7(8) -}- T(8) (8 t_ 83)(8 -+- 84).

(1p) Baxnes’s first lemma (old),

(2p) Gauss’s 2El summation formula

(old),
(3p) Dougall’s .H2 summation formula

(old),
(4p) Ramanujan’s integral (old).

(1R) Baxnes’s second lemma (old),

(2R) Nonterminating Salschiitz formula (old),

(3R) Bilateral Saalschiitz formula (old?),

(4R) Extension of Ramanujan’s integral (possibly new).

The corresponding formulas are

(1p)

(1)

1

--=--2ri ./. F(sl )r(2 )r(3 + )r(, + s)ds

F(sl + s3)F(sl + ,)r( + s3)r(s2 + st)
r(81 -- 82 + 83 + 84)

f r( )r( )r( + )r( + )r( + )
2r ] r(Sl + s + s3 + s4 + ss + s)

ds

5

II r(x + )r( +)
k--3

1-I r(Sl + s2 + s + s)"
3<_j<k<_5

(2p)
81 "- 83, 81 - 84; ] r(1 -- 81 s2)r(1 81 82 83 84)

1 + 81 82; la r(1 s2 s3)r(1 s2 s4)

sl + s3, sl + sa, sl + Sb; ]
1

1 + sl s2, 2sl + s2 + s3 + sa + Sb;

r( + )r( )r( + + + +)
r(1 82 s3)r(1 s2 4)r(1 + 82 -- 83 -- 85)F(81 -- 82 -- 84 -{- 85)
r(1 + 81 s2)P(2Sl + 82+ 83 -+- 84 -- 85)

r( + )r( + )r( +)
1 [Sl+S2+S3+Sb, Sl+S2+S4+Sb,1; ]

(81 + 85)(82 + 85) 3F2 [ lJ1 + Sl + s5, 1 + s2 + s5;

Re (sx + s2 + s3 + s4) < 1.
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(3p)

E r( +)r( + )r(a )r( )

F(al + a2 + a3 + aa 3)
r(al + a3 1)r(al + at 1)r(a + aa 1)r(a + at 1)’

(3)
oo r(1 a n)

r(a + a + n)r(a + a + n)r(aa a n)r(a a n)r(a a n)
n---mOO

r(2 as a3)r(2 a6 a4)r(2 as as)
r(ax + a3 1)r(a, + a4 1)r(al + a 1)r(a + a3 1)r(a + a 1)r(a + a5 1)

[ ].,( .( + 1, + 1,1;
+ (2 ae a3)(2 a6 a4) 3F2 1

3 a6 a3, 3 a6 a4;

tt (cO 7r-2 sin 7r(a + c0 sin 7(a2 + cO,
tt2(c0 r-2 sin 7r(a3 ) sin 7r(a4 ) sin r(a5 cO/sin (a6 + ),
6

E ak 5, Im (c + ae) # 0, Re (2 ae) > max[Re (a3, a4, a5)l.
k=l

(4p)

/ ds

F(a + )r(a + s)F(a3 s)F(a4 s)

r(al + a2 -}- a3 + a4 3)
r(a + a3 1)r(a + a4 1)r(a + a3 1)r(a + a4 1)’

(4)

F(1 a6 s)ds
r(a + )r(a + slF(a3 s)F(a4 )r(a )

r(2 a aa)r(2 a)r(2 a a)
r(a + a3 1)F(al + a4 1)r(al + a 1)r(a= + a3 1)r(a= + a4 1)F(a= + a5 1)

[#
al + a5 1, a2 + a5 1, 1

+ (2 a6 a3)(2 a6 a4) 3F2 ;1
3 a6 a3 3 a6 a4

6

E ak 5, Im a6 # 0, Re (2- a6) > max[Re(a3,aa, a)],
k=l

1 01 [sinr(a3--s)sinzr(a4--s)sinzr(as--s)# -5 sin (a6 + s)
sin r(al + s) sin (a2 + s)] ds.

and
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The readers may notice a lack of symmetry on the right sides of (2R), (3z), and
(4) as well as the fact that the 3F2 series on the right side of (2) does not appear
to be balanced (i.e., Saalschiitzian). This can be easily rectified by applying the
standard transformation formulas for the 3F2 series; see [14]. The purpose of leaving
the formulas in this apparent asymmetric form is to emphasize the appearance of 1
as a numerator parameter in each of these cases, a feature that will keep repeating
itself in the formulas to follow. The inquisitive reader will also observe the striking
similarity between the formulas (3p) and (4p) as well as between (3) and (4), and
may wonder if there are no integral analogues for the summation formulas (2p) and
(2R). The answer is yes and we will report on those formulas in a subsequent paper.

TABLE 2
Lattice x(s) 82

Polynomial type
4

() I] (- )"
k=l

(5p) de Branges-Wilson integral (old),

(6p) Very well poised 5Fa series (old),

(Tp) Dougall’s 5H5 summation formula (old),

(8p) Askey’s integral (new).

Rational function type

a(s)= l’I(s-sk) (s4-s6-1),sk=l.
k=l k=l

(5R) Nassrallah-Rahman integral (old),

(6R) Nonterminating 7F6 summation formula (old),

(TR) Bilateral 7H7 summation formula (old?),

(8R) Extension of Askey’s integral (new).

(5p)

(5a)

4

2ri r(2s)r(-2s)
1 /c H--lr(" +.)r( 1

2%5 r(2)r{fi ;; =i )

=2
Hl<_j<k_--<5 r(sj + 8k)

5Hj=I r(1- 86 8j)

ds
Hl<_j<k<_4 r(sj -1- 8k).
r(81-1- 82 -1- 83 + 84)

6

si 1.
j=l

d8

(6p)

[ ]21,1 + , + 2, 1 + a, 1 + ;
5F4 I

81 1 + Sl 82 1 + Sl S3, 1 + 81 84;
4

r( ) II= r(1 +. )
r(1 + 281) H2_j<k_4 r(1 s2 sk) Re(s1 + s2 + 83 + 84) < 1;

(6)
2Sl, 1 + 81, 81 + 82, 81 -- 83, 81 + 84, 81 -- 85, 81 -- 86;

81, 1 + Sl 82, 1 + 81 83, 1 + 81 84, 1 + 81 85, 1 + 81 86;

II=2 r(1 + 81- 8j)r(sj + 86)
F(2sl + 1)r(s 81) I-[1<#<k<5 r(1 s# s)

1]



686 MIZAN RAHMAN AND SERGEI K. SUSLOV

6H== r(1 + s: s)(1 + s
F(2Sl+ 1) 6II== r(: + )( +)( + )(, +)( +)

where

34-s--sl 1 81 82 1 81 83,1 81 84,1 Sl Sh, 11 4-8681 2

1+86--81 1 4- 82 4- 86 1 4- s3 4- s6 1 + s4 + s6, 1 4- 85 4- 86, 1 4- s6 812

6

1.

(8a)

Pv / F(1 2s)F(1 + 2s)r(1 -a6 s)r(1 -a6 4- 8)ds
51-I=1 r(a + s)r(a s)

5Hi--1 r(2 a6 aj)
+Ill_<<_< r(a + a 1)

# (1 + al a6)
5 2YI=2( a aj)

3A-a1 .a1 + al a6, 2 al + a2 1, al + a3 1, al + aa 1, al + a5 1, 1

l+al--a 3 a6 a2 3 a6 a3, 3 a6 a4, 3 a6 ah, 1 + al a62
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6with -j=laj 5, Re(2- a6) > max[Re(al,...,as)], Im a6 0, and #--

7f I(s)--Iz(--S)sin2rs ds, #(s) being the same as in

TABLE 3
Lattice x(s) C1q-S T C2q

Polynomial type
4a(s) q-2S 1-Ij=l (qS s:i)"

(9p) The Askey-Wilson integral (old),
(10p) Very well poised 65 sum (old),
(llp) Very well poised 66 sum (old),
(12p) The Askey integral (old).

Rational function type

a(s) q-2S 1-I.=l (qS s:)/(qS q/s6),

122818283848586 q, C2/C1 v.

(9R) The Nassrallah-Rahman integral (old),
(10R) Nonterminating 87 sum (old),
(llR) Bilateral Jackson’s formula (old?),
(12R) Extensions of Askey integral (new).

(e2i e-2i; q)o(SlS2838485ei’ 8182838485e-i; q)
dO(9R)

k 1,...,5.

k 1, 2, 3, 4;

821, qsl, --qSl, 8182, 8183, 8184
(10p) 65 ;q,

81, --81, q81/82, qSl/S3, q81/84 81828384

(qs, q/s2s3, q/s2s4, q/s3s4; q)o
(qsl/s2, q81/83, q81/84, q/81828384; q)o 81828384

< 1;

(10n)

[ s, qsl, -qsl, 81s2, 81s3, S184, 81s5, s186

87
81,--81, qSl/S2, qSl/S3, qSl/S4, q81/85, q81/86

(qs, s6/sl, q/s2s3, q/s2s4, q/s2ss, q/sas4, q/sass, q/s4ss; q)o
(qsl/s2, qsl/s3, qsl/s4, qsl/s5, 8286, 8386, 8486, 8586; q)o

(q, q81/82, q81/83, qsl/s4, q81/85, qsl/S6; q)o 81(82s6, s386, s4s6, 8586; q)l

qs6/sl, q(qs6/sl) 1/2 -q(qs6/sl) 1/2 q/sts2, q/sls3, q/sls4, q/sis5, q
87

(qs6/Sl)1/2,--(qs6/Sl)1/2,qs286,qs386,qs486, qs586, qs6/81
q, 8186]

with s18282848586 q.
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(q/sis2, q/sis3, q/sls4, q/sis5, q/s2s3, q/s2s4, q/s2s5, q/s3s4, q/s3ss, q/sas5; q)oo
(qalsx, qlas, qals, qlas, qalsa, qlasa, qalsa, q/as4, qalss, q/ass; q)oo

86(q86/81;q)l
0 0l--1 (8286 8386 8486 8586; q)l

87 [ qs6/Sl, q(qs6/Sl) 1/2, --q(qs6/Sl), q/SlS2, q/SlS3, q/SlS4, q/SlSS, q

(qs6/Sl) 1/2 --(qs6/Sl) 1/2 qs2s6, qs3s6, qs4s6, qsss6, qs6/Sl
q, 8186]

where 818283848586 --q and

(12p) Pv / (aq-s’ aqs’ bq-s’ bqs’ cq-’ cq’ dq-s’ dqs; q)o
ds

(ql-2s, ql+2s; q)

/ (iaqt, -iaq-t, ibqt, -ibq-t, icqt, -icq-t, idqt, -idq-t; q)oo
dt

(_ql+2t, _ql-2t; q)

(q, ab/q, ac/q, ad/q, bc/q, bd/q, cd/q; q)oo
(abcd/q3; q)o

labcd/q31 < 1;

Pv [ (aq-s’ aqs’ bq-s’ bqs’ cq-s’ cqs’ dq-s’ dqs’ eq-s’ eqs; q)
ds

J (ql-2s, q1+2s, ql-s/f ql+s/f q)oo
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/ (iaqt, -iaq-, ibq, -ibq-, icq, -icq-, idq, -idq-, ieq, -ieq-t; q)o
dt

(_ql+2t, _ql-2t, iqi+tIf, _iq-tIf; q)

(q, ab/q, ac/q, ad/q, ae/q, bc/q, bd/q, be/q, cd/q, ce/q, de/q; q)o
(q2/af q2/bf q2/cf q2/df q2/ef q)
q(aq/f; q)i

f(qZ/bf qZ/cf q2/df qZ/ef q)i

[ aq/f, q(aq/f) 1/2, -q(aq/f) 1/2, ab/q, ac/q, ad/q, ae/q, q
87

(aq/f 1/2,-(aq/f) 1/2, q3/bf qa/cf q3/df qa/ef aq/f
where abcdef q5 and

()- (-)
(q28, ql-28; qjoo

u(s) q-2s
aq-s’ qs+l /a, bq-s, qs+ /b, cq-s, qs+l /c, dq-s, qs+i /d, eq-s, qs+/e; q)

(fqs, ql-s/f;q)o
If #(a) #(a-i), then 11n reduces to a formula due to Gosper [25, Ex. 5.12], but
11n is pretty easy to prove by using the transformation theory of basic hypergeometric
series.

TABLE 4
Lattice x(s) q-S.

Polynomial type Rational function type

t(s) S3S4(1 Slq-s)(1 s2q-S),
tr(s) d- "r(s) V Xl(S) (q-S s3)(q-S s4).

(13p) Askey-Roy’s q-analogue of Baxnes’s first

lemma (old),
(14p) The q-Gauss summation formula (old),

(15p) The bilateral q-Gauss formula (old?),

(16p) The q-version of Ramanujan’s integral(?).

a(s) (1 slq-s)(1 82q-S)/8182,
tr(8) d- 7"(8) X,1 (8)

6
q--2s (1--saqS)(1--s4qS)(1--ssqs)

1--qs+l Is6 nsk q.

(13R) An extension of Askey-Roy formula,

(14R) Nonterminating Saalschiitz formula,
(old)

(15R) Bilateral q-Saalschiitz formula,

(16R) ?

1 fr (as.e-iO .__eiO ,8.eio qe .,

(, q/,-/,,q,/,1;q)
(q, 8183,8184,8283, SZ84;q) Issl < 1;

see Is].
1 f (ae-/s, qse/a, asue, qe-i/asu, qe-iO/s; q)(13n) - (seae_ ae_i seiO q dO

(-, q/.,/,ql/.,/,q/,q/;q)
(q,ssa, ssa, sls,ssa, ssa, ss;q) ss < 1;
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(14p) [ 8183, 8283

21 q, q/sls2s3s4
qs3/s4

(q/s1 s4, q/s2s4; q)o
(qs3/s4, q/sl s2s3s4;

Iq/818283841 < 1;

(14R)
8184, 8284, 8384

32 ;q,
qsa/s5, qsa/s6

(q/,/,q/,/;)
(8186, 8286, 8386, qsa/s5; q)oo

(8184, 8284, 8384; q) 86

(q, qsa/ss, qsa/s6; q)o s4(1 s2s6)(1 s3s6)

32 [ q/s184, q/s185, q

q82s6, q8386

q, 81861
(15p)

81 82 ]22 q, q/81828384
aq/s3, aq/s4

(, q/,.,,q/,q/,q/,q/,q/, q; q)
(s3, q/os3, os4, q/os4, q/osl, q/os2, oq/s3, oq/s4, q/sls2s3s4; q)o

+ O2 (oq/sl, aqls2, s31a, 84/0l; q)oo [ Sl/O, s2/o
(q;q:ssa:cs4; q)= 22

q/ts3, q/ts4
q, q/s1828384]

1q/81828384[ < 1,

()
081,082, 083 ]33 q, q

(q/s4, (q/s5, (q/s6

(q/(Sl, q/ts2, q/ts3, (s4, s5, cs6; q)o

((2, ql(2, sash, qlsas, qlss4, qlsls; q)o
(s4, q/os4, os5, q/as, q/as, q/as2; q)oo

(q/s2s4, q/s2s5, q/s3s4, q/s3ss, s6/o, q; q)o
(q/as3, aq/s4, aq/s5, 8186, 8286, 8386; q)o

[ 81/0l, 82/0l, 83/0
3/3
/4,/,/ q’q]
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"4- 0/-1
(0/81,0/82, 0/83; q)oo

(aq/sa,00q)oo

[1 0/a (Sl/0/, q0//sl, s2/0/,0s3/0/,0q)oo
[

S6 [q/SlSa, q/SlSS, q ](1 s2s6)(1 sas6) 32
;q, sxs6

q82s6 q8386

As before, the 32 series in (14R) and (15) can be transformed to balanced 32 series
so that (14) is essentially the well-known q-Slschfitz formula [25, eq. (2.10.12)].
However, (15) appes to be new, although we believe it can be derived om the
general bic bilateral transformation formula [25, eq. (5.4.3)], can the simpler
formula (15p).

It would be natural to expect that the q-line ce is much eier to hdle
than the q-quadratic ce. One might be tempted to e that the formul for
the q-line ce should be derived om those for the q-quadratic ce by a limiting
process. A compison between the formul 11p and 15p or between 11a and 15a
should convince the reader that this is not necessarily so. In fact, the formul for the
q-line ce e much hder to derive th the q-quadratic ce, especially for the
bilateral series. There e two main reons for this unexpected difficulty. First, the
ymptotics for the summds and inteds at are much more delicate when
x(s) q-s. Second, the tk of ting the limit n aer n iterations is no longer

straightforward is the ce for the other lattices--instead of one series one may
end up with many four series! This is what we believe may happen in (16p)
and (16a) that we have le open problems. We have some ide about (16p) but
almost none for (16). This is probably the time we could use a helping hand born
manujan. A little nudge om Richd Askey, with his ne-prophetic feeling for
formula, would also be helpful.

Acknowledgment. We would like to thank the referee for pointing out the im-
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Abstract. A rigorous presentation of the umbral calculus, as formerly applied heuristically by
Blissard, Bell, Riordan, and others is given. As an application, the basic identities for Bernoulli
numbers, as well as their generalizations first developed by N6rlund are derived.
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1. Introduction. It is seldom recognized that the algebraic notation that we use
today in mathematics is not the only possible one, nor perhaps even the best. The
history of mathematics is littered with abandoned notation, some of which did not
deserve such neglect. In this paper we consider one such notation, one that somehow
has managed to survive in a no man’s land and that has refused to die altogether
because of its usefulness. In computing with sequences of numbers an, indexed by the
nonnegative integers n 0, 1, 2,..., it is often convenient to treat the subscripts as if
they were powers. This requires a0 to equal 1 but is not otherwise a great strain. It
was realized early in the development of combinatorics that this simple device would
yield insight into quite a number of formulas and, what is more, that it would often
suggest the right proofs.

To the best of our knowledge, the first mathematicians who extensively used such
a device were Edouard Lucas, in the first volume of his Thdorie des nombres ILl (the
second volume never appeared), and the Rev. John Blissard, in a series of nine papers
that appeared in the Quarterly Journal of Mathematics between 1862 and 1868 [Bll]-
[B19]. The editors of the Quarterly Journal must be given credit for publishing papers
that thoroughly lacked in rigor but relied on a suggestive and often powerful notation.

Since that time, the umbral calculus, as it came to be called, has not been accepted
in mathematical society. Sylvester held the umbral calculus in high esteem but made
no attempt to present it; he simply used it. Only Eric Temple Bell [Bell among
mathematicians early in this century had the daring to show public appreciation for
this notation. In a book and several papers he attempted to display the full power
of the method and at the same time to give it a presentation that would meet the
standards of algebraic rigor of the twentieth century. The last of his papers, written
in 1940 [Be2], purports to give an explicit axiomatic basis of the umbral calculus.
As happens with some writings of E. T. Bell, it is not quite clear whether these
axioms make any sense, much less whether they are rigorous at all. Nonetheless,
umbral calculus has managed to eke out a meager existence. John Riordan used
it extensively in An Introduction to Combinatorial Analysis [Ri], the first modern
textbook of combinatorics, and although he gives no justification of the method, every
formula he displays is correct, though at times his proofs have an air of witchcraft
about them. As a matter of fact, the feeling of witchcraft that has hovered over
umbral calculus is probably what has kept it from dying out altogether.
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To the best of our knowledge, it was one of the present authors [Ro] who first
pointed out explicitly what nowadays had become completely obvious, namely, that
the shift from an to an can be "explained" as the application of a linear functional
on the space of polynomials in the variable a. Unfortunately, it took the sane author
another twenty years to realize that this simple truth could not alone explain the
stunts of calculations performed by the umbral mathematicians. At long last, it was
realized that umbral calculus could be made entirely rigorous by using the language of
Hopf algebras, and this was done in a lengthy treatment [RR]. However, although the
notation of Hopf algebra satisfied the most ardent advocate of spic-and-span rigor,
the translation of "classical" umbral calculus into the newly found rigorous language
made the method altogether unwieldy and unmanageable. Not only was the eerie
feeling of witchcraft lost in the translation, but, after such a translation, the use of
calculus to simplify computation and sharpen our intuition was lost by the wayside.
In retrospect, what the authors should have done is to translate the language of Hopf
algebra into classical umbral language, a feat that was logically impossible at the time
since it was not known whether classical umbral language made any sense.

In the present paper we have finally decided to bite the bullet and give a rigorous,
simple presentation of umbral calculus as it was meant by the founders. We have kept
new notation both minimal and indispensable to avoid the misunderstandings of the
past. Our basic construct is a polynomial ring in several variables, on which no less
than three equivalence relations are defined (the "classics" blithely denoted all three
of these equivalence relations by the same symbol -, not realizing that this was the
beginning of the end). The peculiarity of two of these three equivalence relations is
that they are not invariant under substitution of variables, nor under multiplication.
In fact, one of them is not even invariant under addition. More precisely, they are
invariant under addition or multiplication provided that the variables involved are
distinct, a fact that should make some algebraists slightly uncomfortable. Moreover,
relative to one of these equivalence relations, the equivalence classes form something
like an Abelian group, where, however, every element has an infinite set of inverses,
all "equivalent" to each other, an unheard-of phenomenon in algebra. In fact, if
one extracts a representative from each equivalence class and is willing to restrict
oneself to sums of distinct representatives, then the resulting group is easily seen to
be isomorphic to the group of formal power series in a single variable with constant
coefficient 1, under multiplication. Weirdest of all, there are two ways of multiplying
an element of the ring by a "scalar" integer, one of which is defined in a way that
defies the current tenets of algebraic sobriety.

But whoever is willing to swallow this strange but (at last) correct definition,
and to realize, after a little training, that the calculus is quite manageable, may find
it rewarding to start performing combinatorial computations using umbral calculus
without fear. Or else he or she may wish to reread the classics with the present key
in hand and to realize that these writings make complete sense in retrospect.

We give only one example of computation with umbral calculus: by developing
the theory of Bernoulli numbers in umbral notation. All classical identities relating
to these numbers are found to have one-line proofs, which, we would like to believe,
are the natural ones.

We hope to present other simplifications by the use of umbral calculus in forth-
coming publications.

2. Foundations of umbral calculus. An umbral calculus consists of the fol-
lowing data:
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(1) A set A, called the alphabet, whose elements are called letters or umbrae;
(2) A commutative integral domain D, whose quotient field is of characteristic

zero;
(3) A linear functional eval, called the evaluation, defined on the polynomial

ring DIAl and taking values in D, such that
(a) eval(1) 1, where 1 is the identity of D;
(b) if a, f,..., are distinct umbrae and if i, j,..., k are nonnegative inte-

gers, then

eval(a’/j... 7k) eval(ai)eval(J).., eval(/k);

(4) A distinguished element e of the alphabet A, called the augmentation, such
that

eval(sn) 5n,0,

where i is the Kronecker delta.
Elements of the polynomial ring DIAl are called umbral polynomials. When an

umbral polynomial p is written as a linear combination of distinct monomials with
nonzero coefficients, the support of p is defined to be the set of all umbrae that occur
in some such monomial with a positive power. If (a, f,...,} is the support of an
umbral polynomial p, we may write p as p(a, ,..., ).

A set of umbral polynomials such that the supports of any two of them are disjoint
is said to be unrelated.

A sequence ao, al,a2,..., denoted (a), is said to be umbrally represented by an
umbra a when

eval(an) an

for n 0, 1, 2, Note that if the sequence (an) is umbrally represented by an umbra
a, then we necessarily have a0 1.

If p and q are umbral polynomials, we shall say that p and q are umbrally equiv-
alent, in symbols p q, when eval(p) eval(q). For example, if the umbra a
represents the sequence (an), then we have an

_
an for all n, as well as

Two umbral polynomials p and q are said to be exchangeable, in symbols p _= q,
when eval(pn) eval(qn) for n 0, 1,2, Two equal polynomials are exchange-
able, and two exchangeable polynomials are umbrally equivalent, but neither converse
holds.

Two umbrae a and are said to be inverse to each other when a 4- --- e; we say
that a is an inverse of f. The inverse of an umbra is not unique, but any two inverse
umbrae to the umbra a are exchangeable.

We note that e behaves much like 0, namely, if p is any umbral polynomial, then
e 4-p=_p and

By judicious use of the equivalence relations of umbral equivalence and exchange-
ability, one can dispense with explicit mention of the linear functional eval, as we
shall do whenever possible.

Suppose the umbral polynomials p and q are exchangeable with the umbral poly-
nomials f and g, respectively. It is true that p 4- q is umbrally equivalent to f 4- g but
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not that pq is umbrally equivalent to fg. Neither such property holds for exchange-
ability. Let a and be exchangeable umbrae representing the sequence an; then
(c A- c)3 - 8a3 but (c A- f)3

_
2a3 A- 6ala2. In other words, umbral polynomials with

respect to the equivalence relations of umbral equivalence and exchangeability are not
invariant under substitution of exchangeable variables. This failure of the substitution
property, which is usually taken for granted in dealing with ordinary equality, has in
the past been the stumbling block to a rigorous presentation of umbral calculus.

We have, however, the following proposition, which is easily verified.
PROPOSITION 2.1. Let p(x, y, z) be a polynomial in the variables x, y, z

with coe.O%ients in D, and let f, g,..., h, r be umbral polynomials, where f and r are
exchangeable. If f is unrelated to each of g,..., h and if r is also unrelated to each of
g, h, then the polynomials p(f g, h) and p(r, g, h) are exchangeable.

In particular, we have the following corollary.
COROLLARY 2.2. If the umbral polynomial f is exchangeable with an umbral

polynomial g, i] the umbral polynomial r is exchangeable with the umbral polynomial
s, if f and r are unrelated, and if g and s are unrelated, then f A-r is exchangeable
with g A- s and fr is exchangeable with gs.

3. Saturated umbral calculi. We come now to one of the problems that vi-
tiated the validity of umbral notation in the past. Briefly, one would like to write a
sum of the form

(where a, or’,..., cd" are any set of n distinct umbrae, each of them exchangeable with
a given umbra () in the form of the integer n multiplied by (, in some sense or other.
However, the element n( E DIAl is in no way exchangeable with cd + cd +--- + a".
For example, if eval(ak) ak, we have

eval ((2c)) 2:eval(ck) 2kak,

whereas

>_o

Thus cd / a", though umbrally equivalent to the expression 2(, is neither equal
to nor exchangeable with 2c for general (. This puzzling phenomenon was, to the
best of our knowledge, first explicitly pointed out by E. T. Bell, who was not able to
provide a consistent notation.

What is needed, we believe, is a new notion of multiplication of an umbra by an
integer, accompanied by the systematic use of the three kinds of equivalence relations
introduced in the preceeding. We shall shortly give a rigorous definition of this concept
of multiplication, but a few words of motivation may be in order.

We shall denote by the symbol n. ( an umbra, often called an auxiliary umbra,
that is exchangeable with the sum

where (’, (’,..., a’" are a set of n distinct umbrae, each of which is exchangeable
with the given umbra (. Similarly, for every umbra a and for every positive integer n,
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we introduce an umbra, written as -n. (, that is exchangeable with ’-t-" +... +’",
where f’, f",...,/’" is any set of n distinct umbrae exchangeable with , and where
and c are inverse umbrae. Finally, we shall denote by 0. c an umbra exchangeable

with the augmentation .
A similar notation n. p is introduced for any umbral polynomial p whose sup-

port does not contain auxiliary umbrae. However, we have chosen not to allow such
expressions as m. (n. c).

When all is said and done, it turns out that the "scalar multiplication," n. a,
satisfies the expected properties, stated in Proposition 3.2, which follows.

This motivation, together with the requirement that the alphabet shall be en-
dowed with sufficiently many umbrae exchangeable with any expression whatsoever,
leads us to the following definition.

DEFINITION 3.1. A saturated umbral calculus with base alphabet A is an umbral
calculus on an alphabet A U B, where the letters o.f the alphabet B (the auxiliary
alphabet) are denoted by n.p as p ranges over all the polynomials in DIAl and n ranges
over all integers. Further, a saturated umbral calculus shall satisfy the following:

(1) For every umbral polynomial q in D[A S], there exists an infinite set of
umbrae ( in A exchangeable with q.

(2) For every umbra ( in A and.for every positive integer n, the umbra n.a in B
is exchangeable with + ( +... T (, where , a,..., is any set o.f n distinct
umbrae in A, each of them exchangeable with (.

(3) For every umbra ( in A and for every positive integer n, the umbra -n (

in B is exchangeable with + +... + ’, where , ’,..., is any set of n
distinct umbrae in A, each of them inverse to a.

(4) For every umbra in A, the umbra O. a is exchangeable with the augmen-
tation .

(5) For every umbral polynomial p in DIAl, for every integer n, and for every
umbra a in A exchangeable with p, the umbra n.p in B is exchangeable with the umbra
n Olo

We shall hereafter assume that the umbral calculus we are dealing with is sat-
urated. It can be shown that saturated umbral calculi exist and that every umbral
calculus can be embedded in a saturated umbral calculus, but we shall spare the
reader such proof.

In dealing with a saturated umbral calculus, the term "umbra" will denote an
element of the alphabet A and not an element of the auxiliary alphabet B, unless
otherwise specified.

The following statements are easily proved.
PROPOSITION 3.2.
(1) (n+m) =-- n (’ +m " for any two integers n and m and any two distinct

umbra a and ( exchangeable with a.

(2) If n. ( =_ n .for some integer n O, then v
_ .

o/D, n. _=

(4) If c is any element of D, then n. (c) =_ nc for any integer n.
The following proposition lists two other useful identities applicable in a saturated

umbral calculus.
PROPOSITION 3.3.
(1) /f c and are inverse umbrae, then -p(( + ) (p(( -t- ) for any poly-

nomial p in one variable with coe]ficients in D.
(2) /f ( and are inverse umbrae and if p is a polynomial in one variable over
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D, then for all n E Z,

(n )p(n. a + n. )
_
n(p( + )).

Proof (sketch). The left-hand side of the equation in the first part of the proposi-
tion may be subtracted from both sides of the identity, preserving umbral equivalence.
Then it may be seen that the resulting right-hand side is actually equal to a polyno-
mial in +/9 with zero constant term. But this is equivalent to 6, thus proving the
statement.

The key point to proving the second part involves observing that n. f is by
definition exchangeable with asum of n distinct umbrae each exchangeable with
and that to effect a substitution both occurrences of n. f in (n. )p(n.
must be replaced with this sum. Distributing yields a sum of n exchangeable terms,
a representative one being f’p((3’ + f" +... + f") + n. a), the inner summation
containing n umbrae exchangeable with/9. But this is exchangeable with/p(/
c0. The result follows for n greater than 0. For n negative, the result is an easy
consequence of the positive version and the first part of the proposition.

Umbral calculus leads naturally to certain sequences of polynomials. A sequence
p(x) of polynomials is termed an Appell sequence if for all k, pk(x) - (x + ) for
some umbra a.

It can be shown that any sequence satisfying both the relation p’k(x) kpk-l(X)
and po(x) 1 may be defined as (x + a)k for some umbra a. In fact, the following
proposition characterizes Appell sequences.

PROPOSITION 3.4. Suppose po(x), pl (x), p2(x), is a sequence of polynomials
with pk(x) being of degree k and po(x) 1. Then pk(x) - (x +) .for some if and
on u iI

Proof. The following calculation proves the proposition in the only if direction:

Dpk(x)
_
D(x + a) k(x + a)k-

_
kpk- (x).

The converse is omitted. [3

We may define a linear operator T on polynomials in the variable x, over the
integral domain of umbral polynomials, by setting T(xk) (x + a)k. One verifies
that T eaD. Thus eaD (xk) (x + o)k. Furthermore, one easily verifies that if F(t)
is the exponential generating function for the sequence (hi), then F(D)xn pn(X).

For the remainder of the present exposition, we shall assume that we are dealing
with a saturated umbral calculus. The quotient field of the integral domain D will
always contain the complex numbers as a subfield.

4. The Bernoulli umbra. A useful heuristic principle, widely used since the
eighteenth century, views Bernoulli numbers as a device for transforming differences
into derivatives. We shall now give a precise meaning to such a principle. An umbra
/ will be said to be a Bernoulli umbra if for every polynomial p(x) we have

(1) Ap(/) p(/ + 1) p(/)
_

p’().

Here the operator A is the forward difference operator, defined as

Af(x) f(x + 1)- f(x).

PROPOSITION 4.1. A Bernoulli umbra exists and is unique up to exchangeability.
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Indeed, setting p(x) xn, we obtain the recurrence

and fl0
_

1.
Thus the umbra umbrally represents a unique sequence of complex numbers.

Such a sequence (Bn) is the sequence of Bernoulli numbers. In other words, for n > 1
we have

k>0 k=0

These results are trivially valid for n 0.
Let f(x, fl) be a formal power series in the variable x, whose coefficients are

umbral polynomials in the Bernoulli umbra (and possibly other umbrae as well).
By comparing coefficients we see that (1) generalizes to

f(x, + 1) f(z, fl) ft(x, e:),

where the derivative is taken relative to the second variable. Here, the symbol
_

is to
be understood as coefficientwise equivalence for the coefficients of two formal power
series in x.

Setting f(x,) e/x, the latter being, of course, interpreted as a formal power
series, we obtain

(ex 1)efz
_

xe
_

x,

or, equivalently,

eftx x
e- 1’

which gives the exponential generating function of the Bernoulli numbers.
We come now to the main property of the Bernoulli umbra, which is expressed in

the following theorem.
THEOREM 4.2. The Bernoulli umbra satisfies the following umbral equation:

fl + l -fl.

Proof. In (1) set

n+l

where fl’ is an umbra exchangeable with fl, thereby obtaining p(fl-t- 1)- p(fl)
___

(fl -{- 1)n. The left-hand side of the preceding may be rewritten as

(3) _(_fl + fl,)+l + (_fl + fl, +
n+l

Now let q(x) be the polynomial

n+l
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and apply (1) again with q(x) in place of p(x) and f’ in place of f, thereby obtaining
q(’ + 1) q(’)

_
(_,)n. But observe that the left side of the previous equation is

identical to (3). We infer that

for all n E N; hence the conclusion follows after we replace ’ by the exchangeable
umbra/3.

It must be remarked that the Bernoulli umbra is not the only umbra satisfying
the umbral equation a + 1 ---a.

From Theorem 4.2 we infer that for n > 1, 3n
_

(/3 + 1)n
_

(-1)n3n and hence
B2n+l 0 for n > 1.

Recall that the operator J, sometimes called the Bernoulli operator, is defined as

z+l
Jp(x) p(t)dt.

We have now the following proposition.
PROPOSITION 4.3. Equation (1) can be equivalently rewritten in either of the

forms

Jp()
_

p(e) or Jp(e) p(/),

where / is an inverse umbra o].
Ind  d,

ordinary derivative. Since JD A, we have Jp(x) Aq() and thus

Jp() Aq()
_

Dq(e) p(e).

But every polynomial p(z) can be written in the form Dq(z) for some polynomial
q(x); hence the first conclusion. Applying D to both sides (by recalling that J and
D commute) yields the converse. To show that the second equation is equivalent to
the first, set p(x) q(’y + x), where q(x) is any univariate polynomial. Applying the
result just proved to this choice of p(x), we obtain

Jq(/ + ) - q(/ + )
_

q(/).

But Jq(/ + )
_

Jq(e), as desired. [3

COROLLARY 4.4. For any polynomial q(x) we have
(1) Aq(x + )

_
Dq(x),

(2) gq(x + )
_

q(x),
(3) gq(x)

_
q(x + /).

Proof. Set p(x) q(x + c), where c is any constant. Now apply (1), thereby
obtaining

Aq(c + )
_
Dq(c + )

_
Dq(c).

This equality holds for all constants c; hence the first assertion. The remaining two
assertions follow similarly. [3

In other words, given the difference equation

Af(x) q’(x),
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where q(x) is an arbitrary polynomial and a polynomial solution f(x) is desired, that
solution is determined up to an additive constant and is given by the polynomial

q(x + ).

This explicit formula for the solution of a difference equation can be extended to a
far more general class of functions q(x).

For example, we obtain the classical formula

On 4. 1’ 4- 2n 4-’"
n4-1

The preceding formula is (up to a constant) an immediate consequence of the pre-
ceding remarks concerning difference equations. To determine the added constant
-n+/(n 4- 1), let the expression on the left-hand side be denoted by the func-
tion s(x), taking its arguments from the positive integers. Note that in order for
As(x) xn to hold at x 0 we have s(0) 0. So it suffices to perform the obvious
check that the constant term in the umbral polynomial on the right-hand side is 0.

As an application of Corollary 4.4, we obtain what is perhaps the simplest proof
of the Euler-Maclaurin summation formula.

PROPOSITION 4.5 (Euler-Maclaurin). For any polynomial p(x) we have the iden-
tity

2 3p(x)
_

Jp(x) 4- Ap(x) 4- . ADp(x) 4- -TAD2p(x) 4-....

Proof. Again, let 7 be an inverse to the Bernoulli umbra f. By Taylor’s formula
we have

p(x)
_
p( + x + 7) -. DP(x + 7).

k>0

By Corollary 4.4 we have Dkp(x +7) Dkjp(x) Dk-XAP(x) for k > 0. Expanding
this relation yields the conclusion. [:]

5. The Niirlund umbra. A great many sequences occurring in combinatorics
and number theory can be represented by sums or differences of umbrae exchangeable
with the Bernoulli umbra. Such sequences are often obtained by specializing the
following doubly indexed sequence.

DEFINITION 5.1. Let n be any integer and let k be a nonnegative integer. The
number B(n) defined as

B(kn) (n. )k

will be called the kth Nhrlund number of order n. Correspondingly, any umbra ex-
changeable with n. for some integer n is called a Nhrlund umbra.

For n 1 we may omit the superscript since B(k)
_
k
_

Bk.
Recall that the operator A on polynomials of one variable may be written as.... D-ID 4- D2/2! 4- D3/3! 4- We denote the invertible operator (-i> /i!) by AID.

It is easily verified that J AID. The following is a generalizat-on of (1).
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THEOREM 5.2.

holds for all polynomials f in one variable and all integers j, n, where the umbra a
is a Bernoulli umbra. Conversely, if the equation holds for every polynomial f and
some fixed integers n 0 and j, then a is a Bernoulli umbra.

Proof. Assume a 3. Then Proposition 4.3 shows that f(/)
_

(A/D)-lf(e). It
suffices to assume n > 0 and j 0. By induction on n we have

Replacing the polynomial f(t) by f(t + j. ) yields the result

Conversely, the validity of the theorem both for the Bernoulli umbra 3 and some
arbitrary umbra a for fixed n 0 and j will enable us to prove that n. a

_
n. 3- By

Proposition 3.2 the conclusion follows.
Thus it suffices to show that ifp(t) is any polynomial in one variable then p(n.3) -p(n. c). But

p(n. )
_

p(n. a + n. )
_
p(n. a).

It is worth stating several corollaries implicit in some of the preceding arguments.
COROLLARY 5.3.
(i) A’f(n. 3) Df(e),
(2) A’f(e)

_
D’f(-n. ),

(3) /(1)- f(0) _/’(-1. ).
The third property allows the inverse umbra -1.3 to be immediately evaluated.

Again, let 7 be an umbra exchangeable with -1.3- Then

so that

1- n+l
6. Nhrlund sequences. The Appell polynomial sequence associated with the

Bernoulli numbers is the sequence of Bernoulli polynomials. We now concern ourselves
with sequences of polynomials associated with the Nhrlund umbrae. In particular, the
Bernoulli polynomials form such a sequence.

DEFINITION 6.1. Associated to the Nhrlund umbra n. (for any integer n) is a

sequence (B(kn) (x)) of N6rlund polynomials of order n and defined by

i>o
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The zeroth-order Nhrlund polynomials are B(k) (x) xk. The first-order sequence of
Nhrlund polynomials is the sequence of Bernoulli polynomials.

Applying Theorem 5.2 to f(t) (t / x)k, we obtain

In particular,

(4)

AnB(ki) (x) DnB(ki-)(x).

AB(k) (x) (k)nxk-n,

an identity that may be successfully used in the solution of difference equations.
COROLLARY 6.2. Let ()(x) be the nth derivative of a polynomial (x) of degree

d. Then the difference equation

hnf(x) (n) (x)

has f(x)
_
(x + n ) as a solution.

Observe that

(_11B() (x)dx Bk

T()ie
_

()1:0 ( +. + )1:0 (( 1). ).
Since the generating nction for the Bernoulli numbers is et t/(e- 1) d

since e(’)e(’) e((+)) for integers nd m, we have e() (t/(e 1))"
d (+.) = (t/( )). These e the expo.entia eneratin nctio.s
the NSrlund numbers and NSrlund polynomials eh of order n, respectively.

7. NSrlund polynomials. We prove a number of fts concerning NSr]und

polynomials that follow solely kom the ft that the NSrlund polynomis of order n
form Appe]] sequence.

PROPOSITION 7.1. I n, n, n, ns a integers such that = ni n, then

Proof. In umbral notation, the preceding identity is

( +... + + ./)
_
(( + ./’) +... + ( + ../")

where/,...,/" are distinct umbrae, each exchangeable with f. El
Setting all xi 0 and all ni 1, we find

il,...,in

Nhrlund polynomials of order n are an Appell sequence; hence the following propo-
sition.

PROPOSITION 7.2. For any integer n and/or k >_ 1
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PROPOSITION 7.3 (inversion formula). Suppose (ri)ieN and (si)ieN are sequences
of complex numbers such that ro so 1. Then for n > 0

k

j=O

k

j=O

The coefficients n(-n)
"-’k-j of the sum on the right are all positive.

Proof. Let p and a be umbrae representing (ri)ieN and (si)ieN, respectively. Then
p _= a + n. f if and only if p + -n. f a, which is the desired conclusion.

We conclude with an example of how the preceding techniques readily combine
with facts particular to the NSrlund polynomials. Let k be greater than 0, and let n
be any integer. Then

8. Applications. We now prove some of the less trivial properties of NSrlund
polynomials. Again, the proofs are, we believe, as short as they can be.

PROPOSITION 8.1. For all integers n and .for k >_ 0

B(k") (n x) (-1)}B(") (x).

The second line follows from Theorem 4.2, and the first and third results are from
Proposition 3.2. rl

m-1As a further application of umbral techniques, apply Theorem 5.2 to Yj=o Bk(x-t-
j) to yield a telescoping sum.

LEMMA 8.2.

This result forms the basis for another classical result.
PROPOSITION 8.3.

m--i

B(x + (j/m)) m-k-l-lBk (rex).
j=0

Proof. Let ,/’ be exchangeable umbrae, and let -y -1./. Then
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m-1

j=0

where the second umbral equality is by Lemma 8.2. []

Just as the Euler-Maclaurin summation formula was immediate from a computa-
tion with the Bernoulli umbra, we may easily derive a generalization of this formula
by using the NSrlund umbrae.

We start with Taylor’s formula,

xf()() ( +) . (),
k>O

and set x n. i/and y x + n. to obtain

()
_
(. z + + . ) _ ()--()( + n. ).

k>0

Rewriting this by using Theorem 5.2 yields the following proposition.
PROPOSITION 8.4 (general Euler-Maclaurin summation formula). Given a poly-

nomial f(x) E D[x], the quotient field of D, as usual, containing C, is

n-i ( ._k)k ._kf(x) f(k) (x + n /) + Z (n_
Af(-)()

k--O k>n

orn >_ O.
Similarly, for any integer n we make use of Proposition 3.2 and expand

to derive Proposition 8.5.
PROPOSITION 8.5 (Euler-Maclaurin second form). For any integer n >_ 0

7%--1 (. Z) ()( + ,) + (-1) (()I( + ) - (-1) i. I(-)()"
k--O k>n

Setting n 1 and summing the two preceding formulas as x ranges through x, x +
1,..., x + m and x, x + 1,..., x + m 1, respectively, yields classical versions of the
Euler-Maclaurin summation formula, to wit:

f(x -t- i) f(t)dt + f(k-1)(x + m + 1) f(k-1)(x)
i=0 ,x k>l

and

f(xTi) fx+mf(t)dtTl [f(x+m)_Ff(x)]+Z(_l)kBkk>2 [f(k-1)(xTm)--f(k-1)(X)]
i--O
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The term f(x) has been added to both sides in the second formula.
We next prove a theorem designed to simplify expressions of the form (n.)p(n.[3)

and examine some consequences. We begin with a basic result for the inverse Bernoulli
umbra -y.

PROPOSITION 8.6. If/ is exchangeable with -1.1, where is a Bernoulli umbra,
then for any polynomial p

3’P’(’) -- p(1) p(’),)
_

p(O) + p’(’) p(/).

Proof. For n > 0 we have

The first identity follows by linearity, and the second is an application of the defining
relation (1) of Bernoulli umbra.

Let /’ be exchangeable with 7. Recall that q’(-)
_

q(1)- q(0). Letting q(t)
p(1 tT’), we obtain --yp (1 --y’)

_
p(1 /) p(1)

_
p(-y) p(1), the last equiv-

alence coming from Theorem 4.2. By Proposition 8.6 this is equivalent to
Evaluating at p(t) tn, we obtain the elegant identity

E (n- 1) 1 1

k>0
k

(--1)k (k + 1)(k + 2) n + 1

By recalling Proposition 3.3, Proposition 8.6 may be rewritten as

(6)

We thereby obtain the following theorem.
THEOREM 8.7.

Proof. By Proposition 3.3 the left-hand side in Theorem 8.7 is equivalent to
n[p’( + 7)]. By (6) this is equivalent to the right-hand side. D

Now we use Theorem 8.7 to find an alternative formula for (x + n./)k, with

he0.

Rewriting this as a recursion in the Nhrlund polynomials, we obtain Corollary 8.8.
COROLLARY 8.8. For n 0 and k > 1

k()k (x) =--(x- n)B(kn_)l + 1-- -k B(k)(x).
n n
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Making the appropriate substitutions yields Corollary 8.9.
COROLLARY 8.9. For n - 0 and k >_ 0

k (n) (-1)k 1

Proof. By Corollary 8.8 the left-hand side in Corollary 8.9 is umbrally equivalent
to (1 k/n)(n + n. )k. But since (n / n. fl) _= n. (1 + fl) _= n. (-), this is umbrally
equivalent to the right-hand side.

9. Stirling numbers. Recall that the Stirling numbers of the second kind S(n, k)
are defined as the number of partitions of a set of n elements into k parts. An easy
computation shows that

k!S(n, k) k n

Remarkably, the Stirling numbers are very simply related to the NSrlund sequence.
PROPOSITION 9.1. If n >_ k >_ O, then

Proof. Suppose n > k _> 0, and let p be the polynomial p(t) tn. Then by
Theorem 5.2

(n)k(X + -k )-
_
Dkp(x + -k. ) - ALp(x).

Setting x 0 and rewriting yields

_k)
Asn k!S(n,k)

where (n)k (n)(n- 1).--(n- k + 1) denotes n falling factorial k.
PROPOSITION 9.2. For n > 0

ft(n+l) (-1)nn!.--n(’+:)(x) (x lln and _,

Proof. The second half of the proposition is immediate from setting x 0 in the
first half.

To prove the first half, it suffices to show that for n > 1, B(nn+:)(x) (x-
n)B(n: (x). But this is precisely Corollary 8.8 for k n. B

Now from Proposition 9.2 we obtain

(8) (x 11... (x n) __. (x + (n + 11. flln Z x" (n + 1). fl
k=O

By replacing x by -x and n by n- 1, this may be rewritten as

(-1)nx(x + 1) (x -+-n 1) Z (_.,k k,(n)
1) X ln_k.

k=l
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We have x(x+l)... (x+n-1) ’=o s(n, k)xk. The coefficients s(n, k) are called the
Stirling numbers of the first kind, which have numerous combinatorial interpretations.
We have thus expressed the Stirling numbers of the first kind in terms of the NSrlund
sequence.

PROPOSITION 9.3. For n >_ k >_ 1

(--1)-ks(n,k) (nk )B(nn)_k.
This relationship between Stirling numbers and higher-order Bernoulli numbers

allows easy results on the one to be transformed into results on the other.
PROPOSITION 9.4. If n >_ k >_ O, then

k

Z () (_l)i(k i)n (-k)()kBn_k
i=0

Proof. The left-hand side in Proposition 9.4 is equivalent to Akf(k. ), where
f(t) (-k./ + t)n. Since the right-hand side is equivalent to f(k)(t), the result
follows by Theorem 5.2.

In terms of Stirling numbers, if n _> k _> 0, we have proved the classical identity

(9)

k

i--O

Recall Newton’s formula, namely, for any polynomial

k>_0

Applying Newton’s formula to the polynomial f(t) (t + n./)d, for any integer
n, yields

From the preceding computation we obtain the expansion of the NSrlund poly-
nomials as linear combinations of the lower factorials (x)k.

PROPOSITION 9.5. For any integer n

d

k--O

Recalling Proposition 9.1, for n 0, we obtain a classical identity for the Stirling
numbers of the second kind.
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Since Dn-k (x+(n+ 1).f0n
_
(n)n_k(x+(n+ 1).)k, differentiating the left-hand

x 2 +’’’+x-n

side of equation (7) n- k times yields the following corollary.
COROLLARY 9.6. For n > k > 0

+) (x 1)(x 2/ (x n)k (X)= Dn-

Corollary 9.6 has the following elegant consequence.
PROPOSITION 9.7.

1 ( 1
n-1 (x) (x- 1)(x- 2)... (x- n)

\
+x-1

in which setting n to n + 1 and x to 0 yields

B(,+2) (-1)n! + +"" +--’ n+ 1

Finally, Proposition 9.2 yields the following proposition.
PROPOSITION 9.8.

and

x+l

B(n) (x) (t 1)(t 2)... (t n)dt

(t 1)(t 2)-.. (t n)dt.

Proof. The first equation in Proposition 9.8 clearly implies the second. To prove
the first, rewrite the equation in umbral form by using Corollary 9.6 to produce

f--I.-1 /z-l-1(t 1)(t 2)... (t n)dt B(n+1) (t)dt

(-- x+(n+l).+ 7

where the second line is from Corollary 4.4.
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Abstract. Three specializations of a set of orthogonal polynomials with "8 different q’s" are

given. The polynomials are identified as q-analogues of Laguerre polynomials, and the combinatorial
interpretation of the moments gives infinitely many new Mahonian statistics on permutations.
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1. Introduction. The Laguerre polynomials L(x) have been extensively stud-
ied, analytically [3] and combinatorially [5], [9]. There is also a classical set of q-
Laguerre polynomials [7]. Recently, a set of orthogonal polynomials generalizing the
Laguerre polynomials has been studied [8]. These polynomials in some sense have "8
different q’s." Various specializations of them give orthogonal polynomials associated
with many types of combinatorial objects. The purpose of this paper is to present
the specializations that are true q-analogues of Ln(x). By this we mean that the nth
moments, instead of being n!, are basically n!q.

Here we present three specializations whose moments lead to new Mahonian
statistics on permutations (Theorems 2, 3, and 4). In fact, infinitely many Maho-
nian statistics can be derived from those presented here. Moreover, the theorems
obtained from our specializations follow easily from classical analytic facts, but are
combinatorially nontrivial.

We shall use the terminology and notation found in [6], and let

2. The polynomials and their moments. Any set of monic orthogonal poly-
nomials satisfies the three-term recurrence relation

pn+l (x) (x bn)pn(x) AnPn-I (x).

For the set of orthogonal polynomials with 8 different "q’s" considered in [8], the
coefficients are

(2.1b) bn a[n + 1]r,, + b[n]t,u, A, ab[n]p,q[n]v,,.
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We refer to the polynomials defined by (2.1) as the octabasic Laguerre polynomials.
They generalize the Laguerre polynomials and are the polynomials whose specializa-
tions we consider in this paper.

The fundamental combinatorial fact (Theorem 1) that we need here concerns
the moments for these polynomials. They are generating functions for permutations
according to certain statistics.

For the definition of these statistics, it is convenient to represent a permutation a
as a word a(1)a(2).., a(n) consisting of increasing runs, separated by the descents of
the permutation. For example, the permutation a 261357141189 has 4 runs separated
by 3 descents, and we write run(a) 4. The runs of length 2 or more will be called
proper runs and those of length 1 will be called singleton runs.

The elements a(i) of a fall into four classes: the elements that begin proper
runs (openers), the elements that close proper runs (closers), the elements that form
singleton runs (singletons), and the elements that continue runs (continuators). We
shall abbreviate these classes of elements "op," "clos," "sing," and "cont," respectively.
In the example, op(a) (3,2, 1}, clos(a)- {6, 7, 9}, sing(a) {4}, and cont(a)

DEFINITION 1. For a E Sn, the statistics lsg(a) and rsg(a) are defined by

i=I i=1

where lsg(i) the number of runs of a strictly to the left of i which contain elements
smaller and greater than i, .and rsg(i) the number of runs of a strictly to the right
of i which contain elements smaller and greater than i.

We also define the lsg and rsg on the openers of a

Isg(op)(a)= Isg(i), rsg(op)(a)= Isg(i).
iEop(a) iEop(a)

The statistics lsg and rsg have analogous definitions on each of the remaining three
classes of elements.

For example, if a 261357141189, then lsg(7) 0, rsg(7) 1, lsg(op)(a)
O+ 1 +0 I, rsg(op)(a) I + 1 +0 2, Isg(clos)(a) O, rsg(clos)(a) 2 q- i q-O 3,
etc.

THEOREM 1. The nth moment In for the octabasic Laguerre polynomials is

Proof. The Viennot theory [9],[10] gives #, as a generating function for Motzkin
paths from (0, 0) to (n, 0). From (2.15) the paths have four types of edges (or steps):

(1) northeast (NE) edges starting at level k with weight in a[k + lip,q,
(2) southeast (SE) edges starting at level k with weight in b[k]v,,,
(3) east (E solid) edges starting at level k with weight in elk + 1Jr,8,
(4) east (E dotted) edges starting at level k with weight in b[k],,

where "weight in [m]c,d" means that the weight of the edge is one of the monomials
ccm-l, cm-2d,...,dm-l, which appear in [m]c,d.
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FIG. 1. The permutation 10 8 9 11 1 3 7 5 4 6 2 as a weighted Motzkinpath, runs, and a
binary tree.

The weight of a Motzkin path is then the product of the weights of its edges. An
example of such a weighted path is given in Fig. 1.

In the statement of Theorem 1 we claim that #n is the sum over all permutations
in Sn of monomial weights defined in terms of our permutation statistics. To prove
the theorem we construct a bijection between the weighted Motzkin paths of length
n and permutations in Sn, so that the weight of a path is equal to the weight of its
corresponding permutation.

Given a weighted Motzkin path of length n, its corresponding permutation will be
constructed in n stages. We begin at the origin and with the empty permutation. We
traverse the path from left to right, and the ith step will determine where to insert i in
the current (partial) permutation ai-1 E Si_l. The end result will be a permutation
a, a Sn. Depending on the type of the ith step of the path, i will belong to one
or another of the four classes of elements of a:

(1) NE:ie op(a),
(2) SE: i e clos(a),
(3) n solid: i sing(a),
(4) n dotted: i cost(a).
The weight acidk of the ith step of the path determines, as described below, the

exact position in ai- where we insert i as a point in the appropriate class of elements.
A run in ai_ will be called an active run if its maximum is a (future) opener or

continuator in a. Notice that the first step of the path starts at level 0 and that a0,

being the empty permutation, has no active runs. Inductively, assume that the level
h at which the ith step starts is equal to the number of active runs in ai_, and recall
the relation between the weight ccJdk of a step and its starting level h: for NE and E
solid steps we have j + k h, while for other steps we have j + k h- 1.

If the ith step is E dotted or SE, then the element i is adjoined to the (j + 1)st
active run of ai-1, as a continuator or closer, respectively. This is well defined since,
as discussed above, j + k is one unit less than the number of active runs in ai_. It
follows as well that the new partial permutation, ai, will have as many active runs as
the starting level of the (i + 1)st step of the path.
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If the ith step is NE or E solid, then j + k is equal to the number of active runs
in a-l, and we insert i in the leftmost position possible such that it will have j of
the active runs of ai_l strictly to its left and k of the active runs of ai_ strictly to
its right. The position where i is inserted in this case ensures that i will be the initial
element of a run, and it is again true that a will have as many active runs as the
starting level of the (i + 1)st step of the path.

Note that in the final permutation a the values of lsg(i) and rsg(i) are completely
determined by the runs that were active in ai_ and the position, relative to these runs,
where i was inserted. So, if the ith step has weight oefidk, then lsg(i) j because
each of the j open runs of ai_ that remain to the left of i upon its insertion will
eventually be extended by at least one element greater than i. Similarly, rsg(i) k.
Finally, c a in the weight of the ith step corresponds precisely to i being the initial
(possibly the only) element of a run. Consequently, the weight of a Motzkin path is
equal to our intended weight for the corresponding permutation a.

It remains to verify that this correspondence is bijective. We claim that, given
a E Sn, we can reconstruct its associated Motzkin path, step by step, beginning at
the right end of the path, (n, 0), since each stage of our construction is reversible.

Using our rules (1)-(4), each permutation in Sn will produce a Motzkin path of
length n (not yet weighted), since Iop(a)l- Iclos(a)l and each closer is larger than its
corresponding opener. We must check that the weight o/clsg(i)drsg(i) (where a a if i
is the initial element of a run, and a b otherwise) is a valid weight for the ith step of
the path. This follows immediately from the equality lsg(i) -t- rsg(i) the level of the
left endpoint ei/l of the partial path reconstructed from the values n, n 1,..., i + 1.
The equality holds for i n since lsg(n) rsg(n) 0 in all permutations of S, and
the left endpoint of the one-point path consisting just of (n, 0) en+ is at level 0.
Suppose the equality holds for i + 1 and we will prove it for i. Observe that the level
of ei+l is equal to the number of SE steps minus the number of NE steps in the partial
path from ei+ to (n, 0). That is, the level of ei+ is equal to the number of proper
runs in a whose maximum is larger than i, minus the number of proper runs in a
whose minimum is larger than i. But this is equal in turn with the number of proper
runs in a with maximum larger than i and minimum smaller than i, i.e., it is equal
to lsg(i)+ rsg(i). It now becomes clear that our map from weighted Motzkin paths to
permutations is indeed invertible. I-1

Figure 1 shows the weighted Motzkin path that corresponds with the permu-
tation a 10189 1111371514612. We have also included a binary tree representation
of the permutation, deeming it of possible interest to the readers familiar with [9].
The bijection constructed in the proof above is related to Viennot’s correspondence
between Motzkin paths and permutations [9]. As an intermediate step in Viennot’s
correspondence, Motzkin paths and permutations are encoded by increasingly labeled
binary trees.

We will be concerned with specializations of the 8 q’s under which the moments in
Theorem 1 become multiples of n!q [n]q[n- 1]q... [1]q. It is clear that the parameter
b can be rescaled to 1. Also, in considering specializations, we can take advantage of
the property obvious from (2.1) that the moments are fixed under the interchange
of {r, s}, {t, u}, {p, q}, and {v, w}, and also fixed if p and q are interchanged with v
and w.

3. The specializations. In this section we state three different specializations
of the polynomials defined by (2.1). The polynomials that arise are monic little q-
Jacobi, sums of two little q-Jacobi, and classical q-Laguerre. Each of these three cases
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will have moments that are basically n!q.
First we choose the parameters so that the polynomials coincide with the monic

form of the little q-Jacobi polynomials [6], pn(xq(1 q); qa, 0; q), which have

bn qn-l[n + 1 + a]q + qn+a-[n]q, +

The appropriate specialization occurs only for a 0, pn(xq(1- q); 1,0;q), and is
r t p v q2, s u q w, a l/q, b 1. The explicit formula for the
polynomials, which is just the definition of the little q-Jacobi polynomials, is

(3.2) pn(x)__ Z n
k [n]q... In- k + llq(--1)kxn-kq(k;’)-1

k--O q

The measure for pn(x; qa, q/; q) is purely discrete, with masses of

q(,+)i(q+; q)i(qa+ ;q)oo
(q;q)i(qa++2;q)oo

at x q{. An easy calculation shows that the moments are given by #n (qa+;q)n/
(qa++2; q)n. Thus for pn(xq(1- q); 1, 0; q), we have #n q-nlq. Based upon these
remarks, Theorem 1 becomes the following theorem. An equivalent theorem has been
given in [2, Prop. 5.2].

THEOREM 2. For a E Sn, let

s(a) := n- run(a) + 21sg(a) + rsg(a).

Then

Z qS() n!q.

Moreover, we see from the symmetry of (2.1) with respect to the 4 pairs of "q’s"
that Theorem 2 holds for 16 statistics related to. s(a). These 16 are obtained by
choosing the coefficients 1 and 2 for lsg and rsg independently for the four types of
elements of a. This means, for example, that

s’(a) n- run(a) + lsg(sing)+2rsg(sing)+lsg(op)+2rsg(op)
+ 21sg(cont +rsg(cont +21sg(clos)+rsg(clos)

also satisfies Theorem 2. We will see later that in fact there are infinitely many
equidistributed statistics related to s(a).

For our second specialization we consider

(3.3) b, q’*+i[n + llq + q’-[nlq , q2’-l[n]q[n]q.

The appropriate values are r t p v q2, s u q w, a q, b 1. The
polynomials turn out to be a sum of two little q-Jacobi polynomials,

pn(x) nlqq(g)(_l)n [2qb. ( q-n O;q q, xq(1- q) )
(1 qn)21 q2
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or equivalently,

(3.4)

pn(X) Xn+E n
k [n]q... [n--k+2]q([n--k]q+qn)(--1)kxn-kq(-) +(--1)nq( )n!q.

k--1 q

We omit the proof of these formulas. It is a verification of the recurrence relation (2.1)
from the recurrence relation for the little q-Jacobi polynomials.

Since these polynomials do not explicitly appear in the literature, we cannot
compute the moments by quoting the relevant facts about their measure. Nonetheless,
the moments and measure are easily determined.

PROPOSITION 1. The moments .for the polynomials in (3.3) are #o 1, and
#n q n!q,n > O. The measure is purely discrete, with masses of q(q; q)o/(q; q)-I
at qi-1/(1 q), i > 1, and a mass of 1 q at O.

Proof. The q-binomial theorem clearly shows that the total mass it0 (1-q)+q
1. It also implies

q(i-1)nqi(q; q)oo + (1 q)hn,o#n (1 _q)n(q;q)_

qn!q A- (1 q)hn,o.

Thus the stated measure has the right moments. To show that the polynomials are
orthogonal with respect to this measure, note that it is easy to check, from the explicit
formula (3.4), that the moments annihilate pl,p2, Hence, the linear functional
defined by the measure annihilates pl, p2, Finally, the three-term recurrence now
shows that the polynomials are indeed orthogonal. D

We then get a companion theorem to Theorem 2. As in the case of Theorem 2,
we have 16 equivalent versions of the statistic s(a), by assigning coefficients 1 and 2
to lsg and rsg independently on openers, continuators, closers, and singletons.

THEOREM 3. For a E Sn, let

s(a) := run(a) 1 + 21sg(a) + rsg(a).

Then

E qS(,,) n!q.

We remark that Theorems 2 and 3 are valid for an infinite number of variations
of the statistic s(a). It is easy to verify that for each a Sn,

lsg(op)(a) + rsg(op)(a) lsg(clos)(a) + rsg(clos)(a).

(In fact there is a specialization of {r, s, t, u, p, q, v, w} with one free parameter giving
(3.5).) Therefore the value of s(a) remains the same if the coefficients {1,2} are
replaced on the openers with {1 + c, 2 + c}, and on the closers with {1 c, 2 c}. This
provides a variation of Theorems 2 and 3 for each choice of the real parameter c. For
example, c 1 gives the unusual choice of coefficients {2, 3} and {0, 1}.

Our third choice for specialization is the set of the classical q-Laguerre polynomials
L(x(1 -q); q) [7], [6, p. 194], whose monic form has

(3.6) bn q-2n-a[n]q + q-Un-i-a[n + 1 + ,n ql-4n-2a[nlq[n -f" O]q.
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The appropriate values are r t p v q-2 b, s u q w :- q-1 a for
L(x(1 -q),q). The explicit formula for the monic form of L(x(1 -q); q) is

(3.7) pn(x) k q

k--O q
In -+- a k + 1]q(--1)kxn-kqk(k-a-2n).

Again a measure of these polynomials is explicitly known [7, Thm. 1], and the moments
for Lg(x(1- q); q) can be found as

#n (qa+l;q)nq-na-("+’)/(1 q)n.

For a 0 this is q-("+l)n!q. However, the combinatorial version of this theorem is
equivalent to Theorem 2, if q is replaced with 1/q. Thus no new combinatorial theorem
results.

4. The "odd" polynomials. If r p, s q, t v, and u w, then the
polynomials defined by (2.1) are the "even" polynomials for the polynomials defined
by (see [1, p. 41])

b. o, . b[nlt,=, 2.+1 a[ + 1]r,s.

The "odd" polynomials have the coefficients

(4.1) b, a[n + 1]r,s + b[n + llr,s, . ab[n + 1]r,8[n]t,u.

The moments for these "odd" polynomials satisfy #n(odd) #n+l (even)/#l (even)
Since all of our specializations in 3 satisfied r p, s q, t v, and u w, these
"odd" polynomials also have moments that are multiples of (n-t- 1)!q. There is a
version of Theorem 1 for the "odd" polynomials that yields more statistics related to
s(a). We do not state this combinatorial theorem here; rather, in this section we state
what these "odd" polynomials are, give their moments, and state in Theorem 4 what
the statistics related to s(a) are. Clearly the "odd" polynomials are analogues of the
Laguerre polynomials Lln(x).

We keep the parameters r, s, t, and u. This specialization gives the "even" and
"odd" polynomials a combinatorial interpretation as weighted versions of injective
maps (see [5], n(x), and Lln (x)). This family with "4 q’s" also contains other families
of orthogonal polynomials of combinatorial interest that are discussed in [8].

Here we list the "odd" polynomials for the three cases in 3, and the respective
moments. In each case the polynomials are monic forms of the given polynomials.

(1) little q-Jacobi p,(xq(1 q); q, 0; q), #n q-n (n + 1)!q;
(2) little q-Jacobi pn(x(1 q); q, 0; q), #n (n -t- 1)!q;
(3) q-Laguerre Ln(x(1 q); q), #n q-(n+3n)/2 (n + 1)!q.
The combinatorial theorem that results is Theorem 4 below. To describe the

suitable statistic s(a) we shall need an auxiliary statistic, u(a), defined as follows.
For a given permutation a E Sn, let d be the largest element in the same run as 1,
d > 1. Now partition the elements of a into three classes: elements to the left of 1,
elements in the same .run as 1, and those to the right of d. Suppose that over the
portion of a to the right of d no left-to-right minimum constitutes a singleton run.
Put n(a) 0. Otherwise, let c be the last (rightmost, smallest) singleton, which is a
left-to-right minimum on the portion of a to the right of d. Let nleft(a)" #{i i <
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a-l(1), c < a(i) < d}. In this case put n(a) 2(d- c)- nleft(a). For example,
n(91157[2614138)=0, whilefora=712[ 169]3121011[5148wehave
d 9, c-- 3, nleft(a) 1 (from the element 7), and we get n(a) 2(9- 3) 1 11.

We also need variations lsg* and rsg* on the statistics lsg and rsg. These differ
from the original statistics in two respects. For closers and singletons (the maxima of
the runs), the run containing the element 1 is ignored in the calculation of lsg* and
rsg*. For openers and continuators, the run containing 1 is always counted in lsg* (if
it is to the left) or in rsg* (if it is to the right).

For example, ifa 712 169[3[21011 [5148, then lsg* (5) 1, lsg*(10) 2,
lsg* (a) 10, and rsg*(a) 8.

THEOREM 4. For a E Sn, let

s(a) := run(a) 1 + 21sg*(a) + rsg*(a) + n(a).

Then
qs() n!q.

Theorem 4 also holds if run(a) 1 is replaced by n- run(a). Moreover, the
role of closers and openers can be interchanged in Theorem 4, and there are also 16
variations, although complicated ones.

A version of Theorem 4 holds for permutations in S,+1 that satisfy the following
condition: 1 and n + 1 belong to the same run, and no left-to-right minimum to the
right of n + 1 constitutes a singleton run. There are n! such permutations in Sn+].

Finally, we remark that these specializations are the only ones we have found for
which the moments factor into an analogue of n!. They are also the only specializations
that give the three sets of polynomials that were considered. A more extensive study
of the specializations of (2.1) appears in [8].
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Abstract. A unified treatment of the Liouville-Green-Olver approximation theory for linear
second-order differential and difference equations is presented. This is based on reduction to Volterra-
Stieltjes integral equations with respect to complex measures. The present approach embodies and
improves several previous results. Moreover, error bounds are obtained for recessive solutions of
certain difference equations, for which only qualitative results were known. The theory can be
applied, for instance, to the asymptotics of certain families of orthogonal polynomials.

Key words. Volterra-Stieltjes integral equations, complex-valued measures, Liouville-Green
(WKBJ) approximation, linear difference equations, linear differential equations

AMS subject classifications. 39A12, 34E20, 45D05, 28A10

1. Introduction. The well-known and widely used Liouville-Green (or WKBJ)
approximations for solutions to linear second-order differential equations, to which
F. W. J. Olver has been able to associate precise estimates for the error terms since
1961 [10], have been recently extended to the case of difference equations [4], [12],
[13]. Olver’s analysis was based on integral equations of the Volterra type satisfied by
the relevant error terms. In this paper we proceed similarly, using Volterra integral
equations with respect to complex Lebesgue-Stieltjes measures to treat both differ-
ential equations (absolutely continuous measures) and difference equations (discrete
measures) at the same time.

As an application, error bounds are obtained for recessive solutions to a class of
linear difference equations of the second order. Only qualitative results were known
for this class. Our results can be applied, for instance, to the asymptotics of certain
orthogonal polynomials off their essential spectrum.

The paper is organized as follows. In 2 we prove some theorems on existence,
uniqueness, and estimates for the solutions of certain types of Volterra-Stieltjes in-
tegral equations with respect to complex-valued measures. In 3 these results are
related to the Liouville-Green approximation for the solutions of both differential
and difference equations and several examples and applications are presented.

2. The main theorems. In this section we prove some theorems yielding exis-
tence, uniqueness, and estimates for the solutions to certain linear Volterra integral
equations with respect to Lebesgue-Stieltjes complex-valued measures (for generali-
ties on complex-valued measures, we refer the reader to [16, Chap. 11]). These results
will be related to the asymptotic theory of differential as well as difference equations.
Throughout the paper we stipulate, for convenience, that

+o

fd# =_ f[x,+o) fd#
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for the general (complex) measure #.
THEOREM 2.1. Consider the linear integral equation

(1) e(x) K(x, t)[(x, t) -b e(t)]d#, x e [a, -boo),

of the Volterra type, where a e (-oo,-boo) and # is a complex (finite) measure.
Suppose that for each fixed x E [a, -boo)

(i) g(x, .), (x, .) are #-measurable complex-valued functions;
(ii) ]g(x, t)l Ig(x, t)(x, t)l <_ h(x, t) I#l--almost everywhere for t >_ x,

where h(x, .) e nl([x, -boo); #), and, moreover,

is noninereasin9 and lim+ V(x) < 1.
then there eit unique solution s() of (1) .for > , where

x := inf{x x >_ a, V(x) < 1},

and the estimate

v()(4) I(x)l-<
1- V(x)’

holds.
Proof. Consider the sequence

X>Xl

e0(x) 0,

e.+ (x) K(x, t)[(x, t) + es(t)]d#, s 0,1,2,...,

that is well defined since it is easily proved, by induction on s, that

(6) I(:)l c, Co -o, c (Cs_l -b 1)V(a), 8 1,2, 3,

Define, formally,

(7) () := [.+() .()].
s--0

Now

(8) I(x)l v()

holds, and, assuming as an inductive hypothesis that

(9)

we obtain

]sq-l (X) s(X)) <__ IK(x, t)l[V(t)]dltl <_ [V(x)] Ig(x, t)ldltl
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(10)
+oo

_< IV(x)]8 h(x,t)d[#] IV(x)]8+1.

From (8), (9) then (4) follows, where xi is given in (3). The estimates (8) and (9)
also show that the series in (7) converges uniformly with respect to x for x > ( and
for every fixed ( > xl. Therefore,

(11)
e(x) el (x) + K(x, t)[es(t) es-1 (t)]d#

8--1

oo

and hence e(x) given by (7) solves (1) for x > xl. It is finally immediately proved
that uniqueness holds for x _> , being any fixed number with

Remark 2.2. When V(Xl) < 1, i.e., "inf’ can be replaced by "min" in (3), all
results hold up to and include xl. When h in (2) is continuous as a function of x
and # is absolutely continuous, then if xl > a, it follows that V(Xl) 1 (and thus,
if V(xl) < 1, it is necessary that Xl a), Y(x) being a continuous function in this
case.

When # is absolutely continuous, a variant of Theorem 2.1 that has some interest
for differential equations can be proved.

THEOREM 2.3. Suppose that in Theorem 2.1 # is absolutely continuous with
density p(x) and condition (ii) is replaced by

(ii’) [g(x,t)[, [g(x,t)(x,t)l < Mo(t)No(x) almost everywhere for t > x, where
Moe Ll((a, +oo); #), and No is nondecreasing .for x > a.

Then, if we set

(12)
+oo

Uo(x) := Mo(t)lp(t)ldt,

there exists a unique bounded solution e(x) of (1) .for z >_ a, with

(13) I()1 _< exp {No(x)Uo(x)}- 1.

Proof. The proof follows the lines of the previous one, the only difference being
that (9) and (10) are replaced with

(14) -< s!
s 1,2,...,

and

(15)

where (12) has been used. Therefore, (7) leads to the exponential estimate in (13).
Moreover, there is a unique solution to (1). In fact, suppose that e(x) and r/(x) are
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two such solutions. Then, if we define 5(x) :- e(x) -y(x), there is a constant C such
that 15(x)l _< C for x _> a, and 5(x) can be estimated as

(16) +o
<_ CNo(x) Mo(t)lp(t)ldt CNo(x)Uo(x),

and again, by successive resubstitutions (see [11, p. 1411),

(17) I(x)l < C [N(x)U(x)]"
s!

for s > 1 and x > a,

and hence (x) 0 for x

3. Applications to differential and difference equations. As is well known,
the measure It appearing in Theorem 2.1, being finite and complex-valued on R (and
thus Lebesgue-Stieltjes), can be represented as the sum of three (complex) measures,
the first being absolutely continuous, the second being discrete, and the third being
singular. When It reduces merely to the first one, one is led to integral equations that
can be related to linear differential equations; when It reduces to the second one, one
is led to integral equations that can be related to linear difference equations. In this
section we analyze these two special cases in detail.

3.1. Differential equations. In this case some regularity results are needed for
the solution (x). These can be estabilished by requiring some additional properties
on g(x, t), (x, t) and on the density of It.

THEOREM 3.1. Suppose that (1) is given, the measure It being absolutely contin-
uous with density p(x). Moreover, assume that for r E N

(i) K, e Cr(T), T being the sector x e [a, +c), t >_ x;
(ii) p e Cr-l([a, +o)) when r > 0;
(iii) there exist 2r + 2 nonnegative functions Mj(t), Nj(x), j O, 1,..., r, with

M e Ll((a, +cx3); It), Nj e C([a, +c3)), and

(18)
og 0(g) < Mj(t)N(x), j 0,1 .: r, a.e. .for t > x.o o ""

Then the solution (x) to equation (1) is of class C([a,
Proof. We notice first that (18) with j 0 ensures that there is a unique bounded

solution to (1) by Theorem 2.3.
It is then easy to derive from (1) the representation

(19)
+ [0(K) OK

(x t)e(t)] p(t)dt()(1= -ox (,t)+ o

{ ] }
=0

[ 0-1- (’) + s() 0_1_ (,) p()

for the rth derivative of (x). The proof of this can be based essentially on legiti-
mate differentiations under the sign of integral, in view of the dominated convergence
theorem, which also shows that E C. Details are left to the reader. D
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Remark 3.2. Observe that Theorem 3.1 for r 0 ensures uniqueness of solutions
to (1) without requiring their boundedness a priori. In fact, all solutions would be
continuous and thus locally bounded while uniqueness holds in a neighborhood of
since by (12) the integral operator in (1) is a contraction for x sufficiently large.

The following variant of Theorem 3.1 may be useful.
THEOREM 3.3. Theorem 3.1 holds if assumption (ii) is replaced by

(ii’)
0jK

(x x) =_ 0 /or j 1, 2, r,OxJ "’"
when r > O. Moreover, i/No(x) is also nondecreasing for x > a, the following
estimates hold for the derivatives of (x)"

(20) ]e(J)(x)[ _< N:i(x)Uj(x)exp{No(x)Uo(x)} x >_ a,

(21) Uj(x) :- Mi(t)lp(t)ldt j 1, 2,..., r.

Proof. The first part of the theorem can be proved immediately by observing that
(19) still holds true with all terms in the sum equal to zero. As for the second part,
similarly to (19), from (5) the following is obtained:

(22)
e0(x) 0,

(J) +oo [oOd(K) oq/K ].+l (x) [ Ox (x, t) + Ox (x, t)e.(t) p(t)dt, s O, 1, 2,

Therefore, by using the monotonicity of Uo(x) (and of No(x)) it can be proved by
induction on s and (14) that

(23) I() () [N(x)U(x)] for s O, 1,2,,+() ()1 <- N()U() !

and thus (20) follows. In fact, exchanging series and derivatives in (7) is permissible
because (23) shows the uni]orm convergence of ’]s=0 (j) (s)[s+l(x)- (x)] for each j
c N0()V0() < N0()V0() o > a.

Moreover, we have the following theorem.
THEOREM 3.4. Under all hypotheses of Theorem 3.1, with condition (ii) replacing

(ii), and the additional estimates

(24) < P(x,t), j- 1,2,...,r, a.e. fort > x,

where Pj(x, .) e Ll((x, +o); It) and

(25)

is nonincreasing, then

+
W(x) := Pj(x,

(26)

(I) if the assumptions of Theorem 2.1 are also satisfied, we obtain

w() o > 1,le(#)()l-<
1 V(x)
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V(x) being defined in (2) and xl in (3), whereas,
(II) if No(x)(see Theorem 3.1)is nonincreasing, we obtain

(27) I()()1 g Wj(x)exp{V(x)} for x >_ a.

Proof. The proof is similar to that of Theorem 3.3, with inequality (23) being
replaced by

(8) () i) "le,+1 (x) (x)] < Wj(x)[V(x)l s O, 1, 2,...

in case (I) and by

(:) () (2) [Y()]I,+() ()1 < w() ! 0,1, ,...
in case (II). [:1

Theorems 3.1, 3.3, and 3.4 turn out to be useful in the framework of linear dif-
ferential equations. Here we consider linear second-order differential equations like

(30) y" -b If(x) -b g(x)]y 0, x >_ 1, f, g e C([1,-boo)),

where f is real valued, g is complex valued, and
(a) f(x) 0 in [1, +oo), f e C2, and

(31)

or

(32)

-I-
])(pc)- If-1/4(f-1/4)tt gf-I/2ldt <

(b) f(x)
_

0 in [1, -boo) and

() tl(t)lat < for k 1 or 2.

Case (a) is the typical case considered by F. W. J. Olver in connection with the
Liouville-Green approximation theory (see [11, Chap. 6]). if f(x) > 0 (oscillatory
case), when we look for solutions to (30) of the form

{ }(33) yj(x) f-/a(x) exp (-1)Ji f/2(t)dt [1 + ej(x)], j 1,2,

it turns out that the error term, ei(x), must be a C2-solution to an integral equation
like (1), with g(x,t) (1/2i)[1- exp{(-1)J2if f/2(s)ds}], (x,t) 1, d#
[f-/4(f-i/4),, gf-/2]dt. Choosing in (ii’) of Theorem 2.3, Mo(t) =- 1, No(x) =- 1,
one gets Uo(x) l)(x) and hence Olver’s result [11, Whm. 2.1, Chap. 6],

(34) [ej(x)[ _< exp {))(x)}- 1,

holds. As for the derivatives, one can choose, in Theorem 3.3, M(t) _-- 1, N (x)
f/2(x), and thus U(x)- Uo(x) and I(x)l _< f/2(x)Uo(x)exp(Uo(x)}. The latter

implies that f-/2(x)(x) O(Uo(x)), as in Olver’s theorem [11, Thm. 2.1, Chap. 6I.
Alternatively, one could apply Theorem 2.1 (and Theorem 3.4). In this case

the estimates hold, in general, only for x > x (x being defined in (3)). However,
ej(x) O(V(x)) and V(x) <_ Uo(x) when h IKI- IKI- sin(f fl/2(s)ds)l is
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chosen. Moreover, the geometric estimate (4) may provide better estimates for fixed x,
with respect to certain parameters. This fact can be related to the double asymptotic
nature of the Liouville-Green approximations with respect to both the independent
variable and the parameters entering f q- g. Here is a simple example, for the purpose
of illustration, in which all calculations can be carried out explicitly. Let f(x) 1,
g(x) x-v, 7 > 2 on x > 1. Then ]g[ [g] ]sin(t-x)] and [p] x-U.
Choosing h(x,t) t-x and Mo(t) =- 1, No(x) -= 1, we get Y(x) x2-/(7-1)(7-2
and Uo(x) x1-/(7- 1). Now, the fact that the geometric estimate (4) yields an
error of order of 0(7-2) for fixed x while the exponential estimate (13) gives an order
of 0(7-1 suggests that the former may be better. Indeed, if we compare the two
estimates for x such that, e.g., V(x) <_ 1/2, clearly V/(1-V) < 2V < U0 < exp {U0}- 1
as long as [2/(7- 1)(7- 2)] 1/(-2) _< x < 7/2- 1, and thus the geometric estimate
performs better. Case (a) with f(x) < 0 (nonoscillatory case) can be handled in a
similar way, and Olver’s results are recovered again.

Case (b) has been studied, for instance, in [6], [13]. If (32) holds for k 1, when
one looks for a (recessive) solution of the form

1 +

el(x) turns out to be a C2-solution of (1) with K(x,t) t-x, (x, t) _-- 1, d# gdt.
In this case it is known that a second (dominant) solution y2(x)
exists. If (18) holds for k- 2, in addition, when one looks for a (dominant) solution
like

(a6) +

one finds that e2(x) must be a C2-solution of (1) with K(x, t) t-x, (x, t) t, and
d# as before. As in case (a), choosing in (ii’) of Theorem 2.3 Mo(t) tk, No(x) =- 1
(see [6]), we obtain Uo(x) A/Ik(x). Concerning the derivatives, Theorem 3.3 can be
applied with M1 (t) tk-l, N1 (x) =_ 1.

It is also possible to apply Theorems 2.1 and 3.4 with h(x,t) tk-l(t- x),
Pl(x, t) t-1 (see [13]). The advantage obtainable by using the geometric versus
the exponential estimates is more pronounced here. In fact, for g(x) x-v, 7 > 2,
we get (for k 1) Y(x) Uo(x)/(7- 1) for all x. Therefore, comparing the two
estimates, (4) and (13), for x such that, e.g., V(x) <_ 1/2, we find that the geometric
estimate is certainly sharper for 7 > 3. Such an estimate is of the order of O(7-2),
whereas the exponential one is of the order of 0(7-1), as in case (a), but this holds
now without any further limitation on x.

3.2. Difference equations. When the measure # in Theorem 2.1 is merely
discrete, with discrete support Zv :- (n E Z n > ), being a given integer, the
integral equation (1) plays a role in studying linear difference equations. Hereafter we
shall be concerned with the asymptotic solution of second-order difference equations
like

(37) A2yn q- ( q- gn)Yn O, n Zv,

AYn :-- Yn+l Yn, where we consider the following.
(A) > 0 and -n__ Ignl < oo;
(S) a 0 and n= nklgnl < oo, k 1 or 2;
(C) a < O, a :/: -1, and "]n=, [gn[ < o.
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It is worth noting that the importance of equations of the type

(38) A2yn + qnYn 0

stems from the fact that they represent a kind of canonical form for all difference
equations like

(39) Y,+2 + A,Y,+I + B,Y, O.

Indeed, the transformation

(40)
n--2

cv and Ofv+l 0 being arbitrary constants, takes (39) into (38) with a suitable q,
provided that Ak y 0 (at least for k sufficiently large); see [12], [13].

Case (A), in which all real solutions turn out to be oscillatory, was studied in
some detail in [12]. If one looks for a solution of the form Yn An(1 + n), A being
one of the roots of the characteristic equation of (37) with gn O, ) 1 + ivl the
"integral equation"

(41)
l

k (1-- (A/-)k-n+’)e,
2A(A- 1)

gk(1 +

for the error term en is obtained. In [12] it was proved directly that such an equation
has a solution estimated as

(43)
1

V. "=
[c(a + 1)1/2 E I1.

k--n

Both the existence of the solution and the estimate (42), (43) hold for n _> nl :-
min (n E Z" Vn < 1}. This result represents an extension to the discrete domain
of the Liouville-Green-Olver approximation theorem for oscillatory-type differential
equations (see [11, Whm. 2.2, p. 196]).

Note the formal analogy of (37) with (30) when we take f(x) const. > 0 (case
(a), 3.1). In fact, the unified treatment presented in this paper leads to (42), (43)
when we choose in Theorem 2.1 (x, t) 1, g(x,t)= (1/2(- 1))(1- (/)-x+l),
and # k=gkk, where ik is the Dirac measure centered in t k. The function
h(x, t) estimating K, g in (ii) of Theorem 2.1 can be chosen equal to the constant
1/]A(A- 1)1 [cz(cz + 1)] -1/2. It is easily seen that Y(x) is left-continuous and
piecewise constant and that Xl hi; also, a v, Vn V(n). Finally, observe that
the solution to (1) restricted to the integers n > nl also solves (41) and that the
estimate (42), (43) holds.

Case (B) represents the discrete analogue of case (b) of 3.1 and was studied in
[13]. In [13] a unified approach was followed; it was based, however, on a special
subclass of integral equations like those in (1). Indeed, when one looks for solutions
to (37) with cz 0 of the form yn nk-1 +n, with k 1 or 2, an "integral equation"
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of type (1) is obtained, with K(x, t) x- t / i, (x, t) t-, and I ’k= gkhk
( 1). If one takes h(x,t) tk-i(t x + 1), estimates are obtained for the error
terms corresponding to the recessive and the dominant solution (k 1 or 2 also refers
to the finiteness of the first or the second moment of Ignl: When -o n21gnl +oc
but ’ nigh < x) the estimate for the recessive solution still holds true).

A Liouville-Green-Olver approximation result for case (C) seems to be missing so
far. Note that, unlike in the previous cases, qualitative asymptotics for the solutions
to (37) with c < 0 could be obtained here by Poincar’s or Perron’s theorems [9].
Deriving precise error bounds, however, is our goal, in the spirit of Olver’s approach.
This problem represents a discrete analogue of the differential case with solutions of
the exponential type in [11, Thm. 2.1, p. 193]. We state our result as a theorem.

THEOREM 3.5. Suppose that (37) is given with - < O, t 1, and

o Ignl < oo (see case (C)). Then there exist n e Z and two linearly independent
solutions to (37), Yn, such that

(44) y (A_)n[1 -t- en], n _> nl; y,+ (A+), n -. oc,

where + 1 +/- are the roots of the characteristic equation associated to (37) with
gn =-O. For the error term sn the estimate

holds and

(46) n=min{nEZ" Vn < l}.
Moreover, when gn is real, y are real.

Remark 3.6. In view of (45), y and Y+n are recessive and dominant solutions,
respectively. Note that, unlike the corresponding case for differential equations, while
yn+ (1 + -)n grows exponentially, y (1 x/-)n and thus decays exponentially
when 0 < < 1, but it exhibits oscillations exponentially growing (when f > 4) or
exponentially decreasing (when 1 < < 4); when 4, y (-1)n. The case 1
is pathological in that the unperturbed equation (see (37) with gn _= 0) degenerates,
having the lowest-order coefficient vanishing (see [8] and [9]), and cannot be treated
by the present approach.

Remark 3.7. The qualitative behavior Yn (A+)n, n -- c, cannot be obtained
directly from Poincar(’s or Perron’s theorems, despite the fact that such theorems
can be applied, since A+ A_ [8, 5.3, p. 221].

Remark 3.8. Observe even here the double asymptotic nature of the Liouville-
Green-Olver approximations with respect to both n and f (as n --. oo, and as f -+cx)); see (45). In particular, Vn O(f-t), whereas the corresponding quantity
for the analogous differential equation, y" + (- + g(x))y O, g L(1, +c), is

O(f-1/2); see [11] and [12].
Proof of Theorem 3.5. Looking for a solution of the form y (A_)n[1 + en], one

is led to the difference equation

(47) (A_)2A2en + 2A_ (A_ 1)Aen + gn(1 + en) 0

for the error term. It is then easily proved that any solution of the linear discrete
Volterra-type "integral" equation

(48) " Z (1 pk-"+)gka(1 +
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also solves (47). The easy but lengthy verification is left to the reader; see [12]. At
this point, consider equation (1), with (x, t) _= 1, g(x,t) a(1-p-X+:), x >_ a v,
#- -k= gkhk, and choose h(x, t) =_ lal, since IPl < 1. Then we use Theorem 2.1 to
obtain (45) since it is clear that the solution to (1), restricted to the integers >_ n:,
also solves (48) and Vn Y(n). Note that uniqueness of solutions to (48) does not
follow immediately from Theorem 2.1 but can be proved directly for n >_ n:.

As for the second (dominant) solution, we consider a solution of the form

(50) Zn :: y
Y’Y-+Ik=n*

(see IS, 3.5, Thm. 3.9, p. 94]), n* being the smallest integer _> n: such that y 0
for n _> n*, and Ck denoting the Casoratian of y- and zk. The latter is [8, 3.5]

(51)
k-1

Ck Cn* H (1--bgj),

where Cn* is a nonzero constant that we shall choose. Now,

/._._+) --n n--1

(52) zn Ck
(,,+)n Z (,,_)2k+111 + 0(1)1

k--n*

When 0 < f < 1, using Cesaro’s theorem, we get

(53)
gn Cn/(A-)2n"}-i --(1-/)-n’Cn. ]211 (1+ gj )(,x+)- 1 -/7

In fact, (A+/A_)" t +oo as n --+ oo, and the product in (53) converges in view of the
fact that -o Igl < o. When f > 1, the same condition holds true, although the
classical Cesaro’s theorem cannot be invoked. Such a generalized version of Cesaro’s
theorem is contained in [14]. Finally, choosing the constant Cn* in such a way that
the limit of the right-hand side of (53) is equal to 1, one obtains

Remark 3.9. When one looks for a dominant solution of the form y+
r/n), an error equation for r/n similar to (48) is obtained, with p A+/A_, a
1/2A+(A+ 1). However, IPl > 1 prevents proving, in general, the existence itself
of such a solution, as was done for n. A noteworthy case, however, occurs when
gn P-nU with )-f c-nn, [un[ < o, e.g. gn with Ic[ > [p[. Here Theorem 2.1
can be applied with (x,t) 1, K(x,t) p-t(X- pC-X+:), # -,koo__ukSk, and
h(x, t) 1 for x >_ 1. The estimate

(54)

WnI,,,I s 1-Wn’
n )_ 2 min (n E Z Wn < 1},

1
oo

w,, .=

2V-D’IVD’-11
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is then obtained.
It may be useful, in closing, to reformulate the hypotheses of Theorem 3.5 in

terms of the coefficients of (39). Since in (38) one obtains

4B(55) q -1 /
A,A,_

for n _> + 1 (see [12] and [13]), they become

Bn 1
(56) nlirno AnAn-1 =: L, with L < , L 0,

k=v+l

Bn
AnAn-1

We conclude with two simple applications.
Example 3.10 (perturbed Fibonacci equation). Consider

(58) fn-l-2 (1 -t- (Yn)fn..I-1 (1 --I-- "rn).fn O, n_>0,

where

(59) (Io.1 + I’,,1) < ,
n--0

and an -1 for n > 0. The latter restriction can be removed by confining ourselves
to n _> with sufficiently large. Then, setting fn anYn, with

n-211Tqk )(60) an- H 2
k:O

(cf. (40)) leads to (38) with

l +’rn(61) qn -i -4
(l+an)(l+an-1)"

Now, qn "- -5 as n --, oc, and then (56) and (57) are satisfied with L -1 and
owing to (59). Since 5,

(62) gn 4 (an + O’n--I q- O’nO’n--i "- Tn)
(1 q- an)(1 h- Un--1)

and A+ 1 = v/, we obtain a recessive solution to (58) like

(63) f_=
i

(l+ak) (l+en) forn_>nl,
\k=0

with

(64)
2

o

I.1< v. v :-
1 Vn’ vf(v- 1)

ITn 2. fin-- 1 "- (Tnfin-- 1 " Tn
(1+an)(1Tan-1)

for n _> I
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with nl defined in (46) (cf. Theorem 3.5). Moreover, a dominant solution fn+ exists,
with

(65) i+
1

(1 + ak), n --. oo.
k=0

Note that the convergence of the infinite product in (65) is guaranteed by (59).
Example 3.11 (orthogonal polynomials). A field in which asymptotic representa-

tions of solutions to three-term recurrent equations is important is that of orthogonal
polynomials. In [5] an application is made of the discrete WKB theory developed
in [4] to a class of orthogonal polynomials obeying a recurrence with regularly and
slowly varying coefficients. Here we show that Theorem 3.5 can be applied to obtain
qualitative asymptotics for a well-known class of orthogonal polynomials, on the real
line off their essential spectrum. Consider, in fact, the linear recurrence

(66) Pn+2(x) (x /n)Pn+l(X) q- nPn(x) O,

with "n real, 6n > 0, 7 -* 7 and 6 --, 6, 7 and 6 both finite, which defines along
with the initial conditions P-l(X) _-- 0, Po(x) 1, a family of orthogonal polynomials
having as essential spectrum the interval [7- 2Vf, 7+ 2v/]; see, e.g., [2]. In this case
we obtain from (56)

(67) L
(x-7)’

and thus L < 1/4 for x off the essential spectrum. Note then that x % In view of
the fact that "Yn -* /we see that also x-Tn 0 for all n sufficiently large (n >_ u(x)).
This ensures that the transformation in (40),

(68)
n--2

k=(x)
2

is applicable and the previous theory can be used. Notice also that a uniform lower
bound for (x) can be found for x off the essential spectrum. Condition (47) becomes

(69) E
n=u(x)+l

(z-7)

Observe that the assumption E (l’/n -’l + I -l) < oo, which, incidentally, en-
sures the orthogonality measure to be absolutely continuous in the essential spectrum,
implies (69) and appears, e.g., in [7] as a key condition for the asymptotic analysis
of the linear recurrence (66). Such a condition also appears, for instance, in [15].
Apart from having a weaker condition in (69), asymptotic results obtainable through
Theorem 3.5 off the essential spectrum coincide with those reported in [7], where
completely different techniques were adopted. Our theory, however, yields a precise
error estimate for a recessive solution. This occurrence may be useful in connection
to certain well-known numerical algorithms (see [3]).
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TRUNCATION ERROR FOR LIMIT PERIODIC SCHUR
ALGORITHMS*

W. J. THRONt

Abstract. The Schur algorithm arises in connection with the approximation of functions
bounded in the unit disk. For a limit periodic Schur algorithm {Tn(z, w)) it is shown that the
truncation error is

ITn(z, 0)- T(z)[ < c(R’)n,
where c depends on R’ but is independent of n, and

1 +,ZWl[>a’> +,
Here Wl and w2 are the fixed points of the limit transformation t,(z,w) (q, + zw)/(1 + /zw),
0 < [[ < 1. In the proof use is made of the facts

lim T- (oo) Wl, lim T(n) (w) w2,

which are proved here.

Key words. Schur algorithm, limit periodic, truncation error

AMS subject classifications. 30B70, 40A15, 40A25, 65G05

1. Introduction. The algorithm to be studied here was introduced by Schur
[8] in 1917 to investigate functions holomorphic and bounded in the unit disk. For
convenience the bound is taken to be 1. We are thus led to consider the family

U :-[f’f(z) is holomorphic and If(z)] _< 1 for ]z[ < 1].

Define

’n + ZW
(1,1) tn(z, w):=

1 + 6/nzw’
n >_ O,

and

(1.2) tl(z, u) :=
z nu-1

In terms of the sequence {tn} we define the sequence {Tn} inductively as follows:

(1.3) To(z, := to(z, T,(z,w) "= Tn_:(z,t,(z,w)), n >_ 1.

This can be expressed informally as

T,,(z, to o o

In the following we will frequently not indicate the dependence of the tk and the
Tn on z. Since the tn are linear fractional transformations in w, so is Tn. Hence it
can be written as

(1.4) Tn(z, w) :=
C,(z)zw + Dn(z)

+ F,(z)
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DMS-9103141.

Department of Mathematics, University of Colorado, Campus Box 395, Boulder, Colorado
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where the Cn, Dn, E, Fn are polynomials in z satisfying the recursion relationships

(1.5)

Schur showed that for every f E U one can determine a sequence of functions
{fn}, Jr, e U, and a sequence of complex numbers (’in(f)}, I’in(f)l < 1 inductively,
by the rule

fo --: f, fn(Z) :-- ,’ll(Z, n _> 1, "in(f) :-- fn(0), n _> 0.

The process terminates if a "In(f) satisfies I’in(f)] 1. Schur then showed that for
the sequence {Tn} where "in "in(f), n > O,

lim Tn(z, O)= f(z) for Izl < 1.

It is also true that for any sequence {%}, with < 1, n > 0, as the only restriction,
{Tn(z, 0)} converges uniformly on compact subsets of Iz] < 1 to a function in U; see
[3, Tam. 4].

In what follows we shall assume that

I1 < 1, n0.

For any such sequence {’in} we call the mapping {’in} --* {Tn} a Schur algorithm. If
’in --* ’i, then we speak of a limit periodic Schur algorithm (lpS). Frequently we use
this expression also for {Tn}. Schur referred to his algorithm as "kettenbruchartig,"
that is, as being closely related to the continued-fraction algorithm. Thus it is not
unreasonable to look for results for lpS analogous to those found for limit periodic con-
tinued fractions. Since all Schur algorithms and thus, in particular, all lpS converge,
we will here be concerned with the truncation error Tn(z, O) T for lpS.

In 2 and 3 we derive some preliminary results. In 4 we use the concept
"invariance of the cross ratio under linear fractional transformations" to obtain a
formula for the truncation error Tn(0)- T as well as an expression for the ratio
(T- Tn(W2))/(T- Tn(0)), from which it can be deduced that {Tn(w2)} converges
faster to T than does {Tn(0)}. In these formulas the sequences {T-l(cx)} and the
"tail" sequence {T(n) } play important roles. The convergence of {T-l(x))} to wl is
proved in 5. In 6 we show that the tail sequence converges to w2. The truncation
error takes the form K(R’)(R’)n, where

1 + /ZWl <R’< 1.
1 + 2w2

Let

(1.6) 5n "in "i, dn max Ibk I.
k>n

Our results here are based on the assumption dn -- O. In another paper we shall
study lpS under the stronger assumption dn < cx) and obtain results on "separate
convergence."
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Some aspects of the Schur algorithm have previously been investigated [1], [5],
[6], [9]. The algorithm can also be approached by way of Schur fractions (see [2] and
the references therein). Truncation errors have been obtained for Schur fractions and
the closely related positive PC fractions [1], [6].

2. The transformation T(z, w). In our study the "limit" transformation

’7 + zw
(2.1) t(z, w)

1 + 6/zw

plays an important role. Frequently, the three cases

-0, o<11<1, I1--1
have to be treated separately. For the limit transformation we have

(2.2) t(z,w) zw ifT=O, t(z,w) =_ e, w # -e ifT=ei.
If 0 < 171 < 1, the fixed points wi of t(z, w) are given by

7 +(2.3) wi 1 + 6/zwi’
or

/zw + (1 z)w -7 O.

Hence

z 1 + (-1)’ X/’(z 1)2 + 417{2z(2.) ,(z) :=
2z

Ie -- > O.

The case 171 1 can be subsumed under the case 0 < 171 < 1 if we understand
by wi(z) the quantities given by (2.5). From (2.2) we see that w2 ei is indeed the
attractive fixed point of the singular transformation t(z, w) e. The other solution
of (2.4), that is, -e/z, is not a fixed point but the exceptional point for which t(z, w)
is undefined. The fixed points of t(z, w) zw are 0 and c, and thus that case needs
to be considered separately and will be excluded in the rest of this paper.

For the two cases 0 < 171 < 1 and 171 1 the identities

(2.6a) WlW2

(2.6b) wi(1 + /zwi) 7 + zwi,

(2.6c) Z/(Wl -t-W2) Z- 1

are valid and will be useful in what follows.
Since for 0 < 171 < 1 and Izl < 1 the mapping v t(z,w) maps Iwl <_ 1 into

Ivl < 1, it follows from the fixed-point theorem that one fixed point, which we shall
see is w2, satisfies Iw21 < 1. From the first identity in (2.6) it follows that

1
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Thus for 0 < 171 < 1, Izl < 1, the transformation (2.1) cannot be parabolic.
Next, we explore when the transformation is elliptic. Since for 171 1, t(z, w) is

singular, we consider only 0 < 171 < 1. It is known (see, for example, [4, p. 52]) that
in this case the transformation is elliptic if and only if

1 + /zw
1 + /zw2

1, Wl w2.

We set

Q(% z) :=
1 + /ZWl

ifz0, Q(7,0)’=0.

One easily derives

1 + z- V/(1 / z)2 -(1 -I"y{2)4z
1 + z + v/(l + z)2 -(1 -ll=)4z

Now either z -1, in which case Q(?,-1) 1 and hence t(-1, w) is elliptic, or
z -1 and one can write

1 Jl (i lvl 2) (1--l-Z)

1 + /1 -(1 -[[2) 4
(1-..l-Z)

The condition for Q(% z) to equal 1 is then easily seen to be

4z 4z 1
(2.8) Im

(1 + z)2
0 Re

(1 + z)2 > 1 -I/I2"

Now

Im
z Imz(1 + ,)2 Im(z + 2lzl2 + 2lzl2) 1 -Il Im z.

(1 + Z)2 I1 -- Z[4 [1 - Zl4 {i -- 2:14
Hence Im (z/(1 + z)2) 0 if and only if either [z[ I or z E R. If z E R, the function
4z/(1 + z)2 assumes its maximum value at z 1 and the maximum is 1, which is
less than 1/(1 -[7[2). Thus there is no real value of z for which (2.8) is satisfied. If
[z[ 1, set z ei. Then

4z
(1 + Z)2

4ei’(1 q- e-i)2

I1 -I- ei 4

4ei -t- 8 -I- 4e-i’

((1 + cos o)2 + sin2 )2
8(1 + cos o) 2
4(1 + cos o)2 1 + cos

Hence (2.8) is satisfied if and only if

(2.9) [z[ 1 and cos(arg z)< 1- 21, 1

One reaches the conclusion that for 0 < I’/I < 1 the transformation t(z, w) is elliptic
for all z on the interior of the arc A of the unit circle for which cos(arg z) _< 1 2[7[ 2.
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At the endpoints Zl, z2 of the arc A the transformation is parabolic. The two points
zl, z2 are also the branch points of the functions wl (z), w2(z). Both functions are
holomorphic for

(2.10) z E D := C A, z 0.

Moreover, Q(7, z) < 1 for z e D, because we have z 0 D and Q(7, 0) 0. Since
Q(7, z) 1 only on A, our assertion follows.

It will now be useful to introduce

(2.11) u,() := (1 +), # 0, (1) := 0, 2(0) := 1.

Then it follows from (2.7) that

Q(%z)

Set

:= () ()
u2(z)"

Then for z D
Ul --r, Irl--: R < 1.(.1)

3. Two lemmas. From (1.5), (1.6), (2.10), and (2.6b) we obtain

Cnzwi + Dn zCn_ZWi + ( + n)Dn-lZWi + Dn-1 + (7 + n)zCn-1
ui(Cn-lZWi + Dn-1) + nDn-lZWi + nzCn-1

n--1

u(Cozwi + Do) + u(n-zw,Dn--I + 8n-zCn--l)
--0

Analogous formulas are known from continued-fraction theory (see, for example, [11],
[13]). Now set

(3.1) Un+1 ----’: Fro,
Un_{_1

=" Am,
u+l

=: Hm, U,+1 (m.

Then, if ul 0,

u2(FnZWl + An) rn zw, + 7o + tt+lZWlr-(+l)At -k 5,+lzr-(’+l)F
tt:0

n-1

u2(Fnzw2 + An) zw2 + 70 + Z(ttTlzw2Att -tt:o
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Hence

u2(w2 wl)zFn zw2 zrnwl + /0(1 rn)
(3.2) =-1

+ (.+lZ(W2 rn-"-:Wl)A. + t.+lZ(1
t--O

and

(3.3)

n--1

-}- y(l+lZ(WlW2(rn-I-l 1))h. "4-l+lZ(W2rn-lz-1
/.t-0

Introduce

(3.4)

Then for m > 0

(3.5)

m

8m := y rk
1

m>_O, s_:=O, s_:=--.

1 rm
/z(w2 Wl)

8rn--l
U2

WlW2(rm 1) ’8rt_l,

W2 Wl
W2 rmwl (t28m 8m--l),

U2

W2rm Wl
W2 Wl (Sin--1 UlSm--2).

U2

Substituting the results of (3.5) into (3.2) and (3.3), one arrives at

(3.6)

and

n-i

-[- Z(tt4.1(/,28n_tt_l 8n_tt_2)Att +
it:0

uhn /ZSn-1 -- ")’0(Sn-1 UlSn-2)

(3.7) n--I

-{- Z(lq-l’TZ8n--lz-2Al "- pq-lZ(8n-p-2 lSn--p-3)D).
=0

om (1.5) it also follows that for Hn and n one h

(3.s)
u22Hn o(U28n 8n--1) "4-0/8n--1

n--1

2t- (t4.1(U28n_l_ 8n_/_2)I)p --p+l/ZSn_l_2gl
t=O
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and

(3.9)

U22n --o/ZSn--1 -- 8n--1- U18n--2

n--1

#--0

We have proved the following lemma.
LEMMA 3.1. With notation as defined in (3.1), (1.5), (1.6), (2.10), (2.11), and

(3.4) one has, for z e D, Ul O, and 0 < I/] < 1, the sum formulas (3.6), (3.7),
(3.8), and (3.9).

Another useful lemma is the following.
LEMMA 3.2. Let

n-1

An <_ ao + E ak+lAk,
k=0

n>_l, Ao_<ao,

where, for n >_ O, An and an all are nonnegative real numbers. Then

n

(3.10) An _< ao H (1 + ak), n >_ 1.
k--1

Proof. One has

A1

_
a0 + cqAo _< ao(1 +

Set Po := ao and

n

Pn := a0 H (1 +
k-1

and assume that Ak

_
Pk for 0 <_ k <_ n- 1. Then

n--1 n--1

An <_ o + E((1 + (k) i)Pk c0 + E(Pk+I Pk) aO Po + Pn Pn.
k=0 k=0

The lemma is thus proved by induction.
Lemma 3.2 is the discrete version of Gronwall’s inequality, which can also be

found in [11] and in slightly different forms in other places.
Combining the two lemmas, we can get bounds for IFnl + IAnl and
From (3.6) and (3.7), using the fact that 17ol, 171 are less than 1 and

l/R(1 R) for m _> -2, one obtains

n--1

R(1 R)lullrl < 2 + lull + dr,+1((1 + lu21)lAl + Izllr, I),
#=0

n--1

R(1 R)lullAl Izl + 1 + lutl + E d+(IzllAl + (Izl + Izul)lrl).
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Combining the two inequalities, one arrives at

R(1 R)lul(Irl + IAl) < Izl + 3 + litll-4-lit21
n--1

+ E d+l(1 -t- 21zl + Izull + Il)(Ir, / Izx, I).

The conditions of Lemma 3.2 then are satisfied with

and

O0 ]uJR(1 R)

din(1 + 21zl + Izul + lu21)
lulR(1- R)

Thus (an analogous argument is valid for IHnl + I(.l)

Ir.I + IA.I < co H(1 -I-cdt), n > 1.(3.11)
IHnl + I(I)nl tt=l

4. A formula for the truncation error Tn(0) T. In [10] we showed that
many formulas useful in the theory of continued fractions can be derived from the
invariance of the cross ratio of four distinct complex numbers u, v, w, z under a linear
fractional transformation. Let F be such a mapping. Then the invariance can be
expressed by the formula

(4.1)
-z \F(u)-F(w))(F(v)-F(z))"

We are interested in the case for which F Tn, as defined in (1.3). It will be clear that
the same approach will also work for more general linear fractional transformations
tn than those given by (1.1). In those cases one would, of course, have different values
for t1 (0) and tn+ (0). A formula analogous to the one to be obtained here was found
by Waadeland and the author [14] in 1983 for continued fractions K(an/1).

In addition to setting F T=, let z g=, where

(4.2) g, "= T-(oo).
Then

v a T() T(w)"

Assume {Tn(0)} converges to a limit T. This will certainly be the ce if z < 1.
rthermore, let

(4.4) (")
.+() t. o... o t.+().

Then IT(0)}m%0 also converges. We denote the limit by T(n).

(4.5) T(=) iT(0).



TRUNCATION ERROR FOR SCHUR ALGORITHMS 741

T(n+1)Since Tn+m(W) Tn o-n+m (w), we have

(4.6) T- Tn(T(n+I)).

In (4.3) st o, v T(+), (0).
Then for 7, 0

Tn(O) T T,(O) T,(T(’+1))
Tn(O) Tn-(O) Tn(O)

(--T(n+l)) (t’l(O)-gn);(o) \(-
T(n+l)(7n + Zgn)
%(gn_T(n+))

Hence for 7n # 0

(4.7) T Tn(0) T("+)(Tn + zgn)
(Tn(O) T,_ (0)).(.:-Note that for 7n 0 one has Tn(O) Tn- (0).

Next, let u 0, v t,+(0), w t;l(0) in (4.3). Then for 7, - 0

T(0)- T+(0)
T(0)- T._(0)

T.(0) r(t.+ (o))
Tn (o) T.(t; (0))

----( 0--7n+1 ) (--7n/Z--gn)o (--./) ..+x .
7+I (7n, "4- ZB,)

Hence

(4.8) T.+(0) T.(0) ""+(’ +
..(a. .) (T.(0) T_(0)).

It follows that

T-Tn(O) T<"+)(7n -+- zgn) i (Tm+x(O) T,(0))(Tx(0) To(0))
%(gn T(’+)) T.(0) T._I (0)m----1

T(n+l)(7n =..Zn) n-1 7mTl(Tm f= Zgm) ( 70 f= z71 )(4.9) %,(gn T<n+)) mH 7m(gm 7,+) 1 + /ozT
70

T<n+)(Tn +zgn)nix (7__m.+_.Zgm). z(1- 17ol2)
g, T(n+1) \gm 7m+1 1 +m--i

This formula is valid provided that Tn(0) -+ T and 7n # 0, m _> 0.
If we are dealing with a lpS, that is, if d, --+ 0, then gn -+ wl, as we shall show

in 5. In this case the factors in the product in (4.9) approach

7 -- ZWl
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For this expression we have

"}- ZWl ?.01 (1 + /ZWl WlW2Z/Z(1 + Z/ZWl
-O/(1 + /zw2)

1 + ZWl Ul
ro

1 + Z/zw2 u2

Introduce R’ so that 0 < R < R < 1, and set

n Wl gn -" 0.

Then

"/n + Zgn

gn ’n+l

=R

< R’ for n > N(R’).

In 6 we shall show that T(n) -o w2. Thus, finally, for lpS with Vm 0, m _> 0,
[z[ < 1 the following truncation error estimate is valid:

[T- Tn(0)[ < K(R’)Iw21 V -J- ZWl (R’)n-l, R < R’ < 1.

Note that if d= < oo and ICnl < oo, then IT- Tn(O)I < KRn.
Returning once more to the formula (4.3) and setting u T(n+l), v w2, w 0,

we arrive at

T Vn(w2) gn(T(n+l) w2) Wl(T(n+l) w2)(4.11) T- T(0) (g w2)T(n+l) (Wl W2)W2

which is valid for lpS with Izl < 1. From (4.11) it follows that {Tn(w2)} converges
faster to T than does {Tn(0)}.

5. Convergence of {gn}. We show here that g - Wl provided that dn --, 0
and g -w2 0 for n > N. This last condition will be satisfied at least for [z[ < 1.
We recall that g was defined in (4.2) and is

gn Tl(oo).

Its introduction was motivated by the substantial simplification that can be achieved
in the formula (4.1) if one sets z- g=.

In 4 we defined

T() (w t o... o t+m(W)n+mk
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Continuing in this vein, we now write

(5.1) (n)

and

C(nn)--i-mzw + -n+m
(nn mZw -- nTm

.() D() .() ()
(5.2) r(n) ,nm A(n) (n) -nTm d)(n) n+m
-+ F+,, -+ := F+, "’+ := F+, + +.

We obtain the expressions (5.3)-(5.6) by rewriting (3.6)-(3.9). We replace 0 by 9’n
and rearrange the "constant terms" as

U28m 8m--1 -- /n[8m--1 (U2 1)8m--1 + n/Sm--1 2t- U2rm,
(/zw2 + ")s,-i + u2r"

and similly for the other "constant terms." This leads to

(.3)

u2A(n)
2"-’nTm (’Z n/ZWl)Sm-1 Jr" 0.(2)

2n+m ----: (’n/ZW2 "- ’)8m--1 -}- 0.(3)

(5.6) U2.(n).+. =: (%z qzw)s._ + a(1

Here

m--1

0.(2) [nUlr
1

__
E (nTDTl/ZSm-lz-2t(n)+Sn++l(8m-t-2-UlSm-t-3)Fn+)’

m-1
() ()0.(3)n,m X/nu2rm -- E ($nT/z+l (U28m--iz--1 Om--i--2)n+l -- 6nTlTlZSm----211nTiz),D:0

m--1
() + 6.+,+(s_,_ us_,_3)U.+,).0.(4)n,m Ulrm-1 - E (6n+/+l/ZSm-p-2Xn+P

--0

One can write

gN gn+m Tgm() tm o...o ti(gn_l)

U+m gn-1 + n+m 1 n+mYn--1- n+m
(5.7) -() () z () C()+mZgn--1 T nTm +mgn--1 nTm

1 U(n) 2A(n)
Wn-}-mgn-1 2

z 2() ,2r(-)"Ut21-1+mgn_ ,.,,2. n+m
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Then

Hence

gn+m
Wl

_.0-(4) .--(,’Z--,’nZ,l)l)Srn_l--a(2)(/nZ--/ZWl)Sm--lgn--lv rntn....
(3)gn+m --- ([n/zw2_x[)sm_19n_1_{_frm,ngn_1_(/z,w2.jc.,n)Sm_l_a(1)

Wl (.4.n.)2Z)gn_l_(,n/__[ZW2)_, (1)
0
.(3) "--1)/8--1

Wl
(1-’/Z’W2)gn--l--(-’ZW2)’-nzw2gn--l--n -(a(4) gn--1 -a(2) )/)lSm--l/Z
(1TZW2)gn--1 ("/TZW2)+$nzw2gn----n--lan,m--a(a)n,mn-1)/sm-l’’

gn-- l--O2"l’(nZto2gn-- --n l--(O’(nl)mgn-- l--O’(n2)m)l--W

,0.(4) 0.(2) (1) if(3) 1)--t n,mgn-1 n,m)/WlZ " (0.n,m n,myn-

provided that [1/g-l] < 1, Wl 0, IW2/gn_l] < 1. We note that Wl 0 if and only
if 7 0, which we are excluding. Furthermore, for Izl < 1 the function t1 (u) maps
lul > 1 into Iwl > 1. Hence gn Tl(cx)) must satisfy Ignl > 1. Finally, for Izl < 1,

It follows that, at least for Izl < 1,

(5.8) Iwll max(l, Iw2l) ’j=14 ]0.n,m’(j)

I1 -w2/g,,-lll’Tu2l d,(lzw2l-]- 1)/(1 -/)- IO.(1)-,m’1 "",m"’(3)
A(n)I IH(n) ],From Lemma 3.2 and the inequality (3.11) one deduces that Ir(  ,l ,/

and (n) are, for 0 < # < m, all bounded by

C0 H (1 -[- ldn.l_v)

_
c,0(1 -]- Cldn)m.

v--o

Thus

4

< KRm + Omdn(1 + Cldn)mnr

Given an e > 0, we can choose me so large that

(5.9)
1+ < <

m m 4

where

0 < L := L(z) (1
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Note that we have

1/)2
1

gn-1

For a fixed me we then choose ne so that for n > Ne -me
1 1

Cldn < medn <

d,(Izw21 + 1)
1-R

We then have

W2

gn--1

It follows that

d,(Izw21 + 1)
n,me n,me 1-R

+K*Rm" + O*dnme(1 + cldn)m"

L
2

II-
/|d,(Izwl+ 1)

1-R\
/ I,(x) I+ ,) I)m ?’$

> (1- Izl)l’ul- (d,(Izw.l/l_R 1)
4- Io’(I) I-I-1o"(3)

L L

Ig.- Wll< e for N > Ne.
Hence gn converges to Wl, at least for Izl < 1.

6. Convergence of {T(n)}. We have

T(n) (w) lim ’r(n).+m(W), T(n) T(n) (0)

(see also (4.5)). We shall prove that T() - w2. The proof is an adaptation of a proof
of Perron [7, pp. 93-94] for the tails of a limit periodic continued fraction to lpS.

For periodic sequences, that is, when 7m 7 for all m, we use the notation

P ()(6.1) T +,(w).
From formulas (3.6)-(3.9) with im 0 for all m one deduces easily that

P
(wn)

P
(6.2) T lim T(nm(W)=W2, wCw, Izl<l.
Hence

(6.3)

T<") (w) w2 T<") (w)- <")
n+m

_(T(,)(w) T(n) P(n)
-,+.(w)) + (T(+)(w)- T ,+m(w))

+ ,+(o)- (,o)
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According to Schur [8, p. 211], one has for all Iwl < 1, Izl < a < 1

IT.(w) TI < X-a

provided that 17n[ < 1, n _> 1. The convergence of (Tn(_)m(W)} is thus independent of
the choice of the sequence {7n+,),%_-0. It is also independent of the values of z and
w provided that [z[ < a < 1, [w[ < 1 (and hence w Wl).

We now choose m so large that the terms in the first and third sets of parentheses
on the right-hand side of (6.3) are both, in absolute value, less than e/3 for a given
e > 0. The m found in the preceding is independent of n. It is then clear that we can
find an N such that

P (n) e/3 for > N.Tn(_)m(w)- T n+m(w) < n

This follows from the facts that T(n) (w is a continuous function of the m+1 variablesnTmk
7n,..., 7n+m and that %+m 7 as n --* o. Hence

(6.4) lim T(n) (w) w2
n--oo

provided that [z[ < 1, Iw[ < 1.
To find a truncation error for T(n) -w2 we proceed as follows. Let n be fixed and

m > n. Then

7 + zT(’+)
T(’0 T(’) (0) -tm o T(’+) (0)

1 + 6/,zT(’+)"
Recall (see (1.6)) that m-- + 6m. Let

(6.5) T(’) =:

In terms of these expressions we have, since -w/z + w2(z 1) + 7 0,

w. T(") w2

7 + 6m + zw2 + ZWm+i w2(1 + ’ zw2 + 6mZW2 + (q + 6m)ZW+i)
1 + /zw2 + 6mZW2 + (q + 6m)zwm+l

$, Smzw22 + ZWm+l (1 w2( + Sin))
1 + /zw2 + 6zw2 + ( + 6)zw+

Since m > n implies dm dn, we have

dn(1 + Izwl) + IWm+l(lz w2z + Iw2z]d.)(6.6) Il g

We would like to prove that there exists P 0 so that

(6.7) IWml < Pdn, m > n > no.

Our proof is similar to that given in [12].
We consider the inequality

(6.8) Pd. > d.(1 + Izw221) + Pd.(lz w2zl-4-Iw2zld.)
I1 + /zw2l- d.lzw21- d.P(ll + d.)lzl
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If dn 7t O, which is the only interesting case, then (6.8) is equivalent to

(6.9)
1 + Izwl + P(Iz- w2/z + Iw2zldn)P>

I1 4- 6/zw21 dr‘]zw21 dnP(19’l 4- d)[zJ"

Now set

(6.10) D :-]1 4- /zw21- Iz- w2/z].

Then, since 5/Z(Wl 4- w2) z- 1 for Ul I1 + 5/ZWll > O,

z w2z
1 + Z’tll2
1 + 5/zwl

1) [z w26/z]

1 I1 + /zwll 1 I1 + X[ZWll > O.

For dr, sufficiently small (so that the denominator in (6.9) is positive) the inequality
(6.9) is equivalent to

(6.11) P(D- 2d,lzw2l) p2d(lrJ-4-d,)lzl _> 1 + IzwNl.
Choose no such that for n > no(P)

l1 + /zw2J Jl + ff/zw2ldr, < 1, dr, < <
Izw l / P(I’ I / 1)lzl Izw21 / P(In, /

D Hi D2 D2

dr, < 41zw2, -r‘ < (171 + 1)lzl < (1")’1 + dr,)lzl’

Then

For

(6.12)

one obtains

PD
2

dl/2 < 16(1 + Izwl)"

P(D- 2dr,[zw2[) p2dr,(l[ + dr,)lz >_ PD 2 1/2 2Pdr, D
2

4(1 4- Izwl)
D

p2d1/2D2 2(1 + Izw221) 16d1/2(1 + lzwl)2 > 1 + Izwl.
Hence for this value of P the inequality (6.11) and thus also (6.8) are satisfied for
n>no.

Now hold both m and n fixed, m > n > no. Since we know that T(re+k) w2 as
k --. oc, we can choose k so large that

JW,,+kJ IT(m+k) -w2l < Pdr,.
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From (6.6), with m replaced by m + k- 1, and from (6.8) we have

dn(1 + Izwl) + Pdn(IzOw2zl + Iw2zldn)
_
PdnIWm+k-ll -- I1 + ZW21- dnlzw21- dnP(l’rl + dn)lzl

Repeating this argument k times, we obtain (6.7) or, writing it explicitly,

(6.13) IT(m) w21 < 4R(1 + Izwl)
IilI(I_R dn form>n>n0

for u 0. Note that u 0 if and only if I1 1. In that case D
P-- 4(1 / Izl)/ll + zl, and hence we have

(6.13)’ < 4(1 + Izl)
m > n > no, [3’[ 1.
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ASYMPTOTIC ANALYSIS OF SOME ASSOCIATED ORTHOGONAL
POLYNOMIALS CONNECTED WITH ELLIPTIC FUNCTIONS*

GALLIANO VALENTt
Abstract. For the two families of associated Stieltjes-Carlitz polynomials a generating function

is derived that allows the asymptotic analysis to be worked out and leads to the continued fraction.
The spectrum and the orthogonality measure do not seem amenable to a closed form except for
special values of the association parameters.

A similar analysis is developed for a particular class of associated polynomials related to a quartic
birth and death process; however, in this case the Stieltjes moment problem is indeterminate. The
author obtains a generating function that yields the asymptotic behavior of the related polynomials.
This result gives the Stieltjes transform of a Nevanlinna extremal orthogonality measure. For two
particular choices of the association parameters the reader is led to closed form results.

Key words, orthogonal polynomials, elliptic functions, asymptotic analysis
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1. Introduction. In this article we deal with the spectral properties of the poly-
nomials Fn(x) defined by the second-order recurrence

(1.2) F_l(X) 0, Fo(x) 1,

satisfying the orthogonality relation

(1.3)

where

1/0 d(x)Fm(x)F,(x)
7rm

AO Am--1ro l rm m= l 2
Pl Pm

One of the most important problems in orthogonal polynomial theory is, there-
fore, given an explicit form of {A, #=}, to determine the corresponding orthogonality
measure.

The knowledge of has an immediate application to birth and death processes.
As explained in [18] these are special stationary Markov processes whose state ,space is
the nonnegative integers. The probability :Pm,n (t) for the system to evolve from state
m at the time t 0 to the state n at time t is the solution of the forward Kolmogorov
equation

d

with the boundary condition
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The coefficients An (respectively, #n) are related to the probabilities of birth
n --+ n + 1 (respectively, death n -+ n- 1) by the relations

[:_1,()--- ,,,n,_l;

and will be restricted by positivity

An>0, n=0,1,...,

[:)n-{- 1,n (t) ]LSn.{- lt, t "-+

#0_>0, n>0, n=1,2,

We say that a process is asymptotically symmetric if we have limn-+oo (An/#n) 1.
The link with orthogonal polynomial theory is provided by the representation

theorem of Karlin and MacGregor [21], [22], which states that

In general, we have

7)m,n(t)
1 d,(x)Fm(x)Fn(x)e_X

7rm

T’,nn(;) _< 1, >_ 0,
n_>0

and the particular solution Pn(t) for which the equality holds is called the "honest"
solution with measure @*.

As emphasized in [18], for most applications the transition rates {An, #n} are poly-
nomials and, unfortunately, only for a few cases are we able to get their orthogonality
measure:

1. The asymptotically symmetric linear case

An n+ a, #n n+ b

was worked out by Askey and Wimp [5]; a simpler derivation was given in [20]. The
polynomials involved are the associated Laguerre polynomials.

2. The nonsymmetric linear case

An c(n + a), #n n + b, 0<c<1

has been analyzed by Ismail, Letessier, and Valent [20], who obtained the Stieltjes
function. The corresponding polynomials are the associated Meixner polynomials.

3. The asymptotically symmetric quadratic case

n n2 -t- an + b, #n n2 + cn + d

was worked out by Ismail, Letessier, and Valent [16], [17]. The relevant polynomials
are the associated continuous dual Hahn polynomials.

Very little is known for nonsymmetric quadratic rates, for a simple reason which
has to do with the generating function

".
n>0

In the asymptotically symmetric case, F(x, w) is the solution of a second-order differ-
ential equation leading to hypergeometric functions, while in the nonsymmetric case
we are led to a differential equation of Heun’s type, which can be solved explicitly
omy in some very oartiur cases IS], [Zl1.

Despite these difficulties two exact solutions are known which are due to Stieltjes
[]"
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1. For the rates

(1.4) An-k2(2n/l)2 #n=(2n)2, O<k2<1,

the Laplace transform of the orthogonality measure may be concisely written

Poo(t) d(x) e-x-
1 +o

2v o
dO dn (O,k2) e-021at

where dn is one of Jacobi’s elliptic functions of parameter k2. For all that concerns
elliptic functions we follow [36, pp. 491-528].

In order to extract the explicit form ofd it is sufficient to use the Fourier series
for dn given in [36, p. 511]

dn (O, k2) E1 cos(’O)
l>_0

with

Substituting this series into (1.5) and integrating term by term gives

/o Ed(x) e-: , e-:’,
/>0

which shows that this measure has for support the points x with the masses @, in
agreement with [10, p. 194].

2. For the rates

(1.6) An (2n-{-1)2 #n-k2(2n)2, 0<k2<1,

one has

P00(t) d(x) e-:- 1 +

2V o

dO cn (0, k2) e-O2/at.

Using the Fourier series of cn in [36, p. 511] gives

l_>0

with

vf (1 + 1/2)r 2r x q+l/2
K l’- k’--l+q2+l’ 1-0,1,...

in agreement with [10, p. 194].
Stieltjes derived these results for the first time using continued fraction theory [29].

Later, Carlitz [8] was able to obtain several explicit solutions of Heun’s differential
equation, which led him to the orthogonality measures. More recently, we gave a new
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derivation [33] of these results by solving linear partial differential equations for the
transition probabilities.

However, until now, the derivation of these deep results using asymptotic analysis
remained undone. It is clear that to fill this gap we need generating functions for the
associated polynomials and this is the main motivation of our work.

In 2 we consider the rates

(1.7) An k2(2n -{- 2c q- 1)2, #n 4(n + c)2 +
which reduce to the form (1.4) for (c 0,# 0). The differential equation for
F(x, w) remains of Heun’s type but is now inhomogneous. A suitable generalization
of Carlitz’s factorization technique [8] enables us to get a generating function for the
polynomials with rates (1.7). From this result their asymptotics and the Stieltjes
transform of the orthogonality measure follow.

For (c 0, # 0) we recover the results of Stieltjes and Carlitz. Another case
with (c 1/2, # 0) appears for which the measure can be given in closed form while
for other values of (c, #) this does not seem to happen; nevertheless, we can give an
approximate formula for the spectrum xn valid for sufficiently large n. On the way
to this result we obtain two elliptic generalizations of Euler’s beta integral that are
markedly different from their q generalization [14, p. 18].

In 3 we deal, along the same lines as in 2, with the case

An=(2n+2c+l)2 #n=4k2(n+c)2+k2#Sn0, n_O.

These rates reduce for (c 0, # 0) to (1.6). Here too there is a new closed form
orthogonality measure for (c 1/2, # 0).

The two new cases with closed form measures obtained in 2 and 3,

An k2(2n q- 2)2, #n (2n -{- 1)2,

and

#n k2(2n + 1)2,

do not appear in either Stieltjes’ or Carlitz’s work. We show at the end of 3 how
the corresponding measures can also be deduced by a completely different technique
which makes use of the duality transformation of Karlin and MacGregor [21].

In 4 we consider the rates

(1.8)
An (4n d- 4c -4- 1)(4n 4- 4c d- 2)2(4n d- 4c d- 3),

#n (4n d- 4c- 1)(4n d- 4c)2 (4n d- 4c d- 1) d- ino

whose Stieltjes moment problem is indeterminate for all values of (c, #) that ensure
the positivity of the rates. We are, therefore, in a very particular situation where the
polynomials Fn (x) are orthogonal with respect to infinitely many different measures.

Such a phenomenon is not new: the Stieltjes-Wigert polynomials [10, p. 174] for
which

An q-2n-1, #n q--2n (1-- qn O < q < l

give the simplest and oldest example of an indeterminate moment problem for which
large classes of orthogonality measures are known [9], [11], [3].
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Among all of these measures a one parameter family a, labeled by c E ]R t.J (oc},
is of greatest importance. It is the family of Nevanlinna extremal measures [1, p. 45],
[28, p. 60] whose Stieltjes transform is given by

+o d,(s) (A(x) C(x)
oo x- s aB(x) D(x)

where A, B, C, and D are entire functions of x constrained by AD- BC 1. A
theorem of Riesz ensures that for these and only these measures the polynomials
Fn(x) are dense in L2(da) [1, p. 45].

The computation of the entire functions A, B, C, and D and of the Nevanlinna
extremal measures for (c # 0) will be done elsewhere [7]. Let us point out that
such an analysis for the A1-Salam-Chihara polynomials in the indeterminate case has
been worked out by Chihara and Ismail [12].

Section 4 is devoted to the asymptotic analysis of the indeterminate Stieltjes
moment problem with rates (1.8). We first derive a generating function for the cor-
responding polynomials. This result is then used. to deduce the asymptotics which,
according to a result of Berg [6], lead to the Stieltjes transform of a Nevanlinna ex-
tremal measure for a definite value of the parameter a.

Closed form measures appear for (c- # 0) and (c- 1/2, # 0). The results
in the former case are in agreement with those obtained either in [32] and [33] or in
[7], while the latter case appears to be new.

2. First family of associated polynomials. We will denote by F,(c, #; x) the
polynomials defined by the second-order recurrence (1.1) with the rates

(2.1) An k2(2n + 2c + 1)2, #, 4(n + c)2 + #i,0, n _> 0,

where 0 < k2 < 1. The new parameters c and # have the following meanings:
(i) c is an association parameter with c > 0.
(ii) # is a co-recursivity parameter restricted by the positivity of #0 to #+4c2 _>

0. The polynomials for which #0 0 are referred to as zero-related polynomials [19,
p. 6761.

Let us first prove that for the allowed range of (c, #) the Hamburger moment
problem, and therefore the Stieltjes moment problem, is determined. This is the case
if and only if [1, p. 240] the series

E’ +...+

diverges. Due to the positivity of the rates An and #n this series is greater than

1

n>l

whose divergence is easily ascertained. This proof works also for the general quadratic
rates

An k2 (n + a)(n + b), #n (n + c)(n + d) + #6no,

provided that the rates’ positivity is ensured.

0<k2<l,
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It follows that the orthogonality measure is unique and that the Markov theorem
can be used to deduce the Stieltjes transform

(2.2) o dq(s)
lim

1 F_(c + 1, 0; x)
x s n-o/ F,(c, t; x)

The convergence is uniform for x in any compact subset of C\I, where I is the small-
est closed interval containing the support of , provided that the Stieltjes moment
problem is determined. In Szeg5 [30, p. 57] and in Chihara [10, p. 90] the technical
assumption that the support of is compact is added, but several proofs are available
without such an additional hypothesis [28, p. 110], [34, p. 243], [6].

It is precisely to work out the asymptotic analysis of the polynomials Fn(c, #; x)
that we need a generating function. To achieve this goal we will generalize the fac-
torization technique of Carlitz [8] to the case under consideration.

Let us first switch from the Fn(x) to the G,(x) defined by

G,
(2.3) Fo-Go, Fn-, n-l,2,

#1 #n

This gives for recurrence

(.) (, + ,, x)a,(x) a,+(x) + ,_,,V,_, , , ,.
with the boundary conditions

Go(z) 1, G1 () Ao + #o .
This recurrence can be factorized into

(2.5) d2n+ iv/d2n + tnd2n-1,

(2.6) d2n+2 ivd2n+l q- )tnd2n, rt O, 1,...,

provided that we take

(2.7) G,(x) d2(iv/), n 0, 1,

In order to secure the boundary conditions we take

1
(2.8) d-1- ivf, do- 1.

We take the branch of v/, which is positive for positive x, but let us observe that
d2(iv) and d2n+(ivf)/ivf are polynomials in the complex variable x.

It is then easy to show that relations (2.5), (2.6), and (2.7) imply the recurrence

Gn+I d2n+2 iv/d2n+ + And2n

ix/-(ivd2 + #d2-) +

+
()in q- gn x)Gn )n-ltnGn-1, n 1, 2,
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Using (2.5), (2.6) and (2.8) one can ascertain that Go and G1 are correctly reproduced.
Let us define two generating functions

(2.9)

(2.10)

t2n+2c
Do(x, t) Z (2n + 2c)’ d2,(iv/),

n>0

t2n+2c+l
Dl(x, t) Z (2n + 2c + 1)’ d2,+i (i/)n_>O

with the shorthand notation a! =_ r(a + 1).
Standard techniques give the differential system

(1 k2t2)OtDo k2tDo ix/D1 +

(1 t2)OtD1 tD1 ivfDo

(2c- 1)!’
0 t2c
i 2c!’ #o 4c + #,

and the change of functions

Z)o 7)
Do

x/1 k2t2’ D1 v/l, t2

leads to the more symmetric form

(2.11)

(2.12)

V/(1 t)(1 k2t2)Otl)o iv/T)l +

/(i’ t2)(1 k2t2)OtZ)l iv/-7)o

t2c-1/1 t2

(2c- 1)!
#0 t2c-lvi k2t2
iv

At that point the elliptic functions come in since we look for a new variable
such that

dO=
V/(1 t2)(1 k2t2)

Using Jacobian elliptic functions we take

(2.13) t
du

O(t)
V/(1 u2)(1 k2/’2)

to simplify (2.11), (2.12) to

The mapping O(t) is analytic for [tl < 1. Its analytic continuation to the whole
complex t plane is given in [2, p. 119]: it has branch points for t +l, +/-l/k and it
maps conformally the complex t plane into a rectangle with vertices +/-K, +/-K + iK
in the 0 plane.
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The system is easily integrated to

(2.14)
"Z)o(O) ducos(v(O u)) (2c- 1).t

+#o fo
cn u

duSin(/-(O u)) (sn u)2C dn u.
x/ 2c!

For complex t, and therefore complex 8, one should take for (sn u)2c and t2c the
same principal determination in order to ensure that t-2C:Do(O(t)) is indeed analytic
for < 1.

The value of T0 when c 0 is well defined and can be reached by a limiting
procedure which gives

sin(v/’(O u))
lim :Do(0) cos(vO) + # du dnu

in agreement with Carlitz’s result [8] for # 0. Technically speaking, Do and D1 are
solutions of an inhomogeneous Heun differential equation in the variable w sn2
which reduces for c # 0 to a homogeneous one.

As an application of the generating function (2.15) we extract the asymptotic
behavior of the Fn (c,/z; x) using the Darboux theorem [4, p. 12], [27, p. 309].

We first apply the operator tot to both sides of (2.15). We get

(1 + c)n (2n + 2c)
t2nZ (1/2 + c). ct. Fn(c’ #; x)

n>O

k2t-2c t-2c dl)o
(1 k2t2)3/20 +

(1 k2t2)X/1 t2 dO

from which we realize that the asymptotic behavior is controlled by the square root
singularity at t2 1 of the second term in the right-hand side (t 0 is only an
apparent singularity). The binomial expansion of the square root gives the asymptotic
behavior

2c! 1 (1/2)n(1/2 + c)n d:Do (0 K).Fn(c, p.; x) 2k,2 n + c n!(1 + c)n dO

In what follows Fn Gn has the precise meaning lim_.oo(F/G) 1. Plugging the
asymptotics into (2.2) gives

(2.16) o d(s) H(c + 1, 0; x)
x-s H(c,#;x)

c>_0, +4c2>_0,

with
K

H(c, I; X) -x/ dusin(x/-(K u)) (sn u)2e-1

(2c 1)!
cn u

g (sn u)2C dn u.+(4c2 + #) ducos("(g u)) 2c!’
If c > 1/2 an integration by parts gives the simpler form

(2.17) /o
K

H(c,#;x) ducos(vf(K- u)) (snu)2C-2 (sn u)2c ] dn u,+ # 2c!

Using (2.3), (2.7), and (2.9) we get the generating function
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2.1. Ergodicity and the measure jump at x 0. If #o 0 we see from
(2.16) that z 0 is a simple pole with residue o given by

c + 1 f[ du(sn u)2C+2dn u
0 c(2c + 1) f[ du(g u)(sn u)2C-lcn u

The change of variable t sn 2u in the numerator gives a beta integral and we get

4C j0(.lal 1/0 (1/;r/+ e( (’-"

he remaining ineal is noghing bu

dO d(sn)-cn

he chge of viables u sn0 d v u sn d use of Nuler’s ingeal repr
sengaion [la, formula 10, p. g9] for

I1

1/@o B(1/2, 1/2 + c)
du

if(1 u)(1 k2u)
2F 1 + c

k2u

Using [13, relation 2, p. 105]

F 1+c
ku (1- ku)/F 1+c

ku

and [15, relation 12, p. 850] eventually ves

F ( 1,1/2 + c, 1/2 +c(.) 1/o l+c,l+c ;k2 c0, 0k2 < 1.

This result checks the ergodicity of the process with o 0. It h been proved
in [21] that if

1

0 0

he corresponding birgh and death process is ergodic i.e., we have
0 and furghermore

2.20) lira
1 [

Now ghe lge gime behavior is controlled by he ms a 0 whose jump is

0. om (2.20) we conclude wih

1/0 .
Since we have

7rn (k2)n [ (1/2 W c)n ]2(1+c)n
this gives a check of the relation (2.19).
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2.2. The case c < 0 and a finite process. Until now we have supposed c > 0.
It happens that, for negative values of c, relation (2.16) remains valid provided that
we use Hadamard regularization of these integrals at u 0 (see, for instance, [4,
p. 45]). Such a technicality is necessary if one is willing to use the continued fraction
to study the finite population case with rates

)n 4k2(n p)2, # (2n 2p 1)2 (2p + 1)2in0, p 1, 2,

Since #0 0 and Ap 0 we have a finite birth and death process whose population
n evolves between 0 and p. It follows [35, p. 87] that the orthogonality measure has
for support finitely many points on the positive real axis, including x 0.

Using Hadamard regularization we have

a

lim duf(u) (sn u)c 1)p_lf(p_l)(- (0)

valid for a > 0 and provided that f(u) is C for u e [0, a]. (The superscript indicates
the order of derivation with respect to the variable u.)

It follows that for this finite process we have

-vf [sin(vfu)cn u] (2p-l) (0) + (2p 1)2 [cos(vfu)dn u] (2p-2) (0)

Defining the polynomials pl(k2) by

%/f [Sill(Vf)CIl t] (2p-t’l) (0)

U21
an u -’’’’)(-1)lp(k2)-57

l>_o

we obtain an explicit form of the algebraic equation for the support of the measure

P

v/ [sin(vu)cn u] (2p+1) (0) ------(-1)P(2p + 1)’ xZ 21!
/--0

xP--I
[2(p- l) -t- 1]!

which gives x 0 as expected. The remaining roots will be real and positive but it
seems rather difficult to get any explicit form for them.

2.3. Two processes with closed form orthogonality measure. There are
nevertheless two cases for which everything simplifies to a closed result; the first one
corresponds to c # 0. Relation (2.16) gives for the Stieltjes transform

1 /ovfsin(Kv/) ducos(v/(K u))dn u.

Both numerator and denominator of this fraction are entire functions of x. Its singu-
larities can only be simple poles given by the zeros of the denominator

sin(Kx/) 0.

The measure has therefore the discrete support

xn n-- 0, 1,...,
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and the masses n are the residues at the poles. An easy computation gives

]oCn du exp -,-- dn u, n=0,1,...,

which are the Fourier coefficients of dn u already given in the introduction. We con-
clude with the following theorem.

THEOREM 1 (Stieltjes-Carlitz). For An k2(2n + 1)2 and #n 4n2 the corre-
sponding polynomials Fn (0, 0; x) are orthogonal:

Z CtF,(0, 0; x,)Fn(O, 0; x) k2n (1/2)=)
2

>o \ n!

with

r 2r
xt 0,1,..., 0 -, Ct 1 +q21’ 1,2,

The second case where everything simplifies to a closed form result is (c 1/2, ]
0). Integrations by parts lead to the final form of the continued fraction

d(s) _-1-
X--8 cos(/K) dusin(-(K u))cn u.

Here too the measure is discretely supported:

(n / 1/2)r)
2

cos(Kx/) 0 === xn K
n 0, 1,...,

and the masses

Cn -- du exp -i(n + 1/2) cn u

are proportional to the Fourier coefficients of cn u given in the introduction. We
conclude with the following theorem.

THEOREM 2. For n 4k2(n + 1)2 and #n (2n + 1)2 the corresponding
polynomials Fn(1/2, 0; x) are orthogonal:

tFm(1/2,0;xt)Fn(1/2,0;xt) k2n ( n! )2
,>o (3/2)n

with

2r xt ql/l/2= k---l+q2+l’ l=0,1,
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2.4. Elliptic generalizations of the beta integral. We come back to the
relation (2.17), which can be written

H(, #; ) 1/2 (B(- , V;) + ,B(, v; )), > 1/2
using the notation

K (s)(2.21) B(c, /; k2) du 2c-------dn u eiv(u-g)

The change of variable 0 am u brings it to the form

B(c, vf; k2) dO (sin O)2e o du
K

2c!
exp iv/

V/1 k2 sin2 u

on which we recognize an elliptic generalization of Euler’s beta integral, which is
recovered in the limit k2 -0. Indeed, for k2 -0, we have

B(c, v/-; O) dO (sin
2e!

which is computed using [26, p. 8]

exp (ivf(O

(2.22) B(c, /r; 0) - r(1 + e + V/2)F(1 + e J/2)"

Therefore, when k2 0, we have the functional relation

[4c2 x]B(c, ’-; O) B(c- 1,; 0), c>O,

which is a first-order recurrence relation in c. For k2 > 0 this relation becomes a
second-order recurrence which can be derived from (2.21) upon integrations by parts
for c > 0:

(2.23)
[k2(2c + 1)2 + 4c2 xlB(c, /; k2) B(c 1, v; k2)

+k2(2c + 1)2(2c + 2)2B(c + 1, /; k2).

is
Another integral of interest related to B, which will be useful in the next section,

(2.24)
2K (snu)2c eiv(u_K)(c, v; 2) cn uau

2c!

These two integrals are connected by the relations

(2.25)
(2.26)

i/-B(c, v; k2) k2(2c + 1)2B(c + 1/2, /; k2) B(c 1/2, v/; k2),
ivfB(c, vf; k2) (2c + 1)2B(c + 1/2, vf; k2) B(c 1/2, v/; k2),

valid for c > O, and from which (2.23) follows as well as

[(2c + 1)2 + 4k2c2 x]B(c, Vf; k2) B(c 1, x/.; k2)
+k2(2c + 1)2(2c + 2)2B(c + 1, V; k2),
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valid if c > 1/2.
Let us use the preceding analysis to get an approximate form of the measure

support xn for c > 1/2. It is given by the zeros of H(c, #; x).
For k2= 0 relation (2.22) gives

xn 4(n + c)2 + #hn0 n 0, 1,

To improve this result we use the Fourier series [25, relation 2, p. 35]
e du 2Kl9
V/1 k2 sin2 u 7r

(.7) )+ (/9.) ( + 1/, + 1/ i(9.)
> l

(-k2/4)2F 21 + 1

2Kand we keep only the first term. It follows that / is rescaled to / and the
spectrum becomes

Xn #n n O, i,

This approximation becomes exact only for the two cases covered by Theorems 1
and 2. Taking further terms in (2.27) leads to complicated formulas of little interest.
One can ascertain the relation

:, , O(k,),

which indicates that we have obtained a good approximation to the spectrum for n
sufficiently large.

Let us observe, to conclude, that if we consider the zero-related polynomials, i.e.,
those with # -4c2, the continued fraction

fo d(.) S(, V; k’)
(.S) S(x) 10 B(- 1, V; k’) + .S(, /;)

(recall that here c > 1/2) can be reduced, using (2.25), (2.26), to the form

(+ /, v; k’)(.) S() 1 (+)( k)
which implies an exit relation between some spectra of 2 d 3, to be discussed
below.

3. Second fily of sociated polynomials. We shall denote by (c,; x)
(respectively, Gn(c, ; x)) the polynomials defined by the recurrence (1.1) (respectively,
(2.4)) with the rates

A=(2n+2c+l), =4k2(n+c)2+k20, n0,

with 0 < k2 < 1.
Let us first prove that both Hamburger and Stieltjes moment problems are deter-

mined. This follows from

n>l II nn II n>l
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and from the large n behavior of rn. This proof remains valid for the more general
quadratic case

An (n 4- a)(n 4- b), #n k2 (n T c) (n 4- d) 4- #in0 0<k2<1

if positivity is ensured.
Using the same factorization technique as in 2 and the definitions

$2n+2c
Co(x, t)

n_>o

2n+2c+1
Cl(x, t) E (2n + 2c + 1)! d2n+l (ix/),n>O

we get the differential system

2c--I
(1 $2)tC0 k2tCo ivfC1 4- (2c- 1)!’

#tO t2c
(1 k2$2)OtC1 tel i%/Co 4-

iv@ 2c!’ #to k2(4c2 4- #).

We define

0 C1Co v1 t.2., C1 v/1 k2t2,

and switch to the variable 0 defined by (2.13):

0 igCCl (sn{9)2e-1
(2c 1)!

dn O,

OoG ivo o (sn0)
/---j2co.

This leads eventually to

(3.1)
Co(O) ducos(x/(O 1)) (sn t)2c-1

(2c 1)!
dnu

duSin(v(O u)) (sn u)2c
+#o / 2c!

cnu

and therefore to the generating function

The limit c - 0 gives here

sin(x(0 u))
lim Co(O) cos(x/O) + k2#t du cn u

in agreement with Carlitz’s result for #- 0 [8].
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These results can be checked in a different way. Indeed, using the recurrence
relations, one can prove

From this we deduce

( xl)a(,,;;k:) (k) a ,,; V; V

Co(x, t; k2) (k2)---zDo kt;

Using the transformation theory of elliptic functions

sn (kx; 1/k2) k sn (x; k2),
cn (kx; 1/k2) dn (x; k2),
dn (kx; 1/k2) cn (x; k2),

one can see that (2.14) implies (3.1).
The asymptotics follow from Darboux’s theorem

1 (1/)(1/ +)(,;)Fn(c, #; x) k2n n!(1 + c)n
with

(2c 1)!
dn u

0

i(( -,)(

Since ghe Sgieljes momeng problem is degermined, ghe same mengs in 2 give

d(s)
X--8

uniformly for x E C\I. This reduces to

(3.2) oo d(S)x_ s

’(c -4- 1, 0; x)

7-/(c + 1, 0; x)

valid for c >_ 0 and # + 4c2 > 0. The extension of these results to arbitrary negative
values of c should be done along the same lines as in the previous section.

For c > 1/2 this can be reduced to

1 jo2K [ (sn u)2c-2 .2 (snu)2c ] eiV(u-K)(’;)
2i

d=
(2- 2)! + g

2! J cnu
i.e., in terms of the elliptic generalization of the beta integral (2.24)

[Z(_ ;) + ,Z(,;)].7-/(c, #; x) 2iv/
It follows that the continued fraction is

(3.3) ,.q(x) fo d(s) B(c, v; k

( , V;) + ,B(, v;)Jo
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Here too, for the zero-related polynomials (i.e., -4c), use of relations (2.25),
(2.26) gives

B(c / 1/2, vf; k2)(3.4) x,(x) 1 (2c / 1)2B(c 1/2,
which will be discussed later on.

3.1. Two processes with closed form orthogonality meure. For c
0 the continued action (3.2) reduces to

1 gduSin((K u))
cos(g)

cn u,

d by the se token which led to Theorem 2 we get the following theorem.
THEOREM 3 (Stieltjes-Clitz). For An (2n + 1)2 and n 4k2n2 the coe-

sponding polynomials -n(0, 0; x) are orthogonal:

-1 \(’(1/’2")n)2n,y(0, 0; )y(0, 0;)

with

71" ) 2 2 q/+l/2
( + 1/2)N k-- 1 + q+’ 0, 1,

The remaining case where everything simplifies corresponds to (c 1/2, u 0).
The continued fraction is then

d(s) k’
x- s k k2 sin(v/K) ducos(v/-(K u))dn u.

The technique already used for Theorem 1 leads to Theorem 4.
THEOREM 4. For n 4(n + 1)2 and #n k2(2n + 1)2 the corresponding

polynomials Jzn (1/2, 0; x) are orthogonal:

2tt’m(1/2, 0; xt)Tn(1/2, 0; ms) (3/2)n
/>o

with

()2 2r X ql
kK l + q+l 1=1,2,

3.2. Duality transformation. The duality transformation has been defined by
Karlin and MacGregor [21, p. 384] and gives a useful tool to relate processes with
different rates. Starting from

An, /*n, n_>0, #0=0

with orthogonality measure (x), its dual process has the rates
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with orthogonality measure *(x). Clearly, for the dual process we cannot have #
0.

It has been proved in [22, Lemma 3, p. 504] that, provided we deal with determined
processes (for which the Stieltjes moment problem is determined), the measures are
related by

x
d(x)(3.5) d*(x)- o

This result gives us the opportunity of checking the results of 2 against those of 3.
Let us first consider the rates of 2. In order to have #0 0 we restrict ourselves

to the zero-related polynomials with rates

An=k2(2n+2c+l)2 #n=4(n+c)2-4c2n0, n_>0,

whose Stieltjes function given by (2.29) is

(+ /, v; k)--S() k(+ ) (- /,V; k)"(3.)

Its dual process has for rates

( + + ) * k(+ + ), > 0,

whose Stieltjes function is given by (3.3), in which we substitute

# --+ 0, c --+ c + 1/2.

and reads

(3.7) 8*(x) _B(c + 1/2,; k2)
s(- /2,;)

Comparing (3.6) and (3.7) shows that relation (3.5) holds. In particular, for c 0 we
see that the rates of Theorem 1,

An k2(2n + 1)2, un 4n2,

are dual to those of Theorem 4,

An 4(n + 1)2, #n k2(2n + 1)2.

Similarly, if we start from the rates of 3 corresponding to the zero-related poly-
nomials

A,=(2n+2c+l)2, #n=4k2(n+c)2-4k2c2,0, n>0,

their Stieltjes function (see (3.4)) is

1
(3.8) 8(x) (2c + 1)2

Its dual process is

A 4k2 (n + c + 1)2,

B( + /, v; k=)
B(c 1/2, V; k2)"

#=(2n+2c+1)2 n>_0,
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whose Stieltjes function follows from (2.28) with the substitutions

# --, 0, c --, c + 1/2

and reads

(3.9) S*(x) B(c + 1/2, x/; k2)
B(c 1/2, x/; k2)"

Comparing (3.8) and (3.9) checks therefore with relation (3.5). Here too, for c 0,
we observe that the rates of Theorem 3,

An (2n + 1)2, #n 4k2n2,

are dual to those of Theorem 2,

An 4k2(n + 1)2, #n (2n + 1)2.

4. Associated polynomials for a quartic birth and death process. Let
us first consider the transition rates

An (n + al).-. (n + /-In (n q-- bl)’" (n -k- b4) + #6no.

We suppose that the positivity constraints are fulfilled. The corresponding Stieltjes
moment problem is determined if and only if [1, p. 237]

( 1)Z ’n -k-
n> n71"n

with here

(al)n’"(a4)n 4

nA-4, A Z(ai bi).7rn (i + bl)n"" (1 q-- b4)n n---.oo

For the Hamburger moment problem we use the necessary and sufficient condition
stated in 2. The analysis of the series involved is elementary and leads to the following
possibilities:

1. detH=vdetS:A_>3orA_<-l,
2. indet S = indet H: 1 < A < 3,
3. indet H, det S: -1 < A < 1.

In this section we deal with the polynomials n(c,/z; x) defined by the second-
order recurrence (1.1) with the rates

(4.1)
An (4n + 4c + 1)(4n + 4c + 2)2(4n + 4c + 3),

/. (4n + 4c- 1)(4n + 4c)2(4n + 4c + 1) + p6no

under the positivity constraints c _> 0 and # + 4c2(4c2- 1) > 0. Since we have
for these rates A 2 the Stieltjes and the Hamburger moment problems are always
indeterminate. Therefore, as opposed to the quadratic cases already encountered,
here we have to deal with a nonunique orthogonality measure.

In the particular case where c # 0 a one parameter family of orthogonality
measures has already been obtained in [32] and [33] and we quote it for the reader’s
convenience.
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THEOREM 5. For the transition rates (4.1) with c # O, one has the orthogo-
nality relation

0; 0; + 1
/>0

with

(lo)a (1 + a)r 2r2/(1 + a(-1))
x, l=0,1,..., 0 2Kg * Kg sinh(/r)

l= 1,2,

The parameter a is restricted by -1 <_ a <_ +1. The honest measure corresponds to
a=+l.

The constant K0 is the period of the lemniscate functions (elliptic functions with
modulus k2 1/2):

Ko K(k2 1/2)

It is therefore of interest to compare this result with the one given by asymptotic
analysis. Since there are infinitely many orthogonality measures and since, as we
shall see below, asymptotic analysis gives just one of them, how is this particular
measure characterized?

The answer can be found in [6]; for an indeterminate Hamburger and Stieltjes
moment problem the orthogonality measure given by

lim --1 n-l(C--1, O;x) _/?_ d(s)
n---oo i n(C, ; X) o g 8

is a Nevanlinna extremal measure corresponding to a particular value of the parameter
a defined in the introduction; this value is

1 1
O tnnn_>l

and we have supp()C_ [0, +[.
In order to work out all the details we need a generating function for the polyno-

mials n(c, tt; x) defined by the second-order recurrence (1.1) with the rates (4.1).
The basic idea to solve this recurrence for quadratic rates was a two-stepped

factorization; this generalizes to quartic rates with a four-stepped factorization of the
form

with

n-0,1,...,

j exp (ir/4), p xl/4.
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For complex x we take for p the determination which is real positive when x is real
positive; but it should be observed that dan is a polynomial in x. We impose

(4.2) Gn(x) dan(jxt/a), n O, 1,...,

and the boundary conditions

(4.3) d-2- 1/(jp)2, do 1.

Let us check that the relation (4.2) gives the solution of the recurrence (2.4). We have

Gn+I d4n+4 jP d4n+3 -t-. An d4n (jp)2d4n+2 "l-

(jp)ad4,+ + (jp)2#nd4n-2 + AnGn

(An x)Gn + jP#nd4n-i

(An + #n x)Gn + #n(jpd4n-1 d4n)

(A + # x)G ,h,-l# Gn-1, n O, 1,...,

and (4.3) implies

Go 1, G1 A0 +/to x.

Now we define four generating functions

4n.-l-4cq-I
(4.4) D(x, t) da+,Z (4n + 4c +nO

Standard techniques give he differential system

t4c-1
(1 t4)OtDo 2tDo jpDa

(4c- 1)!’
OtD1 jpDo O,

/to t4c+1

0, 1, 2, 3.

(1 ta)OtD2 2t3D2 jpD1

OtD3 jpD2 O,

which upon the change of functions

)0
(4.5) Do x/1 t4’

D1 =/91,

simplifies to

ivf (4c + 1)!’
#0 4c2 (4c2 1) + #,

D2 v/1 ta, D3 D3

t4c-1V/1 ta Otgo jp:D3
(4c- 1)!’

V/i ta OtT)l jp7)o O,
t4c+lV/1 ta 0t7)2 jpl)l ix +

V/1 ta OtZ)a jpD 0.
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At this point lemniscate elliptic functions appear when we define [36, p. 524]

1 fot du
t(O) sd (/0) O(t) v1 u

(in what follows we deal exclusively with lemniseate functions). For complex t the
function 0 is analytic, but for the branch points, t +l, +i.

This change of variable trivializes the system to

Oo:Do jp:D3 a(0),

0 jpVo o,

OoD2 jpDx b(O),

00:1)3 jp:Z)2 O.

(0) /’0 ;(0)4c+1

ivf (4 q- I)!’

We define four solutions of the homogeneous system by

(jpO)4n+le,(o) (4 + 1!’n>0

0,1, 2, 3,

from which we deduce

jCo foDx (0) du6 (p(O u))a(u) + du63(p(O u))b(u).

Observing that

(4.6) #l""#n 1 (I q-C)n
(4n + 4c + 1)! (4 if- 1)! (1/2 q- C)n

and using relations (4.4), (4.5), and (4.6) we obtain the generating function

(1 + c)n t4n+4c+l
(4.7) 2)1(0(t)) Z (1/2 + c)n (4c + 1)[ n(c, p; x), c _> 0, Itl < 1,

n_>0

where

() e(o(o(t) )) t()a-’ fo
(*) 6(o(o(t) )) t()+:Dl(0(t)) du

Jo (4c- I)! + #o du
(jo)3 (4c + I)!

with t(u) 22 sd (v/u) and p 1/4.
The remarks that follow relation (2.15) in 2 should be kept in mind: the deter-

minations of T)x (O(t)) and t4s must be chosen in order to have

t-av(o(t))

analytic for It[ < 1.
Taking the limit c -+ 0 gives

(1 (pO)
(0) Jp

sd (/u),
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which agrees, for # 0, with one of the generating functions already obtained in [24],
process P5 in this reference.

As an interesting application of the generating function (4.7) let us work out the
asymptotic analysis of the polynomials ,(c, #; x). We apply the operator tO to the
relation (4.7) to get

t4n/4c/I t-4c dl(1 + c)n (4n + 4c + 1) ,(c, ; x)(1/2 + c)n (4c + 1)’ 1 t4 d0
n0

Since t 0 is appent singulity, the newest singularity is that of the inverse
sque root. om Dbo’s theorem the leing behavior of the polynomials n is
given by the binomial expsion of this sque root:

(a + 1) (1/)(/ + )(,,;)(4.8) n(c, ; x)
4n + 4c + 1 n](1 + c)n

with

o() t(u)a- o() 6(0(0(1)- u)) t(u)a+(c, ,; :) du 6o (p(0(1) u)) (4c- 1) +0 du
().. (4c + 1)!’

where p x1/a and the constt 0(1) is just Ko/. om (4.8) we deduce the
continued tion

_[ d(.) (+ 1, 0; =)(a.9) x-s--(c,;=)’ c0, +4c:(4c-1)0,

We e now in a position to study the first orthogonality meure corresponding
to (c 0, 0). The denominator is merely

(0, 0; ) 0 go o go co go),
whose zeros give for support

= (n+l) n=O, 1,

he numeragor is simplified using ghe idengigy

d2 (t(u)3)(.) ()

followed by several inteations by parts and the chge of viable K0 u u.
We e le with

(jxl/4)2 e2k ]cnu.
This inteal is reduced, in the appendix, to the more convenient form:

,(1,0;X)
--i [fTKo4[_go

du cd u cos

_ cos ]
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When x is in the support of the second term vanishes while the first cal. be computed
using the Fourier series of cd u [36, p. 511]. The residues give the measure masses

4r2 (2n + 1)
02 sinh((2n / 1)r)’

n 0, 1,...

in agreement with Theorem 5 for a- -1. We have therefore Theorem 6.
THEOrtEM 6. For An (4n + 1) (4n + 2)2 4n + 3) and #n (4n 1) (4n)2 (4n + 1)

asymptotic analysis gives .for the n(O, 0; x) the orthogonality relation

with

(o. o; (o. o; +/>o

d2 5) d230t(u)7
du2 (t(u) + 20t(u)3 t(u)3 du---st(u)

and repeated integrations by parts to eventually get

1 oKdulxl/4Uolf)(3/2, 0; x) f)(1/2, 0; x) i0 x/
cn u.

The right-hand side integral, using the appendix, reduces to

4/ Lj_go
du nd u cos

u

+2sin(xl/4K2)K dusinh(X:u) ( de u scu)].
Here too the second term vanishes on the support and the first one is deduced from the
Fourier series for nd u given in [36, p. 511]. We conclude with the following theorem.

( r 4r2 (2n + 1)
x.= (2n+1)00 Cn=sinh((2n+l)r), n=0,1,

This measure is Nevanlinna extremal.
Let us observe that the derivation given in [32] and [33] does not settle whether

the measures in Theorem 5 are Nevanlinna extremal or not. From Theorem 6 we
know that this is the case for a -1. The description of all the Nevanlinna extremal
measures for the rates (4.1) with c # 0 is another work which demands the
computation of the matrix A, B, C, D and will be explained elsewhere [7]. For the
interested reader we mention a single result of this forthcoming analysis: among the
measures of Theorem 5 only those with a +1 are extremal.

A second closed form orthogonality measure is obtained for (c 1/2, # 0). The
denominator is

(1/2, O; x)
1 (xl/4Ko) 1 (xl/Ko) (xl/4Ko)(jxl/a)2 62 x/

sin sinh
2

which gives for support xn (2nTr/Ko)a n 1, 2, To simplify the numerator
we must use the relations
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THEOREM 7. For An (4n/3)(4n+4)2(4n+5), #, (4n+l)(4n+2)2(4n+3),
asymptotic analysis gives for the n(1/2, 0; x) the orthogonality relation

m(1/2, 0; x),(1/2, 0; x)
4n + 3 (3/2),

with

4 47r2 2n xnxn K0 ] " sinh(2nr)’ n 1,2,...

This measure is Nevanlinna extremal.
Let us notice that the process involved in Theorem 7 is dual to the process of The-

orem 6. As is obvious, the general relation between theirJcorresponding orthogonality
measures (3.5) does not hold since the processes are not determined.

5. Conclusion. We think we have pushed one step further the applications of
Carlitz’s factorization technique; let us observe that its successes are also linked to
the large body of knowledge gathered in elliptic function theory.

Further progress in the understanding of the quadratic birth and death processes
will require new ideas about solutions of Heun’s equation, an outstanding problem[

Despite the complexity of the spectra and the orthogonality measures for generic
polynomial transition rates, the more striking fact remains the existence of very partic-
ular rates for which closed form results can be obtained. We are only at the beginning
of the exploration of such an exciting field.

Appendix. Let us first recall the useful relations

0(p0) 1/4 [exp(3p0) + exp(-3p0) + exp(p0) + exp(-p0)],
(0) 1/4 [xp00) xp(-0) +xp(0) -xp(-)],

i2(pO) 1/4 [exp(pO) + exp(-gpO) exp(pO) exp(--pO)],
s() 1/4 [xpOe) xp(-) -xp()+exp(-)].

We are interested in

dO
I - -co (), =0,, = .

Using the preceding relations for the 5 this problem reduces to the computation of

+Ko

Z dOcn 0 exp(pO),
J -Ko

: Z(, --, -0,

which gives in turn

(z- )

We first go to the complex plane by the change of variable .0, which gives

f3KoZ dzcn (z) exp(-zOZ).
J --3Ko
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The integration path is the first diagonal from -3K0 to +3K0.
We then use the addition theorem for lemniscate functions [36, pp. 496-497]

c (z)
an(/) +, (z/)dn(zlv)

c(/C) + 1/2(/)
the duplication relations [36, p. 498]

1 + cn (/z)

2dn (x/z)

c,(/v)
cn 2(z//) + 1/2sn 4(z/v)
sn 2(z/v)dn 2(z/x/)

and the change of variable u vz to get

1 f+(l+t)Kodu"-- J--(14-z)go

1 cn U
exp(--au), a --P

dnu

Let us observe that the integrand is continuous at the boundaries +(1 + s)K0 because

dn (i + ’)Ko 0, c. (1 + ,)go -,.
but it cannot be split up into two pieces since each integral would diverge separately.

Using the Cauchy theorem we change the contour into three segments:

[--(1 + )Ko,-Ko], [-Ko, +Ko], [+Ko, (1 + )Ko].

Obvious transformations, including the use of Jacobi’s imaginary transformation, lead
eventually to the results

Io - La-K
du nd u cos

+2sin(xl/4K)foI’: (xlu) ]2
du sinh (/ dc u sc u)

and

12 4v/ LJ-K
du cd u cos
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ON THE RELATIVE EXTREMA OF THE JACOBI POLYNOMIALS
p(O,-) (),

R. WONG AND J.-M. ZHANG

Abstract. Asymptotic approximations, complete with error bounds, are constructed for the
P(’l) (cos 0) and P(l’)(cos0), as n c, which hold uniformly with respectJacobi polynomials

to e[0,0.78r] A corresponding approximation is also obtained for the zeros k, of P(’)(cos)
These results are then used to prove the following conjecture of Askey: If vk,n denotes the relative

extrema of the Jacobi polynomial Pn(’-D (x), ordered so that v/l,n lies to the left of ,n, then
Iv,,.-ll < Iv,,,.I for k 1,..., n- 1 and n--- 1, 2,....

Key words. Jacobi polynomials, zeros, relative extrema, uniform asymptotic approximation

AMS subject classifications. 33C45, 41A60

1. Introduction. Let -1 < Yn-l,n < < Yl,n < 1 denote the critical points
of the Legendre polynomial Pn(x), i.e., P(Yk,n) 0, and put Yo,n 1 and yn,n -1.
If #k,, Pn(Yk,n), then it was observed by Todd [13] and proved by Szeg5 [12] that

Now let Pn(a’) (x) denote the Jacobi polynomial. Szsz [10] showed that these inequal-
ities also hold for the relative extrema of P(n’’)(x)/P(a’) (1) when a fl > -1/2. In
[11, p. 190] it is stated that the same result for a > > -1/2 is probable, but still
open, and indicated that graphical evidence suggests that the inequalities in (1.1) are
reversed for the function

+
2

that is, if k,n are the successive relative extrema of P(n’-l)(x)/P(n’-l)(1) when x
decreases from +1 to -1, then we have

The problem of proving this conjecture is reiterated in a more recent paper by Askey
[2, p. 24, eq. (3.9)]. Establishing the inequalities in (1.2) solves a problem in Askey
and Gasper [3, pp. 722-723]; see also [2, p. 24].

The purpose of this paper is to prove this conjecture. Our approach is based on
asymptotic methods. In [9] and [16], we have succeeded in using these methods to
prove a conjecture of Szeg5 concerning the monotonicity of the Lebesgue constants for
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the Legendre series and a problem of Lorch and Szeg5 concerning the monotonicity of
the inflection points of Bessel functions. Here, we first derive asymptotic expansions
of k,, for large values of n, and then show that (1.2) holds for n > 25. The validity of
(1.2) for 1 < n < 25 can be established by direct comparison of the numerical values
of 12k,n

The present paper is arranged as follows. In 2, we present some asymptotic
formulas for .r)(’x) (cos0)n_1 and -(’)cos0)n- which are uniformly valid for 0e[0, 7r- ],

p(1,0) (cos 0) fore > 0. Then in 3 we derive asymptotic expansions of the zeros of
large values of n. Asymptotic expansions of uk,n are obtained in 4. The monotonicity
of the relative extrema uk,n is proved in 5, 6, and 7. Throughout this paper, it will
be assumed that n > 25.

2. Uniform asymptotic approximations of Jacobi polynomials. Using
the Liouville-Stekloff method, Baratella and Gatteschi [4] recently obtained an asymp-
totic formula for P(’)(cos) when -1/2 <_ a, fl _< 1/2, which is uniformly valid for
Oe[0, ]. Their method can be briefly described as follows. Let

(2.1) u(n’)(0) (sin )a+1/2 (cos -)+1/2pn(a’)(cos/?).
Then it is well known that u(na’f) () satisfies the differential equation

](2.2)
d2u 4 "dO---5 4- N2 4-

4sin2
+

4 cos2
u 0,

where

(2.3) N n 4- 1/2(a 4- 4- 1);

see [11, p. 67]. As in [4], we set

(2.4) A 1 4a2, B 1 4f2,

(2.5) a(e) - cot , b(e) tan -,

(2.6)

and

where

(2.8)

1
f(O) NO 4- 1-- [Aa(0) 4- Bb(0)],

F(O) F1 (0)+ F2(0),

1 Aa"’(O) + Bb’"(O)F1 (0) 16N2 + Aa’(O) + Bb’(O) 3[ Aa"(O) + Bb"(O)
4 16N2 + Aa’(O) + Bb’(O)
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and

(2.9)

F2(9) Aa’(O)O 4- Bb’(O)O- Aa(O) Bb(O)
2/93 16N 4- Aa(O)/O 4- Bb(9)/9

[1+ Aa’Og)9+Bb’(tg)9-AaOg)-Bb(9)]16N20 + Aa(O) + Sb(O) + [Aa’(0) + Bb’(/9)]2
256N2

Baratella and Gatteschi showed that the differential equation (2.2) can be converted
(,f)into a Volterra integral equation, and that un (0) satisfies

(2.10) -u(na’)(O) C1Ja[f(O)] - f’(t)]
A(t’O)F(t)u(na’)(t)dt’

where

(2.11)

and

(2.12) A(t, O)-- Jo[f(O)]Y[f(t)]- J[f(t)]Yo[f(O)].

Furthermore, they showed that for -1/2 < a,/ _< 1/2, the integral

(2.13) I - A(t, O)F(t)u(na’) (t)dt

has the estimate

(2.14)

O"N-a ( n + cz ) (O’O0812A +

01/2 N-a-1/2 ( n + a ) (O.OO526A + O.535B)n

O<O<O*

9" <O< -
and A, B are as given in (2.4). Regardingwhere 0* is the root of the equation f(0)

I as the error term, (2.10) provides a uniform asymptotic approximation for u(n’) (0),
1when -1/2 < c, < 3"

It is easily verified that (2.10) actually holds for cz > -1 and B arbitrary. Fur-
thermore, the argument of Baratella and Gatteschi [4] can also be used to derive the
following uniform asymptotic approximations for n-1

(0,1) (0) and t-n_ 1
THEOREM 1. Let n > 25 and

(2.15)
1 1

/’ (o) _= ,o + ,o,,"_---__ [,(o) :,(o)1 ,o- ]1 (o).

Then

(2.16) (0,1) [f (0)1
n-1 (0) {2-1/2 Jo[fl(O)] I},L/(o)J
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where

0.0577n-1/2,

O.3080n- 1/2,

22.739n- 1/2,

0 <_ 0 <_ 0.27r,

0_<0 _< r/2,

0 _< 0 _< 0.78r.

THEOREM 2. Let n > 25 and

(2.18) f2() ------ n + 1--n [-3a() + b(0)] _-- n + ().

Then

(2.19) n--1 () f(0)
{2--1/2 gl[f2(O)] I},

where

0.0294n-1/2, 0 _< 0 _< 0.27r,

II[ _< 0.1259n-1/2, 0 _< 0 _< r/2,
4.1103n-1/2, 0 _< 0 _< 0.78r.

From the Maclaurin expansions [1, p. 75]

0 03 (-1)-122nB2 ()
2n-1

(2.21) a(O) g + 8 :45 +"" + (2n)[
+’", 101 <

779

0 03 (-1)n-122n(22n-1)B2n()
2n-1

(2.22) b(O) + - +-.. + (2n)! +’’" iOl < ’’
it is easily seen that the functions ]1(0) and ]2(0), defined in (2.15) and (2.18), re-
spectively, and all their derivatives are positive and increasing in 0 < < r. This
fact, and some similar ones, will be frequently used later in our argument.

P(l’) (cos O). To derive asymptotic formulas for the zeros of3. Zeros of "n--1

Pn(’O)(cosO) we shall make use of the following result due to Gatteschi [5] as stated--1
in Hethcote [6].

LEMMA 1. In the interval [b- p, b / p], suppose f(t) g(t) / e(t), where f(t) is
continuous, g(t) is differentiable, g(b) 0, m rain Ig(t)l > O, and

E max I(t)[ < min{lg(b P)I, [g(b + P)I};

then there exists a zero c of f(t) in the interval such that Ic- bl Elm.
P(’) (cos O) will be divided into three cases: (i)Our discussion of the zeros of n-1

0 < 0 < r/2, (ii) 0 < 0 < 0.78zr, and (iii) 0.73r < 0 < r.
First we consider the case 0 < 0 < r/2. By Theorem 2, we have

{ 1 }(3.1) sin cos n-1 --J[f2(O)]- I
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for 0 _< 0 _< r/2, where

(3.2) III _< 0.1259n-1/2.

To apply Lemma 1 to (3.1), we let t f2(O), and take

(3.3) ’(t) /[(17) ] -1/2

(sin ) ’ (cs ) 1/2
p=(,0) (cos ).--1

Equation (3.1) then becomes

(3.4) f(t) J1 (t) -t- e(t)

with e(t) -vf I. From (3.2), it follows that

(3.5) I()1 0.1781n-1/2, 0 _< t _< f2(r/2).

Set

(3.6) pl 0.4006n-3

and let K be the largest postive integer k satisfying

(3.7) j,k + P <_ f2(r/2).

From (2.18), it is clear that

(3.8) j,k <
n +0"0001’ k-- 1,...,K1.

For each k _< K, by Taylor’s theorem, there exists (e(j,k p, j,k) such that

(3.9) la(j,- p)l > la.(j,,)lp- 1/21a.’()lpi.

Since g.()l < 1/ if a _> 1, using a recurrence relation and the Bessel differential
equation, we have

(3.10) lai’()l-< 1/4[laa()l + 31a()1] _< 2-1/2.

In [9, p. 163], it has been shown that

(-1)kJo(jl,k) 1,k 16Jl,k + 61,

where

I,11 < { 0.0582k-1/2, (k >_ 2),

0.0360k-1/2 (k _> 25).
Since Ji(ji,k)= Jo(jl,k), it follows that

_!

(3.11) IJi(j,)l -- 0.883jl, k

_
20.
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From the numerical values of J(jl,k) given in [1, p. 409], it is easily verified that
(3.11) actually holds for k >_ 1. A combination of (3.6), (3.9)-(3.11) gives

(3.12)
Jl(jl,k pl)l -> 0.7883 ]x 0.4006n-3 2 x (0.4006n-3)2

> 0.1781n-1/2 >_ E,

where
E max{le(t)l’jl,k Pl <_ t <_ jl,k -t- Pl }.

Using the same argument, it can be shown that

(3.13) E < IJl(jl,k + Pl)l.

Let
m min{lJ (t)l’j, p < t < jl,k + pl}.

By the mean-value theorem,

m _> IJl(j,)l- IJ[’()lm,

where e(jl,k pl,jl,k + pl). From (3.10) and (3.11) it follows that

} 0.7881Pl >

With g(t) J1 (t), the conditions of Lemma 1 are now all met, and hence we have the
following result.

LEMMA 2. For each k N K1 and n >_ 25, the .function f(t) given in (3.4) has a
zero tk satisfying

0.2260v/ji, k
(3.14) Jt- J,l < _E _< zm n2

THEOREM 3. Let O,n denote the root of the equation f2(0) tk. For each k <_ K1
p(1,0) (cos0) and satisfies O,n < r/2. Furthermore,and n > 25, Ok,n is the kth zero of n-1

(3.15) Ok,n
jl,k 1
n 16n2

where

(3.16) < 0.22633,n-].

Proof. For each k <_ K1, we have, by Lemma 2 and (3.7),

tk < jl,k + pl <_ f2(-).
Since f2(Ok,n) t and f2(O) is increasing, it follows that Ok,n < .
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We now rewrite Lemma 2 in the form

(3.17) t j, + e

with

(3.18) le21 <_ 0.22603V/,

and let

jl,k(3.19) e3
n

By the mean-value theorem,

f2(Ok,n) f2 (J-k ) -}- f(r)e3,

where y is between Ok,n and jl,k/n. In view of (2.18) and (3.17), f2(Ok,n) tk can be
written as

1 [-3a(Jk) In 1
16---- +b(-)] + + 16----62] 83=e2"

As a consequence, we have

(3.20) ={_ 1 [_3a(J k (j k e2

n [1 1

in view of the formula

(3.20) gives

1 x
=1

l+x l+x

(3.21) e3= 16n2[--3a(Jk)+b
where

1 .f2(Jl,k)] 1 /[ 1 ]16n2 --- i.6n2 ](r) 1 + i6n2 ](r)

Since /< (r/2)+ 0.0001, f(/) < 0.4318. From (2.21) and (2.22), it is also easily
shown that ]2 (0) < o0a" Therefore,

n
0.0270 [,e2l 1 (j__k)

3

]n2 --n-" + 480n2

The estimate (3.16) now follows from (3.8) and (3.18), and the asymptotic formula
(3.15) is obtained by inserting (3.21) in (3.19).
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From (3.3) and (3.4), it is evident that for each k, the root of f2(0) t is a zero
g}(1,0) ]D(1,0) (COS) satisfiesp(1,0) (cos 0). Since the kth zero Vn_l,k of- -1of *n--1

D(I’0) =Ok, thus(see [1 p. 787]), by comparing this with (3.15) we conclude that V-l,k
proving the theorem, r

p(1,0) (cos ) in a larger interval, weTo extend the result of Theorem 3 to zeros of. n-1
set

(3.22) p2 13.2n-3

and let K2 be the largest positive integer k satisfying

(3.23) jl,k -I- P2

_
f2(O.787r).

Since the proof of our next result is exactly the same as that of Theorem 3, it will be
omitted.

THEOREM 4. For each k <_ K2 and n >_ 25, the root 8k,n of f2(8) tk is the kth
(1’) (cos 8) and satisfies 8k,n < 0.78r: Furthermore,ze.ro of. n--1

(3.24) Ok’n--jl’kn 16n21[-3a(j--k)+b(j---k)] +e4’

where

(3.25)
9

141 _< 7.4349,kn-.
(l’) (cos O) in the interval (0.737r, 7r), we make use ofTo deal with the zeros of. n-1

the reflection formula [11, p. 59]

(3.26) 1,0)
-I (x) (-1)n-lP(n_’)(-x).

Let 7r- . Then from (2.1) it is easily seen that

(3.27) (_l)n_l. (1,0) (0,1)(0) (0).

By Theorem 1, we have

(3.28) (o,,) l’t/’n--1 ()
tfl (0) J

where

(3.29) III _< 0.0577n-1/2, 0.737r _< 8 < 7r.

Make the change of variable t- k (0), and let g(t) Jo(t) and

(3.30) f(t) Jo(t) +
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with

I()1- I < v/ x 0.0577n-1/2.

Furthermore, let

(3.32) P3 0.1814n-3

and K3 be the largest positive integer satisfying

(3.33) jo,k h-P3 <_ fl (0.277r).

Clearly,

(3.34) j0,___k < 0.277r, k 1,..., K3.
n

Using arguments similar to that given for Lemma 2, it can be verified that for every
positive integer k _< K3,

E max{le(t)l’jo,k pa < t < jo, + pa} < O.OSl7n-1/2
< min{lJo(jo,k P3)I, IJo(jo,k + P3)I}

and
m min{IJ(t) l" jo,k P3 < t < jo,k + P3}

>_ IJ(jo,k)l- IJ’()lp3 >_ 0.7976jo-,
where e(jo,k P3,jo,k -P/93). Hence by Lemma 1 and (3.34), we have the following.

LEMMA 3. For each k g K3 and n >_ 25, the function f(t) given in (3.30) has a
zero tk satisfying

(3.35) It- J0,l <
E _< 0.0943n_3.
m

The proof of the fo_llowing theorem is similar to that of Theorem 3.
THEOREM 5. Let Ok,n denote the root of f2(/) tk, and let On-k,n 7r- k,n.

(1’) (cos O) and satisfiesFor each k < K3 and n > 25, On-,, is the (n- k)th zero of.
_

O-k, > 0.737r. Furthermore,

(3.36)

where

=Tr--J0’---k+ a -3b +n 16n2

(3.37) 151-< 0.1025n-a-

4. Asympototic approximations of vk,n. In view of the identity [11, 4.21.7]

(4.1)
d pn(0,_ 1) _n ]o(1,0
d-- (x) 2" n- (x),
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/:(1,0)we know that the critical points of p(0,-1)(x) axe exactly the zeros of n-1 (x). Thus

the relative extrema vk,n of Pn(’-1) (x) are given by

(4.2) vk,n p(0,-1)(cos Ok,n), k 1,..., n 1,

D(I’0) (COSO). To obtain thewhere Ok,n, as we have shown in 3, is the kth zero of, n-1
asymptotic behaviour of vk,n, we first note that

(4.3) (0,-- 1) (0,1), () ,_ (),

which can be obtained from the reflection formula (3.26) and the identity [11, p. 64]

(4.4) Pn(-1’) (x)
x -2 1 .’(1’)n_1 (x).

By Theorem 1,

u(’-x)()
.f(o) {2-1/2Jo[.fx(O)l I},

where

(4.6) III< 0.3080n-1/2, 0 < 0 < 7r

2"

Thus, in view of (2.1), we have for k _< gl,

(4.7) vk,n [ fl (Ok,n) 1/2 1/2f(Ok,n)] (ct0---E) {2-1/2 Jo[fl (0k,n)] I}.

In the following, we shall derive the asymptotic expansion of each of the quantities
fl (Ok,n), [fl (Ok,n)/f (Ok,n)] 1/2 and JO[fl(Ok, n)].

By the mean value theorem,

where lies between Ok,n and jl,k/n. From (2.15) and Theorem 3, it follows that

1 [a(Jk -( e6,fl Ok n jl k + --nnn ) b )]+
where, in view of (2.18),

e6 nel 1--n 1() 16n2 )].
Since is between Ok,n and jl,k/n, by Theorem 3 and the inequality in (3.8), 0 < <
(r/2) + 0.0001 and I]()[-< 2.8109. Since ]2(0) < 03 as remaxked in the proof of
Theorem 3, we conclude from (3.16) that

(4.9) 7

161 0.2275x/,n-.
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In a similar manner, we have from (2.15),

1 [/l(Ok,n)/Ok,n]fl (Ok,n) 1

f’ (O,n) 1 1 .f (9,n)
The identity

then gives

1 x2

=l+x+
1-x 1-x

(4.10) fl(Ok,n)
f(Ok,n) Ok,n [1+ g2(Ok,n) + e’,]16n2

where

(4.11)

and

1 ’f109k’n)
256na 6k,n

l [](Ok,n)]2[1+ 16n2 Ok,n i6n2 ] (gk’n)]
From the power series representations (2.21) and (2.22), it is easily shown that ]’109)>
fl (O)/O and hence e > 0. Since Ok,n < and 2^fl () _< 1.7360 and ] (5) < 2.8106,
it follows that

(4.12) 0 < s, < 0.05n-4.

Applying Taylor’s theorem to (4.10), we obtain

(4.13)

where

1 1 {g209:,n)}2(4.14) e7 e S(1 +) 16n2 + e
and

o < < 16n2 + < 0.0002.

The last estimate follows from the fact that 0 < g2(0) < g2(-) < 1.0747 for 0 < 0 <2
Since the second term on the right-hand side of (4.14) is positive and smaller than the
first term, we have from (4.12)

(4.15) 0 < s7 < 0.025n-a.
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Inserting (4.13) in (4.7) yields the following result.

LEMMA 4. For k < K1 and n > 25, uk,n has the asymptotic representation

(’) [ + (,)(4.16) uk,n V 32n2

where

+] {Jo [(0,)] +

(4.17) gl (O) O cot

g2(O) is given by (4.11), ez satisfies (4.15), and

(4.18) lesl I- vII _< 0.4356-].

Our next result gives the ymptotic expansion of Jo [f (0k,n)].
LEMMA 5. For k K and n 25,

(4.19) 3

where

(a.2o)

Proo]. Put

191
_

O.0415)V/,lJo(jl,k)}n-].

787

h=
n

so that (4.8) becomes fl (0k,n) j,k + h. By Taylor’s theorem

h j)Jo [f (0k,n)] Jo(j,k) + J’(jl,k) +"" + (),

where lies between fl (Ok,n) d j,}. The expsion (4.19) now follows by letting

= o,) a -b J 1

lj,(j,)[(j- ) 1

h+ . (,) + J; ().

Using ghe differengial equagion and ghe recurrence relations for Bessel functions, ig is
eily verified

IJS’(jl,k)l I- Jo(jl,k)l IJo(j,)l,
1 1

IJa) (jl,k)l 1(3j- 1)J’(j,k)l IJo(j,)l,
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and

IJo()()1 <_ lJ()l + IJ()l + IJ()l _< .
Since Jo(jl,k) J(jl,k), by (3.11) we also have

1
IJo(jl,)l <_ 0.8971V,kIJ0(jl,)l.

Note that both b(O)- a(O) and [b(O)- a(O)]/O/s are increasing in 0 < < ’. Hence,
on account of (3.8), we have la(O)- b(O)l _< 0.7269 and la(O)- b(O)l/O/s <_ 0.6870 for

_< + 0.0001. The desired estimate (4.20) is now obtained by combining the above
results together.

In exactly the same manner, one can derive the corresponding asymptotic expan-
sion for K < k < K2. Thus we have the following.

LEMMA 6. For K < k < K2 and n >_ 25,

g(Ok,n) [1 +(4.21) vk,n / 32n2 + 0] {go [A(e,.)] + },

where gx(O) and g2(0) are as defined in (4.17) and (4.11), respectively,

(4.22) leol <_ 1.2978n-a

and

(4.23) lel-< 32.1585n-1/4.

.Furthermore,

where

(v)]J’(j,k) j kJ0 [f(k,n)] Jo(jx,k) + 32n2
a b

J"(j,) j j k+ a -b + el2
384n3

le21 < 12.48713v/,lJo(J,)ln-].

To deal with the case n- K3 _< k _< n- 1, we let, as in Theorem 5,

On-k,n 7r Ok,n.

By (3.35),

(4.26)

where

jO,n-k
On-k,n

n 161n2 [a (J’:-k)--3b (jo,.k)]

(4.27) 151 0.1025n-a.
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Applying the reflection formula [11, p. 59] and identity (4.4) to (4.2), it is easily verified
that

l/k,n (--I)n-l-1 tan
2

Since O-k,n < 0.277r by Theorem 5, it follows from (2.19) that

#,_,,,)
1/2

Uk,n (-1)n+l tan
2

where

(4.29) III< 0.0294n-1/2.

Using the same argument as that for (4.8), it can be shown that

where

(4.31) lel31 < 0.1029n-3.

Moreover, in a manner similar to that given in Lemma 4, one can obtain the following
result.

LEMMA 7. For k r g3,. n 1 and n > 25,

g3(n-k,n
u,, (-1)’+ 1 -t- ,4(On-k,n) -I" 14

where

(4.33) 93(0)---- 0tan

(4.34) b(O)
[14 (0) -3 ’[- T "-[- 3at (0) b/

and

(4.35) [141 <- 0.0001n-4.

5. Monotonicity of Uk,n: 1 < k < K1. Lemma 4 gives
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where

D1 gl (Ok,n)

(5.3) D2 32n2 + er(n) )2 5‘7(n / 1),32(n + 1

and

(5.4) Da J0 [fl(0k,,)] + 5‘8(n) Jo Ill(Ok,n+1)] 5‘8(n -" 1).

In (5.3) and (5.4), we have indicated the dependence of 5‘7 and 5‘8 on n. In what
follows, we shall estimate each of the quantities D1, D2, and D3.

By the mean value theorem,

D1 g’l (l)(Ok,n

where 1 lies between Ok,n and Ok,n+1. Thus, to estimate D1, it suffices to consider
g(1) and Ok,n Ok,n+1 separately.

LEMMA 8. For n >_ 25, we have

jl,k(5.6) Ok,n Ok,n+1 n(n -I- 1) + 5‘15,

where

jl,k
0.45263V,n- 2(5.7) 15‘151 _< 0"0414

n3 + 1) +

Proof. Let

a (e) o= +

cf. (2.18). Straightforward computation gives 2f= ($) 0.1148 and ] () 0.4318.
Therefore

(5.9) 0 < gs(0) _< 0.66142, 0 < _<
2"

By Theorem 3,

where

5‘15

In terms of g5 (0),

jl,k
Ok,n Ok,n+l n(n + 1) + 5"15,

1 (jk)16n2 [--3a +b

1 [_3a(Jl,,k )(jl,k )] (n-t-I)16(n+1)2 n+l
+b

n+l
5‘1

5‘15
1 [g5(j__k)_ jl,k

16j.,k, g5 ( r, ’q_ 1]
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By the mean value theorem again,

1 jl,kI1 <- 16j,k
gh()n( 1) + 2le(n)l,

where e (j,k/(n + 1),j,k/n). The final result (5.7) now follows from (5.9) and
(3.16). [:]

LEMMA 9 For 0 < 0 < -(.10) a, 1
() -Oal(O) 0;

and for k K and n 5,

(5.11) g(Ok,+) g(Ok,) 0.9890g1(0k,+).

Proof. om (4.17), we have

1 0

he inequalities in (g.10) follow om he expsion [1, p.

(.1
i0 + 0 +... + (_-1( 1)0

(n)
+..., 0 < 0 <

om (g.12), we also have

sin 0
1 9 (0)

(.la)
<- 1 (0) < 0.18179 (0).

By he me value heorem, here exists between O,n and O,n+ such

(.1) (o,) 1(0,+) + ()(o, -o,+).
(,oSince he eros of p,o)() interlace begween ghe eros of -1 (), we have 0,+ <

< 0,. Coupling (.la) and (.14) gives

1(0,) 1(0,+) 0.1alT(()(0, 0,+).
Since 91(0) is decreeing and 0,- 0,+ < 0.060g by Lemma 8 and (.8), (g.ll)
follows.

A combination of (.), (.10), (a.l), and (.) yields

(5.15)
1

Vl < -iXgl(l)(0k,n Ok,n-b1)
1 o- k,n+lgl(Ok,n)(Ok,n Ok,n+l)

< 0.9890{ jl,k 1 [_3a(J,k )(jl,k )]12 n + 1 16(n + 1)2 n + 1 + b + el
n+l

n(n + 1) + Sl5 gl(Ok,n+l)

0.0a24(1 + si) n(n + 1’(0’+) < 0,
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where

g15
n(n + 1)

jl,k
< 0.0895n-2.

The second to the last inequality in (5.15) is obtained by using (3.16) and the facts
that j, _> j, _> 3.8317 and (1/0)](0) < 0.1148 for 0 < < (r/2) + 0.0001.

We now proceed with the estimation of D2 in (5.3). By (3.15) and the mean value
theorem, we have

(5.16)

where

st6- g(v/){_ 116n2 [-3a (j___k)+b (jk)__]+}
and r/ lies in between j,k/n and Ok,n. Using the series representations (2.21) and
(2.22), it can be readily shown that g(O) is increing in 0 < < r. Therefore,
0 < g(y) < 2.2843 for 0 < y < + 0.0001, which together with the fact that

() < 0.1148 for < + 0.0001, yields

(5.17) i6l 0.0186
jt’k
3

Put 2(0) 02g2(0). By the same gument, it can be proved that (0) is increing
in 0 < 0 < r. Since g2(0o) 1.0749 and g2(0o) 2.2843, where 0o + 0.0001, it
follows that (0o) 9.0142 and

(0) 03(O) < 2.325403 0 < 0 < Oo.

Inserting (5.16)in (5.3) gives

D2 7(n)32j, .n+l]J
1 1

+ 32n2 e16(n) e7(n + 1) 32(n + 1)2 16(n + 1)

1 j,k 1

aej , + 1) + +
1

e7(n + 1) 32(n + 1)2 16(n + 1),

where j,k/n + 1 < < jl,k/n. Consequently,

(5.18)

"22.3254 Yl,kID21 32 na(n + 1)

_<0.0727
J,k

n4(n + 1)

+ + 16n2

+ 0.05n-4 + 0.0012Jl’k
n5

Finally, we come to the estimation of D3. In view of (5.4) and (4.19), we can
write

(5.19) D3 D32 j.D3 J)’(jl,k) + - (jl,k) + D33 + D34



RELATIVE EXTREMA OF pn(0’-l)(x)

where

(n+l)_2 [a (jl,k)-b( jl, )]2n+l n+l

793

(5.21) Da2=n-a[a(J---k)--b(J---k)]
a

n+l \n+l]

and

(5.22) D33 es (n) e8 (n + 1), D34 eg(n) s9(n + 1).

Put

(5.23) a (o) o= [=(o) =
and

gv(O) 03 [a(O) b(O)l3

Direct computation from (2.5) gives a(Oo)- b(Oo) -0.7268... and a’(Oo)- b(Oo)
-0.8106..., where 0o g + 0.0001. From the series representations (2.21) and
(2.22), it is also easily shown that both [a(0) b(0)] and a’(O) -/(0) are negative
and decreasing. As a result, we have

(5.25) 0 <_ g() _< 1.178353, 0 < < 00.

By a similar argument, we get

(5.26) 0 _> g(?) _> -1.284714, 0 < n < 0o.

From (5.20), it follows that there exists E (jl,:/n + 1,jl,}/n) such that

j21,k
n4(n - 1)"

The last inequality is obtained by using (5.25). In the same manner, we conclude that

--g7 ( jl,kn+l)
j,k < 1.28471Ig,()l

n(n + I) nh(n T 1)"

From (4.18) and (4.20), it is also evident that

ID331 _< 21es(n)l _< 0.8712n-1/2
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and
ID341 _< 2[eo(n)[ _< 0.083x/, IJo(/,)l n-.

A combination of these estimates yields

1.17835 1.28471
IDal < 32vf(n + 1) + 3

384n (n + 1)jl,k
0.8712 0.f83+ -2

31,k IJo(jl,k)l jl,kn n

,,11cf. the estimates of o (31,) and J"(jl,)in 4. Since IJ’(il,)l _> o.7883i/ by
(3.11) and j1,1 _> 3.831706, the last estimate reduces to

(5.27) ]Dal <_ 0-1481J2--’zk IJS’(j,)l

where

LEMMA 10. For k <_ K1 and n >_ 25, we have

and

Jo(jl,k) (Uk,n uk,n+l)

_
--0.0525 gl(Ok,n+l) < O.

Proof. By (4.19), equation (5.1) gives

x/(u, u,+l) [1 + 17(n)](1 + e18)Jo(jl,)D1
+ gl(Ok,n+l)(1 + els)Jo(jl,k)D2
+ gl(0k,n+l)[1 + s17(n+)]D3,

1 J)’(jl,k) j k
18 32n2 Jo(jl,

a b

[ (1 JD"(Jl,k) j k
a -" b

384n3 Jo(/1,)
8 + 9
Jo(j,)

Since g2 () < 1.0747 (see the argument following (4.14)), it is clear from (4.15) that

[e17[

_
0.0337n-2.

Using the fact that -0.7269 <_ a(Oo) -b(Oo) < 0, where 00 + 0.0001, it can be
easily shown that

lelsl _< 0.0444n-2;
see the arguments for (5.27). Therefore, from (5.15), (5.18), and (5.27), it follows that

x/
(, ,n+l) < -0.0824(1 -leil)(1 -I1)(1 -lesl)

Jo(jl,k)
J,x

n(n + 1)2glOk,n+l)t

+a(O,+)iD(1 + ]s)
]Da+ g1(0k,+)[1 + I( + 1)1] Igo(jl,k)]

"2

<_ O.05253 gl(Ok,,+l < O,
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thus proving the lemma. [:]

THEOREM 6a. For k <_ K1 and n >_ 25, we have

Proof. Let "’30,k denote the kth positive critical point of Jo(x). Since J)(x)
-J1 (x), we conclude that "3o,k --jl,k. Furthermore, since Jo(j),) < 0, we also have

sgn(J0(j,k)} (-1)k.

Next we prove that
sgn(vk,n)- (-1).

Since the function of y Pn(’-D (x) satisfies the differential equation [12, Thm. 4.2.1]

(1 x2)y" (1 + x)y’ + n2y O, -l<x<l,

and y(1) 1, at an extremum cos0k,n we have

Thus, each extremum yielding a positive value is a maximum, and each extremum
yielding a negative value is a minimum. Furthermore, putting x 1 in the above
differential equation shows that y(1) > 0. If there were an extremum after the
largest zero, there would have to be a positive minimum so that the graph could
rise to y(1) 1. But there cannot be a positive minimum. Therefore, the first
extremum (from the right) must occur between the two largest zeros. Since there can
be only one extremum between each pair of zeros, successive extrema (in decreasing
order) must alternate in sign. Since the first extremum is negative, this proves that
sgn(u,,n) (- 1), as desired.

Coupling these results together with Lemma 10, we obtain

(-1)k+: =sgn{uk,n uk,n+:} sgn {(sgn

for n _> 25. The desired inequality now follows. [:]

6. Monotonicity of Uk,n K < k <_ K2. In this case, we proceed exactly in the
same manner as in 5, except that we will make use of Lemma 6, instead of Lemmas 4
and 5, and Theorem 4, instead of Theorem 3. This will result in replacing s by t4 in
the second equation following (5.9) used to define 5. The notation Di, Dij, and s5
in this section will have the same meaning as those given in the previous one, except
that their estimates are now considerably bigger.

Using an argument similar to that given in Lemma 9, it can be shown that

g(Ok,n) >_ 0.9257g(Ok,n+), K1 <k_K2.

From (3.8), it also follows that

j,k >_ -n >_ 39.2699, K1 <k.
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Consequently, we have

D1 _< -0.0771(1 + e5 n(n + 1
< O,

]5J < 4.1369n-2,

J,
In21

_
0.8754n4(n + 1) + 0.4596 d- 2.5956n-a,

ID31] < 16.8243nan’k+1)’
[D32[ _< 74.6039

5(n -I- 1)’

]D33[ _< 64.3107n-1/2,

ID341
_
24.97423V,lJo(jx,)ln-],

"2

ID3] _< 0.3398-lJ0(jl,k)l.
The proofs of the following two results are exactly the same as those of Lemma

10 and Theorem 64, and hence will be omitted.
LEMMA 11. For KI < k <_ K2 and n >_ 25, we have

Vf (yk,n- ’k,n+l) <-O.O013-g1(Ok,n+1) < O.
Jo(jl,k)

THEOREM 6b. For K < k <_ K2 and n >_ 25, we have

7. Monotonicity of k,n "n- K _< k _< n- 1. Similar to (3.32) and (3.33),
we let

p 0.1814(n + 1)-3

and K be the largest k satisfying

1 ]1 (0.271")(7.1) jo,k+ + P3 <-- (0.277r)(n + 1)- 16(n + 1)
Since the difference/X,jo,k =_ jo,k+ -jo,k increases with k, jo,k+.. jo,k >_ jo,2- jo,1 >_
3.115252. By comparing (3.33) with (7.1), it can then be shown that K _< K3. Since
] (0.277r) > 0, we have from (3.34) d (7.1)

(7.2) jo,,-k < 0.27r and
jo,n-k+ < 0.277r.

n n+l
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Using the inequalitites [7]

8(.- 1/4)’
it can be proved that K _< 0.29n and-consequently

(7.4) jo,n-k < jo,n+l-k
n n+l

for n- K <_ k <_ n-1.

LEMMA 12. For n- K <_ k <_ n- 1 and n >_ 25, we have

-kr- 1/4r + (n + 1)Sn-k -nn+l-k
n(n + 1)

where

le19] _< 0.4803n-3

and

o< , <
8(,- 1/4),

m---- 1,2,

Proof. By Theorem 5,

jo,.+l-
On--k,n On+l--k,n+l -" e19,

n n+l

where

1 [a(J’-k n16n2 )-3b(j’n-k

797

1 [a(JO,n+l_k 3b(JO,n+l_k
16(n+1)2 , 7 )-- , ’’ )] +es(n+l).

In view of (2.15), we can write

( +11)2] I] (J’-)

(7.9)

1

16(n + 1)2
jO,n-k+l

_< 2lesI + n(n + 1)2
]1 :-

1 I/(1)116(n + 1)2
jO,n-k jO,n+l-k
n n+l
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where le(jo,n-k/n, jo,n+l-k/n + 1). The result in (7.3) can be written as

(1)j0,= m- r+6.,

where im satisfies (7.7). This gives

jo,,-k jo,n+l- -kzr 1/4zr + (n + 1)bn- nn+l-k
n n + 1 n(n + 1)

Using (7.4) and the fact that the difference Ajo,m =-- j0,m+l--jO,m forms an increasing
sequence (see [11, p. 20, Tam. 1.82.2]), it can be shown that

(7.11) jO,n-k j0,n+l-k
n n+l

3.1416
n

Inserting (7.10) in (7.8) yields the desired approximation (7.5). Since []1(0.27r)[ <
1.2115 and [] (0.27r)l < 1.6330. Substituting these estimates and (7.11) in (7.9), we
obtain the required inequality (7.6).

Now put

(7.12)

By Lemma 7,

(7.13)

{ 1 }(D 91. 1 + 32n2ga(O,_k,,) + sic(n) Jl[f2(,-k,,)]- X/-I(n)

+ g3(O-n+l-,n+l)’D2" {Jl[f2(n-k,n)]-
q- g3(On+l-k,n+l) 1 + 32(n + 1)2g4(n+l-k’n+l) + ’14( -- 1) D3,

where On-k,n - Ok,n (see Theorem 5),

D1 g3(0--,) ga(,+l-,+l),

(7.15)
1 (n-k,,) + ela(n) 32(n + 1)2ga(On+l-k’’+l) ’14(B -" 1),D2 32n2

ga

and

(7.16) D3 gl[f2(n-I-l-k,n+l)] /I(n / 1) / Jl[f2(,-k,,)] vfI(n)

As in 5, we shall first estimate the quantities D1, D2, and D3.



799

From (7.14), we have

(7.17)

where it can be shown by using (7.8) and (7.3) that

(7.18) n-k,n < 2 < n+l-k,n+l for n- K _< k _< n- 1.

LEMMA 13. For 0 < _< 0.27r, the function g3(O) in (4.33) is increasing and
satisfies

(7.19) 0 < gt(0) _< 0.2951g3().

Proof. Since g3(O) is positive and

(1 1)a (e) +

it is clear that g(O) is positive and hence g3(0) is increasing. From (7.20), we also
have

1 [1 1 2cos0 2]gt(0) g3() -- + sin2 0 sin2 0 - 0sin0

Using the series representations of (2.21), (2.22), and (5.12), it can be shown that

(1 1) 2(1 )
o

sin20 02 + -cot0 =l+Zc,0",
s--1

where c8 _> 0 for all s >_ 1. Hence for 0 < 0 <_ 0.27r,

1 1 2 cos 0 2
0 < --- + sin2 0 sin2 0 0sin0 -< 1.1801.

The result (7.19) now follows. D
By Lemma 13

"0 _< g3 (2) < 0.2951g3

for O-n-k,n < 2 < n/l-k,n+l. Inserting (7.20) and (7.5) in (7.17) gives

2

+ 19

In view of (2.15), (4.26) can be written as

jo,n+l-k 1
On+l-k,n+l 1 +n+l 16(n+1)2 ]l (jO,n+l_k ) n-I-1

n + 1
.+1 }+ e5

j0,n+l-k
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Since ]1(o)/o
_

1.4283 where o 0.27r, this yields

(7.22) O’nTl-k,n-}-I < 1.0002
j’n+l-
n+l n-K <_k<_n-1.

Coupling (7.21) and (7.22), we obtain

n + 1 { (k -k 1/4)r (n + 1)6n-k + 7n+l-kD1

_
g3(nTl-k,nA-1)

1.0002j0,n+l-k n(n + 1)

(7.23) _[_0.147693(O-n+l_k,n+l) I_ (k-I-1/4)7--(+,(,l)Sn_k_[_1)
-’7n+l-k -- 19 /2

where

njo,n+l-k i’{}002 +e2o < 0,

e20
n(n + i)19

(1.0002)[(k -I- 1/4)zr (n --t- 1)5n-k -!--

+ 0.1476. {

n(n + 1)

From (7.2) and (7.3), we have k+ 1/4 _> 0.73(n+ 1). Using this fact and (7.2) and (7.7),
it can be shown that

0.4053
(7.24) l2ol < n

To estimate 02 in (7.15), we write

D2 D21 T D22 + D23,

where

and

2 ( _[_ 1)2
g4(n-k,n),D21

1 / 1D22

D23 14(n) 14(n -- 1).

Using the series representations (2.21) and (2.22), it can be shown that both ]94(0)1
and [g()1 are increasing in 0 < 0 < r. Hence for 0 < <_ 0.27r,

I(o)1 _< 1(0.27r)1 _< 0.073
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and

Consequently,

Ig&(O)l IgI(0.27)1 0.1595.

14(o.-,.)1 0.0036

16n2(n+l) n3

and, in view of (7.8) and (7.11),

IDI -< 32(n + 1)2 O,+i-k,,+il <_

where (e(n-,,, ,+l-,n+l). From (4.35), we also have

lD231 < 2114 _< 0.0002n-4.

Thus for n- K <_ k _< n- 1,

0.0195
(7.25) [D21 <_

n3

Finally, we come to the estimation of D3 given in (7.16), which we shall write as

(7.26) D3 D31 4- D32

with

(7.27) D31 J[f2(O,-,,)] + J[f2(O,+l-,,,+)l

and

D32 -’I(n) I(n + 1),

where I I(n) satisfies (4.29). To estimate D3, we first recall the well-known
asymptotic approximation [1, p. 364]

- Tr) P(x) -sin (x- Q(x)]
where

(7.30) P(x) 1 + /l(X), 0 < ?l(X) < 18z-2,

and

3 105
(7.31) Q(x) xx + /2(x),

1024
x-3 < /2(x) < 0.

From (4.30) and the equation preceding (7.10), we obtain

(7.32)
{(cos on). P[f2(n-k,n)] + (sinon). Q[/(O-._,.)]},



802 R. WONG AND J.-M. ZHANG

where

1 [ (jo,n-k)(7.33) on n a
n

b 6n- e3,

6 satisfies (7.7), and e satisfies (4.31). We next present some preliminary results
concerning f(O-k,) and .

LEMMA 14. For n K k n 1 and n 25, we have

(7.34) 0 < f2(On+l-k,n+l)- f2(On-k,n) 3.1447.

Proof.The first inequality follows om (7.18) and the fact that f2(0) is increing
in 0 < < r. The ymptotic approximation (4.30) gives

f2(n+l-k,n+l) f2(n-k,n)
jo,,+- jo,,-

1 [a{JO,+_ {jo,+-k
4(n+1) )-b, ; )]
1 [a(jO,:k

Since jo,+-jo, < for all m 1 (see hemen for (7.11)) and 0 < b(O)-(O) <
b(0.27)- (0.27) < 0.08g, we obtain

In view of (4.al), ghis proves ghe second inequality in (7.a4).
LNM 1. Nor n K k n 1 nd n 2,

I(o-,) >

Pro4 om (2.15) d (2.16), we have

1 1
[()- ()] >

Therefore, (4.30) gives

(-,) > j0,- q j0,-
12n2

LEMMA 16. For n K k n 4 and n 25, we have

0.0002 0.0006
(i) ov ov+ n+l n-k-’

0.0139 0.0398
(ii) sin qon sin qon+[ <

n/l n-k-1/4’

(iii) IP[f2(O,-k,,)] P[f2(O,+l-k,,+)]l <_ 0.0191

(iv) IQ[fu(,-,,)] Q[$z(,+-,,+x)]l _< 0.0068.
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Proof. (i) From (2.21) and (2.22), it is easily seen that both b(O)- a(O) and
(0) -a’(O) are positive and increasing in 0 < 0 < . Straightforward computation
gives

(7.35) b(0.27r) a(0.27) 0.30842..., b’ (0.27r) a’(0.27r) 0.42909

By the mean value theorem,

COSn COS n-Fl (- sin)(o. n-Fl),

where lies between on and On+l. From (7.33), we obtain

1
la(0.27’) b(0.27’)lsin l <

1
+ ,, + l13l 0.01371.
8(n k

From (7.33), it also follows that

1 [a(jo+:4(n+1) \ n+l )-b(j’n+l-kn+x )]
(7.36) 41n[a(J’njk ) -b(J’k)]

Note that

0.0772 1 ( 1

n(n+l) -< n

1
nnT1)[a(J’vk) -b(J’n-k)] <0,

and that

1
O< 4(n-+l){[a(j’n-k)n -b(Jo’vk)]- [a(j’n+-k)n+l --b(J’--n+--kk, n+l )]}

1 [jO,n+l-k
4(n + 1)[a’(r/) b’(r)]

[
j0,- ] < 0.3371
n J n(n + 1)

in view of (7.11) and (7.35). Therefore the first term on the right-hand side of (7.36)
is dominated by 0.3371/n(n + 1). Furthermore, since j0,m+l -jO,m < r for all m _> 1,
we have from the equation preceding (7.10)

0 < n-k n+l--k <
1 0.0398

<1/4) 1/4"
Consequently,

0.0139 0.0398
n+l + -1/4n-k
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and
cos o= cos o=+l] <

(ii) Similar to (i), we have

0.0002 0.0006
n+l --1/4"

sin o= sin o=+ll < Io= o=+ll <
0.0139 0.0398
n+l _1/4n-k

(iii) Equation (7.30) gives

Since r/l(x) is positive and f2(O) is increasing, we also have from (7.30) and Lemma
15

IP[$(o,-,.)l- P[f2(Or,+x-k,n+l)][ <_ [f2(On-,n)]-2 <_
128(jo,n_k)2,

which, in view of (7.3), yields

IP[h(t=-,.)l- P[h(@=+-,.+x)]l < 0.0119 0.0191- 1/4) (.- +

(iv) Similarly, since rm(x) is negative and f2(O) is increasing, (7.31) gives

3 f2(On+t-k,n+t)]Q[$(o.-,.)I Q[f2(On+l-k,n+l)]l <_
f2(O-n+l-k,n+l)/2(n-k,n)

+ 1024105 [f2Cn_k,n)]_3.
By Lemmas 14 and 15,

IQ[/’(o,.-,.)] Q[f(o.+-,.+)]l <_ o.oo6s,

thus proving the lemma.
Returning to (7.27), we write

(7.37)

where

(7.38) D(3])=Ji[f2(On-k,n)]’{1--[f2(On+l_k,n+i)] }
and

D(32)=[ f2(n-,n)]1/2 J[h(o.-,.)] + J[h(o.+-,.+)].
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By Lemmas 14 and 15,

805

0<1-[ fu(,-k,,) ] 1/2

3.1447

jo,,+-#[1 + vljo,,-t/vljo,,+-k]

for n- K _< k _< n- 1. We now restrict k to the smaller range n- K _< k _< n- 4.
For k in this range, we have from (7.3)

v/ {jo,n-k > n k 0.25 > O.8882.
jO,n+l-k rl k -t- 0.7527

Hence

0_<1- [ fo(8"-k,n)= ] < 0.5310

fO(On-I-l-k,n-I-1) n- k --[-

and

(7.40)
0.5310 IJx [f(o-,.)]l n-K <_k<_n-4.

Inserting (7.32) in (7.39) gives

D3(21 (-1)n-k+1. 7rS2(n+-_k,n+i)

{cos o.. P[f2(-k,n)] cos o.+1 Plf2(n+l-#,n+l)]

sin on Q[f2(On-k,n)] sin On+l

which in turn yields

ID])I-< ry(,+_,.+)
{I co o. co.+I Plf2(n-k,n)]

+ sin o,,+1" IO[Y(O,,-,,,)]
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Now we apply Lemma 16 and approximations (7.30) and (7.31). Since
In+ll, it follows from (7.33) and (7.35) that

((o.ooo o.ooo ) [n+l
1+

+(n 0.0191k+a3_)2+ (0.01390.0398)0.1194tn+l n-k-1/4 n-k-1/4

+ (0.0773n+1 n-k+1/4
x0.0068

< (0.0008n+l

for n- K _< k _< n- 4. From (4.30), we obtain

(7.41)

J[f2(n-:’n)]-l-J(J’n-k) l [a(J’v: (J’V e3gl(jO,n-k) gl(jO,n-k)(’ ) -b k)]- )
1 J’() 1 [a(Jo, (jo,k

where lies between jo,n-k and f2(On-k,n). As in Lemma 5, it can be shown that

1
(7.42) IJ (jo,n-k)l IJ (jo,n-)l

.O,n--k

and

3 1
ij3() < 1

(7.4a) Igi’()l <- lJi()l + .
From [9, p. 166], we also have

(7.44) (_l)k+jo,kj(jo,k)_(j1/2 1_-)0,k + 10J0,k + 62,

where

which in turn gives

0.1251k- k > 2,

0.0819k-, k _> 25,

(7.45) J (jo,)l > o.777,, >_ 20.
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The numerical values of J1 (j0,k) given in [1, p. 409] shows that (7.45) in fact holds for
k > 1. Since [b(0)- a(0)] is positive and increasing in 0 </9 < r, a combination of
(7.41), (7.42), (7.43), and (7.45) yields

IJ[f2(,_k,,)]l >_ 0.99981J(jo,,_k)l >_ 0.7975(j0,n_k)-1/2.

Therefore by Lemma 15,

(7.47) [D(3) <_ (0.0009n+l
0.0069
n-k +-

From (7.37) and (7.40), it follows that

IDs I _< (n_k+1/40"5379 0-’0--00-9 
]

The estimation of D32 in (7.28) is considerably simpler. From (4.29), (7.46), and
(7.45), we have

0.0832 n-
ID321-< 2/lI(n)l <

0.9998 IJl(jo,n-k)l
IJl[f2(n-k’n)]l

(7.49) <_ 0.1044/J’:-an-alJx [fz(,_,,)]l
<_ 0.0002

n + 1
IJ[f2(-k,)]l.

In the last inequality, we have also made use of (3.34). Coupling (7.48) and (7.49)
gives

(7.50) ID31<ID311q_ID321< ( 0.5379 0.0011)n- k + + IJx[f2(-’)]l"
n+l

LEMMA 17. Forn-K < k < n-4 and n > 25, the quantity D in (7.12) satisfies

D 0.1747< g3(On+l-k,n+l) < O.
Jl(jo,n-k) n- k + -Proof. Similar to (7.46), one can show from (7.41) that

(7.51) IJl[f2(On-k")]l < 1.0002
IJl(jO, - )l

and, in view of (7.44),

(7.52) sgn{Jl[f2(On-k,n)]} sgn{J1 (jo,n-k)} (--1)n-k+1.

Since ga(0.277r) < g4(O) < 0 and [ga(0.277r)l 0.0573, it can be shown from (4.35)
that

{1 + 32n21 g4(On-k,n)+ ela(n)} >0.9999_
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and
1 }32(n + 1)2ga(On+l-k’n+t) + eta(n + 1) _< 1.0001.

By (4.29) and (7.45), we also have

/lI(n)l < / ljo,-k. 0.0294
0.0001,

IJx(jo,,-k)l 0.7977 ., na

from which it follows that

( J’l[f2(O-n-k,n)] V/’l(n) }J1 (jo,n-k Jl (jO,n-k
0.9997

and

{J[f2(O=-k,n)]_ /(n) } < 1.0003
J(j0,.-) Jx(j0,.-)

on account of (7.46) and (7.51). Now insert these estimates in (7.13) and make use of
(7.23), (7.25), and (7.50). The result is

D (k + 1/4)Tr (n + 1)n-k + nSn+t-k
Jt(jo,,-) <- njo,+t-.

0.9831

0.0195
x 1.0003 +n3

0.5379

n-k+
-I-0.0011n+1 )" g3(n+l-,,n+l).

Since (k + 1/4) _> (0.73n) by (7.02), using (7.3) and (7.7), we obtain

D { 0.7138 0.5378
Jt(jo,,-k)

< /
0.0014 }+ (0.+_,.+),

_<_ 0.1746_
+ ](+_,+) < o,

thus proving the lemma. D
LEMMA 18. For k n 3, n 2 and n 1, and for n >_ 25, the quantity D in

(7.12) satisfies
D 0.1038< g3(On+l-k,n-I-1) < O.3Jt (jo,n-k) n- k +

Proof. The numerical table in [1, p. 409] shows that the remainder im in the
equation preceding (7.10) satisfies

0 <_ it _< 0.0487, 0 _< i2 <_ 0.0223, 0 _< i3 _< 0.0144.

Hence we have from (7.23)

D1 _<- (- ). + 1/4.- ( + ) 0.0487

[(n k + 1/4)r + 0.0223] n
x 0.9835 x g3(n+l-k,n+l)

0.8461

n-k+
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By (7.25),

0.0195
IO21 < n3

Similar to (7.40), (7.47), and (7.49), one can also verify that

< 0.6069
3n-k +-

1D3()1<(0.0085+ 0.0884 )n + 1 n-k+- IJl[f2(n-k’)]l’

and
0.0002

ID321 < IJl [f2(n-k,n)]l.n+l

As in Lemma 17, the final result now follows from (7.13). D
THEOREM 6C. For n- K < k < n- 1 and n > 25, we have

Proof. As in the proof of Theorem 6a, it can be shown that

sgn{Jl(j0,n-k)} (-1)n-k+1

and
sgn{u,n} (-1).

Hence by (7.12) and Lemmas 17 and 18,

8gll{lk,n Ilk,n+1} (-1)’+sgn{D)

809

(--1)’sgn{Jl(jo,,_k)} (-1)+1

for n > 25. Therefore
sgn{l ’k,.I- -1,

and the theorem is proved. [3

8. Conclusion. We are now ready to state and prove the following main result
of this paper.

THEOREM 7. For n 1, 2,... and k 1,..., n, we have

Proof. From the reflection formula [11, p. 59] and the identity in (4.4), it is easily
seen that

p(0,-1) (x) x / 1 r(0,1)

Since Yn,n --1, we have un,n 0, i.e., (8.1) obviously holds for k n. Therefore we
need to consider only the case k 1,..., n- 1 and n 2, 3, For 2 < n < 25, the
validity of (8.1) is evident from the values of uk,n, which can be obtained by direct
computation. (A numerical table of these values is available upon request.)
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For n _> 25, the results in Theorems 6a, 6b, and 6c show that (8.1) holds for
1 <_ k <_ K2 and n- K <_ k <_ n- 1. Thus, to complete the proof, it suffices to show
that

(8.2) n- K _< K2-t- 1.

We shall prove this by contradiction. Assume that (8.2) is not true. Then there exists
a positive integer k0 such that either

(8.3) k0>K2 and k0<n-K,

or

(8.4) k0>K2+l and k0-1<n-K.
If (8.3) holds, then by (7.1) and (3.23)

(8.5) jo,,+l-ko > 0.27r--
1 ]1(0.27r) P

n + 1 16(n + 1)2 n + 1

and

1 P2(8.) ,o > 0.S + .](0.TS)
n 16n2 n

Adding up (8.5) and (8.6) gives

(8.7) jl,ko jo,n+-ko > 1.04997r.
n n+l

On the other hand, it follows from (7.3) and the inequality [7]

jl,k

_
(k -}- 1/4)Tr, k- 1,2,...,

that

(8.8) jl,ko jo,n+-ko < 1.0388r,
n n+l

which contradicts (8.7). A similar contradiction results if (8.4) holds. This completes
the proof of the theorem.
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TOWARDS A WZ EVOLUTION OF THE MEHTA INTEGRAL*
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Abstract. The celebrated Mehta integral is shown to be equivalent to a simple algebraic-
differential identity, which is completely routine for any fixed number of variables.
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Askey [As] proposed the problem of proving the Mehta (see [M]) integral identity

(Mehta)
21 exp(--x/2 xnl2 H (xi-xj)2Cdxl""dan- H (cj)!

without using Selberg’s integral (see [M]). This problem was solved by Anderson [An].
Here we use the method of [WZ1] and[WZ2] to initiate another Selberg-free proof
that we believe is of independent interest. We show that (Mehta) for any given n is
equivalent to the following elegant identity (d := n(n- 1)/2):

(Mehta’)

02 1 0 0

li<jSn 15i<jn

H
ls<rn

(Mehta) is purely routine for any specific n, but at the time of writing we are unable
to prove it directly for general n. Of course, we do have a proof, since we e going
to show that (Mehta) and (Mehta) e equivalent, but what we are aer is a direct
proof. The author is offering a prize of 25 US dollars for such a proof.

The present method also obviously extends to the Macdonald-Mehta inteal [M],
whichw proved by neckner d Regev [BR] for the clsical root systems (see [M]),
by Gvan [G] for the exceptional root system Fa, and by Opdam [O] for E6, ET,
and Es. It follows that the present approh should also yield new proofs for all
the exceptional root systems, at let in principle, but most likely in practice also.
More important, it seems to have a high chance of producing a uniform, intrinsic,
clsification-independent proof. We leave to the reader, an instructive exercise,
the tk of finding the root-system analog of (Mehta) that is equivalent to the now-
proved Mehta-Macdonald conjecture, and we offer an additional 25 dollars for an
intrinsic proof.

Our proposed proof of (Mehta) will be a de,ration rather than a vefication,
and will follow the method of [WZ2]. Let us call the len of (Mehta) i(c), and the
inteand F(c; x,..., xn). We know from the general theory of [WZ2] that for some r

Received by the editors April 2, 1992; accepted for publication (in revised form) May 11, 1993.
Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122. This work

was supported in part by the National Science Foundation.
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and some rational functions P1,..., Pn, in (c, xl,... ,xn), and some rational functions
in c, a0(c),..., at(c),

(wz)
O

(PiF).a(c)F(c + s; xi, ,x,)
8=0 i=1

Let us be optimistic and try out r 1. Without loss of generality, set al := 1.
Substituting F in (WZ), performing all differentiations, and dividing throughout by
F leads to the following equation for Pi and a0:

(1) ao +
l<i<j<_n i=1 i=1 i=1

To be even more optimistic, assume that Pi are polynomials, rather than mere rational
functions, in their dependence on (Xl,... ,xn), and are furthermore the components
of the gradient of another polynomial P, i.e., P OP/Oxi, i 1,..., n, for some
polynomial P. Equation (1) then becomes

If we can find such a polynomial P, and compute the corresponding a0, then
it would follow from (WZ), upon integrating with respect to x,...,x,, that L(c)
satisfies the recurrence L(c + 1) -ao(c)L(c), which combined with L(0) 1 would
enable one to find L(c). Note that the mere existence of a0, which we will shortly
prove, is given by the left side of (Mehta’) and implies that L(c) is of closed form,
which from a theoretical point of view is almost as good as knowing what it is exactly.

Let us write P as a sum of its homogeneous parts

2d

P E P(j)’ P(J) homog, of deg. j,
j=2

where, as above,, d equals n(n- 1)/2. Denote the operator inside the braces of (2) or

(Mehta’) by Z. Using Euler’s formula, we get

(3)

2d 2d 2d

ao+ H (Xi--Xj)2 E ZP(J)-EJP(J) (-2d)p(2d)+E(ZP(J)-(J-2)P(J-2))"
l<_i<j<_n j--2 j--2 j--2

By equating corresponding homogeneous parts, we get

(4)

p(2d) _(2d)- x 2 Zp(j)H (xi-j), p(j-2) 1

x_<i<j_<
j 2

j 2d, 2d-2,...,4.
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It is easy to see that Z maps homogeneous symmetric polynomials to homoge-
neous symmetric polynomials, and that it reduces the degree by 2. Iterating (4) and
comparing the constant part of (3) finally yields that both P and a0 indeed exist, and
that

ao___(2dd!)_lzd[l<_i<j<_nH (Xi--XJ)2]
Hence Mehta’s integral is indeed expressible in closed form, and proving that its value
coincides with the value implied by (Mehta) amounts to proving (Mehta’).

The referee empirically noticed the following generalization. For a, any positive
integer, we have

02 1 0 cO
(Mehta") +2c Z x, xj Ox, Oxj H (x, x)2a

i=I l<_i(j<_n

2ad(da)!n!a H H (rc + s).
2_r_n (s(ra,sytOmodr

It turns out that (Mehta") follows from (Mehta) exactly the same way as (Mehta’);
just replace c by ca, in (Mehta), and repeat the argument! In particular, it follows
that (Mehta’) implies (Mehta"), albeit indirectly, via (Mehta).

Acknowledgment. Many thanks are due to Herb Wilf for countless discussions
and inspiration.
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ASYMPTOTIC STABILITY FOR INTERMITTENTLY
CONTROLLED NONLINEAR OSCILLATORS*

PATRIZIA PUCCIt AND JAMES SERRIN

Abstract. The authors prove a number of asymptotic stability theorems for intermittently
damped quasi-variational systems, extending and generalizing previous work on the subject.

Key words, global asymptotic stability, intermittent damping, control set
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1. Introduction. The problem of global asymptotic stability of solutions of sec-
ond order equations with intermittent damping has been studied by Smith, Thurston
and Wong, Artstein and Infante, and Hatvani and Totik. In this paper we givevarious
generalizations of this work and extensions to quasi-variational systems.

As in our earlier work [51, [7’] on asymptotic stability, we consider vector unknowns
u J --. ]RN and systems having the general form

(1.1) (V(t, u, u’))’ V(t, u, u’) = Q(t, u, u’), t e J,

where g is a half open interval of the form IT, cx3) and (t, u, p) G(u, p)-F(t, u), and
where G, F, Q are given continuously differentiable functions. The most important
of the conditions which will be imposed on (1.1) are that

(1.2) G(u, .) is strictly convex in ]IN; G(u, O) O, TG(u, O) O,

(1.3) (VF(t, u), u) > 0 for u 0; F(t, u) O,

< 0.

Here (., .) denotes the inner product in lRN and

V Vp Opl"’" OpN Vu i)Ul’’’’’ OUN
The function F represents a restoring potential and Q a general nonlinear damping,
expressed by (1.4). In 2 we shall give a complete set of hypotheses, while explicit
examples are given in [5] and [7].

Since VG(u, O) VG(u, O) VF(t, O) Q(t, u, 0) 0 it is clear that the rest
state u 0 is a solution of (1.1). This state is said to be a global attractor for the
system if any bounded solution u, defined on some interval J, has the property

o t

By the concept of intermittent damping we mean that certain restrictions or
controls are placed on the damping term on a sequence of nonoverlapping intervals
In [an, bn] of J, with an --* cx; on the other hand, in the gaps between these in-
tervals either no restrictions are imposed or, alternatively, the damping is assumed
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to be bounded from zero but to be otherwise uncontrolled. We emphasize that the
intervals In may be arbitrarily widely spaced, leaving gaps between them that can be
as long as one wishes.

Our purpose is to show that under appropriate conditions on the measures Ilnl
and on the damping term Q(t, u,p) for t UIn, the rest state u 0 becomes a
global attractor for (1.1).

From a mechanical point of view the system (1.1) can be considered as the gov-
erning law of a holonomic dynamical system, having N degrees of freedom and subject
to nonlinear damping. The notion of intermittent damping then occurs if the system
is positively damped in the time intervals In, but has its damping either switched off
or unrestricted at other times. The system is oscillatory when no damping is present,
because (f(t,u), u) > 0 for u 0; that is, it is not possible to have any solution,
other than the trivial one u 0, approaching a limitas t -- oo (see [5, 5] for a more
complete discussion). From this point of view the question we consider is whether the
damping which occurs on the time intervals I is sufficient to drive the solution to
its rest state as t --. oo. The following example provides a specific illustration of this
situation in perhaps its simplest form.

Consider the system

(1.5) ut’ + a(t, u, ut)u + f(u) O,

where A is a continuous N x N nonnegative definite matrix and f(u) X7uF(u). This
system arises from (1.1) by the specializations

G(p) 1/2 Ipl2, Q(t, u, p) -A(t, u, p)p.

We suppose that (f(u), u) > 0 for u # O, and that A is bounded and uniformly
positive definite for t I UI= and (u, p) in any given compact set of
no restrictions, however, other than nonnegativity, are placed on A in the set J \ I.
Then the following rather unexpected result holds:

If the measures o] the intervals In satisfy

then u 0 is a global attractor for (1.5).
The exponent 3 is the best possible one: that is, without further restrictions no

smaller exponent can yield the general conclusion.
A stronger result is valid if the damping matrix A has the decomposition

(1.7) A(t, u, p) B(t, u, p)I + B(t, u, p),

where B(t, u,p) is bounded and nonnegative definite for t e J and (u,p) in any
compact set of Rg RN; the coefficient/3(t, u,p) is such that for every compact set
K of RN RN there exist positive constants B1,/52 such that

(1.8) [3(t,u,p) >_ /1 in J x K,
(1.9) B(t, u,p) _< /2 in I x K.

Then u 0 is a global attractor for (1.5) provided that

(1.10)

Again the exponent is best possible.
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The above results are special cases, respectively, of Corollaries 3 and 4 in 3; see
the comments at the end of 3. Indeed, in those results the damping need not even be
bounded on I but only have a controlled L1 norm. Moreover, the constant fl in (1.8)
can be replaced by a nonnegative measurable function & satisfying a positive mean
value criterion; see condition (2.13) below.

References [1]-[3], [8], and [9] treat the case N 1 of (1.5); moreover, in [8] the
coefficient A is independent of u, u and f(u) is linear. Our results are improvements
of the corresponding ones in these papers, even when restricted to the cases treated
there.

In 2 we present the setting of the paper and state two important preliminary
theorems upon which our further results are based. The main results for the system
(1.1) are given in 3 and proved in 4 and 5. In 6 we present specific examples,
showing that the exponents 2 and 3 in the above results are best possible.

2. Preliminaries. We consider vector solutions u (Ul,..., uN) of the quasi-
variational ordinary differential system

(2.1) (VG(u, u’))’ VG(u, u’) + f(t, u) Q(t, u, u’), t

where V denotes the gradient operator with respect to the variable p and

f(t, u) VF(t, u).

It will be supposed throughout the paper that

G E CI(RN RN; R), F E CI(j RN; R), Q e C(J RN RN;

and also that the following natural conditions hold.
(Hi) G(u,.) is strictly convex in llN for all u e llN; with G(u,O) 0 and

VG(u, O) O. For all U > 0 there exists a positive constant O(U) and an
exponent m > 1 independent of U such that

(2.2) for all lul < U and IPl 1.

(H2) F(t, 0) 0 for all t J. For all u0, U with 0 < u0 _< U there exists a
constant a > 0 and a nonnegative function L1 (J) such that

(2.3) (f($, u), u) > t when t e J and ]u e [u0, U],

(2.4) IFt(t, u)l < (t) when t e J(a.e.) and lul u.

(H3) (Q(t, u,p),p) < o for all t e J, u e IR and p e IRN.
If F does not depend on t, then (2.3) follows from the condition (f(u), u) > 0 for
u # 0, while (2.4) is irrelevant. Finally, when N 1 any function f is of gradient
type, with F(t, u) f f(t, s) ds.

Obviously (Hi) is satisfied by any strictly convex homogeneous function G G(p)
of degree m > 1, and in particular by the model function G(p) Ipl/m, m > 1;
another example is G(p) v/1 + Ipl 2 x, with m 2. The system (1.5) arises when

1/21pl 2, with the corresponding exponent m 2.
The next hypothesis places in evidence the concept of a control set I C J where

the damping term Q is subject to restrictions.
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(H4) For all U > 0 there exists a measurable control set I c J and a number
such that

IQ(t, u,p)l" [pl < 71(Q(t, u,p),p)[ for all t e I, [u < U and p e IRN.

Moreover, there exists a positive measurable damping function 6 I --. R and numbers
#, q > 0 such that

(2.6) (Q(t, u, p), u) < 5(t)Ipl" for t e I, lu] < U and IP] < q.

Although I, 6 and 7, t, q may depend on U, for simplicity we do not specifically
indicate this dependence. When N 1 condition (2.5) holds automatically with

In [5] we considered the asymptotic stability of the system (2.1) when the damping
magnitude IQI is controlled from below, but not bounded away from zero. Specifically
the following condition was required:

For every U > 0 there exist a nonnegative measurable damping control a I --. R
and an exponent u > 0 such that

[Q(t, u,p)[ >_ a(t)min{1, [p[} for all t e I, lul _< u and p e RN.

A further technical hypothesis concerning the function G was also assumed:
For every U > 0 and p0 > 0 there is a constant such that

(2.8) (VuG(u,p), u) < Const. (VG(u,p),p) whenever lul < U and IPl > P0.

Note that (2.8) holds whenever G(u, p) g(u)G(p), with g(u) > 0 a smooth function
in ]1(N and satisfying (Hi).

Under the natural assumptions (H1)-(Ha), together with (2.7) and (2.8), the
following result is valid; see [5, Thm. 4.2] and the modified version of this result
proved in 3.2 of [4]. This will be the basis for the first main theorem in 3. In
its statement we agree that the function 6k is extended to all of J by the definition
6(t)k(t) 0 for t e J \ I.

THEOREM A. Assume that for every U > 0 there exists a bounded absolutely
continuous function k on J such that

(2.9) keLP(J), k O on J \ I,

(2.10) 0 _< k _< Const. a on I, ]k’] <_ Const. aXk-x a.e. on I,

where

m--1

(2.11) A v + 1 if v > m- 2,

1 if (and m > 2).

Suppose furthermore that there exists a constant M > 0 for which

th(s)k"+l(s)ds <_M k(s)ds t e J.(2.12)

Then the rest state u 0 is a global attractor for the system (2.1).
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In [7] we also studied asymptotic stability for the complementary situation in
which the damping magnitude IQI is bounded from zero when lul and IPl are bounded
from zero. In parqcular, the following condition was assumed:

There is (i) "ontinuous function o:N lt(N -- [0, oo) with

(u,p)>0 whenu0andp#0;

and (ii) a measurable function (} J --. [0, oc) and a positive function a on (0, 1)
satisfying

(t) dt >_ a(ILI) > 0 for all intervals L c J with ]LI e (0, 1);

such that for all U > 0 there holds

(2.13) I(Q(t, ,p),)l>_ (t)(,p) for alt e J, I1 <- u and Ipl-< q,

where q q(U) > 0 is given in (Ha).
This is in fact condition (H3) of [7], in the weber version involving (ii) which

w given in 7 of [7]. (In this context, condition (ii) w first introduced by Hatvani
[2].) If Q(t, u, p) (t) (u,p) and ((u, p), p) < 0 for u, p # 0, it is ey to s that
(2.13) is satisfied.

Two rther technicM hypotheses were introduced in [7]; they e required only
when N > 1, though in ft the second, (V2), automatically holds when N 1 with
(p) O, g(u) u2 d C 0 in view of (H) and (n3); see also [7, Lemma 2.1].

(V1) For all U > 0 and p0 > 0 there is a nonnegative meurable function
h L1 (J) such that

I(Q(t, u,p),p)l h(t) for all t e J, lul U =d IP[ p0.

(V2) For M1 U > 0 there ests a continuous nction e) with e(0) 0, such
that

(Q(t, ,),) ()

when t J, ]u U, ]p q d (VG(u,p), u) O. Moreover, there exists a C1

nction g(u) and a constant C 0 such that

(v(),) (v(,) ) (,)<C
Ipl IVV(u,p)l Ipl

when lul u, Ipl q =d (VG(u,p), u) < 0. Again q and e given in (2.13).
It is worth noting that (V) is satisfied if the vectors p, VG(u, p) and -Q(t, u, p)

all have the same direction when p # 0.
Again under the natural hypotheses (H)-(Ha), =d also suming (V)-(V2) and

(2.13), we have the following result; see [7, Thm. 2], its extension in 7 of [7], and the
modified version of this result proved in 3.1 of [4].

THEOREM B. Suppose that for all U > 0 there is a bounded absolutely continuous

Iunction k on J such that (2.9), (2.12), and

Const. k2-m, 1 < m < 2,
(2.14) Ik’l a.. J,

Const., m 2,

are satisfied. Then the rest state is a global attractor for the system (2.1).
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Theorem B will be the basis for the second main theorem in 3. Now let

H(u, p) (VG(u, p), p) G(u, p)

be the Legendre transform in the variable p of the action function G(u,p). The
following observation shows that, when

(2.15) H(u,p)--.oc aslpl--,cx3

uniformly for u in compact subsets of llN, then several of the earlier hypotheses can
be weakened, while (2.8) can be omitted entirely.

We first recall that solutions of (2.1) have the property that

H(u(t), u’(t)) + F(t, u(t)) -. limit as t --, oo.

see [5, (3.7)] or [7, Lemma 5.1(i)]. Hence in turn, since F(t, u) > 0 by (H2), the
function

H(u(t),u’(t))

is bounded along any solution u u(t), t e J. Thus by (2.15), for any bounded
solution of (2.1) the function u’(t) is also bounded on J.

It follows that in applying the hypotheses of Theorems A and B for any given
bounded solution of (2.1), one can restrict consideration to compact subsets of vectors
(u,p) in ]RN ]RN. In particular, when (2.15) holds, the condition (2.5) can be
weakened to the following form:

For every compact set K in ]RN ]Rv there exists a measurable control set I c J
and a number - > 1 such that

(2.5)’ IQ(t, u,p)]. ]p] _< "y [(Q(t, u,p),p)] for all t e I and (u,p) e K.

Analogous restatements of (2.7) and (Vl) also hold when (2.15) is assumed. Finally,
(2.8) is automatically satisfied when lu < U and po < IPl < P, with the constant
depending only on U, P and po. Thus (2.8) can be omitted if (2.15) holds.

We conclude the section with a useful estimate.
LEMMA. Let (2.5)-(2.7) hold. Then for all U > 0 there is a positive constant

c c(U) such that

(2.16) 5(t) > ca(t) for t e I.

/f (2.5), (2.6), and (2.13) hold, then for all U > 0 and v e (0, 1) there is a positive
constant d d(U, ) such that

(2.17) [L--j1 L 5(t)dt >_ d for all intervals L c J with ILl >_ t.

Proof. Fix V > 0. By (2.5) and (2.6), with u -p and ]p[ min{1U, q} r > 0,
we get

5(t) Ipl" >--(Q(t,-p,p),p) >_ [Q(t,-p,p)l. Ipl/.

On the other hand, by (2.7) and the fact that IPl < min{1, U},

IQ(t, -p,p)l > a(t) Ipl,
proving (2.16) with c r+1-/7.
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Next by (2.13)
IQ(t, -p, p)l Ipl >- 5(t) (-p, p),

so that 5(t) >_ &(t) in J, with - max{(-p,p) Ipl }" -/. In turn,

1 Lb(t)dt> fLr(t)dt>IL--[ - a(O) d > 0

by application of inequality (7.2) of [7] with . This completes the proof.

3. Main results. Here we state our main theorems and related consequences.
It is assumed throughout, without further comment, that the conditions (H1)-(H4) are

satisfied.
Let (In)n be a sequence of nonoverlapping intervals In [an, bn] of J with an < bn

and, for the results of this section, an --* o. Let the control set in (H3)-(H4) have
the form I tAIn, and introduce the notation

1 fI 5(t)dtd (possibly oo),

which will be used throughout the paper.
Our first result is based on Theorem A of 2. Conditions (2.7) and (2.8) are of

course required here, and also for the corresponding corollaries.
THEOREM 1. Suppose that .for every U > 0 there are positive constants A, B such

that

(3.1) E an. min { Itn]q’ B + [Inl } oo, q= m 1’ v> m 2,

1 2, v<_m-2,

where

inf and
i.

Then u 0 is a global attractor for (2.1).
The proof of Theorem 1 is given in 4. In the case N 1, G(p) p2/2, Q

-a(t)p and f(u) u, Smith IS] obtained the weaker result that u 0 is a global
attractor when

a,[I,J min [I[ (1 + An)2 (x), An maxa(t);.
in particular, for this case

m=2, #==1, q=3, a(t)=a(t), 5(t)=Ua(t),

so that by taking A B U in (3.1) we get

A 1 1 1
B + xn l + andn/U

> >
I+A2n- (1+An)2"

Several special cases of Theorem 1 are of particular importance. In stating the
results, we recall throughout that the hypotheses are understood to apply for each
fixed U > 0.
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COROLLARY 1. Suppose that

(3.2) sup xn

Then u 0 is a global attractor for (2.1) if

(3.3) E an min {llnla, [In[}

Proof. Condition (3.1) with A 1 +supn xn and B 1 follows at once from (3.2),
(3.3).

In view of (2.16) it is clear that (3.2) holds whenever is bounded on I t2In.
From Corollary 1 we also get the following consequence:

Suppose that

sup xn < o, inf [In[ > O.

Then u 0 is a global attractor if
A related result, applying however only for the scalar case of (1.5), appears in [3,

Cot. 4.2].
COROLLARY 2. Suppose that

inf xn > 0.

Then u 0 is a global attractor for (2.1) if

(3.4) Ede min{[Inl’ II l} 1/#.
1

Proof. Condition (3.1) with A 1 + infn Xn, B 1 follows easily from (3.4)
together with the relations

an xnde >_ xde, ariA xn(1 + x) d_ >_ x d_
1 + xn 1 +

where x inf xn > O.
COROLLARY 3. Suppose that

(3.5) inf a(t) > 0, sup dn < oo.
I n

Then u 0 is a global attractor .for (2.1) if

Proof. This is an immediate consequence of Corollary 1 or 2. For example, (3.5)
implies that

infn xn_>ce(innfan) >0 and infn d=e-> sunpdn >0,
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where c is the constant in (2.16). Hence by Corollary 2 the rest state is a global
attractor provided that

min{[Ilq, II l}
1

But this series diverges if and only if (3.6) diverges (since q > 1).
Our second main result is based on Theorem B. In this case conditions (2.13) and

(V1)-(V2) are required (instead of (2.7)-(2.8)). We recall again that the control set
has the form I

THEOREM 2. Suppose that for every U > 0 there exists a positive constant A such
that

(3.7) Z min IIn[ q, ]In[ oc, m 1’
1 -n q=

2, m>2.

Then u 0 is a global attractor for (2.1).
The proof of Theorem 2 is given in 5. The hypotheses of Theorem 2 hold for the

system (1.5) when A has the decomposition (1.7), see the comments at the end of the
section.

Theorem 2 has the following consequences.
COROLLARY 4. Suppose that

sup dn < o.

Then u 0 is a global attractor for (2.1) if

Proof. Taking A (supn dn)e, we see that the series in (3.7) is greater than

min { IInl q, II 1 }.

This diverges if and only if -]o ii 1 diverges (since > 1).
For the canonical case m 2, # 1, u 1, the exponents q and in Corollaries 3

and 4 have the respective values 3 and 2, these values being the best possible as shown
in 6.

COROLLARY 5. Suppose there is a positive constant such that

(a.9) dn > Const. { if m > 2,

Then u -0 is a global attractor for (2.1) if
ill<m<2.

Proof. Let the constant in (3.9) be denoted by D, and choose A De in (3.7).
Then the second term in braces in (3.7) is less than the first so that (3.10) implies
(3.7).
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COROLLARY 6 (Criterion of Thurston-Wong type). Let infn Ilnl > O. Then u 0
is a global attractor .for (2.1) if (3.10) is satisfied.

Proof. Let U > 0 be fixed as usual. From (2.17) with d d(U, ) > 0, where
min(1/2, infn IInl}, we have dn _> d > 0 for all n, and in turn (3.9) obviously holds

because infn Inl > O.
Thurston and Tong discovered the special case of Corollary 6 when N 1, IInl

1, G(p) p2/2, Q(t, u, p) -a(t, u, p) p, and f is independent of t. Their assumptions
imply # g 1, in which case (3.10) takes exactly their form -](f/. 5(t) dr) -1 oc.

Artstein and Infante [1, cond. (2.7)] showed for the same case that u 0 is a
global attractor provided

K

K2 Z dn <_ B

for some constant B independent of K. In fact, more generally, without any restric-
tions on the measures of In, and whatever the value of #, condition (3.10) is implied
by

1
K 1 L. dn(3.11) K+I cn <_ B, where cn (t) dt

To see this, note that for any positive integers 0 < L < K we have, by Hhlder’s
inequality,

K L - I <_ cn
L

so that in turn

(3.12) c -> (K- 5)/-I-1 an
L L

But, by (3.11), if K 2L then

K

(K- L),+I Z cn <_ 2"+lB.
L

Hence from (3.12) it follows that

2

ct _>
2(2B)t,

v 1, 2,

Thus the series (3.10) diverges. We have proved the following result.
COROLLARY 7 (Criterion of Artstein-Infante type). Suppose that infn Ilnl > O,

or more generally that (3.9) holds. Then u 0 is a global attractor for (2.1) if (3.11)
is satisfied.

In essentially the same way, condition (3.4) in Corollary 2 can also be deduced
from the Artstein-Infante type condition (3.11), provided infn Ilnl > O.
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Remark. When infn IInl > 0 the criteria (3.4) of Corollary 2 and (3.10) of Corol-
lary 6 are equivalent. Since by (2.16) the condition infn Xn > 0 holds whenever
infi a(t) > 0, one can see a connection between the hypotheses of these corollaries.
On the other hand, the assumptions of Theorem 2 are different enough from those of
Theorem 1 that the corollaries are not directly comparable.

The system (1.5). We show that Corollaries 3 and 4 apply to the system (1.5).
For Corollary 3 the hypotheses of Theorem A must be verified, on the basis of the
assumptions immediately following (1.5).

Fix a compact subset K of RN IN, and let c > 0 be such that

(A(t, u,p)p,p) > a Ipl 2 for (t, u,p) e I K;

also denote by IIAII, the L norm of A on I K. Then one easily sees that (2.5) holds
in I K with 7 /IIAII, that (2.6) is satisfied with 5(t) U ilAII -Const. and
# 1, and that (2.7) is verified with a(t) a, = 1. Finally, taking into account
the observations just before the lemma of 2, together with the fact that (2.15) holds
since H(u, p) 1/21pl 2, we see that Theorem A is applicable to (1.5), with m 2.

In turn, since 1, we get q (m + )/(m- 1) 3 in (3.1). Moreover,
infi a(t) a > 0 and supn dn U IIAII < o, so (3.5) is satisfied. Corollary 3 then
gives the criterion (1.6).

For Corollary 4 the hypotheses of Theorem B must be verified on the basis of the
assumptions (1.7)-(1.9). Again fix a compact set K of llN R. Then one easily
sees that

(A(t, u, p)p, p) (t, u, p)Ipl2 + (B(t, u, p)p, p) > Ip]2 on J K,

by (1.8) and the fact that B is nonnegative definite. Hence we can take 5(t) 1 and
(,p) 1 Ipl 2 in (2.13). Also IIAII _< 2 / IIBII < by (1.9). Thus (2.5) ,oads in
I K with 7 x/llAII. As before we can take (t) U IIAII and - 1.

Next (V) is satisfied with h(t) fhP. Finally, for (V2),

(Q.(t, u, p), u) -(t, u, p) (p, u) (B(t, u, p)p, u) < U IIBll IPl,

when lul _< V and (p, u) _> 0. This gives the first part of (V2) with e(p) U IIBII IPl.
The second part of (V2) is automatic for (1.5) with g(u) 1/2u2 and C 0. Again
taking into account the observations just before the lemma of 2, we see that Theorem
B is applicable.

As before sup, d= U IIAI] < oc. Corollary 4 then gives the criterion (1.10),
since m 2 and q 2 by (3.7).

4. Proof of Theorem 1. Recall that I UIn where I [an, b=]. We begin
with a simple lemma.

LEMMA. Let k be a nonnegative measurable function such that k(t) 0 for
t e J \ I and for which

(4.1) d= kng < M
and

(4.2) k(t)dt >_ -where kn supi= k(t) and MI, M2 are positive constants.
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Then k satisfies condition (2.12) with M MIM2.
Proof. We have

(t)k+l(t)dt <- kn+l .L (t)dt knlInl kndn
< Dr
<_ M1M2/ k(t)dt by (4.2).

Condition (2.12) now follows by summation over n and the fact that R 0 on J/I.
Proof of Theorem 1. Recall that Xn an d, 1/#, q ( + m)/(m 1) if

> m- 2 and q 2 if y <_ m- 2.
We now construct a bounded piecewise smooth function k k(t) satisfying the

assumptions (2.9)2 and (2.10) of Theorem A. (Of course the functions a, 5 in Theorem
A depend on U, so also k depends on U. As in Section 2 we do not specifically indicate
this dependence.) In particular, let k 0 on J \ I. To obtain k on the intervals In,
we separately consider the two subcases

(i) IIn]q-I
A

B-xn
and

(ii) IInlq-1 >
A

BTxn
Subcase (i). Let In [an, bn] and put

C ffn(t an)q-l,
k(t)

C an(bn t)a-l,

an <_ t <_ 1/2(an + bn),
1 + <_ t <_

where C 2q-IB/A. Then (2.10)2 holds on In with the Const. 2 (q- 1)(B/A),
independent of n; note that the exponent is defined in (2.11), and that A 1/(q- 1)
by virtue of (3.1)2. Next, letting kn maxi. k(t) as in the lemma, we have

(4.3) kn k an /2 bn C qn _< 21-qc qn
B + Xn B+xn

by (i) and the choice of C. In turn, since xn an dn >_ c a+1 by (2.16), there follows

B(Tn(4.4) kn <_
B + Cean+1 <- D,

where D is a constant depending only on B, c, and . Hence k is uniformly bounded
on intervals In of type (i), with the bound independent of n. Moreover, again from
(4.3), we have k(t) <_ an <_ a(t), so (2.10)1 holds on these intervals with Const.-- 1.

Subcase (ii). Put

C ffn(t- an)q-l, an

_
t

_
tn,

Ban tn < t < t-n,k(t)
S + x------’
C rn(bn t)q- 1, t-n <_ t <_ bn,
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where tn and tn are chosen so that k is continuous on In. This can be done because
of condition (ii).

As before k satisfies (2.10)2 on In with the same Const.- 2 (q- 1)(B/A), since
k’-0 on (tn,n). Moreover, we have

Ban(4.5) kn- _< D,
B+xn

as in (4.4). Therefore (2.10)1 is satisfied and k is uniformly bounded on intervals In
of type (ii).

We next show that k satisfies conditions (4.1) and (4.2) of the lemma. Indeed by
(4.3) and (4.5), for each n,

B xn < Bdnkn <_ dn B + xn B + xn
Thus (4.1) is verified.

In case (i) an easy calculation and the use of (4.3) gives

1
k(t) dt- _2 C (Tn ]Inl knq -while in case (ii)

Bank(t) dt (tn an) k(tn) + (n tn) B + xn + k(n)
q q

1.tn-an.+.__-tn.+ (bn-n)

1
> II,1 k,,

q

since q > 1. Hence (4.2) holds with M2 q.
The lemma now shows that condition (2.12) of Theorem A is satisfied. It remains

only to verify the hypothesis (2.9)1 to finish the proof. We already know that in
case (i)

k(t) dt_ _2 C an
q q A

qn [Inlq

by the choice of C, while in case (ii) by (4.5) and (4.6),

/ 1 B
k(t) dt > -an II,1

q B+xn
Consequently for each n,

i.k(t) dt >- i B { ’q A ’ln’}.q
(n min IIn B + xn

Since

1

condition (3.1) now shows that k il(g), as required in (2.9)1.
This completes the proof.
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5. Proof of Theorem 2. As in the proof of Theorem 1, we shall construct a
bounded piecewise smooth function k k(t) satisfying the assumptions (2.9) and
(2.14) of Theorem B. (As before, k depends on U in what follows.) In particular, we
define k to be 0 on J \ t3In and, to obtain k on the intervals In, consider separately
the two cases:

A
(i) llnlc-1 <

and

A
(ii) II l >

Case (i). Put

C(t an)c-x,
k(O

an <_ t <_ 1/2(an -I-bn),

bn)< <bn,(a + t

where C 2c-/A. Then recalling the definition of in (3.7), we see that (2.14)
holds on In with Const. ((=1- 1)Cm- when 1 < m < 2 and Const. C when
m>2.

Next

(5.1) kn k (1/2(an + bn)) C (1/21I 1) a-x

By (i) and the choice of C we obtain

(5.2) kn < dt for each n.

Now applying (2.17) in the lemma of 2 with d d(U, 1/2), we have dn > d whenever

IInl >_ 1/2, so that kn < d-t for such In’s. On the other hand, when IInl < 1/2
we derive from (5.1) that kn < 2x-C/A. Hence k is bounded on each In of type (i),
uniformly in n. Thus k is bounded on J, with

k(t) <_ max{d-t, 2-q/A}, teJ.

Case (ii). Put

C(t- a.) _< t <_ t.,

k(t)= dt, t < t < t-n,

C(bn- t)a-, [n < t < bn,

where tn and t-n are chosen so that k is continuous on In. This can be done in virtue
of (ii). As in case (i), we see that (2.14) is satisfied and that k is bounded on In
uniformly in n, namely

kn dt <_ max{d-t, 2-q/A},

since by (2.17) we have dn > d d(U, 1/2) when II 1 1/2, while by (ii) on the other
hand, de < 2-a/A when [In] < 1/2.
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We next show that k satisfies conditions (4.1) and (4.2) of the lemma in 4. Indeed
for each n,

dn kn <_ dn(de)u 1 M1,

by (5.2) in case (i) and by the definition of k in case (ii). Thus (4.1) is verified.
Ia (i) b (5.)

i. k(t) dt 2
C (lIl)

while in case (ii), as in the proof of Theorem 1,

k(t) dt > II,l k,.

Hence (4.2) holds with M2 q.
The lemma now shows that condition (2.12) is satisfied, so that to apply Theorem

B it remains only to verify (2.9)1. Arguing as in the proof of Theorem 1, we obtain

f/,, 1 { Allnl }k(t) dt >_ min I1,1,
Consequently (3.7) implies that k @ L1 (j), and this completes the proof.

6. Examples. The purpose of this section is to show that the exponents which
appear in conditions (1.6) and (1.10) are best possible.

Consider the linear equation

(6.1) u" +
where a: J --. ]R is an on-off damping function of the form

(6.2)
0 in J\ UIn,

(t)
2 in UIn.

The following result shows that the exponent 3 in (1.6) is best possible.
PROPOSITION 1. Let e E (0, 2] be fixed and let (An)n be a sequence of positive real

numbers such that

Then there exists a sequence of disjoint intervals In [an, an + An], with an -- oc,
such that u 0 is not a global attractor for (6.1) with the damping (6.2).

Remarks. Since the damping function (6.2) is not continuous the corresponding
solutions of (6.1) must be sought in the class C1 (J). Of course, a smoothing procedure
will obviously yield a corresponding result for (6.1) with continuous damping.

From the proof it will be clear that the sequence (In)n can be chosen to have
arbitrarily large gaps, i.e., with an+l -an unbounded.



830 PATRIZIA PUCCI AND JAMES SERRIN

Proof. We place the interval I1 arbitrarily in J [0, o0), and recursively determine
the location of the successive intervals In for n > 2. In particular we shall impose the
Cauchy conditions

(6.4) u(an) An, u’(an) O, A1 # 0

in order to construct a bounded solution u of (6.1)-(6.2) that does not approach 0 as
t --. o. The values An will be recursively determined, along with the location of the
intervals In.

From (6.4) and (6.2)it is clear that

(6.5) u(t) An(1 + t- an)ea-t for t e In.

On the other hand, in the intervals (an + An, an+l) between the sets In and In+l, we
have

(6.6) u(t) ion(t) Bn cos(t + On)

for some constants Bn and On, again by (6.2). Clearly (6.6) should join smoothly
with (6.5) at the point an + An and also satisfy the conditions ton(an+i) An+l and
ion(an+l) --0. These latter conditions take the specific form

Bn cos(an+l + On) An+l, Bn sin(an+1 + On) O,

so that B2 A2n+l. The former conditions are

Bn cos(an + An +
Bn sin(an + An + On) AnAne-

Squaring and adding gives

(6.7) An+2 A2{(1 + An)2 + 2}e-2 _=

2This determines An+1 in terms of A2 and An. Because On is not yet chosen, it is
clear that Bn and An+i are so far determined only up to their signs. We can choose
the sign of Bn as we wish, say sign Bn sign An+. Then cos(an+l + On) 1, so
without loss of generality On -an+l. In turn

tan(an+l an An)
1 +An’

which determines an+l modulo 7r; indeed, if sign An+l sign An, then one sees that

modulo 27r,

while if sign An+l -sign An, then

an+ an ,n (- 7r, 7r) modulo 27r.

Clearly an+l -an can be arbitrarily large, though not arbitrarily small; in fact
since An -- 0, there is a sequence (kn)n of positive integers such that limn (an+i
a k) 0.
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An easy calculation shows that

1- x3 < (I)(x)< 1

Hence IA+ll < IAI by (6.7), so that

for x>0.

limsup [u(t)[2 lim A2 A2H
1

We can assume without loss of generality that A3n < 3/4 for all n, in virtue of (6.3)2.
Therefore,

limsup lu(t)l 2 > A H (1- A3n) > 0,

where the last inequality is equivalent to ’ A3n < cx). This completes the demon-
stration.

The proof sharply brings out the role of the exponent 3 in condition (1.6). Figure 1
shows a typical graph of u with all the An > 0 and with varying spacing between the

FIG. 1. The solution u o] Proposition 1.

In Fig. 2 the heavy curve is the solution (6.5). The light curve is one arch of the
cosine wave on defined by (6.6), whose amplitude is An+l. The dashed curve is one
arch of the cosine wave on-1, whose amplitude is An.

The next result shows that (1.6) is not necessary for the global stability of the
rest state of (6.1) when

inf rn > 0 and sup dn

It also indicates the extreme delicacy of the situation when one has on-off damping,
that is, the exact switching times can be of great importance.

PROPOSITION 2. Under the hypotheses of Proposition 1 there also exists a se-
quence o disjoint intervals In [an, an - n], with an+l an > , such that u 0
is a global attractor for (6.1) with the damping (6.2).

Proof. We place I1 arbitrarily. To construct the remaining intervals, choose some
sequence (kn)n of positive integers and define

an+l an + An - ksr.
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!
I

FIG. 2. Behavior of u near an interval In.

Now let u be any solution of (6.1)-(6.2) on J. Since (6.6) holds on the intervals
(an + An, an+l), whose lengths are multiples of r, it is evident that

(6.8)
u’(an+l) (-1)kn u’(an + An).

Now, for T E [0, OO), we put

V(T) (--1)jn u(an + T n) if T e [gn, gn+t), n 1,2,...,

where jn y,-t ki and n E-t Ai when n _> 2, and jl ?1 0. By (6.3)1 it is
clear that n -* oo as n --. oo, so v is well defined. Also v is of class C in view of
(6.8).

Directly from the definition of v we see that v is a solution of

(6.9) v"+2v’+v=0 in [0, oo),

so that v is certainly of class C2. The equation (6.9) has characteristic values rl
r2 -1; hence V(T) 0 and V’(T) --. 0 as T -- 00.

From this we get

sup lu(01 - 0, sup lu’(01
In In

it then follows at once that the coefficients Bn in (6.6) also approach 0 as n --. oo.
This completes the proof.

Remark. Similar conclusions can be obtained for the equation

u" + a(O lu’l’-u + o,

but we shall not pursue this here.
To investigate the exponent 2 in condition (1.10), we consider the equation (6.1)

with the singular on-off damping

(6.10)
in J\

a(t)
2 in Lj i,.
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Of course a is neither continuous nor has its values in the reals, so that equation (6.1)
on J \ t2In must therefore be interpreted in terms of a family of equations in which
the damping uniformly approaches oo on any compact (or even any bounded) subset
of J \ UIn. The corresponding solutions approach constants on the open intervals
between the In’s. In fact, the appropriate interpretation of a solution of the initial
value problem u(an + An) a, u’(an + An) on the interval Jn (an + n, an+z]
is U(t) . That is, if UM is the solution of the initial value problem

u"+Mu’+u=O,
UM an -t- )in) --(, UM(an + )n) /3

on the interval n, then uM(t) --+ a as M --+ oo uniformly on n, while UM(t) --. 0
uniformly on any compact subset of Jn. Accordingly, solutions of (6.1), (6.10) are to
be interpreted as functions of class

C(J) f3 C1 (J \ (an + An, n 1, 2,...})

which satisfy (6.1) with a(t) 2 on each interval [an, an +An) and which are constant
on each interval Jn.

PROPOSITION 3. Let (In)n be a sequence of disjoint intervals In [an, an + An].
Then u 0 is a global attractor for (6.1) with the damping (6.10) if and only if

Proof. If -]o iln12 oo, then an - oo and by Corollary 4 the rest state u 0 is
a global attractor.

Now assume that ’] IInl2 < oo and, without loss of generality, that A2 < 2. For
simplicity we first consider the case

(6.11) an /z oo as n -- oo.

Then every solution of (6.1), (6.10) on J has the form

A1 if t [0, al],

u(t) An(1 + t- an)e=-t if t In,

An+l if t E

Furthermore, by continuity at the point an + An we have the recursive formula

An+l An(1 + Xn)e-=.
Obviously,

1-1/2x2<(l+x)e-x<l for x>0.

It follows that (]Anl)n is decreasing and so also lu(t)l is decreasing on [0, oc). Thus

lim lu(t)l- IAxl" 1](1 +t--+cx3
1
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Then if A1 0

lim lu(t)l > IAiI. 1-I(1- 1/2 A) > O.

Consequently every solution, except the trivial one (A1 0), app1oaches a nonzero
limit at cx). In particular, u 0 is not a global attractor for (6.1), (6.10).

If (6.11) fails, then an/ finite a. The previous proof shows that u(t) --. Uo 0
as t/z a, so that in turn

u(t) =_ uo for t >_ a;

the solution of course need not be smooth at the point t a. This completes the
proof.

The condition 5 L (J) is known to be a necessary condition for the rest state
u 0 to be a global attractor for the system (1.5); see [5, Cor. 1, 5]. (The notation
used in 5 of [5] gives 25/U and L(J) the multiplicative constant 2IV
clearly does not affect the conclusion.) This result holds in particular for the linear
equation

u" + A(t)u’ + u O,

where of course the necessary condition becomes A tig L (J).
On the other hand, the condition a L (J) alone is not sufficient for the rest

state to be a global attractor, even for equation (6.12), where a 5/U, and even in
the representative case in which A is bounded.

Proof. We must show that there exist equations of the form (6.12) with A E
L(J)\LI(J) such that zero is not a global attractor. Indeed, consider equation
(6.12) with A a, and a given by (6.2). Moreover, suppose the intervals In in (6.2)
satisfy (6.3). By (6.3)2, eventually [In <_ 1, say for all n >_ K, so that

K K

by (6.3)1. Hence by (6.2)

A(t)dt 2 II]

so A L(J)\L(J). On the other hand, by Propositon 1, if the intervals In are
located properly, then u 0 is not a global attractor.

A related result was shown in [6, Whm. 4.4], namely, that the condition 1/a
L(J) is a necessary condition for the rest state to be a global attractor for (1.5).
(In the notation of Theorem 4.4 of [6] the function here called a is there called 5;
moreover, in the application of Theorem 4.4 to (1.5) we have q k 2, C 0, 0
and of course H Ipl2/2 and Q- -A(t,u,p)p.)

On the other hand, the condition 1/5 L (J) alone is not sufficient for the rest
state to be a global attractor, even for (6.12) and even when 1/A e L(J)\L(J).

Proof. We must show that there exist equations of the form (6.12) with 1/A
L(J)\L(J) such that zero is not a global attractor. Indeed consider (6.12) with
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A a, and a given by (6.10). Moreover, suppose the intervals In in (6.10) satisfy

Then

dt 1

A(t) - - Ilnl
1

so 1/A e L(J)\LI(j). On the other hand, by Proposition 3 the rest state is not a
global attractor.
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ASYMPTOTIC ANALYSIS OF A MULTIDIMENSIONAL
VIBRATING STRUCTURE*

CARLOS CONCA AND ENRIKE ZUAZUA

Abstract. The aim of this paper is to describe the qualitative behavior of the eigenfrequencies
and eigenmotions of a model problem that represents the vibrations of an elastic multidimensional
body (or multistrucure). The model studied here assumes that the multidimensional structure
consists of two bodies: one of them is a bounded domain of ]I{N (N-- 2 or 3 in practice), and
the other a one-dimensional straight string (that is represented by a real interval). The bodies are
elastically attached at a small neighborhood of a point of contact A on the boundary of the N-
dimensional domain by one extreme of the string. When this structure undergoes impulses, both its
parts vibrate. The result is the classical spectral problem for the Laplace operator in both regions of
the multistructure, coupled with a special boundary condition, which models the junction between
both bodies. It is a nonstandard eigenvalue system since the spectral problems corresponding to
each part are linked through this junction condition. For a variety of reasons, there is interest in
cases in which the junction region is very small. Thus one of the aims in this article is to study the
asymptotic behavior of the spectrum of this eigenvalue problem when the junction region tends to
disappear, and converges towards a set of Lebesgue measure zero containing the contact point. This
is done in terms of the convergence of the Green’s operator and the spectral family associated with
this problem.

Key words, multistructures, eigenvalue problems, asymptotic analysis

AMS subject classifications. 35P10, 73K99, 35J25

Introduction. Multistructures are a very common occurrence in practice. They
are found, for example, in the study of aerials, plates, and shells with stiffeners such
as in solar panels, etc. However, despite their enormous practical importance, it is
only recently that research in this field has begun from a rigorous point of view. One
of the first theoretical studies of mathematical models in multistructures is the article
by Ciarlet, Le Dret and Nzengwa (1989). Roughly speaking, the method that these
authors propose for dealing with a junction of two bodies, say, one of dimension N and
another of dimension (N- 1), consists of carrying out an asymptotic analysis of the
structure. In the first place, the body of dimension (N- 1) is assimilated to another
of dimension N, one of whose dimensions is (very) small compared to the others. Let
us say that its size is while the (N- 1)-dimensional volume of the original body is
1. Then a change is introduced to the scale of this body, so that the small dimension
becomes of the same characteristic size as the rest, and one concludes by letting
go to zero. In the general case, the idea is always the same, that is, of rescaling the
different parts of the multistructure independently of each other and passing to the
limit in all those dimensions which are small with respect to the others. It will be
appreciated that in this approach the contact condition is dealt with implicitly, since
the multistructure is approximated by a sequence of N-dimensional domains, and the
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junction of both bodies thus comes about naturally. The paper of Ciarlet, Le Dret
and Nzengwa (1989) has since been expanded, and its ideas extensively developed in
the books by Ciarlet (1990) and by Le Dret (1991) 1. The analysis of multistructures
is an expanding field with many interesting contributions in the last few years. In
the particular case of spectral problems we can cite the work of Bourquin and Ciarlet
(1989), where the authors provide a mathematical justification of eigenvalue problems
modeling junctions between bodies, and the paper by Le Dret (1990), which studies
the vibrations of a folded plate.

The technique that we shall use here to deal with the multidimensional structure
is totally different from that above. We shall employ a contact condition recently
proposed by Puel and Zuazua (1991), (1992), in which the junction is dealt with
explicitly by means of a special boundary condition coupling one of the extremes of
the one-dimensional interval with the boundary of the N-dimensional domain. As
mentioned above, this is a local condition not a punctual one because not only A
intervenes in it, but an open neighborhood 7 of A that we have called the junction
region does as well (see Fig. 1). For reasons of a practical nature, and in order
to understand better the limit of validity of this way of modeling the junction, we
study a simple spectral problem: the asymptotic behavior of the eigenvalues and
eigenfunctions as "/goes to a set of Lebesgue measure zero. To this end we begin
by introducing an abstract functional framework, in which a precise meaning is given
to the convergence of the contact region % and we show the existence of a limit-
spectral problem describing the asymptotic behavior mentioned above. As one might
expect a priori, this problem can be separated out into two independent boundary
subproblems, one of which is associated with the N-dimensional body, and the other
with the string. Both of these are none other than the usual spectral problem for the
Laplace operator. The role played by the junction between the bodies can only be
appreciated at the level of the boundary condition at the extreme A of the string.

The precise meaning of the convergence is described later in this article. Let us for
the moment simply mention that this convergence is formulated in terms of Green’s
operators and spectral families. In other words, we prove that the Green’s operator
associated with the original problem converges uniformly (that is, in norm) to that
of the limit-spectral problem, and that the corresponding spectral families converge
almost everywhere in R. Neither of these results sheds much light on the convergence
of the eigenvalues and eigenfunctions, and we shall therefore deal explicitly with this
by means of proving some corollaries from these results.

Let us now say a few words about the methods used in the proof of our results of
convergence. We shall employ general theorems of spectral and perturbation theory
of linear operators, but in particular, we shall use two classical results of this theory,
which can be referred to in the books by Snchez-Hubert and Snchez-Palencia (1989)
and by Kato (1980). These are Theorems V.9.10 and V.11.1 on pages 205 and 211
in the first of these books, and Theorem VIII.I.14 on page 431 of the second. We
first reduce our differential eigenvalue problem to that of finding the characteristic
values of an operator Te ( being a measure of the size of the junction region). In a
similar way, we associate an operator T to the limit-spectral problem. The method
for proving convergence has two steps: The first is to prove that the sequence {T}
converges in norm to T. The next is to translate the above result into a convergence
result for the resolvent map of the original problem and to apply the general theorems
quoted above.

For related topics the reader is referred to the references quoted in these books.
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We feel that at this point it is appropriate to mention some possible general-
izations of our work. The most obvious, which could be implemented without any
difficulties beyond those outlined in the present article are, in the first place, the fact
of considering multistructures with more than one string, joined to the N-dimensional
bodyat different contact points, and secondly, working with second-order elliptic op-
erators, more general than the Laplace operator. Another possible generalization, but
one which could no longer be dealt with in the context of the techniques we intro-
duce here, is the consideration of a junction between an N-dimensional body with a
bounded domain of ltn, 1 < n < N.

To conclude this Introduction let us briefly discuss the content of this paper,
section by section. In 1.1, we give a precise formulation of our model eigenvalue
problem and introduce the abstract hypothesis that allows us to define the convergence
of % Section 1.2 is devoted to introducing the Green’s operator T and to proving
existence of eigenvalues and eigenfunctions. Next, in 1.3 we give a precise description
of the limit-spectral problem and of its spectrum. In 1.4 we include the main results
of convergence. Finally, in 2 we include some complementary results of convergence
and we prove the main results of 1.

1. Formulation of the problem and convergence results.

1.1. Formulation of the problem. Let be a bounded domain of ]RN (N=
2 or 3 in the applications) with a locally Lipschitz boundary F. Let us denote by
w (A, B) a one-dimensional interval of length IB AI, which we shall assume
to be attached to the boundary of by its lowest extreme A, as shown in Fig. 1.

FIG. 1. Graphical view of the multistructure.

Several ways have been proposed of modeling the contact condition between the
N-dimensional body and the straight string w. Our purpose in this article is to
study some asymptotic properties of one of these models. This is the model recently
introduced by Puel and Zuazua (1991), (1992). The admissible deformations of the
multidimensional body are defined as follows: Let 0 be a smooth function (say of
class (:1), defined on F, with a compact support concentrated in a neighborhood of
point A of F, and such that O(A) 1, O(x) >_ 0 for all x E F. A pair of independent
deformations (u, u) of and w, respectively, represents an admissible deformation
of the multidimensional structure (tw) if the following contact condition is satisfied:

(1.1) un(x) O(x)uo(A) V x e supp(0).
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We shall call the function 0 and its support, the function (or profile) and the contact
region between 12 and w, respectively.

By studying a simple spectral problem in (f 12 w), we want to analyze the limit
behavior of this type of condition when the supports of the contact functions or profiles
converge towards a set of measure zero which contains A.

To be more precise, let s > 0 be a small parameter, intended to converge to zero,
and let {>0 be a family of contact functions which, converge to zero with e, in a
sense that we shall define below. We shall parametrize the interval w (A, B) using
a real variable s in (0, g), so that the value s 0 will correspond to the contact point
A, and the value s to the point B. Given these conditions, we shall study the
limit behavior, as e --, 0, of the following sequence of eigenvalue problems in f(3 (0, g):
Find ), E ]R for which there exist two functions u t2 - R and v (0, ) -. R, not
both identically zero, such that

where denotes the derivation with respect to s2 and o denotes the derivative0-
with respect to the outward normal vector of F.

Note that the boundary condition (1.2c) can in fact be separated out into two
conditions. On the support of , (1.2c) is the same as the contact condition (1.1),
written for and identifying w with (0, t). On the rest of the boundary of ,
(1.2c) reduces simply to the Dirichlet condition:

(1.3) 0 w e (r \

With regard to the family of contact profiles, we shall assume that for every > 0,
the functions Oe satisfy the following conditions:

(1.4a) 0 e H1/2(F) g
(1.4b) 0(A)- 1,

(1.4c) supp(0) c %

where - is a fixed neighborhood (independent of ) of A in F, such that the surface
measure of (F \ ) is positive.

We shall also make the following hypotheses about its asymptotic behavior as-- 0:

(1.5a) O (X) --. 0 for almost all x F, and

There exists a constant c > 0 such that

(1.5b) IIVell.(a) c as --, O,

2 This derivative will sometimes also be denoted as -d.
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where 0- E H () denotes the harmonic extension of0 to . Since is a domain with
a locally Lipschitz boundary and satisfies (1.4a), such an extension is well defined,
and can be characterized as the (unique) solution of the following nonhomogeneous
Dirichlet boundary-value problem in :
(1.6a) A=0 infl,
(1.6b) e=Oe ont.

Hypotheses (1.ha) and (1.hb) might seem rather strge at first glance d there is
no doubt that some comments and further explanations e needed. We shall present
them in 1.5. There we shall also show some model exples of families (}, which
converge to zero in the sense given by these equations.

As we shall see below, the constt c of condition (1.hb) plays a crucial role in the
results of convergence. In pticul, they will be substantially different depending
on whether c > 0 or c 0.

Before moving on to study these results, and with a view to presenting the via-
tional formulation of our original problem (1.2), we shall now introduce some notation.
First we introduce the functional space

{(,) e HI() x HI(0,) o r},

which we equip with the stdd scal product of HI() x HI(0,). Let us use

" ]]m,D the general notation for the usual norm of the spies Hm(D)r, m
0 d r 1, N or N2, where D is any open set of RN or R, whether bounded or
not. Applying stdd ments, it is a strghtfod matter to prove that the
seminorm

I(v,) {llVvll , + I1’110,(0,)
defines a norm in , equilent to the norm induced by HI() x HI(0,) on .
Equipped with this norm, is a Hilbert space.

For every nction v e L2(0, ), we shM1 denote the me lue of v by

I f
V: JV(8)d8

0

and we shall desiate by L(0,g) the spe of functions L2(0,), with zero mean-

value in (0,g). For v e L2(0,), will denote the projection of v on L(0,g), that
is,

O
V---V--V.

Let (o, ) be any element of V. Multiplying (1.2a) by and (1.2b) by , and
integrating by parts in and in (0, g), respectively, it can easily be proved, applying
(1.2c,d,e) that the variational formulation of (1.2) is

(1.7a) Find , e R, (u, v) e V, (u, v) # (0, 0) such that

(1.7b) ) e
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1.2. Existence result. Our starting point for the study of (1.2) (or (1.7)) is the
question of existence of eigenvalues and eigenvectors. Our strategy for approaching
it consists of defining an operator T whose characteristic values coincide with the
eigenvalues of (1.2). On the basis of the properties of T, and applying general results
of spectral theory of linear operators, we shall infer a theorem of existence for (1.2).

The operator T that we will associate with (1.2) acts from the space L2()
L2(0,) into itself, and is simply defined as the Green’s function corresponding to
problem (1.7), that is,

(1.8) T(f,g) (u,v) V(f,g) C L2(12) x L2(0,),

where (u, v) is the (unique) solution of the following variational problem in V:

Find (ue, v) E V such that

(1.9b) Vue Vodx + sp as

12 0 0

The existence and uniqueness of (u,v) follow easily from the Lax-Milgram
lemma, since the left side of (1.9b) defines a coercive bilinear form on V, and its
right side is a well-defined continuous linear form on V. T is therefore well defined.
Furthermore, applying equally classical arguments, among which is included the fact
that the canonical embedding of V in L2(12) L2(0, ) is compact (which holds true,
since and (0, ) are bounded), it is a straightforward matter to prove the following
result.

PROPOSITION 1.1. The operators T satisfy
(i) T is a continuous, self-adjoint, and compact operator on L2() L2(0,);
(ii) T is nonnegative definite in the following sense:

(T (f g), (f llVull , + II 2[Io,(o,e) --> 0 V(f,g) E L2( ) x

As a consequence of Proposition 1.1, we deduce that the spectrum of T consists
of a countable infinite sequence of strictly positive real numbers converging to zero:

(1.10)

where, from now on, the eigenvalues will always be numbered in such a way that the
same value is repeated as often as its (geometric) multiplicity. The corresponding
eigenvectors will be denoted (Ul, Vl), (une, vn), We assume that they have
been chosen, forming an orthonormal basis of L2() x L2(0,).

Given that zero cannot be a characteristic value of T, and that Ae 0 cannot
be a solution of (1.7), it is now clear that if # is a characteristic value of T with
(u, v) as the corresponding eigenfunction, then (1/#, (u, v)) is a solution of (1.7),
and vice versa. Thus, if we define

1
(1.11) Aj- j- 1,

grouping together the above results, we can establish the following theorem.
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THEOREM 1.2. The triplets ()je, (uj,vje)}j>_l satisfy
(i) For each j > 1, {)i, (uj, vj)} is a solution of (1.2) and (1.7);
(ii) The set {(uj,vj)}j>l .forms a Hilbert basis of L2() x L2(0,g);
(iii) A --+ +oo, as j -+

(iv) These are all the solutions of (1.2) in the following sense: If {), (u, v)} is
any solution of (1.2), then there exists j >_ 1 such that ) and (u, v) can be
written as a linear combination of all (u/e, vj) for which ) .

1.3. Description of the limit problem and of its spectrum. As we shall
see, under the hypotheses (1.4) and (1.5), the limit behavior of problem (1.2) is
governed by two independent eigenvalue problems, one of them being formulated in
the domain t, and the other in the interval (0, g). In other words, the sequence of
problems (1.2) converges, when -+ 0, towards a limit-spectral problem in Ft tO (0, ),
that breaks down into two independent subproblems concerning each region of the
multistructure. As one might expect a priori, the limit problem in t is none other
than the spectral problem associated with the Laplace operator, with a homogeneous
Dirichlet boundary condition on the boundary of Ft. The problem governing the limit
behavior of (1.2) in (0, ) is a little more unusual. This is the standard eigenvalue
problem for the operator -d2, but it has a boundary condition of the third type in
s 0, in which the constant c of condition (1.5b) is explicitly involved. If c 0,
this boundary condition is reduced quite simply to a homogeneous Neumann-type
condition. At the other end of the interval, in s g, the limit problem always retains
the same boundary condition as (1.2), whether c > 0 or c 0.

To be more precise, the spectral problem that governs the asymptotic behavior
of (1.2) in t is: Find v E R for which there exists u E Hl(t), u 0, such that

(1.124) -An vu in t,
(1.12b) u 0 on r.

The spectrum of this problem are the eigenvalues of -A in with a homogeneous
Dirichlet condition on F. We shall denote them as

(1.13) 0 < vl < v= < < v,, <--. --+ +oo.

On the other hand, we shall prove that in (0,g), the asymptotic behavior of (1.2)
is governed by the following eigenvalue problem: Find # ]R for which there exists
v H1(0, g), v 0, such that

(1.144) -v"= #v in (0,),
(1.145) v’(0) cv(O),
(1.14c) v’(g) = O.

It is not difficult to check that the spectrum of (1.14) also consists of a sequence
of nonnegative eigenvalues of finite multiplicity, which converge to +ca. Furthermore,
given that (1.14) is a second-order ordinary boundary-value problem, it is possible to
calculate them almost explicitly. Indeed, if c > 0, by explicitly solving (1.14) one can
prove that the eigenvalues are exactly the same as the positive roots of the nonlinear
equation: vftg[gs/ c. There is therefore one eigenvalue in each of the following
intervals: (0 ), ( 3 3. 5)7) .They are all simple. Furthermore, if c 0, then- 2 ""(1.14) can simply be reduced to the Neumann spectral problem, and in this case, the
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eigenvalues are the set (k27r2/2}k>O. In both instances, we shall use the following
notation for the eigenvalues of (1.14)"

(1.15) 0 _< #1 < g2 < < m < ---- ---(:X:).

Now, the spectral limit problem in U(0, l) is merely these two problems put together,
i.e., the problem of finding A E 11, for which there exists a pair (u, v) E Hl(f) x
Hl(0,g) such that either u 0 and (A,u) is a solution of (1.12), or v 0 and (A,v)
is a solution of (1.14). Of course, if A is simultaneously an eigenvalue for (1.12) and
(1.14) we may have both u 0 and v 0.

It is clear by definition that the spectrum of the boundary problem in f U (0, )
is formed exclusively of eigenvalues and, what is more, it is nothing other than the
union of the sets {tj }j> and {#j }j> 1. Before reordering the eigenvalues in increasing
order, we shall denote the elements of this union by {Aj }; thus

The corresponding eigenfunctions are denoted by (Ul, Vl) (2, V2),’’" Given that
one can choose the eigenfunctions of (1.12) and (1.14) so that they form a Hilbert
basis of L2(f) and L2(0, g), respectively, it is also clearly possible to choose the pairs
{(uj, vj)}j>l to form a Hilbert basis of L2(f) x L2(0, ). These functions thus auto-
matically verify the following orthonormalization criterion:

(1.16) /uiujdx +/vivjds 5j Vi, j > 1.

2 0

1.4. Results of convergence. Now that the notations and preliminary results
have been established, we can proceed to present an initial result on the convergence
of problems (1.2) to the boundary problems (1.12) and (1.14).

THEOREM 1.3. Assume that the functions {} fulfill hypotheses (1.4) and (1.5).
Let I be an open interval of R that, including multiplicities, contains m eigenvalues
of the limit problem (1.12), (1.14); assume, let us say, that {)tj}j=v,p+m_1 C I for
some p > 1. Then, for sufficiently small values of , {Aj}j=v,v+m_l {Aje}j>l CI I.

Let us denote as Pie :(L2.(f) L2(0,)) the orthogonal projection on the sub-
space spanned by the eigenfunctions associated with the eigenvalues {Aje}j contained
in I, and let PI :(L2(f) L2(0,g)) be the projector on the eigenspace associated
with the eigenvalues {Aj}j=p,v+m_l. Then PI converges uniformly (that is, in norm)
to PI. Thus,

IIPIe PIII(L.()L(O,O) ---+ 0 as --+ O.

In terms of the eigenfunctions and eigenvalues of (1.2), this result shows in par-
ticular that the eigenfunctions converge in L2() L2(0,g) strongly. More precisely,
let us fix j _> 1 and, so as not to complicate the analysis below, let us assume that
Aj is a simple eigenvalue of the limit problem. A first consequence of Theorem 1.3 is
that for all , sufficiently small, Aj is also a simple eigenvalue of (1.2), and

(1.18a) Aje Aj as e -- O.



844 CARLOS CONCA AND ENRIKE ZUAZUA

Furthermore, if (uj, vj) E L2() x L2(0,) denotes an eigenfunction corresponding to
Aj, normalized in accordance with (1.16), that is,

2(1.18b) IIg,n + IIv. 1,

then from (1.17) it can be deduced that

i (0,e) 0,

where

(1.19b) (je: f UjeUj dx + f
0

and (u, vie) is an eigenfunction of (1.2) corresponding to Aj, with norm 1. Since
(uj, vj) also has norm 1, it follows from (1.19a) that aj I--* 1; accordingly, if the
sign of the eigenfunction (uje, vie) is suitably chosen, then

(1.20) (uj, ve) (u, vj) in L2() x L2(0,) strongly as e -. 0.

In this sense, we can conclude that the simple eigenfunctions of (1.2) converge
towards the corresponding eigenfunctions of the limit problem in L2() x L2(0, )
strongly. If the corresponding eigenvalue is not simple, the eigensubspace will converge
in the sense of the uniform convergence of the projections.

In 2.2, we shall prove a complementary property of convergence for (1.2), which
will allow us to establish much more accurately the way in which the eigenfunctions
converge. This is Lemma 2.3, which used together with Theorem 1.3 and the reasoning
above makes it easy to deduce the following corollary.

COROLLARY 1.4. Assume that the hypotheses o] Theorem 1.3 are ulfilled. Let
(uj,vj) L2() L2(0,) be an eigenfunction of the limit problem (1.12) and (1.14),
associated with an eigenvalue )U" Then there is a sequence {(ue, ve)} of eigenfunc-
tions of (1.2), corresponding to the eigenvalue )U, such that, as --. O,

(1.21a) ue uj in Hi(12) weakly and L2() strongly,

(1.21b) ve ---* vj in g1(0, ) strongly.

If the hypothesis (1.5b) holds with c O, then the sequence {(ue, v)} can be
selected so that

(1.22) (ue, v) -- (uj,vj) in HI() HI(O,g) strongly as --. O.

It should be observed that when Lemma 2.3 is applied, different conclusions are
reached depending on whether c > 0 or c 0. Indeed, when c > 0 convergence (1.21a)
does not hold in the strong topology of HI(). This is the main difference between
the two cases.

1.5. Model examples of contact profile sequences. In this paragraph we
shall present some model examples of functions {0e} verifying hypotheses (1.4) and
(1.5). In all the examples to be studied, it will be assumed that the boundary of
the domain , in addition to being locally Lipschitz, is at least of class C1 in a
neighborhood of point A, of contact between , and the straight string w. Therefore,
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in what follows, we shall assume the existence of an open neighborhood U in RN of A,
and of an invertible mapping x --. z (x), one time continuously differentiable
from U onto the unit ball of llN (that we shall denote B) such that

(1.23a) -1 is one time continuously differentiable from B onto U,
(1.235) (A) 0,
(1.23c) (U q f) {z (z’,zg) e RN [z l< 1, ZN > 0},
(1.23d) (U q r) {z (z’,zN) e ]1(N [z’ [< 1, zN 0}.

As is customary, we shall refer to the pair (U, ) as the system of local coordinates
which define F in U.

Model Example 1. Let % C B’ (the unit ball of ]I(N-l) be an open neighborhood of
the origin in g- and let 0 % --. ll be a C(qz; lI) function, with compact support
in 7z, such that 0(0) 1. Using the local system of coordinates (U, ), we define

7 -({(z’, O) z’ e 7z}), and for each e > 0 (small), % -x({(z’, O)[z’ e 7z})
(see Fig. 2). Based on this function 0, we shall define a family of contact functions
{0} by the following rule:

{ O(z’/e) if(1.24) x E F O(x) 0 if x S \ -),

where (z’, 0) (x). By construction, it is clear that the functions {0} satisfy the
hypotheses (1.4a,b,c) and (1.ha). Let us show that (1.5b) holds, too. To this end, and
to simplify the calculations, let us begin with the case in which the boundary F is plane
in a neighborhood of A. Without loss of generality, we can assume in this case that
the local coordinates coincide with the usual coordinates, that is, that U B, A 0,

identity map, 7 7z, % Tz. Thus F N U {(x’,xN) Ix’ I< 1, XN 0}
and the definition of 0 is reduced to

(1.25) O(x’, O) { o0(X’/e) otherwise.if(x’, O) e %,

FIG. 2

Since supp(0) C % C 7, in the nomenclature of Lions and Magenes (1978), the
1/.function 0 belongs to the space --00 (7), which is defined as the interpolated space (of

exponent 1/2) between L2 (7) and H0 (7). Let us denote by II" II00, the standard norm
/: /of interpolation in "00 (7). It is known that the mapping e -’00 (7) --* 11[l/2,r,
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i/2where is the extension by zero outside % defines a norm in Hoo (7), equivalent to

II" 11oo,7 (see Stephan (1987); this norm will be referred to as the norm induced by
H/(r) in "00 (7)).

To check hypothesis (1.5b), we will estimate 1101100,7, and to this end we will
explicitly compute the quantities 110110,7 and 8 il,7, where 0 11,7 denotes the
norm L2(7)N-1 of the (tangential) gradient of 8. If the change of variables y’
is now introduced, we have

and

(1.26b) I0 I,-,- 1,7’

and it therefore follows, interpolating between L2(7) and H0(7), that

IIO11 <e-llOllo, O11,00,7

Now, we know that the mapping e H/2(F) - IIVllo,, where is the
harmonic extension of to fl, defines a norm in H1/2(F), equivalent to the usual
norm. Thus, equipping H/2(r) with this norm, (1.27) proves that the sequence
satisfies (1.hb). It additionally fulfills this hypothesis with c 0 if N > 3. Since the

1/2norm induced by H1/2(F) in H00 (7) is equivalent to the usual norm, there exists
constants dl, d2 > 0 such that

/4"1/2d11111oo, < IIVllo, < dlllloo, v e --oo

and therefore (1.5b) is fulfilled with c _< dll011o, 10 Ix,, if N 2. The exact value of
c depends on 0 and f, and it has to be computed in each particular case. However, if
N 2, it is a straightforward matter to prove that c is strictly positive. Effectively,
let us explicitly compute the norm --oo (7) of 0e. Using its definition, we have

IIO = f )X/=l ,0)ld’,IIoo, (1 + I’1 (’
RN-I

where O(T’, 0) is the Fourier transform of the extension by zero of 0 outside
denotes the variable dual to x’ in Fourier transform). Using (1.25), it can be easily

checked that (T’, 0) eN-I(eT’), where is the extension by zero of outside 7.
Then,

iio11 N- f ( + 1.,12)/l(.,)ld.,00,7

RN-I

Thus, if N 2, it follows that

-.olim IIO112oo, f III.T’...T’..2dT’>0.
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Therefore, we can finally conclude that IIV0-ll, has a limit as e --, 0, and

lira IIV0ll 2 > d f JT’II(T’)JedT0,fe--0

which implies c > 0.
To handle the general case, in which F is not necessarily plane in a neighborhood

of A, all that is needed is to introduce the change of variables x -l(z) into the
computation of the quantities II0ell, and 10 I,. In fact a brief calculation, using
the definition of 0 (see (1.25)) and the system of local coordinates, shows that

(1.28a) g(z’)dz’ eN- / o(’) g(ey’)dy’,

where g(z’) V/I det At(z’)A(z’) and A(z’) is the N by (N- 1) matrix whose entries

[(0-IO)(’, 0)].
By analogy we see that

(1.285)

O. I,,- /[Bt(z’)Vz’0 ()2 g(z’)dz’= en-3 f Bt(ey’)Vv,O(y’) 12 g(ey’)dy’,

where B(z’) is the (N- 1) by N matrix whose entries are [(O,/Oxj)(-l(z’, 0))].
Given that the change of variables is invertible, using standard estimates it can

be easily proved from (1.28) that there exist constants C1, C2 > 0, such that

IIOllg, _< Cl2gN-1

Thus interpolating we deduce

IIO II < c19.N-2O0;’y

and accordingly, in dimension N >_ 3, the sequence {0} satisfies (1.5b) with c 0,
and in dimension 2, as before, it can be easily deduced that {0e} satisfies (1.5b) with
0 < c <_ d22C1C2. In this model example, it can be observed that the support of 0,
converges towards the singleton set whose sole element is the contact point A.

Model example 2. The second example we will look at is very like the foregoing.
The only difference is that this time the functions {0e} will be constructed by only
rescaling the first (N- 2) variables of 0. To be more precise, assuming that N >_ 3,
the family of functions {0} will in this example be defined as follows:

if X e(1.29) xeF0e(x)= 0 if xe \e),

where % is now defined by % -l({(ytt, YN-1,0) (y", YN-1, 0) t /}) and
(z",Zg-1, 0) (x). Once again it is easy to prove that 0e, thus defined, satisfies
(1.4a,b,c) and (1.ha). For the sake of simplicity, we shall restrict ourselves in verifying
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(1.5b) to the case in which F is plane in a neighborhood of A. Without loss of
generality, let us assume accordingly that FfqU ((x",xN-I,XN) I(x",xN-)I<
1, XN O} and that 0 is defined by

{ O(X"Ie, xN-) if (x",xN_,O) e %,O(X",XN-,XN)= 0 otherwise.

If we use the change of variables y (x"/e, XN-1) in the definition of the quan-
tities I[0[10, and 0 I1,, we have

/i( )(1.31a) IIll 20,’

and

(1.31b)

N-2 2dx"dxN_ II0110, 

10,= =Ix,v- V,0(’) dy’ +

Interpolating between these two identities, it can finally be concluded that

IIo0, -< II0110, dy’ /

Thus, if N > 4, condition (1.Sb) holds with c 0, and if N 3, as in the previous
examples, one can easily verify that/ge fulfills this hypothesis with a constant c such
that 0 < _< dll011o,(f V,0(y’) ay’)/. I this second .model example, the
support of 0e converges to a set of measure zero that is not reduced to a sole point.

2. Convergence of Green’s operators and spectral families. In this see-
tion we shall prove Theorem 1.3 and other convergence results for the sequence of
problems (1.2). This proof falls into two clearly defined parts. Firstly, it will be
proved that the Green’s operators associated with (1.2) converge uniformly towards
the Green’s operator of the limit problem (1.12) and (1.14). Secondly, a conclusion is
reached based on some general results of perturbation theory of linear operators. In
this particular instance, we shall use Theorem V.9.10 of Shnchez-Hubert and Shnchez-
Palencia’s book (1989, p. 205). It would, however, be equally possible to use Theorem
VIII.I.14 in Kato’s book (1980, p. 431). We shall also use general results of spectral
theory to prove that the spectral families associated with the Green’s operators con-
verge strongly to the spectral family of the limit Green’s operator.

2.1. A new family of Green’s operators for (1.2). For technical reasons
that will become clear below, we shall reformulate the problem in our study of (1.2),
introducing the change of variable:

(2.1) e Ae q- 1,

and replacing the operators --A and -d2 by (-A + I) and (-d2 + I), respectively,
in (1.2a) and (1.2b). Note that problem (1.2) remains exactly the same despite these
changes.

Let S denote the Green’s operator associated with (1.2), but relative to the
operators (-A + I) and (-d2 + I). That is, S acts from L2(f) x L2(0,g) into
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itself, and it is defined by the following rule: S(f, g) (u, v), where (u, v) is the
(unique) solution of the following variational problem:

(2.2a) Find (u, v) e V, such that

) e

By construction, it is clear that the set of characteristic values of S is simply
{t 1 + Aj}j>I. Furthermore, as for T, it is a classical proof that S is bounded,
compact, and self-adjoint.

Exactly analogously, in the limit problems (1.12) and (1.14), let us change u to
( + 1), # to (# + 1) and let -A be replaced by (-A + I) and -d2 by (-d2 + I). The
Green’s operator associated with the limit problem in U (0, g), relative to these new
operators, will thus be defined by the following rule:

(2.3)
S" L2() x L2 (0, g) ----, L2() x L2 (0, ),

0

where S1 y $2 are operators in L2(O) and L2(0,), respectively. $1 is the Green’s
operator of (-A + I), with a homogeneous Dirichlet condition on F, and accordingly
for ] e L2(O), Slf =- u is the (unique) solution of the following problem:

(2.4a) -Au + u- f in ,
(2.4b) u-0 onF.

In turn, $2 L2(0, ) -* L2(0, ) is defined by S2g v, where v is the (unique)
solution of the following boundary-value problem in (0, ):

(2.5a) -v" + v g

(2.5b) v’(0) cv(0),
0.

Since the operator (-d2 -F I) appears in (2.5a) instead of -d2, problem (2.5)
admits a unique solution, even if c 0. This is why we reformulated problem (1.2)
in this way. Otherwise it would have been necessary to differentiate the cases c > 0
and c 0 in the limit problem itself. It will be seen that this other approach allows
both cases to be dealt with in a unified way.

As is usual, the solutions to (2.4) and (2.5) should be interpreted in a weak sense;
in this case, as solutions of the following variational problems:

(2.6a) Find u E H(2) such that

(2.6b) vv e
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and

(2.7a) Find v E H1 (0, g) such that

(2.7b) /(v’’ - v)ds + cv(0)(0) / gCds V HI(O,g).
0 0

By applying Rellich’s compactness theorem, the Lax-Milgram lemma, and the
symmetry of the bilinear forms occurring in (2.6) and (2.7), it is easy to check that
S belongs to (L2() x L2(0,)), and that it is compact and self-adjoint. Finally
it should be observed that, by construction, the set of characteristic values of S is
nothing but (1 + Aj}j>, where the Aj are the eigenvalues of the limit problem (1.12)
and (1.14).

2.2. Convergence of Green’s operators. (The first part of the proof of The-
orem 1.3.) We shall begin by examining the asymptotic behavior of the sequence
of contact functions (0}. To this end, let us accept for the moment the following
result, whose simple proof we present at the end of 2.2.

PROPOSITION 2.1. Assume that the sequence {0} satisfies hypotheses (1.4) and
(1.5). Then, as e --. O, we have

(2.8) -- 0 in H(f) weakly,

where is the harmonic extension of to 12, as in (1.6).
Moreover, if condition (1.5b) holds with c O, then

(2.9) --- 0 in H (12) strongly as e --. O.

The proof of Theorem 1.3 is essentially based on the following result, which ex-
plains the convergence of the Green’s operators.

THEOREM 2.2. Suppose that the functions {O}e fulfill hypotheses (1.4) and (1.5).
Then the sequence of operators {S} converges uniformly towards the operator S,
that is,

(2.10) []S SIJ(L.(a)xL.(O,O) 0 as -- O.

In turn, the proof of Theorem 2.2 requires the following lemma.
LEMMA 2.3. Assume the hypotheses of Theorem 2.2 hold true. Let {(f, g)} be

a sequence oj ]unctions in L2(f) L2(0, ), satisfying

(2.11a) f f in L2() weakly as --. O,
(2.11b) g g in L2(0,) weakly as - O,

and let us denote (ue,v) Se(f,g) and (u, v) S(f,g).
have

Then, as -- O, we

(2.12a) u ----. u

(2.12b) v v

in H() weakly and

in H (0, .) strongly.

L2(f) strongly,
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Moreover, there exists a rest function re E Hl(f) such that

(2.13a) u u + ve(O)Oe + re,

(2.13b) re -- 0 in Hl(f) strongly as s -- O.

If, on the other hand, hypothesis (1.5b) holds with c O, then

(2.14) ue ---, u in H (f) strongly as -- O.

Proof. By definition, (u, ve) is the solution of (2.2) (with f fe and g ge).
So, (ue, ve) E V and

(2.15)
0 0

Let us te (,) (ue, ve) test function in (2.15); we obtain

0

Since {(fe,g)}, is bounded in L2() x Lz(0,), using Cauehy-Sehwz’s inequal-
ity d sdd mens, we deduce #om his laer ideniy estimate of he
following form:

I1.11,. + I1.
where C is a cons, independen of s. I is hen possible o exr subsequenees,

io (,) e m() x nx(0, e),

(2.16b) v, v in Ht(0,e) wekly and LZ(0,) srongly 0.

The nex sep of he proof consists in psing o he limi in (.15), nd proving
ha and v e solutions of (2.4) d (.5), respectively. o his end, le be any
eoio of c(), a .& foio i (.lS) i, (, 0) (io i
possible, since 0 on , and herefore (, 0) e ). I follows h

But this identity pses trivially to the limit under the convergence (2.11a) and
(2.16a). It is thus proved that u is a solution of (2.6b), since is an bitry
function ofC(), which is a dense subspace of H(). On the other hd, psing
punctually to the limit for almost every x F, it follows from (1.ha) that

() ,,(0)0,() 0 eo ot e r,

since {ve(0)} is bounded in , thanks to (2.165). Thus u e H() and u is therefore
the (weak) solution of (2.4).
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Let us now prove that v is the solution of (2.5). To do this, let us start by taking
as test function in (2.15) a pair of the form (0, ), with an arbitrary function in the
space H _-- { e H1 (0, ) (0) 0}. We obtain the identity

o o

which, using (2.11b) and (2.16b), passes to the limit and allows us to deduce that v
satisfies

f(vll + v)ds Jgd8
o o

Therefore, v is a weak solution of (2.5a) and (2.5c). Now, if we integrate (2.5a)
between 0 and , it follows that

(2.17) v’(O) + t..
Let us, on the other hand, take (7,) (, _1) as test function in (2.15) (which

is possible, since 0 verifies (1.4b) and therefore (0, 1) e V). We obtain

From Proposition 2.1 we know that {e} converges to zero in Hi(12) weakly and in
L2() strongly. Thus the second term on the left and first on the right of this identity
will converge to zero, as e --, 0. On the other hand, --. and V --. 9. It can
therefore be concluded that the sequence {fa Vu. VOdx}e has a limit, and that
furthermore

(2.18a) lim Vu VOdx / . ..
$---0

Now, if c 0, then the term on the left side converges to zero and as a conse-
quence, . Comparing with (2.17) we deduce that if c 0, then v’(O) 0, and
the proof that v is a solution of (2.5) is completed.

Now let us look at the case c > 0 and prove that v’(O) cv(O). To do this, let
us multiply (1.6a) by u, and integrate by parts in . Using the contact condition
u v(0)0 on F, it follows that

/V Vudx v(O) / -0dF(x)
but
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and as e is harmonic in f, the following identity holds:

r

Thus we finally conclude

which in fact, as will be appreciated, (2.18b) is also valid if c 0. Combining (2.18a)
with (2.18b) and using (1.5b), if c > 0, we can conclude that the sequence {ve(0)}e is
convergent, and that its limit verifies the following identity:

c lim re(0) .
---0

Now, since the canonical embedding of Hi(0, ) into C((0--)) is compact, then it
follows from (2.16b) that ve(0) --, v(0) as e --. 0. Thus it holds that if c > 0, then

(2.19) cv(0)

Comparing (2.19) with (2.17), it can be deduced that v satisfies (2.5b), and the proof
of the fact that v is the (weak) solution of (2.5) is concluded. As problems (2.4) and
(2.5) admit only one solution, (u, v) is the only possible cluster point of {(u, v)}; in
(2.16) the whole sequence will then converge.

Let us now prove that in (2.16b) the convergence takes place in Hi(0, ) strongly.
To this end we shall study the convergence of the energy. Since (ue, v) is a solution
of (2.15), v is solution of the following equations:

(2.20a) -%+v=g in (O,e),
(2.20b) v(t) O.

Multiplying (2.20a) by ve and integrating by parts between 0 and , it follows that

IIv, + f g,vds.
o

But a simple integration of (2.20a) between 0 and shows that v’(0)+ g@ g.0, and
therefore

II1,<o, ) gevds v(O)(. eve),
o

and passing to the limit (using (2.11b) and (2.16b)), we obtain

lim [[v 2 /e--0 [ll,(0,t) gvds v(0)(t0 tV).
0



854 CARLOS CONCA AND ENRIKE ZUAZUA

In other words, if we use (2.17),

lim Ilvlll,(0,e) gvds v(0)v’(0).
e--*0

0

On the other hand, taking v in (2.7b), we have

/ gvds cv(0)2

(2.21b) e

(and by (2.5b)) / gvds v’(O)v(O).
0

Combining (2.21a) and (2.21b), we conclude that

lim []v 2 2II ,(0,e) II
As in addition v v in H(0, ) wetly, this completes the proof of (2.12b).

Let us now prove that the expression v(0) is a first-order corrector for the
sequence {u}, i.e., let us prove (2.13). To this end, let us begin by pointing out that
all that is needed is to prove that

(2.22) (u v(0)) u in H(a) strongly 0.

Now, (u -v(O)O) u in H(a) wetly e 0. To prove (2.22) it is therefore
enough to prove the convergence of the norms. Let us then consider the identity

(2.23) (o)o IIf, II ,a2 +   (o)110 ii 2v(0)(u e)l,.
Using hypothesis (1.5b), Proposition 2.1, and the identities (2.18a) d (2.18b), one
c ps to the limit in the lt two terms on the right side. We obtain

2 2
V
2(2.24a) v (0)[[1, (0)c 0 and

(2.24b) 2ve(0)(u, e)l,G 2V2(0)C 0.

Taking (ue, ve(0)) test function in (2.15), on the other hd, it follows that

[[u[2 v(O) [fudx + v(O)1,

Replacing in (2.23) and psing to the limit (using (2.24), (2.11), and (2.16)),

lim Ilu v(0)0[[2 f fudx v(0)((0) (g gv))
e0 1,

But (0)= v’(0)=-V (by virtue of (2.55) and (2.18a)) and [u][, fa fudx,
because u is a solution of (2.4). Hence, we have

which finishes the proof of (2.13).
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Finally, (2.14) is a direct consequence of (2.13) and of the result of convergence
(2.9) of Proposition 2.1. This completes the proof of Lemma 2.3. [:]

Proof of Theorem 2.2. To prove Theorem 2.2 by means of Lemma 2.3, we shall use
contradictory reasoning. Let us suppose then that (2.10) does not hold. Then there
exist i > 0 and a sequence {(f, g)} in L2()x L2(0, ), with IIfll,/llg [10,(0,)2 1,
such that

(2.25) Ji(Se S)(A,ge)IIL.(a)L.(O, >_ 5.

However, since L2(t) L2(0,g) is a Hilbert space, by extracting a subsequence we
can assume

(f, g) (f, g) in L2() x L2(0, ) weakly as e - 0.

But, using Lemma 2.3 and the fact that S is compact, it follows that

(S S)(f,g) --, (0,0) in L2(f) L2(O,g) strongly as --, O,

which is clearly in contradiction with (2.25). To finish the proof of Theorem 2.2, it
remains to prove Proposition 2.1.

Proof of_ Proposition 2.1. Hypothesis (1.hb) implies in particular that the se-
quence {[[V0[10, } remains bounded as -- 0. Since 0 vanishes on a fixed part of
F (see (1.4c)), if we apply the generalized Poincare’s inequality, it follows that
is bounded in H1 (). A subsequence can therefore be extracted, still denoted
which converges in HI() weakly. Say

(2.26) in H (f) weakly as e --, 0.

Given that is harmonic in , will be too, and passing to the limit in (1.6b),
applying (1.ha), it follows that 0 on F. Thus, 0, and in (2.26) the whole
sequence converges.

Finally, if c 0, hypothesis (1.hb) and the generalized Poincare’s inequality
prove that the convergence of the functions to zero take place in H() strongly.
Proposition 2.1 is thus proved. [:]

Proof of Theorem 1.3 (second part). As mentioned in the introduction to Chapter
2, Theorem 1.3 is a consequence of Theorem 2.2 and of Theorem V.9.10 in Snchez-
Hubert and Snchez-Palencia’s book (1989, p. 205). With a view to applying these
results, let us now begin by identifying our starting system (1.2) with the spectral
problem associated with an unbounded operator A in L2() L2(0,).

Let the domain D(A) C n2() L2(0,) be defined as follows: (u, v) e D(A)
if and only if

(2.27a) Au e L2(),

(2.27b) v" e L2(0,t),

(2.27c) u v(0)Oe on F,

(2.27d) v’(0) nn
F

(2.27e) v’() 0.
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Let us observe, in passing, that (2.27b) implies that v does indeed belong to
H2(0,). Thus v(0), v’(0), and v’(g) are well defined. On the other hand, since

e H1/2 (F), it is clear from (2.273) and (2.27c) that u belongs to Hl(f). It is worth
recalling that if u e Hl(f) and Au e L2(f) then the traces {u, oub-} Ir are both
well defined elements of H1/2(F) and H-1/2(F), respectively. Therefore, it is possible
to interpret the right-hand side of (2.27d) as the standard duality bracket between
H-/2(r) and H/2(r).

We can now define the operator A by the following rule:

A D(A) --o L2() x L2(0,),
(2.28)

A(u, v) (-Au,-v").

One can easily verify that the spectral problem of Ae (formally) coincides with
system (1.2). The main properties of A are summarized in the following proposition.

PROPOSITION 2.4. Ae enjoys the following properties:
(i) A is densely defined in L2(f) x L2(0,);
(ii) A is closed;
(iii) (Ae + 1)-1 S, where Se is defined in 2.1.
Proof. (i) The proof is an immediate consequence of the fact that :D(f) :D(0,

is contained in D(Ae). To prove (ii), let us take a sequence {(un, vn)}n in D(A) such
that, as n --.

(2.293) (un, vn) --o (u, v) in L2() x L2(0,),
(2.29b) (-Aun,-v) --o (w,z) in L2(f) n2(0,g).

The aim is to show (u, v) e D(A) and (w,z) A(u, v). First, it is clear that
w -An, g -v" and so it suffices to prove that (u, v) belongs to D(A). Next,
we observe that un u in the space H(f,A) =_ {u e n2(f) Au e L2(f)} and
vn --. v in H((0,),d2) {v e n2(o,)ld2v e n2(0,)}. Since the maps u
and v -- v(0) are continuous from H(f, A) onto H-/(F) and from g((0, ), 42) onto
JR, respectively, we can pass to the limit in the contact condition:

(2.30) u,=v,(O)O ont.

Then, it follows that (u, v) verifies (2.27c). Furthermore, this also implies that
u Ir in H1/2(F), as n --. oo. Thus, using (2.29), it is straightforward to prove that

ouVu, -- Vu in L2(f):v strongly. Since the trace map Vu --. Vu. n Ir is

continuous from H(div, f) onto H-/(r) we see that

O dr( )
fl F

Analogously, the trace maps v (v’(0), v’(g)) are continuous from H((0,g),d2) onto
li x li. Therefore, we can pass to the limit in the following boundary conditions:

v(O) OedF(x) and vn(g) 0,
F

and prove that (u, v) verifies (2.27d,e). Thus (u, v) e D(A) and the proof of (ii) is
completed.
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To prove (iii), let (f,g) e L2(12) x L2(0,g) be given and let us consider the
equation: Find (u, v) e D(A) such that

(A / I)(u, v) (f, g).

From the definitions of A and S, (2.31) is clearly equivalent to the variational
problem (2.2), and for this reason allows only one solution, which is none other than
S(f, g). S is thus the inverse (in the sense of nonbounded operators, i.e., by the
left) of (A + I). Proposition 2.4 is therefore proved. El

Wholly analogously, one can identify the limit problem (2.4) and (2.5) with the
spectral problem of a nonbounded operator A in L2(12) x L2(0, ). This operator has
the following domain: (u, v) E D(A) if and only if

(2.32a) u E H2(f) 3H
(2.32b) v C H2(0,),

(2.32c) v’(0) cv(0),

(2.32d) v’(*) 0,

and it is defined as follows:

(2.33)
A: D(A) ----+ L2(12) x L2(0,),

A(u, v) (-Au,-v").

Applying analogous arguments to those used in proving Proposition 2.4, it is
easily shown that A is a closed, densely defined operator, and that (A + I)-1 S.

Once the operators Ae and A have been introduced, all that is needed to apply
Theorem V.9.10 of Snchez-Hubert and Snchez-Palencia (1989, p. 205) is to observe
that the convergence result (2.10) of Theorem 2.2 is equivalent to the fact that the
resolvent mapping of Ae in -1 converges in norm (i.e., uniformly) towards the re-
solvent of A in -1. In accordance with the theorem quoted above, it is sufficient to
conclude Theorem 1.3 and, what is more, it also allows us to conclude that if # p(A)
(resolvent set of A), then we also have # p(A) for sufficiently small e, and

II(A #)-1 (A- p)-IlI(L2()L.(0,0 0 as e ---+ O.

2.3. Convergence of spectral families. Let E(S, .): ----. (L2(f)xL2(0, ))
and E(S, .): ---. :(L2(F) x L2(0,)) denote the spectral families associated with
the operators S and S, respectively. If we apply Rellich’s theorem (which is referred
to in Snchez-Hubert and Snchez-Palencia (1989, p. 211, Theorem V.11.1)) to the
sequence {S}, the following result is deduced, which shows the convergence of the
family of projections E(S, .) towards E(S, .).

THEOREM 2.5. Under the hypotheses of Theorem 1.3, if A is not an eigenvalue
o S, then E(S,A) converges strongly to E(S,A) as e --, O, i.e., Io ll (u,v) e
L2(fl) L2(0, t), we have

,(2.35) E(S, A)(u, v) ---. E(S, A)(u, v) in L2(ft) x L2(0, t) strongly.
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The foregoing result of convergence involves the spectral families of S and S.
However, this can be easily translated in terms of the families of projections of A
and A if we take the following relations into account:

(2.36a) E(A, ) I- E S,
( + 1)

(2.36b) E(A, )) I- E S,
(, + 1)

where he erisk (,) indieages ha he spectral family is en o be srongly con-
ginuous om he le, insgead of ghe clsical eonvengion "srongly continuous from
ghe right."
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OF SOME NONLINEAR DIFFERENTIAL EQUATIONS

AND APPLICATIONS*
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Abstract. This paper gives a complete classification of the solutions of the equation w p+
Iwlq-lw 0 on S 1{/2rZ, where p, q E 1{ with q > 1, and compares their different levels of energy.
Thus the asymptotical behavior and all the possible orbits are found for the parabolic one-dimensional
equation ut uxx + lulq-lu-Iu and the elliptic two-dimensional equation Au--clx1-2 u+ lulq-lu
0, where c > 0.

Key words, nonlinear differential equations, periodic solutions, levels of energy, asymptotic
behavior, elliptic and parabolic equations
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Introduction. In this paper we study the following nonlinear eigenvalue problem
on S R/27rZ:

(0.1) w"- --[c01q--lc0 0,

where #, q E R, with q > 1. We give the complete structure of the set of solutions
of this equation and study their respective levels of energy, according to the possible
values of #. We give some extensions to more general functions of w than Iwlq-lw.

The main interest of (0.1) lies in the fact that it describes the equilibrium states
for some parabolic or elliptic semilinear equations.

Consider first the one-dimensional well-known parabolic equation with a source
term:

Ut Uxx 2t-lulq--lu-

The study of (0.1) allows us to give the precise, large-time behavior of solutions of
(0.2) with periodic, Dirichlet, or Neumann boundary conditions, when applying the
convergence results of Cazenave and Lions [11] and Matano [21]; we also find some
results of Matano [22] concerning global solutions.

Now consider the two-dimensional elliptic equation with an inverse square poten-
tial:

u
(0.3) + 0,

where c > 0 is the most interesting case. Then we can get the behavior of
near the origin or infinity with the help of (0.1). Let us make the classical transfor-
mation in polar coordinates:

(0.4) u(r,8)=r-v(t,8), t=-Logr, r>0, 8ES1,

where
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The function v satisfies an elliptic equation in a cylinder:

(0.6) vu + 2,v +v (c- ,)v + ]vJq-v =0;

therefore, (0.1) describes the equilibrium states of (0.6) when/z 52 c.
In the N-dimensional case with c 0, (0.3) can be reduced in the radial case to

Emden’s equation [14]; it was solved by Fowler [15] many years ago. In the nonradial
case, Brezis and Lions [8], [20] gave the local behavior of u when c 0 and N 2
or N _> 3 and q < N/(N- 2); when q N/(N- 2) the problem was solved by
Aviles [3] and by Caffarelli, Gidas, and Spruck [10], [16] when q <_ (N + 2)/(g- 2).
Those results were recently improved by Bidaut-Veron and Veron [5] who consider a
larger range for q and give estimates for any c when q is undercritical. We shall see
that when N 2 and c > (2/(q- 1))2, the interference between the Laplacian, the
potential, and the.nonlinearity is very strong, and the situation is almost quite as rich
as in the case N _> 3 without any potential.

Notice that (0.1) is more difficult to study than the equation with the other sign:

which was first considered in the classical paper of Chafee and Infante [12]; it is linked
to the parabolic problem with an absorption term:

(0.8)

and to the elliptic equation in

U
(0.9) mu - + lulq-Xu O.

Equation (0.9) was investigated by Chen, Matano, and Veron [13] when c- 0, in the
N-dimensional case with c- 0 by Veron [29], [30], then for general c by Guerch and
Veron [18].

Concerning (0.1), our main result is the following.
THEOREM 0.1. For any real #, let E be the set of solutions of (0.1) on SI:

where E+ is the set ofpositive solutions andE -E+ and, is the set of changing
sign solutions. Then

(i) N has an infinity 4 one-dimensional connected components:

k=()

where :(#) is the smallest positive integer_such that k2 if- lz > O, and k is generated
by a function (o with least period 2r/k C {&k(" + )1 e $1};

(ii) If lz < O,E+ q}. If # E (0, 1/(q- 1)),E+ {/1/(q-1)}. If lz > 1/(q- 1),
then E+ has a finite number of one-dimensional connected components:

E {l/(q-1)} U Ck-’I-
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where k+(#) is the largest integer smaller than ((q- 1)#) 1/2, and C+ is generated by
a positive function w+,k with least period 2r/k.

This gives us the complete bifurcation diagram for (0.1): bifurcations near 0 at
the eigenvalues # -n2, n E N/(0}, bifurcations near the constant solutions at the
eigenvalues # n2/(q 1), n e N/{0}.

Now consider the energy function E defined for any w Ez by

1 ,2 # 2 [w[a+l)(0.10) E(w)= -w + -w q + l
dS

q- 1 iwlq+XdO;+
we prove in particular that the functions k --. E(Wk+) and k --, E(f)k) are increasing
ones; therefore, the energies of positive solutions (or changing sign solutions) are
classified by the connected components to which they belong. This way we can know
what connecting orbits might exist for global solutions of (0.2) and (0.3). Determining
what connections do exist is still an open question. Notice that this difficult problem
was solved for (0.S) by Brunovsky and Fiedler [9], Henry [19], and for (0.9) by Matano

Our paper is organized as follows:
(1) The eigenvalue problem on
(2) Application to the parabolic problem;
(3) Application to the elliptic problem.

1. The eigenvalue problem on S1. Here we deal with equation (0.1) on S1,
and more generally with the ordinary differential equation on whole

(1.1) w" pzv + g(w) O,

where # JR, and g satisfies the assumptions

(1.2)
e

rg"(r)>O for anyr0;

a(0) a’(0) 0;

and lim g(r)/r=+oc.

This equation can be viewed as a Hamiltonian equation with the potential U/2, where

(1.3) U(w) 2G(w) #w2, G(r) g(s)ds.

If # < 0, U is a nonnegative convex function with U(0) 0. If # > 0, U is decreasing
on (-cx),a_) t_J (0,a+), increasing on (a_, 0) t_J (a+, +c), and U(b_) U(b+) O,
where a+, a_, b+, b_ are defined by

(1.4)
b_ <a_ <O<a+<b+.

Obviously the constant solutions of (1.1) are 0, and a+,a_ when # > 0. From
standard phase-plane methods, when # _< 0 all the solutions are periodic, all non-
trivial solutions are changing sign functions, and their extremal values can be any
nonzero real number. When/z > 0, all the solutions are periodic but one (the function
t -. ((q + 1)#/2cosh2((q- 1)v/-t/2)) 1/(q-1) when g(r) Irlq-lr) and its translated
ones. There is still a family of changing sign functions, with any maximal points in
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(b+,-t-cx) and minimal ones in (-o, b_); there is also a family of positive solutions,
oscillating around the constant solution w _= a+, with any maximal values in (a+, b+)
and minimal ones in (0, a+); in the same way there is a family of negative solutions
oscillating around w a_.

Among all those solutions we look for 2r-periodic ones. By translation we can
suppose that w(0) 0 if w is a changing sign function, w(0) a+ if w is positive.

First we study how the least period of the changing sign solutions of (1.1) depends
on the initial slope.

LEMMA 1.1. For any > O, let (.,) be the solution of (1.1) on ] such that
5(0, ) 0 and ’(0, () (, and let P() be its least period. Then, under the
assumption (1:2), P is decreasing from (0, A-cx)) to (0, 27r/vfL-fi) if# < O, from (0,
to (0, > 0.

Proof. For any s > 0, let (s) be the positive solution of the equation U(5(s)) s2,
and t)(s) be the negative one. Since (., a) satisfies the equation w’2 + U(w) a2, we
can write, following an idea of [1],

P(a) 2(Q(5(c)) Q((())),

where

dv o1 dT

We claim that Q is decreasing, on ]1(/{0} if # < 0, on (-x, b_) U (b+, +oo) if # > 0.
Indeed we get by differentiation, valid since U() 0,

(1.7) 0()Q’() 3/2 dT,

where

(1.8) O() U() U’()/2;

now O"() -U(3)()/2 -g"(); therefore, from (1.2) O is a concave nonpositive
function with O(0) 0; henceforth, Q’() < 0. From (1.5), /5 is decreasing, since
5’(a) > 0 and 9’(c) < 0.

Let us now look at the limits near zero and infinity. Suppose first that # < 0;
then we have

ds
2 (4’- t’)(at) v1 t2

(1.9) P(() 2 (4’-’)(s)
v/(2 s2

and 5’(s) 2s/U’(5(s)),l’(s) 2s/V’(l(s)). We easily get lims_.+ooh’(s)
lims__.+o )’(s) 0 and lims__,0 5’ (s) -lims-.0’(s) 1/x/-:- (+oc if tt 0).
Thus we obtain the limits of/5 from the Lebesgue theorem when t < 0; when # 0
we verify that 4’- is increasing and conclude by the Beppo-Levi theorem. Suppose
now that # > 0; then we have

b+ dv 1 dt
(1.10) P()

/ U()
+ (’- ’)(t) V’ -’

and lims_.+o%5’(s) lims_+ )’(s) lims--.0 5’(s) lims_0 ’(s) 0; hence we get
the limits of P, since 1/v/-U(v is nonintegrable near the origin.
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From the change of concavity of g at 0, the two functions Q((a)) and
a -, -Q(()) are both decreasing; that means that the length of positive arches
and the length of negative ones vary in the same way. The contrary holds for one
sign solutions, for example, positive ones that oscillate around the constant solution
w _= a+, and the question is harder. In the next lemma we establish that the length
of the upper arches (above a+) and the length of the lower ones (under a+) vary
in opposite ways; and this is because the concavity of g does not change at a+. To
conclude we need an additional assumption on function g.

LEMMA 1.2. Suppose that # > O. For any E (0, v/-U(a+) let w+(., ) be the
positive solution of (1.1) on I such that w+(0,) a+ and w’+(O,) , and let
P+() be its least period. Then under (1.2) we have

(1.11) lim P+(f) 2r/V/g’(a+) #; lim P+()
i--+o n__+vi_U(+

Moreover, suppose that

(1.12)

(for example, g(r) Irlq- r, q > 1); then P+ is increasing on (0, v/-U(a+) ).
Proof. For any s E (0, y/-U(a+)), let z(s) be the solution of the equation

U(z(s)) U(a+) s2 greater than a+, and let y(s) be the solution smaller than a+.
Since w+(.,) satisfies the equation w’2 + U(w) U(a+) 2, we can write

(1.13)

z() dv
P+(fl) 2

+
dt

2 (z’ y’)(t)
/1 t;

2
f[() dv

a+ V/2 U(v) 21- V(a+)

in particular, P+() >_ 2 fva(+) dv/v/_U(v)" Hence limf_,/_V(a+) P+() +oo, since

x/-Z-U is nonintegrable at 0. On the other hand, we easily get lims__,o(z’- y’)(s)
2v/2/V"(a+) 2/v/g (a+) #; therefore, lim_0 P+() 2r/v/g (a+) # by the
Lebesgue theorem.

Suppose now (1.12); for any s e (0, v/-U(a+) we have

e

and similarly for y(s). But for any v (0, b+),

(U’2 2U"(U U(a+)))’(v) -2U(3)(v)(U(v) U(a+)) <_ O,

since U(3)(v) 2g"(v) > 0. Then z"(s) and y"(s) are both nonpositive, since
V’(y(s)) < 0 < U’(z(s)). By l’H6pital rule, applied twice, we get lims_,0 z"(s)
lims_0 y"(s) -2U(3)(a+)/3U"2(a+). Let us prove that

(1.15) z"(s) >_-2U(3)(a+)/3U"2(a+) >_ y"(s) in (0, v/-U(a+) ).

By using (1.14) it is enough to prove that the function

(1.16) F U’2 2(U- U(a+))U" + (U(3)(a+)/3U"2(a+))U’3
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is nonnegative on (0, b+). Let c g,-l(#); then from (1.2), (1.3), U" is negative on
(0, c), and

F’ -(U U(+))U(" + (U("(+)/U""(+))U’"U";

therefore, F is decreasing on (0, c). Now consider the function H FLU" on (c, /c);
we get H’ U’2U(3)K/U’’2, where

K -1 + (U(3)(a+)/au"2(a+))(3U"2/U(3) U’).

Then K(a+) -0 and

(1.17) (3U"2(a+)/U(3)(a+))U"(U(3))-2K’- 5(U(3))2 3U(4)U’’.

From (1.12), (U")-2/3 is convex on (c, +o); therefore, K’ is nonnegative, H is
nonincreasing on (c,a+), nondecreasing on (a+, +o), then nonnegative on (c,
Henceforth F is nonnegative on (0, +oo), positive on (0,c), so we get (1.15) with
z"(s) > y"(s) when s2 > U(c) U(a+). Finally, P+ is an increasing function.

Remark. Assumption (1.12) is equivalent to

(1.18) "() a)()(’() ’()) > 0 w e (, +),

where c g,-l(#), and in fact it must be assumed only on (c,b+). Many common
functions satisfy (1.18)- not only g(r) -Irlq-lr(q > 1) but also g(r) (coshr- 1)
sgn r, g(r) r Log(1 + [rl) and any function g such that g(3) g 0 on lit+.

Theorem 0.1 is a consequence of the following theorem. Here we use Lemmas 1.1
and 1.2, similar results for negative a, f, and the mean value theorem (notice that
&(.,-a) and (., a) are in the same connected component, even if g is not odd).

THEOREM 1.1. For any real #, let E {0} UE+ UEUE be the set of solutions
oJ’ (1.1) on S, with assumption (1.2); E+ (respectively, E;) is the subset of positive

(respectively, negative) ones, E the subset of changing sign solutions. Then
(i) Et,~ Uk=g(t,)+k, where [(#) is the smallest positive integer such that k2 +# >

0;

(ii) If # <_ O, E+ E I. If # > O, then

E Dta+}U Ck:t:

where k+(Iz) is the largest integer smaller than (g’(a+) -/)1/2, and the inclusion is
an equality under assumption (I.12);

(iii) Each connected component +k , C+k C is one-dimensional, generated by
rotation of a function with least period 2r/k.

Let us now consider the energy function associated to any w E E:

fs (- ’ ) " foE(’ U())d’E(w)= + lz- a(w) dO -f

where P is the least period of w.
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Since w’2 + U(w) (w’(0))2 + U(w(O)), we get

f0
p

(1.20) E(w) (2w’2 (w’(0))2 U(w(O)))dO.

By multiplying (1.1) by w and integrating it on P, we also have

E(w) - (wg(w) 2G(w))dO.

More generally, we shall study the function E defined by (1.20), (1.21) for any periodic
solution w of (1.1) on whole JR. Let us notice that E is nonnegative, since from (1.2)
the function r -. H(r) r g(r) G(r) is convex on IR, with H(0) H’(0) 0.

First we consider the case of the changing sign solutions of (1.1).
LEMMA 1.3. Under the assumptions of Lemma 1.1, the function a - E(&(., 0))

is increasing from (0, +o) to (0, +o).
Proof. With the notation of Lemma 1.1, we get

(1.22) E((., a))

from (1.20), where, for any o > 0,

(1.23)

Hence

(o) 2 (’(0,o))2d0 02/5(0).

(1.24) f()(a) 4 X/O2 U(v)dv o2p(o).
()

Let
I dt

(1.25) i(o) (2’- 0’)(or) V’I t2’

(1.26)
1

J(o) (2’- ’)(ot)V/1 t2dt.

Suppose first that # > 0. Then from (1.10) we know that

b+ dv
(1.27) P(a)/2

v/a U(v)
+

and from (1.23),

(1.28)

b+
q(o)/2 2 V/o2 U(v)dv + o2(2y(o) -/5(0)/2)

+ 2u() (2()
ja2 V(v)

dv + i(a))
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Now let us define

jo dt
(1.29) g() (5 )(t)t

x/1 t2

integrating by parts we get

(c) [-(S )(t)v/1 t]o + (S’- ’)(ct)v/1 tet,

which means

K(a) b_ b+ -b aJ(a).

By differentiation we get

In other terms

(1.31) a’(a) -b 2(a) (a).
From (1.28) and (1.31) we deduce

b+ c2 2U(v) dv(1.32) (a)/2
a2 U(v)

()’

and we get by differentiation of (1.31) d (1.32) the relation

+ dv
(1.aa) ’(,)/: .

( v(,))/ ’()"

Now by differentiating (1.27) we get the relation

(.3a) ’(,) -,P’(,) w > 0.

From Lemma 1.1,/5 is a decreasing function; hence is a positive increasing function
on (0,-boo), since E is nonnegative. Then c - E(&(., c)) is increasing on (0, -boo).
Suppose now that # _< 0; then from (1.9), the proof is the same with b_, b+ replaced
by0.

Let us look at the limits of E near zero and infinity. When # _> 0, we have
lima_.0/5(() -boo; the function has a finite nonnegative limit at 0, hence lima_0 E
(&(., a)) 0. When # < 0, from Lemma.l.1 we have lim,__,o I(a)_- r/, we also
get lim,_,0 (a) r/2x/-; since (a) 2a2(2(a)-(a)) and P(a) 2I() we get
more_precisely lima_,0 a-2E(5(., a)) 0. For any real #, we have lim,_,+o P(a) O,
and is increasing; hence lim,_+o E(&(., a))- -boo.

Remark. When # 0 we can do explicit computation and easily get the following
properties:

)(o) o-(q-1)/Cq+l)p(1),
E(&(., a)) a2S(5(., 1)),

V(O, ) e ]I. x ]1.+,

which give a new proof of the monotonicity of the period and energy functions.
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Let us now consider the case of the positive solutions of (1.1).
LEMMA 1.4. Under the assumptions of Lamina 1.2 with condition (1.12), the

function - E(w+(.,])) is decreasing from (0, v/-U(a+) to (0,E(a+)),E(a+)
-rU(a+

Proof. With the notation of Lemma 1.2 we now get

(Z) .u(.+)(1.35) E(w+ (.,/)) rp+()

where, for any/ e (0, v/-U(a+)),

As above, let

(f) 4 V/a2 U(v) + U(a+)dv -/2p+().
J()

I dt
(1.37) I() (z’ y’)(/t)

v/i t2
P+(f)/2,

1

J(/) (z’- y’)(/t) V/1 t2dt,

1 dt
(1.39) K(/) (z y)(t)t

x/1 t2

then

(1.40) ()/2 f2(2j(/) I(/)).

We again get the relations K(/) fJ(/),/J’(f) + 2J(/) I(f), and then

(1.41) ’(Z) -ZP(Z) vZ e (0, v/-U(+)).

Here we cannot take into account the sign of , so we differentiate (1.35) and get after
simplification, from (1.37) and (1.40),

(1.42) (C/P+)’(f) -4f2J()P(/)IP(/).

From Lemma 1.2, P+ is increasing under condition (1.12); since J is a positive function
we deduce that -, E(w+(.,)) is decreasing on (0, v/-V(a+)).

Moreover, we have lim_,0 I() r/v/g"(a+)-it and also get lim_0 J()
r/2V/(a+)- it; then from (1.35) and (1.40), limf__,0E(w+(.,/)) -7V(a+)
E(a+), which is the energy of the constant solution Wo =- a+. More precisely, we have
lim_,0/-2(E(w+(.,/))- E(a+)) -0. On the other hand, limfv/_U(a/ P+(f)
+oc. From (1.21) we have also

(1.43) P+()E(w+(., ))/27 o ((zg(z)-2G(z))z’-(yg(y)-2G(y))y’)(t)
x/1 t2

we easily get
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lim((zg(z) 2G(z))z’- (yg(y) 2G(y))y’)(s) 2(a+g(a+) G(a+))/v/g’(a+) #,

lira ((zg(z) 2G(z))z’)(s) v/-U(a+)(b+g(b+) 2G(b+))/(g(b+) #b+),
,-J-u(+)

0lim ((yg(y) 2G(y))y)(s) v/-U(a+) lirn g(Y),-x/-u(+) #Y

from (1.2); hence the integral (1.43) remains bound near v/-U(a+); then lim_,v/_U(a+
E(w+ (.,/3)) 0.

Now we can classify the energy of the solutions by the connected components to
which they belong.

COROLLARY 1.1. Under the assumptions o.f Theorem 1.1, .for any function g
satisfying (1.2), the function k -, E(k) is increasing from NCl[k(#),
When g satisfies (1.12), and g’(a+) # > 1, the function k -, E(w+k) is increasing
from N f3 [1, k+(#)] to (0,E(a+)).

Remark. When g(r)= ]rlq-ir, q > 1, the condition g(a+)-# > 1 is equivalent
to # > 1/(q- 1).

Remark. When g(r) r3 or g(r) Irlr, J. R. Licois has pointed out that the
period and energy functions can be expressed in terms of elliptic integrals.

When g(r) r3, all the periodic solutions of (1.1) are given explicitly: denoting
by sn(., k), cn(., k), dn(., k) with k (0, 1) the classical Jacobian elliptic functions (see
[31]), we get the following: the positive nonconstant solutions (when # > 0) are given
by

0 -, w+(O)
2 k2

dn
2 k2

The changing sign solutions with # 0 e given by

0 &(0) V2k2 1 (0 0o), k
2k2 1

ke(1/,l) if>0, ke(0,1/) if<0.

o e R,k e (0, 1).

With those formulas we can find again the monotonicity of the period function of
changing sign solutions by differentiating with respect to the parameter k; this kind
of proof does not work for positive solutions.

When # 0 we get the functions

0 - (v(O) p cn(p(O 0o), 1/2), o , p>0.

2. Application to the parabolic problem. Here we apply results of 1 to the
parabolic equation

(2.1) ut u + ]u]q-lu- #u,

where q > 1, with periodic conditions on (-r, +r),

(2.2) u(t)(-r) u(t)(r), ut(t)(-r) ut(t)(r), with # > 0;

or Neumann conditions on (0, r),

(2.3) u(t)(O) u(t)(r)= 0, with g > 0;
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or Dirichlet conditions on (0, r),

(2.4) u(t)(O) u(t)(r) 0, with # _> 0.

COROLLARY 2.1. Let u be any (smooth enough) solution of (2.1), (2.2) or (2.1),
(2.3) on [0, +cx); then u converges at infinity to one of the solutions o] (0.1): either to
a changing sign .function 5;k, with leastperiod 2r/k,k e N/{0}; or to 0 or +#1/O+1);
or to a .function +w+k with least period 2/k, with k2 < (q- 1)#, when # > 1/(q- 1).
Any solution of (2.1), (2.4) converges to 0 or to a function (vk, k e N/{0}.

Proof. From Cazenave and Lions [11] we know that any solution of (2.1), (2.3)
defined on [0, +o) is bounded: supt>0 Ilu(t)llLoo < +c; the proof is the same for
Neumann or periodic conditions, since # > 0. Hence from Matano [21] it converges
precisely to one of the solutions of the stationary problem (0.1), and we apply Theorem
0.1. D

Remark. Now consider the global problem for (2.1): let u be any solution of (2.1),
(2.2) (or similarly (2.3), (2.4)), bounded at -o; then u converges at +o (respectively,
-o) towards asolution w+oo (respectively, w-oo) of (0.1). The energy relation of the
problem is

E(u(t)) u2 dx,

where E has been defined in (0.10); hence

(2.6) E(w+oo) < E(w-oo), or u _= w+ w_.

From Corollary 1.1 we see that if w+oo and w-oo both have a constant sign (or both a
changing sign), then w-oo has more points of extremum than w+oo. This is conformal
to the results of Matano [22]. Consider in particular any positive nonconstant global
solution; then w+oo is nonconstant or identically 0, and w-oo #l/(q-), w+oo 0 if

it < 1/(q- 1).
The problem of the existence of connecting orbits is still open, even for positive

functions: for given solutions w+oo, w-oo of (0.1) such that E(w+oo) < E(w_o), does
there exist a global solution u of (2.1), (2.2) with lim-,+oo u(t) w+oo?

3. Application to the elliptic problem. Here we apply our results to find
the behavior near the origin or near infinity of the solutions of the elliptic equation
in R2/(0}"

u
(3.1) Au c- + lulq-u O,

wherec, qER, c>0, andq>l.
The first question for such an equation is to find an a priori estimate in Ixl-(5

2/(q- 1)). This problem is quite difficult and not completely solved in N-space
dimension with g >_ 3 (see [5], [10], [16]) and still open for changing sign solutions.
Nevertheless in the two-dimensional case Bouhar and Veron [6] give a nice proof for
the case of positive solutions, using semigroup techniques for the function v defined
by (0.4). Set B1 {x e ]121 Ix < 1}. Then we have the following.

THEOREM 3.1. Let u be any (smooth enough) positive solution of (3.1) in B1/{0}
(respectively, in ]R2/-1). Then u satisfies the estimate

(3.2) I 1% e Lloc(B1) (respectively, Loc(R2/l)).
Here we give another proof of this result, which works when q is not too large.
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Proof in the case 1 < q < 2(1 + vf)2. We follow the proof of the estimates
given by Bidaut-Veron and Veron in [5] when N _> 3, obtained by using Bochner-
Lichnerowicz formula. It lies on Lemma 6.2 of [5], which asserts that when N _> 3
and 1 < q < (N + 2)/(N- 2), there exist d e and y e /{1} such that

(3.3)
-2NN-1 y2 + 2dy d2 + d > 0, 2(N 1)q/(N + 2) < d;

d+2q-2y>N(q-1)/2, d+2-2y>0, d+q-2y>0.

When N 2 and q < 2(1 + v/)2 such conditions are still satisfied; hence we get the
estimate near the origin as in [5, Thm. 6.3], and in a similar way at infinity.

Remark. By this way we get a majorization of sup0<lxl<l/2 Ixlu(x) by a constant
C that depends on q and c, but does not depend on u. In the proof of [6] for general
q, C may depend on u.

Now we study the question of convergence for the function v defined by (0.4) as

THEOREM 3.2. Let u be any solution of (3.1) in B1/{0} (respectively, R2/1). /f
u in C (S
of the set E._c o] the solutions o] the equation on SI:

(3.4) (MOO (C- 2) (M ._ [(M[q--I(M 0.

Moreover, Ixlu(Ix], .) converges precisely to one element of E--c when u is positive,
or when q is an odd integer.

Proo]. Under assumption (3.2), the function v defined on (0,-t-cx)) x S1 (respec-
tively, (-cx, 0) S1) is bounded on [1,-t-oo) S1 (respectively, (-cx),-1] $1); hence
with elliptic equations theory, the orbit of v is relatively compact in C3($1). As in
[5] and [13], the (M-limit set (respectively, the a-limit set) is compact, connected, and
contained in the set E2_c of the solutions of the stationary problem. When u is
positive, or q is odd, from Simon’s analyticity results [27] we deduce as in [5, Thms.
3.2, 5.1] that v converges precisely to some

If we look for asymptotics of the positive solutions of (3.1), the richest case is
c > t2: then (3.4) admits a positive constant solution. Hence

(3.5) .Xl l with A (c- 2)1/(q--1)

is a solution of (3.1); the nonlinear effect of the power (Mq and the linear effect of the
Laplacian interfere. Notice that the linear equation associated to (3.1),

(3.6) A c- (},

admits two linear independent positive radial solutions: Ixl =evr.
Our result in this supercritical case is the following.
THEOREM 3.3. Assume that c > 2 (2/(q- 1))2 and u is a positive solution of

(3.1) in B1/{0} (respectively, R2/1). Then (i) either there is a / > 0 (respectively,
a > O) such that

(3.7) -.olim (respectively, lim I l u(x)
Ixl--++o
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(ii) or there is a positive solution w (respectively, ) of (3.4) on S such that

(3.s)

in C(Sx);
(iii) if 2 < c < 2 + 1/(q- 1), then

(3.9)

lim Ixl%(ll,.) (,))

(M / (a- 2)l/(q--1) (respectively, ));

(iv) if c > 2 + 1/(q 1), then w
oscillates around )t with least period 2r/k yor some k < ((q- 1)(c- ))/.

Proof. rom Theorems 3.1 nd 3.2 bove, Ixlau(Ixl, .) converges to some nonneg-
ative solution of (3.4); we get (i) if it is zero, (ii) if not, from Theorems 3.2 and 3.3 of
[5], adapted to the case N 2. Then we apply Theorem 0.1 with # c- 52 to get
(iii) and (iv).

Remark. There do exist solutions u of (3.1) and (3.7), for example, radial ones,
since (0, 0) is a saddle point of the linearized equation Wtt -f- 2Wt (C- 2)W 0;
and for any 7, > 0 by scaling. On the contrary, all the functions u satisfying (3.8)
at +x3 are necessarily nonradial but u(x) lxl-, since (, 0) is totally instable for
the linearized equation ytt + 25yt + (q- 1)#y O.

Otherwise, when c > 2 + 1/(q- 1), the nonradial functions x -- Ixl-%(.),
Ec-- /{,k} obviously give k+ (c 2) circles of solutions of (3.1).

The study of the energy of the solutions of (3.4), developed in 1, allows us to
select the possible connections for global positive solutions of (3.1).

THEOREM 3.4. Assume that c > 2 and u is a positive solution of (3.1) in JR2/{0}.
Then (i) either u is singular at 0 and regular at infinity:

lim Ixlu(x)(3.1o). z--+olimlxlau(Ixl")=(’) and
Izl-++oo

for some positive solution w of (3.4) and some > 0;
(ii) or u is singular at 0 and infinity:

lim Ixlu(lxl .) (.)(3.11) lim
x--O

h,> o (3.). H/oh, < +/(-), hn() -.
> + /(- ), h
either u(x)
or w and has a least peod 2/, with < ((q- 1)(c- 2))/2;
or w and have least peods 2r/k, 2/, with k < ((q 1)(c 2))/;

and if k then w and u(x) Ixl-%(,).
Proof. om Theorems 3.1 and 3.2 there are two functions w, in E_ such

that limt+ v(t, .) w and limt_ v(t, .) in C3(S1), where v is defined by
(0.4). om (0.6) the ener relation for function v is the following:

d (E(v(t))-l(z.12) d (t) dO 2 (t) dO,

where E is defined in (0.10) with c- 2. hence

(3.z)

we obtain the conclusions with Theorem 0.1 and Corollary 1.1.
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Remark. As for the parabolic problem, we can extend a part of the results of
Theorems 3.2 and 3.3 to any solution of (3.1) satisfying the boundedness condition
(3.2) by using Corollary 1.1 for changing sign solutions.

Now we briefly give the asymptotics in the critical or undercritical case for positive
solutions. Then only linear singularities appear because Ec+_2 q} from Theorem 0.1.

First we notice that no positive solutions of (3.1) can exist in the case of the
exterior problem, as in the case c- 0; see [4] and [24].

PROPOSITION 3.1. Assume 0 < c g 2. Then any nonnegative solution u of (3.1)
in ]12/ i8 identically zero.

Proof. Suppose that v defined by (0.4) is nonnegative on (-cx3, 0) St. Then the
mean value function (t) fB, v(t, ) d satisfies the inequality

v--tt + 2t + (i2 c) + 0-q _< 0;

let (t)= /(s), with s e-2t. Then

45s/ + (5 c)/+ v/q < 0,

and hence 452S2lss + rlq < O. If /is nonidentically 0, then for some So > 1 it is
positive, concave, and nondecreasing on (So, +cx3). For any a > s > So we get

452ys(a) <_ 452ys(s) qt_2dt <_ 452y(s) yq(s) + yq(s___).
8 r

If, for some s > So, 452vl.(s)-vlq(s)/s < 0, then vls(a) < 0 for large a; by contradiction
we have 452v/(s) vlq(s)/s > 0 for any s > So, and s Logs + 452z-q(s)/(q 1) is
nonincreasing, which is impossible. [3

Therefore we are reduced to study the behavior near the origin.
THEOREM 3.5. Assume that c 2 and u is a positive solution of (3.1) in B1/(O}.

Then
(i) either there is a / > 0 such that

(3.14) lim Il-u() %

(ii) or

(3.15) lim Ixl(-Loglxl)/u(x) 5.
--*0

Proof. From [5, Cor. 6.5], we have the estimate

(3.16) Ix](-Loglxl)/2u(x) e LloOc(B1),

obtained from (3.2) and Harnack inequality. We make the transformation

(3.17) u(r,O) (-Log r)-/2r-(t,O), t -Log r, r > 0, 0 e $1;

we get

1 ) q 52 (q
(3.18) 6t+5 2- 6+aa+(q_l)2t2 +--=0.
Then, following the techniques used by Aviles [3] for the equation Au+ UN/(N-2) 0
with N >_ 3, we prove that
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(3.19) lim (t) with 0 or .
When 0 we get (3.15). Now suppose 0; then for any 6 E (0, 1] there is a
r(6) e (0, 6) such that

(3.20) Au + (62 6[Log r[ -1)r-2u <_ 0 when r Ix[ _< r(6).

Let us look at radial solutions (r) of the equation

A + (d2 -[Log rl-1)r2 0;

define f(t) (r), with t -Log r. Then f satisfies

(3.22) fit(t) (1 t-)f(t) O.

From [7], (3.22) has two independent solutions fl, f2 such that limt._.+o e-tt/2fl(t)
1 and limt_+o ett-/2f2(t) 1, and (3.21) has two corresponding solutions 1,2
such that limr-0 r(-Log r)/21 (r) 1 and limr--.0 r-(-Log r)-/22(r) 1.
From (3.19) there is a (6) 6 (0,r(6)) such that u < 61 when r <_ (6); from
the maximum principle we get u < 61 + a2 when (6) < r < r(1), where a

(maxlxl=r(1) u(x)/2(r(1))). Then we get the estimate

(3.23) Ixl-n(-Log Ixl)-a/ u(x) e Llo e(B1);

in particular, the singularity is removable. Moreover, the function v(t) defined by
(0.4) decreases exponentially in C(S1) near +x; hence its behavior is essentially of
linear type. Using Fourier techniques as in [13] we derive the estimate

(3.24) e L,oe(B1);

then easily limx_,0 Izl-au(x) o. If 7 0 we get u 0 from Aronszajn’s unique
continuation theorem [2]; hence a contradiction. [:]

Remark. There do exist radial solutions satisfying (3.14) for any -y > 0, using
fixed point method for the function r-u as in [17]. Moreover there do exist radial
solutions satisfying (3.15), as in [4, Whm. 6.8].

THEOREM 3.6. Assume that 0 < c < 2 and u is a positive solution of (3.1) in
B1/{0}. Then

(i) either there is a "7 > 0 such that

(3.25) lim Ixl u(x)
:r---,0

(ii) or there is a p > 0 such that

(3.26) lim
:r----0

Proof. From [5, Cor. 6.5], we get the estimate

(3.27) IxlVu(x) e Loc(B1);

then v(t) decreases exponentially in C(S1) near /x; we conclude in two steps as in

Remark. Obviously there do exist radial solutions satisfying (3.25) or (3.26), since
(0, O) is a source of the linearized equation of (0.5).
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ON GLOBAL WEAK SOLUTIONS OF THE NONSTATIONARY
TWO-PHASE STOKES FLOW*

YOSHIKAZU GIGAt AND SHUJI TAKAHASHI

Abstract. A global-in-time weak solution of the nonstationary two-phase Stokes flow is con-
structed for arbitrary given initial phase configuration (under periodic boundary condition) when
two viscosities are close. The solution presented here tracks the evolution of the interface after it
develops singularities. The theory of viscosity solutions is adapted to solve the interface equation.
Surface tension effects are ignored here.

Key words, global solutions, two-phase Stokes system, interface equation, generalized evolution,
upper semicontinuous convexification

AMS subject classifications. 35Q30, 35R35, 58C06, 76T05

1. Introduction. This paper studies the dynamics of the interface (free bound-
ary) of two immiscible, incompressible viscous fluids with the same constant density,
say, one. We are interested in slow motions so that each fluid velocity satisfies the
Stokes equations with different viscosities. The interface is assumed to move with the
fluid velocities. No surface tension on the interface is considered in this paper.

Let v+ and v_, simply,denoted by +, be the viscosities of each fluid. Let
be the disjoint open sets in a bounded rectangle R(C Rn(n > 2)) occupied with the
fluids of viscosities + at time t, respectively. The complement of the union of f+
and f_ (t) is called the interface and denoted by F(t). To write down the equation we
assume that the interface F(t) is a smooth hypersurface so that F(t) is the boundary
between +() and f_(). Let u+ u+(, x) and 7+ 7r+(, x) denote the velocities
and pressures of fluids with viscosities +, respectively. The motion of the fluids
determines the dynamics of the interface. Let V V(t, x) denote the velocity of F(t)
at x E F(t) in the direction of the unit normal vector n from f+(t) to f_(t). We
consider an interface equation for F(t):

(1.1) V u+. n on F(t) with initial data +(0) f+0

coupled with the incompressible Stokes system:

(1.2) Otu+ +Au+ + Vr+ V. f+ in f+(t),0 < t < T,

(1.3) V-u+=0 in f+(t),0<t<T

(1.4) u+-u_ on F(t),

(1.5) T+ (u+, r+). n T_ (u_, r_). n on F(t),

(1.6) u+ (0, x) 0 in f+ (0),

where T+ (u+, r+) :-- v+D(u+) r+I denotes the stress tensors with

Ou Ou
D(u) (Ok,(u)):= Ox + Ox----"
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Here 0 < t_ < t% < c, 0 < T < cx), and V.f+ ’’=lOf+iJ/Ox: for f+
(f+/-ij (t, x)) (i, j 1,..., n). The initial velocities are assumed to be zero for simplicity.

Our goal is to construct global weak solutions of the two-phase Stokes system
(1.1)-(1.6) for arbitary given initial regions fl+0 and external forces f+ under the
assumption that t% and v_ are close. We impose here periodic boundary conditions
to avoid technical difficulties. Although it is possible to construct local solutions (cf.
[DeSol]), there is an intrinsic difficulty to construct global solutions since the interface
F(t) may develop singularities in a finite time.

We first introduce a weak formulation of the transport equation (1.1). Since the
boundary of our +(t) may not be regular, we consider a generalized evolution of
(1.1) through a level set of an auxiliary function. This idea goes back to [ESou].
Recently, the level set approach is extended to other equations including the mean
curvature flow equations (cf. [ES] and [CGG1]). However,our velocity field u is merely
continuous, so one cannot apply these known theories directly to our setting. We are
forced to extend the usual definition of generalized evolutions to (1.1) (cf. [ESou]). It
turns out that our generalized evolution uniquely exists for any initial data i2+0 and
any continuous velocity u.

Next we introduce a step function v to give a weak formulation of (1.2)-(1.6).
The region occupied with high (respectively, low) viscous fluid corresponds to the
place where t takes the value +(respectively, t_). The interface corresponds to the
jump discontinuity of y. The velocity u is defined by u u+ on + and u u_ on_, and also the pressure r is defined in the same manner. The system (1.2) and
(1.5) is formally equivalent to

(1.7) ut-V.(tD(u))+Vr=V.f in (0,T)T,
where T is the torus obtained by identifying each end of R. Equation (1.7) should
be understood in the sense of distributions. Condition (1.5) is implicit in (1.7) since

has the jump discontinuity on the interface. Condition (1.4) is automatic if u is
assumed to be continuous. Thus we obtain a weak formulation of (1.1)-(1.6) by using
generalized evolutions of (1.1).

To construct a solution we seek a fixed point of the mapping defined as follows.
For a continuous function v we solve (1.1) with u+ v and find generalized evolutions
_

U v_. Let t v be a step function with v+ on

_
and (+ + t_)/2

outside _. We next solve (1.7) with V. u 0 and u(0, x) 0, and obtain a mapping
S v u. Unfortunately S may not be continuous, so Leray-Schauder’s fixed point
theory does not apply. We extend mapping S to an upper semicontinuous convex,
set valued mapping so that we can apply Kakutani’s fixed point theory. To apply
Kakutani’s theory we need a compactness which follows from a priori/2 estimates
(for large p) for the Stokes system (1.7) and V. u 0 with discontinuous viscosity.
A perturbation argument similar to [Cam] and [GY] is applied here. To get the Lp

estimates for large p we need to assume that (+ v_)/+ is sufficiently small.
Our formulation allows the possibility that the interface F(t) becomes thick. If

the interface has the zero Lebesgue measure in space-time, our weak solution satisfies
(1.7). It is an open problem whether there is an example such that the interface
actually becomes thick in finite time for the system (1.1)-(1.6). See 7 for more
discussion.

In [GGI] and [GY] global solutions for the interface equations coupled with other
equations are studied in different contexts.

There are related free boundary problems for one-phase incompressible viscous
fluid motion. Solonnikov extensively studied the evolution of the free boundary when



878 YOSHIKAZU GIGA AND SHUJI TAKAHASHI

the initial surface is a connected boundary of a bounded domain. He constructed a
unique local smooth solution for a 0 in [Sol 5] and a > 0 in [Sol 6], where a is
the surface tension. If the data is close to some equilibrium state, he showed that his
solution can be extended globally in time; see [Sol 1], [Sol 2], and [Sol 3] for a > 0
and [Sol 4] for a---0.

The same problem is studied when the domain is occupied with fluid, like an
ocean with finite depth whose top is the free boundary. Local existence is established
by Beale [Se2] and Allain [A1] for a > 0 and by Seale [Bell for a 0. Global-in-time
existence of smooth solution is established by Beale [Be2] for a > 0. Sylvester [Sy]
studied global existence for a 0. Note that the case a 0 is more difficult for
establishing global existence because a > 0 gives some regularizing effect.

For the two-phase Navier-Stokes system, using a priori estimates in [De], Denisova
and Solonnikov [DeSol] constructed a local solution with or without the surface ten-
sion. Tanaka [Tana] proved a global existence for a > 0 when the initial surface is
close to some equilibrium state.

The problem (1.1)-(1.6) is regarded as the two-phase Stokes system with no
surface tension. The only difference between our problem and the two-phase Navier-
Stokes system mentioned above is that our equations for the fluid motion are not the
Navier-Stokes equations but the Stokes equations. So far even to our problem no
global smooth solutions are constructed for nontrivial initial data. We note that our
method actually extends to the two-phase Navier-Stokes system with inhomogeneous
Dirichlet condition. This will be discussed in a forthcoming paper IT] of the second
author.

It is an open problem whether our weak solution actually agrees with (unique)
classical solution as far as the latter exists.

Finally we point out that Kohn and Lipton [KL] discussed the homogenization
problem for the two-phase Navier-Stokes flow with no surface tension in a formal
level.

We note that two-phase problems for compressible viscous fluid are extensively
studied by Wani. We refer to [Wani 1], [Wani 2], and [Wani 3].

2. Interface equations. We consider the motion of interfaces with a given ve-
locity under periodic boundary conditions. For > 0 (i 1,... ,n) let R be a
bounded rectangle in Rn of the form

R--- {(xl,...xn) E Rn; 0 < xi < ci, 1 < i < n}.

We identify faces xi 0 and xi ai (1 < i < n) of R to get an n-dimensional flat
torus T. A motion of interfaces in R under periodic boundary conditions is interpreted
as that in T. We consider T rather than Rn for technical convenience because T is
compact and has no boundary. The periodic boundary condition is important because
it is often used in numerical experiments.

Let + and

_
be disjoint open sets in M [0, oc) T. Let F denote the

complement of the union of + and

_
in M. Physically, F(t) is called an interface

at time t bounding two phases 2+(t) of fluids. Here W(t) denotes the cross-section
of W c M at time t, i.e.,

w(t) e T; W}.

Suppose that F(t) is a smooth hypersurface and let n denote the unit normal vector
field pointing from Q+(t) to Q_(t). Let Y Y(t,x) denote the velocity of F(t) at
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x E F(t) in the direction n. Suppose that u" Q --. Rn is a continuous vector field,
i.e., u C(Q) where Q (0, T) T (0 < T < oc) and that Q denotes the closure of
Q in M. Here and hereafter we do not distinguish the space of real, vector or tensor
valued functions. The equation for F(t) we consider here is

(2.1) V-u.n on r(t),

where denotes the standard inner product in Rn.
If u(t, x) is Lipschitz continuous in x (uniformly in t), one can construct a unique

short time classical solution for a given smooth initial data F(0) by a method of char-
acteristics. In the periodic case a unique global-in-time weak solution is constructed
in [GGI] by a level set approach developed by Chen, Giga, and Goto [CGG1] and
Evans and Spruck [ES]; see also [ESou]. However, if u is merely continuous, classical
solutions may not exist even for a short time and they are not uniquely determined by
the initial data even if they exist. The level set approach in [GGI] does not apply to
this case so we are forced to extend the approach. By the way in [CGG2] we actually
need to assume a uniform bound on the gradient of T in [CGG2, eq. (1.6)] and of w
in [CGG2, eq. (2.13)] although it is not written there.

Largest and smallest solutions. Let u C() and a C(T). We say : Q ---. tt
is a subsolution of

(2.2) et + (u-V) 0

(2.3) (0, x) a(x)

in Q,

if is a viscosity subsolution of (2.2) on Q and ,(0, x) a(x), where h, denotes the
lower semicontinuous envelope of h" I R, i.e.,

h,(y) lim inf(h(z); Iz- Yl < e, z e I},

If- is a subsolution of (2.2)-(2.3) with -(0, x) -a(x), we say is a supersolution
of (2.2)-(2.3). If is both super- and subsolution of (2.2)-(2.3), we simply say is
a solution of (2.2)-(2.3). For a general theory of viscosity solutions, see [CIL].

As is well known, there exists a comparison theorem on solutions provided that
IVul is uniformly bounded. However, for general u C(Q) there is no uniqueness
of solutions of (2.2)-(2.3). We thus consider largest and smallest solutions. Let A
(respectively, a) be a solution of (2.2)-(2.3). We say A (respectively, a) is a largest
(respectively, smallest) solution if A/> (respectively, a < ) for all other solutions

of (2.2)-(2.3).
PPOPOSITION 2.1. (i) Suppose that is a viscosity sub-(super)solution of (2.2)

on Q, where u e C(Q). Then is also a viscosity sub-(super)solution of

LIVI 0

(respectively, + L VI 0)

on Q with L >= supQ lul.
(ii) Suppose that is a viscosity super-(sub)solution of (2.4) (respectively, (2.5)).

Then is also a viscosity super-(sub)solution of (2.2) on Q.
Proof. We only present the proof of (i) when is a viscosity subsolution of (2.2)

because the remaining three cases can be proved similarly. Suppose that C2(Q)
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and (to, xo) Q satisfy

%ax( ) ( )(t0, 0).

Since is a viscosity subsolution of (2.2),

6 + (u. v) < 0 at (t0,z0).

The Schwarz inequality now yields

6 LiVCI < 6 + (u. V) < 0 at (to, zo),

so is a viscosity subsolution of (2.4) on Q. 0
LEMMA 2.2. Suppose that u E C(Q) and a C(T). There are unique largest and

smallest solutions A and a of (2.2)-(2.3) which are bounded on every compact set in
Q. Moreover, A and a are expressed as

)t(t,x) sup{(t,x); is a subsolution of (2.2)-(2.3)},

a(t,x) inf{(t,x); is a supersolution of (2.2)-(2.3)}.

Proof. Let A denote the right hand side of (2.6). As it is well known, there exists
a unique viscosity solution + (respectively, -) of (2.4) (respectively, (2.5)) with
(2.3). By Proposition 2.1 + and - are, respectively, super- and subsolutions of
(2.2)-(2.3). Also any subsolution of (2.2)-(2.3) is a subsolution of (2.4)-(2.3), so a
comparison theorem for (2.4) yields < +. By Perron’s method (cf. [Ish]) we see A
is a solution of (2.2)-(2.3) with

-<A<+.
Since + is continuous on , A is bounded on every compact set in . The solution
A is a unique largest solution because otherwise there would exist a solution of
(2.2)-(2.3), which is not smaller than A, so this contradicts the definition of A. We
thus proved all statements on A. The proof for a is completely parallel, so is
omitted.

LEMMA 2.3 (uniqueness of level sets). Let ) and a be, respectively, the largest
and smallest solutions of (2.2)-(2.3). Let

(2.s)

(2.9)

f/+ ((t, x) e [0, T) T; a. (t, x) > 0},
f_ {(t, x) e [0, T) T; A*(t, x) < 0},

where * -(-).. The set f+ (respectively, i2_) is completely determined by the
initial data f+(0) (respectively, g/_(0)) and u, and is independent of choice of a
defining f=(O), i.e.,

n(0) { e T; a() <> 0}.

Proof. Suppose that ai C(T) (i 1, 2) satisfies

+(0) { e T; ,() > 0}.
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Let ai denote the smallest solution of (2.2)-(2.3) with a ai. We first take 0 E C(I)
(strictly) increasing with 0(0) 0 and al < 0(a2). Such a function 0, of course,
exists (cf. [CGG1, Lemma 7.2]). Since (2.2) is geometric, :- 0(a2) is a solution of
(2.2)-(2.3) with a 0(a2) (cf. [CGG1, Thin. 5.2] or [CGG2, Thm. 2.3]). Moreover
V is the smallest solution of (2.2)-(2.3) with a 0(a2) since 0 and 0-1 preserve the
order in R.

We next observe that al < . Indeed, min(al, ) is a supersolution of (2.2)-
(2.3) with a al (cf. [CGG1, Prop. 2.2]). If al < were not true, there would exist
(t,x) Q such that (t,x) < al(t,x). This contradicts the representation (2.7) of
the smallest solution al.

The inequality al < yields

> 0) c > 0}.

If we choose 0 so that a2 < 0(al), the other side inclusion also holds, so + is
completely determined by +(0).

The proof for

_
is parallel, so is omitted. [:]

Remark. Evans and Souganidis [ESou, Thm. 7.1] proved the uniqueness of level
sets in Rn when (2.2) is of the form

(2.10) u + H(x, Vu) 0,

where H Rn Rn -- R is uniformly Lipschitz and positively homogeneous of
degree one in the second variable. In this case there is no need to consider largest and
smallest solutions because solutions of (2.10) with (2.a) are unique by comparison.
The proof given there is different from that in [CGG1] and [CGG2] and does not seem
to apply to second-order equations. Of course, the proof in [CGG1] and [CGG2] does
apply to second-order equations.

Generalized evolution. Let + (respectively, _) be an open set in M. We
say + (respectively, _) is a + (respectively, -) generalized evolution with velocity
u C(Q) and initial data +(0) (respectively, _(0)) on interval [0,T) if there is
the smallest (respectively, largest) solution a (respectively, A) of (2.2)-(2.3) satisfying
(2.8) (respectively, (2.9)) with some a C(T) defining +(0).

Note that each level set of solutions of (2.2)-(2.3) independently moves by (2.1)
at least formally. The sign :t: reflects on the orientation of the interface.

For a given open set +0 in T there is a C(T) satisfying +0 (x; a(x) > 0},
so Lemmas 2.2 and 2.3 yield the following.

THEOREM 2.4. For a given open set +o (respectively, -o) in T there is a
unique + (respectively, -) generalized evolution + (respectively,

_
with velocity

u C(Q) and initial data +(0) +o on [0,T). If +o and -o are disjoint, so
are + and _.

THEOREM 2.5 (stability). Suppose that T < o and uj ---. u in C(Q) as j --. c.
Let + be the + generalized evolution with velocity u C(Q) and initial data
+j(0) +0 on [0,T), where j 1,2,... and Q (O,T) T. Let + be the+
generalized evolution on [0, T) with velocity u and +(0) +o. Let K be a compact
set in +. Then K is also contained in + for suciently large j. The same holds
for the evolution.

Proof. Let a be the smallest solution of, + v) o, (0, x)--a(x) e C(T)
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with +o {x; a(x) > 0}. By the stability result of Barles and Perthame [BP,
Appendix] the function

p(t,x) :-- lim.a(t,x) :-- lim inf{aj(s,y); It sl < , [y xl < }
o

is a viscosity supersolution of (2.2) on Q since uj ---, u in C(Q). Let L be a constant
such that supQ lujl L for all j. We take a continuous solution + (respectively,
-) of (2.4) (respectively, (2.5)) with (2.3). As in the proof of Lemma 2.2, we have- < aj < +. This implies that - < < + on [0, T) T, so we have o.(0, x)
a(x). Therefore is a supersolution of (2.2)-(2.3). Let a be the smallest solution of
(2.2)-(2.3) so that /> a by (2.7). For any compact set K c + there is i > 0 such
that infg a, >/ i since a, is lower semicontinuous. Since o/> a and K is compact
we see infg aj, > i/2 for sufficiently large j. This implies K C +j for large j. The
proof for evolution is parallel, so it is omitted.

3. Global existence of weak solutions. We introduce a weak formulation of
the problem (1.2)-(1.5) on T. Let fl+ be two disjoint open sets in [0, T) T. Let u
be a step function such that u + in fl+ and (+ + _)/2 outside fl+ U fl_,
where 0 < u_ < +. We take the mean value just to fix the idea. We may assign any
value between

_
and + provided that is measurable. Let f be a tensor field on

Q (0, T) x T such that f f+ on fl+. We say u is a weak solution of (1.2)-(1.5)
for fl+ in Q if u e C(Q) with Vu e Lq(Q) (for some 1 < q < c) and it solves

(3.1) ut V. (uD(u)) + Vr V f + V g, V.u=O in Q-(O,T) xT,

in the sense of distribution with some r and some tensor field g whose support spt g
is contained in r Q\(n+ v u_). By/)’(Q) we mean the space of all periodic (in
space) functions f on (0, T) Rn with period a (41,..., an) such that fI(0,T)R E
/F((0,T) x R).

If the Lebesgue measure of the interface F is zero, then (3.1) yields (1.2)-(1.3) by
interpreting u u+ in +. If (F(t)}t_>0 is a smooth family of smooth hypersurfaces,
the boundary condition (1.5) is contained in (3.1). The condition (1.4) is automatic
since u C(Q).

We now state our main result in this paper.
THEOREM 3.1. Let p > 2(n+ 1). Assume that +o are two disjoint open sets in T

and that f IF(Q) is a tensor field. Then there exists a positive constant 5(n, p)
such that if

(3.2) u+ u_
< i,

then there exist u C(Q) with Vu IF(Q) and + c Q such that u is a weak
ol (1.6)

the velocity u and initial data +o. Moreover, g in (3.1) can be taken as an element
of IF((0, To) T) for all finite To <_ T. Here T is allowed to be infinite.

4. Upper semicontinuous convexification. This section establishes a crucial
abstract theory for (set-valued) mappings so that we apply Kakutani’s fixed point
theory. For this purpose we extend a mapping to an upper semicontinuous convex
set-valued mapping.
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For a given subset A of a vector space X let coA denote the convex hull of A, i.e.,

coA={tx+(1-t)y;x, yEA, O < t < l}.
Let X and Y be a normed space and a Banach space equipped with norms [1" [Ix and
[[" [[v, respectively. For a set-valued mapping S" X -- 2v we define S X 2y

by

I1 ,-  llx < e} c Y

for u E X and > 0. Here 2Y denotes the family of all subsets of Y. We introduce
another set-valued mapping q" X -- 2Y defined by

S(u) (’l e x,
e>0

where B denotes the closure of B C Y. In this paper we call S upper semicontinuous

convexification of S since it has the following properties.
LEMMA 4.1. (i) For each u e X the set ,.q(u) is closed and convex in Y.
(ii) The mapping q is upper semicontinuous. In other words, if uj ---, u in X,

vje q(u) and v ----. v in Y, then v e S(u).
(iii) /f S(u) is nonempty for all u e X, so is

Proof. (i) Clearly, S(u) is closed. Since the closure of a convex set is convex and
the intersection of a family of convex sets is also convex, we see q(u) is convex as well.

(ii) Suppose that v q(u). Then there would exist > 0 such that

v A6(u):= coS(u).

Since A6(u) is closed, there would exist k such that j > k implies that v A(u).
Since u ---. u we may assume that I[uj -ul[x < 6/2 for j/> k by taking k larger.
By the definition of S we see

A(u) D Ai/2(uj), j >/k.

This inclusion now would imply vj A/2(u), i.e., v q(uj) for j/> k, which leads
a contradiction.

(iii) Since S(u) contains S(u), so does S(u).
We have introduced the upper semicontinuous convexification so that we apply

Kakutani’s fixed point theory. We state an.easy consequence of this fixed point theory
for later use.

PROPOSITION 4.2. Let K be a convex compact subset of a Banach space X and
let S X --, 2g c 2X be a nonempty set-valued mapping. Let be the upper
semicontinuous convexification of S. Then ,.q has a fixed point K 3 q().

Proof. Since K is convex and closed, values of q are contained in K. By Lemma
4.1 we see S is an upper semicontinuous set-valued mapping X ---+ 2g with nonempty
closed convex values. The existence of a fixed point of S now follows from Kakutani’s
fixed point theorem [AF]. r]

5. Stokes equations with discontinuous coefficients. Let us recall anisotropic
Sobolev spaces of fractional orders (cf. [Ya, Ex. 1.1 and 3] and [Tri, 2.13]) though our
notation differs from them. For 1 < p < oo and 0 < s <
denote

HpS,2s {f , Lp(R x R’); II.fllH;,. --II-
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with (T,) [{1 / I12 4- (1 4- 2[12 4- [[4 4- 42)1/2}/211/2" Here (’f)(% ) denotes
the Fourier transform of f(t,x) on R x Rn (t,x). The multiplier (-,) is tually
the unique positive root t of

t-2 + t-2"2r2 + t-2[J2 1.

For a domain D in Rn+ let s,2"(D) denote the spe of all f (D) which can
be extended to an element ] of s,2, The space ’,2"(D) is equipped with the norm

Let s,2,(Q) denote the spe of all periodic (in space) functions f defined on (0, T) x
Rn with the period a (al,’", an) such that

fl(0,T)xR e "2"((0 T) x R)

The space gs,2(Q) is equipped with the norm

gl/2,1We shall write ..n (Q) simply by p(Q). We begin with a priori estimates for the
heat equation.

LEMMA 5.1. Let 0 < T and Q (0, T) x T. Let 2 < p < and let
F e (Q) be a vector field. Then the ests a unique solution u e (Q) of

ut Au V" F in Q,

ult=o O.

Moreover there is a constant Ci Ci (n, p) such that

The restriction 2 < p guarantees that u E 7v(Q) has a trace at t 0. However if
we interpret ult=o 0 in a suitable way, the restriction p > 2 is weakened as p > 1.

Proof. The uniqueness is standard. For example, multiplying u with ut Au 0
and integrating in space by parts yields a differential inequality which implies u 0.

We extend u and F periodically outside R so that u solves

ut-Au=V’F in(0,T) xR.
The solution u is expressed as

u(t,x) (Vg)(t- s,x- y) F(s,y) dyds,

where g(t,x) (4rt)-n/2 exp(-Ixl2/4t) is the heat kernel. Since F is periodic with
period a (Cl,.-., an), we observe that

u(t, ,(t,
aEZ

v(t, X) (Vg)(t S, X y) F(s, y) dyds,
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where aa (axal,..., anan). Note that

with D (0, T) x R". By Mikhlin’s lemma (cf. [MS]) we see

with C1 C(n, p). These two inequalities yield Lemma 5.1.
We apply Lemma 5.1 and a perturbation argument (cf. [Cam] and [GY]) to the

Stokes system with discontinuous coefficients and obtain the following results.
PROPOSITION 5.2. Assume that 0 < T < cx and 2 < p < cx. Assume that

u E L(Q) satisfies

(5.1) 0 < v_ _< v <_ v+

with some constants v+/-. Let f IF(Q) be a tensor field. Then there exists a positive
constant 8(n, p) such that

(5.2) v+ v_
< 8

v+
implies that the Stokes system

(5.3)
ut V. (vD(u)) + Vr V. f,

ul=0 0,

V.u=O in Q,

has a unique solution u 7"l,(Q) (with some function 7r) satisfying

(5.4) Ilull(Q) < llfllL(Q)
with C2 C2(n, p).

Proof. Let P be the projection of/F(T) to/Fa(T) associated with the Helmholtz
decomposition

/.2(T) =/2(T) (9 {VTr e LP(T); 7r e/F(T)},

LP(T) {u e/F(T); V.u 0 in T}.

Since T has no boundary, P commutes with partial derivatives on T. Applying P to
the first equation of (5.3) yields

ut V. (PvD(u)) V. (Pf).

Here Pf is a tensor field defined by

(Pf)ij (Pfj)i, l<i,j<n

for a tensor field f and fj represents a vector field defined by fj (fij)x<i<n. From
(5.5) it follows
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(5.6) ut g+Au V. P(f + (- u+)D(u))

since V. u 0.
We shall solve (5.6) with ul=o 0 by a successive approximation. Let uj+l be a

solution of

i)tuj+ +Auj+ V. P(f + (- +)D(uj)),

u+lt=0 0,

for j _> I and let u -= 0. Since P is bounded from LP(T) to LPa(T) and IID(u)IIL(Q)
2CollUll,,(Q) (cf. Appendix, Lemma A.l(vi)), it follows from (5.1) that

]lP(f + (’- ’+)D(u.i))J]L,,(Q) <_ C(JI/JIL(Q) + 2C0(/ _)]]uJJ(Q)).
The bound C of P here is actually independent of T. Indeed, note that Pu u- Vq
with Aq V. u in T. Extend q and u periodically outside R so that Aq V. u is
regarded as an equation on Rn. As in the proof of Lemma 5.1, applying Mikhlin’s
lemma to the integral representation of Vq we obtain

with C’ C’(n, p).
Applying Lemma 5.1 with a change of a variable s t/u+ to (5.7), we now obtain

+
C" 2CoC,C.

We thus observe that uj E p(Q) for all j _> 1.
Choose i such that C"i < 1/2. Since (5.7) is linear in Uj+l and uj, the difference

wj+ uj+ uj solves

cgtwj+ u+Awj+l V. P((u- u+)D(wj)) in Q,

O.

As in deriving (5.8) applying Lemma 5.1 we observe, by (5.2), that

u+
1

for j 2. This implies that (uj } is a Cauchy sequence in p(Q).
The limit u of (uj } solves (5.6) with u]t=0 0. The estimate (5.8) yields

C1C 1

We now obtain (5.4) with C2 2C1C. Since P commutes with partial derivatives
and u solves (5.6), we see V. u 0. We have thus constructed a solution u
of (5.3) with (5.4) under (5.2). The uniqueness of solutions follows from (5.4).



NONSTATIONARY TWO-PHASE STOKES FLOW 887

6. Proof of Theorem 3.1. Assume that 0 < T < oo. For u E C(Q) let
f+/- c Q be generalized evolutions with velocity u and initial data f+/-0. Let u uu
be a step function such that u u+/- in f+/- and u (u+ + u_)/2 outside f+ U f_
with 0 < u_ < u+. Assume that f E LP(Q). If positive constant 6 is chosen as in
Proposition 5.2, then there is a unique solution 2 of (5.3) for u u such that

We define a mapping S" C() 2g by S(u) := 02}. If p > 2(n + 1), the inclusion

U (Q) c C.(Q)

for # 1/2(n 4- 1) liP is continuous (see Appendix) and Ascoli-Arzela’s theorem
implies that K is compact in Banach space C(Q) since T < oo. Unfortunately Leray-
Schauder’s fixed point theory does not apply to S since S may not be continuous. We
consider the upper semicontinuous convexification q of S in 4.

LEMMA 6.1. Let q be the upper semicontinuous convexification orS. If v q(u),
then v is a weak solution of (1.2)-(1.5) with (1.6) for generalized evolutions f+/- with
velocity u and initial data f+/-o. Moreover, g in (3.1) belongs to Lp(Q).

Proof. By the definition of q, if v q(u), then for each k 1, 2,..., there is a
sequence {van}m=1 converging to v in C() such that Vkm e coS1/k(u). In other words

Vkm is expressed as

e=
j--m

k C() such thatwith some Ak and uj

E A"}- 1,

By a diagonal argument there are a sequence uj converging to u in C(Q) andA A
with

m
E ,,n 1,
j=m

such that

m

converges to v in C(Q) as m --. oo. In the definition of S, fii solves

0t2j V. (vuD(j)) + V#j V. f
V.2j=O inQ,

It=o O,

in Q,
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with some j. Multiplying/kn and adding from m to m we see

OtVm V (t6D(vm)) + Vrm V f + V gm

(6.1) V.Vm- 0 in Q,

in Q,

vl=o O,

with

m

j’-m

j=m

Since K is convex and bounded, the sequence {Vm} is bounded in /p(Q) so that
{D(v,)} is bounded in Lv(Q) (cf. Appendix). We thus observe that D(vm) D(v)
weakly in LV(Q) since V,n V in C(). Since fij 6 K, the sequence {gin} is bounded
in LV(Q). Taking a subsequence if necessary, gm g weakly in LV(Q) for some
g 6 LV(Q). Letting m --+ cx in (6.1) yields

Otv V. (uD(v)) + Vr V. f + V.g in Q,

V.v=O in Q,

vlt=o 0

for some 7r.

It remains to prove that spt g C Q\(fl+uf_). Let C be a compact set in f+Uf_.
Since u -- u in C(), we see, by Theorem 2.5, u u on C for sufficiently large
j. This implies that gj 0 on C for sufficiently large j. Since gj g weakly in
LV(Q) and C can be taken as an arbitrary ball in f+ U f_, we conclude that g _= 0
on i2+ U f_.

If T < and p > 2(n + 1), K is compact and convex in X C(). By
Proposition 4.2 S has a fixed point u K 3 S(u). By Lemma ft.1 this u is a desired
weak solution in Theorem 3.1.

To complete the proof of Theorem 3.1, it remains to construct a global solution
in (0, ). For 0 < T < o we write by , K by K and S by o emphasize
the dependence of T. For T1 < Tg. < < T let u be a fixed point in

K t3 S(UT). Since in Proposition 5.2 is independent of time, for each T <
the restrictions {fi} of {u} on t < T are bounded in KT () for sufficiently
large i. Since he inclusion v(@T) C C(-) is compac for p > 2(n+ 1) and T < ,
a diagonal argument yields a subsequence {e} and w C((0,) T) satisfying

(6.2) fie---w in C(QT).

Since fie e ST(fie) C C(Q--) and since the graph of ,ST" C(Q---) ---+ 2c(Qr) is closed
in C(QT) x C(QT), (6.2) implies W[Qr e ,ST(W[Qr) C C(QT). Since T is arbitrary,
this yields a desired global solution in (0,
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7. Discussion: fattening of interface. Suppose that ft+0 and ft-0 are disjoint
open sets in T. As proved in Theorem 2.4 there axe unique +/- (mutually disjoint)
evolutions ft+/- with velocity u E C() and initial data f+/-0. The complement F of
the union of f+ and ft_ is called the generalized interface evolution. We do not know
whether F(t) becomes to have a positive Lebesgue measure at some time t for smooth
initial data F(0). Even if we assume div u 0, we do not know because u is merely
continuous. If Vu is bounded in Q, F(t) has the zero measure (for all t) if so does
r(0).

LEMMA 7.1. Suppose that [Vu is bounded on Q and that div u O. Then the
Lebesgue measure :n(ft+/-(t)) is independent of time. In particular, n(F(t)) 0 so

that/2n+x(F) 0 provided that z:n(F(0))= 0.
Proof. By Lipschitz continuity of u in x there is a unique viscosity solution

e C([0, T) x T) of

(7.1) Ct + (u. V) 0 in Q

(0,

for given a e C(T). If ft+0 {x e T; a(x) > 0},

f+ {(t, x) 6 [0, T) T; (t, x) > 0}.

Such a solution is a uniform limit of solution Ce of approximate equation

Ct + (u. V) eA in Q

as 0. For T > t > 0 using div u 0, we have

d /T edx ]T(div(u) ACe)dx O.
dt

Sending e to zero now yields

(7.2) t x)dx fT a(x)dx for all t > 0.

We set/gin by

1, >z l/m,
Om() m, 0 < < l/m,

o, < o,

so that Om approximates the Heaviside function. Since (7.1) is geometric (cf. [CGG1]),
Cm 0re(C) solves (7.1) with Cm(0, x)= Om(a(x)) and

ft+ {(t, x) 6 [0, T) T;,(t, x) > 0}.

By (7.2) we observe that

(t, x)dx fT Om(a(x))dx.
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Letting m --, oo yields

n(f/+(t)) n(f+0) for 0 < t < T.

The proof for

_
is the same. In particular, we observe En(F(t)) n(F(0)). By

bini’s theorem we now have n+l(F) 0 if n(F(0)) 0.
Uniqueness problem. We do not know the uniqueness of our we solutions even

if a (unique) clsical solution exists. We hope our solution aees with the clsical
one far the latter exists.

Our solution satisfies (3.1) (not, in general, (1.7)); the term V.g comes from
convexification. However, since support of g (Q) is contained in the interfe
F, our solution tually solves (1.7) in the usual sense provided that F h the zero

Lebese meure in Q. We hope uniquess of solutions in this ce. However, we
do not know any example such that the interface F of our solution h a positive
Lebese meure for smooth initial surfe F(0).

If the interfe h a positive meure, we hope no uniqueness. Actually, if F h
an interior point, we eily observe no uniqueness of solutions by modiing u on the
interfe. We need further constitutive information on the interface to get uniqueness.

Appendix. We list a couple of properties of anisotropic Sobolev spaces for the
reer’s convenience since such spaces may be less fili than isotropic ones.

LEMMA A.1. (i) For 0 s 1 the space H,2S(Rn+) is isomohic to the
1,2 n+lcomplex inteolation race [(Rn+l), Hv (R )Is as Sanach races.

(ii) The no lf]. is equivalent to the no

(iii) L be doai i R+ o/h/o (o,h) oohl bounded
domain in Rn. There is a continuous linear operator e om H,2(D) to
such that ef f on D.

(iv) __pHs’2s(n)= [(n), U’2(n)], for 0 _< s _< 1.
H1/2,1(v) For p > 2(n + 1) the space ..p (Q) is continuously embedded in C()

with 1/2(n + 1)- lip.
(vi) There is a constant Co Co(n,p) such that

Ou

L(Q)

Proof. (i) For f e H’2(R+) we set

Af -(,)2f.
The operator A is closed in LP(Rn+) with the domain (A) HpI’2(Rn+). By
Mikhlin’s lemma the operator norm in of the pure imaginary power Aiu is bounded
by a constant multiple of e11 for some 7 > 0. A standard gument (see, e.g., [GS,
6]) yields

V(A [n (a"+1 (a.+l )]
(ii) We observe through Mikhlin’s lemma that

IAfllL Cll(Ot A + 1)fllL

C(llO, + IIV /ll  + I1 11  )
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(iii) We may assume to 0. It is well known that there is a continuous extension

el: Hp2(fl) Hp2(Rn). For f e Hpl’2(D) we set

](, ) (I)(-,) fo (, ) e (-, 0) x R,
(I)(- ,) fo (,) e (,) x ,

so that ] is defined on (-ti,2tl) x Rn. We then take o e C((-ti,2tl) x ln) so
that o -= 1 on D. By the characterization of 41’2 norm in (ii) we observe that the
operator ef := ] is continuous from HI,2(D) to Dri’2(ln+i). Clearly ef f on D.

(iv) Interpolating e" Hpl,2(D) -- Hpl’2(Rn+i) and e LP(D) -- LP(In+I), we
observe that e is a bounded linear operator

e" [LP(D), H’2(D)] s --* [L(R’+1), Hpl’2 (ln/l)]s --pJ’]’s’2S(ln+l)
Since the restriction r" H’,2S(Rn+l) - hrs’2S(D) is continuous, there is a continuous

inclusion from [/)’(D), HI’2(D)] to gs,2S(D)
1,2 n+l 1.oi.

h H,2() i co.i..o icdd i. [(),2()] i.c i .dciv .d
the topolo of ,2{D) is strongest such that is continuous. This proves the
identity of

v) We te D 0, T) G such that G conins the closed rectgle R. For

f /2,1) h mppin

J: f liD
4ri/2,1is continuous from Hip/2’1 (Q) to--v (D) since D is bounded.

Note that HI,2(D) c Hip(D) by (ii), where Hip(D) denotes an isotropic/2 Sobolev

space of order one. By (iv) we observe that HI/2’1 (D) c H,/2 (D) since

Hp/2(D) [LP(D), Hlp (D)]I/2

(cf. [Tri, 4.3.1]). The Sobolev inequality implies

Hpl/2(D) C_ Cl(-)

with # 1/2(n + 1)- lip provided that p > 2(n + 1) (see [Tri p. 327, 4.6.1]).
4rl/2,1Thus ..p (D) is continuously embedded in C(). The mapping j now gives a

continuous mapping

Hpl/2,1(Q)
__

Cl(-)

such that

jf:f on(0,T) xR.

This implies that the inclusion

Hlp/2’I(Q) C Cl(")

is continuous.
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(vi) For u e T/p(Q) let v e Hp/2’1 be an extension of u such that

-<
By Mikhlin’s lemma we have

Ou
,x

with C C(n,p). These two inequalities yield (vi).
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Abstract. The two dimensional Navier-Stokes equations with time-dependent external body
forces is considered. Under appropriate assumptions on the temporal properties of the forcing term
the authors are able to construct a time-dependent deterministic approximate inertial manifold. It
is shown that all solutions converge exponentially fast to a thin neighborhood of this manifold. If
the forcing term is too oscillatory in time, it is shown by example that the techniques used in the
construction of certain approximate inertial manifolds for the autonomous case, in general, do not
extend to the time-dependent case. Also it is shown that if the forcing term is time-independent
and spatially smooth (Gevrey class), then the global attractor lies exponentially close to the linear
manifold spanned by the first m eigenfunctions of the Stokes operator, provided m is large enough.

Key words. Navier-Stokes equations, approximate inertial manifolds, nonlinear Galerkin meth-
ods

AMS subject classifications. 35A40, 35Q10, 65N30, 76D05

1. Introduction. In recent years there have been extensive, rigorous studies
of the long-time behavior of the Navier-Stokes equations (NSE) in an attempt to
understand the phenomenon of turbulence. All these studies have indicated that the
long-time behavior of the dynamical system generated by the solutions has a finite
number of "degrees of freedom."

For instance, the existence of a finite number of determining Fourier modes (cf.
[25] and [23]), the existence of a finite number of determining nodes (cf. [33], [35],
and [47]), and the existence of a finite-dimensional global (universal) attractor (see,
e.g., [2], [7], [11], [8], [36], [40], and [67] and the references therein). In the latter case,
most of the studies were made under the assumption that the forcing term
is time independent (for related topics with time-periodic forces see, e.g., [37] and
[61]). In this case, when the force is time-independent, the solution u(t) is given by
a nonlinear semigroup u(t) S(t)uo, and the global attractor is characterized as the
maximal bounded invariant set under S(t) (i.e., S(t)jt Jt for all t E l; see, e.g.,
[40] and [66], and the references therein).

The existence of a finite number of determining Fourier modes suggests that for
m >> 1 the long-time dynamics of the high modes, say q, is, roughly speaking, de-
termined by the dynamics of the lower ones, ,say p. Hence, it is natural to search
for a "global function" that gives q in terms of p, asymptotically in time. Most re-
cently, the theory of inertial manifolds provided sufficient conditions for the existence
of such a function q (p) (cf. [27] and [28], and [3], [9], [10], [24], [29], and [55]).
More precisely, an inertial manifold (IM) for a dissipative evolution partial differential
equation is a smooth finite-dimensional manifold in the phase space, which is posi-
tively invariant under the solution operator, and which is uniformly attracting every
bounded subset of phase space in an exponential rate. The problem of existence of an
IM for the NSE is still open. However, such a manifold exists for numerous interesting
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partial differential equations (see, e.g., [9] and the references therein). It is clear that
if the IM exists, then it must contain the global attractor. Moreover, the reduction
of the partial differential equation to the IM yields an ordinary differential system,
which is called the inertial form.

In particular, we consider an abstract evolutionary equation on a Hilbert space
H (see 2) of the form

du
d-- + Au + R(u) f.

We denote by Pm the orthogonal projection onto the span of the first m eigenvectors
of the linear dissipative operator A, PmH --span{ol,..., Om}, Qm I- Pro, and
p- Pmu, q Qmu. Then the evolution equation is equivalent to the system

dp
-t- An + PmR(p + q) Prof,dt

dq- + Aq + QmR(p + q) Q,f

If the IM is given by JI Graph(q)) and u(t) p(t) + (p(t)), the inertial form is
given by

dp + Ap + PmR(p + (p)) Prof, p = PmH.dt

Although the existence of an IM for the NSE is still unknown, the NSE does have an
inertial form for periodic boundary conditions with special periods [52]. That is, the
dynamics on the global attractor is given by the dynamics of an ordinary differential
system.

In general, one does not have an explicit form for the IM when it exists, except
in certain cases (see, e.g., [3]). One must therefore approximate it. Even if the
IM does not exist, the theory suggests looking for a global function, (I)app, whose
graph, Jiapp :-- Graph((I)avv), in phase space approximates the global attractor. Such
manifolds are called approximate inertial manifolds (see [6], [12], [15], [20]-[22], [29],
[32], [44], [45], [48], [57], [59], [68], [69], and [71]). One then studies, in either case,
the approximate inertial form (AIF)

(1.1)
dp + Ap + PmR(p + (avp(P)) Prof, p e Hm,
dt

or a variant of (1.1) (see [12], [13], [45], and [5s]). If one puts avv(p) 0 in (1.1),
then the AIF is just the usual Galerkin scheme. For this reason the study of AIMs and
the associated approximate inertial forms are also called nonlinear Galerkin methods.
Thus, if one can model, asymptotically in time, the small scales, q, as a function,
’avv(P), of the large scales, p, in a nontrivial way, (1.1) may better reflect the dy-
namics of the original PDE compared with the standard Galerkin scheme. Indeed,
the nonlinear Galerkin methods have yielded new numerical schemes that may be
appropriate for approximating solutions for long intervals of time. Computational
results using (1.1) are encouraging. They have shown improved stability, accuracy,
and a significant gain in computing time (see [5], [191, [43], [56], [44], and [45]). Also
see [lS], [3S], and [62] for other computational and stability aspects of these schemes.

However, it is important to verify that these schemes would reflect and predict
the correct qualitative dynamical features of the equation and its solutions, such as
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bifurcations, dissipation, stability, hyperbolicity, etc. One of the essential features of
the PDEs under study is that they are dissipative. We remark, however, that even
to preserve this basic property in the AIF, one needs to be careful. See, for example,
[17], [18], [35], and [45].

Our goal in this paper is to construct an AIM for time-dependent forces. The
theory of attractors and IMs was originally developed for autonomous systems-time-
independent forces. Indeed, the idea of AIMs is to approximate the global attractor.
When the force is time-dependent, and no assumptions are made about the asymp-
totic behavior of f(t), the system may not possess a global attractor. We will show,
however, that we can extend the properties of several AIMs to time-dependent forces
under appropriate assumptions on the force, f(t). Our method is similar to the one
used in [65], which studies the AIM in [69] and [71] for certain reaction-diffusion
equations with time-dependent forces.

We organize the paper as follows. In 2 we present the abstract framework and
recall certain known estimates for the NSE that we will use later. In 3 we study a
particular AIM and its inertial form; namely, the flat linear space, Capp(P) 0, and
its corresponding inertial form that is the usual Galerkin scheme. However, we show
that if the forcing term is in the Gevrey class, then after a sufficiently large time, the

112
orbits of the solutions to the NSE remain at a distance of the order A+/2e-+
from the fiat manifold, where Am+l is the (m - 1)th eigenvalue of the linear Stokes
operator. The consequences of this is that the AIMs given in [21], [201, [57], [68],
and [69] lead to algebraic improvements in the rate of convergence of the distance
solutions are attracted to their respective manifolds over the flat manifold. Moreover,
based on the work of [13] one can show exponential convergence of the Galerkin and
nonlinear Galerkin systems in this case. We would like to add that these results are
not restricted to the NSE and can be extended easily to many other equations such
as the Kuramoto-Sivashinsky equation, the complex Ginzburg-Landau equation, and
the convection in porous media (see, e.g., [14], [54], [60], and [72]). In 4 we consider
time-dependent forces. We show by example that if the forcing term is too oscillatory
in the time variable, then the assumptions used in the AIMs in [21], [29], [57] [68], and
[69], for the autonomous case do not carry over to the time-dependent case. That is,
dq/dt is relatively small with respect to the other terms in the equation for q above
for m >> 1. In 5 we assume that the forcing term in Hhlder continuous in the time
variable. We are able to construct a time-dependent AIM in this case, and estimate
the error resulting in the associated nonlinear Galerkin method.

We remark that our manifold is obtained from an algebraic closure resulting from
a decomposition of the solutions with respect to the spatial scales and by negelecting
the time derivative of the small scales. Perhaps a more justified method, given an
ensemble of solutions, would be to apply the Karhunen-Lobve procedure, [1], [63] to
the time derivatives (see [64]). In this way one could decompose the system into two
parts: one finite-dimensional where the time derivatives are important, and the other
in. which the time derivatives could be neglected. This latter system would then give
a way to close the system algebraically. We investigate this in [49].

2..Functional setting and preliminary results. The two-dimensional
Navier-Stokes equations for a viscous incompressible fluid filling a region f are of
the form
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(2.1)

u
M a+ (. v)u +v ,

V’u=0,

(, 0) 0().

f f(x, t), the external body force, and y > 0, the kinematic viscosity, are given;
u u(x, t), the velocity vector, and p p(x, t), the pressure, are the unknowns.

We supplement (2.1) with two types of boundary conditions: the first is nonslip
or homogeneous Dirichlet boundary condition,

(2.2) u]on 0;

the other is periodic boundary conditions. 2 (0, L) (0, L) and

(2.3)
u(x, x2, t) u(x, x2 + L, t),
i(Xl, x2, ) (Xl "- L, x2, t)

for all (xx,x2) E R2. We assume in the latter case that the integrals of u and f on 12.
vanish at all time.

In the case (2.2) we denote

V (v e (C(fl))2, divv

and in the case (2.3) we denote

V { u:R2 -. R2, vector-valued trigonometric polynomials

with period L, V. u 0, and fa udx 0}.

We suppose that from now on in the case (2.2), has a sufficiently smooth
boundary. In both cases we set

H the closure of ]) in (L2())2,
V the closure of V in (HX())2,

where Ht() (l 1, 2,...) denote the usual L2-Sobolev spaces. H is a Hilbert space
with the inner product and norm

(u, v) --/ u(x). v(x)dx, lul lu(z)12dx

respectively, and u(x). v(x) is the usual Euclidean scalar product. Thanks to the
Poincar inequality, V is also a Hilbert space with inner product and norm

2

/ Oui Ovi Ilvll 
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respectively. Let P denote the orthogonal projection in L2() x L2() onto H. We
denote by A the Stokes operator

Au -PAu

(notice that in the periodic case Au- -Au) and the bilinear operator

B(u, v) P((u. V)v)

for all u, v in :D(A) VD(H2(fl) x H2(fl)). We recall that the operator A is a positive
self-adjoint operator with compact inverse. Thus there exists a complete orthonormal
set j of eigenfunctions of A such that Aj Aj and 0 < ,kl _< ,2 _<

Now the NSE, (2.1), is equivalent to the differential equation in H,

(2.5)
du
d- + uAu + B(u, u) f,

where from now on f Pf, and it is assumed that f satisfies f e L((0, oo);H).
That is, supt>0 If(t)l < fo. (For details see, e.g., [7], [53], or [66].) For questions
related to existence, uniqueness, and regularity of solutions the reader is referred to
[7], [30], [42], [41], [50], [53], [66], and the references therein.

It is also well known that there exists constants M0, M1, which depend only on
u, foo, ,1, such that for every solution u(t) of (2.5) there is a time T. depending on

u0, , fo, 1, such that

(2.6) [u(t)[

_
M0 and Ilu(0ll < M1

for t

_
T. (see [7], [301, d [66]). Soe of ou results will require IAu(t)l

_
M2

for sufficiently large t. Sufficient conditions for this bound would be, for example,
sups>_0 IIf(01l < , or y() is analytic on a strip containing lI+ and sups>0 If(t)l < oc

(e [7], [30l, .d [66]) o up>0 lY’()l < , (see [39], [53], d [66]). W remark
also that the existence of the constant M1 such that (2.6) holds is not known in the
three-dimensional case. Therefore, in order to extend the results of this work to the
three-dimensional case we need to consider the approximation of invariant sets which
are bounded in V.

We recall the following inequalities that are satisfied by S(u, v) (cf. [7], [53], and
[66]).

Vu E V, v E/)(A),
(.7) I(S(, ), )l < lul/llll/ll,lll/lA,l/ll

We recall the following estimates from [70]"

(2.9) I(B(u, v),,,.,)l < ll’llllvlll’l 1 + log Vu, v, w E ,

(2.10) I(B(u,v),)l < c41ulllvllllll 1 +log Ilull Vu, v e v,
I11/"1
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(2.11) {(B(u,v),A)l<-cllullllvlllAl[l+log(i
We also have the estimate

lB(u, v)l <_ c611ullLoo()llvll Vu e V(A), v e V.

Then we may either use from [4] that

or Agmon’s inequality,

(2.13) IlU[ILOO() <_ cslull/21Aul 1/2 Vu e :D(A),

to obtain

IS(u, )l <  1o1 1 / 1A 11/ 11 11 W e V(A),, e V,

respectively.
In addition, the operator B enjoys the following fundamental property:

(2.16) (B(u, v), w) -(B(u, w), v).

(See, e.g., [7], [53], and [66].)
3. The GIalerkin approximation revisited. Denote by P, the orthogonal

projection of H onto Hm span{qol,..., ore}, Qm I--Pro, and p Pmu, q Qmu.
Then (2.5) is equivalent to the system

(3.1)
dp
dt + yAp + PmB(p + q, p + q) Prof,

(3.2)
dq + vAq + QmB(p + q, p + q) Qmf

Before turning to the time-dependent forces we examine the case where f is time-
independent and smooth. We consider only the case (2.3), the periodic boundary
conditions, in this section. More specifically, we suppose that f is in the Gevrey class.
This means that for some a > O, f I)(c’A1/). That is,

where f j=l fjigj. We wish to reconsider the classical Galerkin method under
this assumption on f.

It is shown in [20] and [21] that on the attractor

Iq(t)l < rl/2.--I
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where Lm (1 + log(Am/A1)) and f is assumed to be in L2(f) only. We remark
that this estimate has been shown by example to be sharp, asymptotically in m, as
m --. o, up to the logarithmic term [69], [71]. This suggests replacing the mapping
app in (1.1) by zero. The AIM is just the linear space PmH, and the approximate
inertial form is the standard Galerkin approximation,

alum--- + uAum + PmB(um, Urn) Prof, p E Hm.

We begin by recalling a result from [34].
THEOREM 3.1. Suppose uo :D(A1/2) and f is given in T)(eaA1/) for some

a > O. Then there exists constants a,T that depend only on uo through
such that the solution, u(t), of (2.5) satisfies

(3.3) lela’A/2u(t)
_
R V >_ T,

where R depends only on M.
We remark that similar results have been obtained in [41] and [50]. The bounds

(2.7), (2.8), (2.14), and (2.15) involving the bilinear term S(u, v) given above have
analogies in the Gevrey class (see the appendix). For example, (2.15) becomes

for all u T)(AeA/2), v 7)(A/2eaA1/2). The next result shows that the fiat
manifold Hm attracts the solutions of (2.5) to an exponentially thin neighborhood.
In what follows, Ki, i 1,2,3,..., will denote appropriately chosen constants that
depend only on u, R, f, and A1.

PROPOSITION 3.2. Let f be given in the Gevrey class for some a > 0 and let
m > O. Then for t sulOciently large, any orbit of (2.5) (periodic boundary conditions)
satisfies

distv(u(t),H,) <_ 2X/ (le"A/2Q,SI + R r,/-. + R--)
A/

where (2 all2 and a is given by Theorem 3.1.
Proof. We have that

dq
d-- + Aq + QmS(u, u) Q,f

where q(t) Qmu(t) and u(t) solves (2.5). Taking the inner product with e2A1/Aq
(to make this completely rigorous we should consider a Galerkin approximation based
on the eigenfuctions of A and then pass to the limit, since we do not know a priori
that le2A/Aql is bounded), we find

21 dtd ileA/, ql12 + ulAeA/ql2 <_

+ I(eA/S(p,u),AeA/q)
+ I(eA/S(q, u), AeA/q) I.
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Using the Cauchy-Schwarz inequality, (2.14), and (2.15) appropriately modified as (3.4),
we majorize the right-hand side of the last inequality by

After applying Young’s inequality and (3.3) we bound this quality by

3 4 6

VIAeaA1/2ql2 6 - Cg/tl m - 32V3)m4.1.2 "l--leaA1/2Qmfl2 6 -2 r4L 27 ClRl

Thus,

dl]eaA1/2q]12 + yAm+ll]eaA1/2qll 2 < K1 Qmfl2

V V V3 ]
and we conclude that

ll:A’/q(t)ll 2 lleA/q(Tx)ll2e-+
KI 1.eaA1/2Qmf.2 e

Then aer some further time, depending on R, v, A+, the term involving t
becomes negligible, and we obtain

(3.5) ]eaA’/
2K, (1 leaA,/Qmf]2 RLm R

We have

II:A/q(t)ll -"", Iq(t) >_ e^-+ IIq(t)ll
j=m+l

where q(t) Qmu(t) -]j=m+ qj(t)o. Combining this last inequality with (3.5)
and

distv(u(t),Hm) < II(p(t)+ q(t))- p(t)ll IIq(t)ll,

the result follows. 0
A consequence of this last result is that under the assumptions that f is in the

Gevrey class, the AIMs given in [21], [29], [57], [68], and [69] will lead to algebraic
improvements in the upper bounds of the rates of convergence over the flat manifold
J PmH. That is, since under these conditions the Fourier coefficients of the solu-
tions decay exponentially, there may be little gain in approximating q(t) (app(p(t))
with any other choice than @ann =- 0 (see, e.g., [38]). We illustrate this for the AIM
given in [21].

It is known [34] that if f e T)(eaA1/), for some a > 0, then the solution of the

complexified equation (in time) of (2.5), u(t), is analytic with values in T)(A1/2eAI/).
Furthermore, the region of analyticity {Re z > K2, Im z <_ v//2K2} is independent
of the individual solution. It follows from (3.5) and the Cauchy integral formula that

<
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Consider the AIM given in [21],

(3.7) (I)l(p) Q,(/2A)-I(f- B(p,p)).

We set Az[1 Graph(O).
THEOREM 3.3. Let f be given in :l)(eaA1/) for some a > O. Then for t su]fi-

 i , ttu oI (p  iodi  o, ditio,  )
1/2

distv(u(t), ]tdl) <_ K4n_le-tr2"’m+l.

Proof. Set Ul (/;) p(t)-+-ql (l), where p(t) solves (3.1) and ql (/;) 1 (P(/;)), where
1 is given by (3.7). Then Ul(t) 1 for t > 0. Subtracting (3.2) from (3.7) and
setting 1 q ql we have

dq
/2A(1 QmB(p, q) + QmB(q, p) + QmB(q, q) + d-"

Multiply this last equation by etr2A1/2 and take the inner product with er2A1/2O1

using equations (2.8) and (2.14) to obtain

a9rl/2[[er2Al/2(ll <_ [[2A/PI[ [lA/ql[ ea2A1/2 (i

C2 All 112 112 All2 112 llea2A1/2 112+ --Ie’’2 ql l[e’a2Al/2ql[ Ilea2AI/2p{I e’0"2 i (I II
C2 A1/2 AI/2+ --[ea2 q]i/21[ea2Al/2ql[3/2[ea2A1/2(lll/2[[ea2

1
/-- ea.2A1/2 dq

dt le(r2Al/2 01 I"

It follows from Proposition 3.2 that for t >> i and some constant R2, [[ea2A1/2q(t)][ <_
R2/2-1A-n_I Using (3.3) and (3.6).

crl/29m 2 D --i[I(’2A1/2I[I --<
/22

R1R2An_I "- lt2m+l
C2 --3/2 K3 i-3/2-" -R22’mA-1 -}- --"m+Hence for an appropriately chosen constant, say K4, and t >> 1 we have

I/2
distv(u(t),AZIl) < IIO 11 < K4)k-n-i

This last estimate can be viewed as giving the maximum distance in the direction
perpendicular to the plane PmH between the AIM and the attractor. If a2 is not
too small, then there is only an algebraic improvement in the upper bound for the
AIM over the upper bound for the Galerkin approximation in the distance solutions
are attracted to their respective manifolds. We remark that the best-known lower
estimate for a2 is c/(G+G log G), where c is an absolute constant and G, the Grashof
number, is given by G If]/v2zXi [16]. We again mention that following the work of



QUASI-STATIONARY AIM FOR THE NSE 903

[13] one can show that the rate of convergence of the nonlinear Galerkin methods is
exponential for a given f in the Gevrey class.

4. An example. The AIMs presented in [21], [29], [57], [6S], and [69] are based
on the observation that if f is time-independent and f E H, then every solution
of (3.2) and (3.1) satisfies

Iq(t)l O(1/Am+l), t>>l.

Moreover, it is known that in this case the solution of the complexified equation in
time of (2.5) is analytic on a strip that is independent of the particular solution and
includes the positive real axis [30]. It follows from the Cauchy formula that

dq
O(1/%m+l), t >> 1

and is small compared with Aq, B(p, q),B(q,p). We emphasize that our bounds on
Iq(t)l, Idq/dtl are asymptotic in m. Furthermore, the upper bounds for the constants
in our estimates depend on the Grashof or Reynolds number and in general are quite
large. The constant in the bound on Idq/dtl is large due to the width of the band of
analyticity, which is inversely proportional to G2 log G for the periodic boundary case
(see [21]). However, for certain points on the attractor the constant can be of order
one. For instance, near steady states it was shown in [51] that the constant can be
made small.

It is important to extend AIMs to time-dependent forces. As mentioned earlier,
in meteorology, for example, the forces are time-dependent. Furthermore, some com-
putations with AIMs that were originally constructed for autonomous systems have
been implemented with time-dependent forces. The results ofthese computations are
encouraging (see, for example, [43]). We would like, therefore, to justify the use of
AIMs with time-dependent forces. However, we show that for time-dependent forces
the term dq/dt may be the dominate term in (3.2). We make our example more dra-
matic by choosing a volume force, f(t), so that the solution, u(t), of (2.5) is in the
Gevrey class. We make our choice for f(t) as follows. Set

co ( /4 +
j--1

where the {cj } are chosen such that

Since there exist constants such that c0j <_ Aj _< clj (see, for example, [7]), it follows

e u(t) < e/
j=l

(for all al > 0). Thus u(t) is in a Gevrey cls. Se

du
f(t) := - + Au + B(u, u).
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Then u(t) given by (4.1) solves (2.5), and at least f(t) e L(O, o;H). Notice,
however, that for t 2rl, E N, we have

dq 2 1 o

j=mA-1

while

1
o

2 2IAql2- .
j=mA-1

Since Aj j as j --. cx3 (see, e.g., [7]), IAql << Idq/dtl and also IB(u,u)l <<
Idq/dtl. Therefore, one cannot in general neglect Idq/dtl in (3.2) when the force is
time-dependent.

5. An approximate inertial manifold. Denote by

B {p e PmH" Ilpll < 2M1}

and

B+/- {q e QmV" Ilqll-< 2M1},

where M satisfies (2.6). The assumptions on f(t) in this section axe as follows:

(5.1) I(f(ti)- f(t2))l < Llltl- t2[O.

Furthermore, f L((0, cx);H). That is, supt>0 I$(t)l < $o < o. Notice that we
do not require any further assumption about the asymptotic behavior of f(t). Thus
it may be that for our forces there is no global attractor for the system. However,
if one is willing to make further assumptions about the force, for example, that it
enters a compact set in H in finite time (see [61] and the references therein), or that
f periodic in time (see, for example, [37]), it is possible to obtain a universal (global)
attractor for the system.

If we require sufficient conditions on f(t) (see 2) so that IAul is uniformly
bounded, then the solution p(t) of

+ Ap + P,B(u, u) P,f(t)

p(O) Pmuo

is uniformly Lipschitz in time. That is,

Ip(tx)- p(t.)l < Llt-
where L2 depends only on , fo, A1 and not on t. Before constructing our time-
dependent AIM we first estimate the distance the solutions axe attracted to the flat
manifold PmH Hm. If we take the inner product of (3.2) with Aq and use the
estimates (2.14) and (2.15) (cf. the proof of Proposition 3.2), we have that for t > T.,

IIq(t)ll < /2
m+l
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where T. is as in (2.6). Therefore, without requiring further smoothness of f(t) in
time, and for any orbit u(t) of (2.1), we have the following.

THEOREM 5.1. Let supt>0 If(t)l <_ f < oc. Then for t >_ T,,

(5.3) distv(u(t), PmH) IIq()ll <_
/2
m-{-1

We remark that it has been shown by example in [69] and [71] that this last estimate
is sharp asymptotically, as m -- oc, up to a logarithmic term for a chosen f E L2().
The goal then is to produce a nonlinear Galerkin scheme that will improve this error.
In the arguments that follow we temporarily suppose that f is time-independent.
Whenever f is time-dependent we will explicitly write f(t). We recall (cf. [26], [31],
[69], and [71]) for m large enough there exists a mapping s: B - QmV that satisfies

ACS(p) / Q,B(p / CS(p),p 4- CS(p)) Q,f

for all p E B. It is important to note that m depends only on M1, v, fc, and
Furthermore, the graph of (I)s, denoted by A/Is, is a C-analytic manifold [26], [31].
In addition, it contains all of the stationary solutions of (2.5). Notice also that (I)

depends on Qmf. Therefore, we will write (S(p, Qmf). Hence, for f(t) uniformly
bounded in time (i.e., If(t)l _< fc < cx)) the dimension, m, of the system can be
obtained independently of t. That is, for some fixed m, CS(p, Qmf(t)) exists for all
time for all p B, where here the size of B depends on M1, which depends on
and is uniform in time. We recall the following theorem of [69], which gives a lower
bound for m.

THEOREM 5.2. Let m be large enough such that

4M
Then there eists unique mppin9 B V that stifies (g.4). Moreover,

(5.6)

where

1),--1/2rl I c98M2Lm1/2 4-/2-lc28M12 4-/- "’m-i-I Ill,

r2 v-lc92M1Llm/2 4- v-lc26M1,

Lm (1 4- log (--))
In what follows we will need (I)s bounded in T(A). Suppose m is chosen so large

that (5.5) is satisfied and

((4Cl(U14-rl)) 2

(16c2/1)
4 )(5.7) "md-1 _> max

We have the following.
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COROLLARY 5.3. Let 8 be as in (5.4). Then

(5.8) [A8(P, Qmf)[ < al + 2u-l[Qmf[ Vp e B,

where al 8cgu_1M21AlL1m/2 + 4cg_lM1A1/2_ rl/2-1/2
.rl.tm am+1

Proof. From (5.4) we have

v[A(8[ <_ [S(p,p)[ + IS(p, (I)8)[ + {S((I)8,p)[ + [B((I)8,

Using the estimates (2.14) and (2.15) we get

[A8[ _< ag[p[2Llm/2 q- cg[p[Llm/2[[(8[[ q- ClO[(8[1/2[A(8[1/2[[p[[
+ 1011/21A1/21111 +

and from (5.6),

IAI < 4cM11/+2c9M// .-1/ -/
--m ’m ’-1m+1 -[- 2cloMllA(8["m+I

+ 10nGlAl +
From (5.7) we conclude that

[ACS[ < 8C9v-1 I/f2 It.l/2 V--1 r,1/2),--1/2
V.tl-m q- 4C,9 Mlrl--m "’m-4-1 "4- 2-l[Q,mf].

We need one more property of 8.
LEMMA 5.4. For all Pie B, fi e H with [fi[ < foo, i 1, 2 we have

[[8(pl, Q,fl) 8(p2,
(5.9) < alp -PI + u--/

where o2 u-l(c38M1 r)/2 1/2. +ca8ML. ).
ProoI. Set Ap p -p, q ’(p, QI), Aq q -q d

Again Cs solves

A"(p QI + Q B(p + "(p QI p + V’(p, Q)) QI

for i 1, 2. Subtracting the two equations we obtain

Aaq QaI Q(B(p + q, ap)
(.10)

+ B(p + q,q) + B(ap,p + q) + B(aq,p + q)).

We te the scalar product in H of (5.10) with q, and we use (2.16). Then we use

(2.9), (2.8), (2.10), (2.9), respectively, to obtain

[1 log ( )

+ cll I1 + qll IIqll 1 + log

+ c2lAqll/2llAqlll/2llp2 + q21[ [Aqll/2llAq[[ 1/2
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or

We conclude from (5.7) that

IlAqll < v-1(c38M1L2 + ca8MxLU)IApl + 2v-1).-/2

Our aim here is to show that solutions of equations (3.1) and (3.2) are attracted
to a thin neighborhood of the (now time-dependent manifold) given by fl/l(t)
Graph((I)S(p, Qmf(t))). A crucial element in estimating the size of this neighbor-
hood in the time-independent case for the AIMs given in [21], [29], [57], [68], and [69]
is obtaining a bound on ]dq/dt]. As seen in the last section, if f(t) is time-dependent,
it may not be that dq/dt is small compared to the other terms of the equation. We
avoid estimating dq/dt directly (as in [65] and [291) by considering the system

(5.11)

dw + yAw + QmB(p + w, p + w) Qmf,

=q0,

where p is fixed in B and q0 E B+/- is given We will show that solutions of (5.11)
decay exponentially to the unique stationary solution 8(p, Qmf). We will also see
that solutions of the NSE remain close to solutions of (5.11) for short time. This
will enable us to estimate the distance that solutions of the NSE are attracted to our
time-dependent manifold.

The existence of solutions to (5.11) follows just as for (2.5) (see [7] and [66]).
Furthermore, under the assumptions on p and q0 solutions of (5.11) remain bounded
for all t > 0. That is, lip + w(t)l < M3 for all t > 0 and p e/3. The next lemma
shows the exponential decay of solutions of (5.11) to the unique stationary solution
(p, Q,f). Again we suppose that m is chosen so large that (5.5) and (5.7) are
satisfied. Furthermore, we require

)tm+l>-max{12clM3/Xl/4h-4clM1Llm/2h-2clr:/2(tlA-2v-lf)l/2)4v
(5.12) 8cIMIA-1/4 + 4c10M3

LEMMA 55 Let m be large enough such that (5.5), (5.7), (5.12) are satisfied. Let
p B, Ill < fo, and qo B+/- be given. Then, if w(t) is the solution of (5.11),

lifo(t) Qmf)ll <_ Ilqo <bs (P, Qmf)II

for all t > O.
Proof. Set A w(t) s (p, Qmf). A solves

(5.14)
dA
dt + AA + QmB(p + w, A) + QmB(A,p +) O.
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Taking the inner product of (5.14) with AA and using estimates (2.7) and (2.11) we
find that

Using Theorem 5.2 and Corollary 5.3,

< (clM3A-l/4,-1/4 c52M1Llm/2),-1/2 .1/2 1/2 ) 2
"m+l -- "’m+l d-(l"-I (Cgl--2/2-1foo) -n-I [AA[,

and from (5.12),

d
d- llAII2 +    +xllAII2 <_ 0.

The result follows after an application of Gronwall’s inequality.
We again return to the case of time-dependent forces. We suppose that f(t) is

time-dependent satisfying (5.1) and supt>0 If(t)l <_ foo. We suppose that t > T,,
where T, is as in (2.6), so that u(t) p(t) + q(t) E 13 U B+/-, and we let E [T,, cx).
Set p(), q(), Qm-f Qmf(). Consider the initial value problems

(5.15)

dq + Aq + Q.B(u, u) Q.f(t)

q()

dw

(5.16) dt + Aw + Q.B(+ w, + w) Qf

Since B+/-, we have + w(t)ll _< M3 for t > . The next lemma shows that w(t)
and q(t) are close for short time.

LEMMA 5.6. Under the above assumptions the solutions q(t), w(t) of (5.15) and
(5.16), respectively,

(5.17) IIq(t)- w(t)]] <_ ,n122/2-1 (o3L2,,lm/27-- LIT), t<_t<_t+T,

rl/2 af rl/2where a3 2Mlt5m -4- lw3G9-m
Proof. Set A q(t) w(t). Then A solves

(5.18)

dA
dt + AA + Q,B(u, p + A)

+ QmB(p + A,+ w) Qm(f(t) f),

o.
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Taking the inner product of (5.18) with AA, we obtain

ld
2 dt

[[AI[2 + v[AA[2 -< I(B(u’ p )’ AA)[ + [(S(u, A),

+ [(S(p , + w), AA)[
/ I(B(,V + w), A)I + IQ(f(t)- f)IIAI.

Aer an application of (2.11), (2.7), (2.14), and (2.15), respectively, we find

cllullllp lllalz2 + clulX/211ullX/211llx/21al/21Al

Aer an application of Young’s inequality,

( _r1/2 )221 dtd IIAII2 + IAAI2 <_ ()-1 2M1c5m W M3c9L2 lip fill 2

+ -lQ(f(t) ?)1z

+ 2cxMx,,+x +10v3m+l JAil2.

It follows om (5.12), (5.2), and (5.1) that

d Am+l 12 2 2(3L2AmT20 W

The result follows aer an application of Gronwall’s inequality and the fact that
0.

THEOREM 5.7. Let f(t) satis (5.1) and be such that supt>df(t)[ f and (5.2)
hold. Fuheore, let m be chosen so large that (5.5), (5.7), and (5.12) are satisfied.
Then for any solution u(t) p(t) + q(t) of (2.5) and t m. We have

a5 doe_X+l(t_T.IIq(t)- ’(p(t), Q y(t))ll +

1--1/2where 5 ca(1 +(1 + e)-), a A2-I(a3L2A2 +Lx)+2L2+-IL..m+I,
and do [lq(T.) CS(p(T.), Qmf(T.))l[.

Proof. Set T (A+I)-1. Define the sequences {t}, {p}, {Qmf}, {d}
by t T. + nT, Pn p(tn) Pmu(t),Qmfn Qmf(tn) and dn I[q(tn)-

(Pn, Qmfn)[[, respectively. Let w solve

dwn
dt

with initial condition

+ ,Aw, + QmB(p, + w,p, + Wn) Q.fn

wn(t=) q(t=)

on the interval t, < t < tn+i. From Lemma 5.5 we see that

(5.20) IIw(t) OS(Pn, Q,f)ll <- dne-vx’+l(t-t")"
We then have

dn+l <_ IIq(t+x) w(t+)ll / IIw(t+x) (p,
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Upon using (5.17), (5.20), (5.9), (5.1), and (5.2) we find

(5.21) dn+l 014TO 2t-dne-)’’+.

Thanks to our choice of T, e-Vx+lr e-t < 1, and we may iterate (5.21) to obtain

(4T0
dn < 1 e-V+ + de-n’ n > 1.

Now using (5.17) and (5.21), and the estimate on dn we can obtain a continuous
estimate on the interval [tn, tn+t]"

< +

+ l_e_ + e-

For t >_ T, choose n so that T, + nT <_ t <_ T, A- (t d- 1)’. Then

iiq(t) 8(p(t), Qmf(O)ll IIq(t) 8(p, Q,fn

+ I[S(pn, Qmfn) S(p(t),

After using (5.9), (5.1), and (5.2) the result follows. [:]

CortOLLArt 5.8. Under the hypotheses of Theorem (5.7) the solution u(t) of
(2.5) approaches a neighborhood of the manifold

A4(t) Graph(I)8(p, Qmf(t)),

In particular,

disty(u(t),J(t)) < Ilq(t)-

< disty(u(T,) ]A(T,))e-"+’(t-T*)

fort>T,.
Remark 5.9. If mc is the dimension of the manifold given by Theorem 5.7, then

one notices that the proof of Lemma 5.17, and consequently Theorem 5.7, only requires
]Qmc(f(tl) f(t2))[ < Ltltt t2[. No such condition is required on

Remark 5.10. If f is time-independent, then 0 can be chosen to be arbitrarily
large. However, we see from (5.17) that in this case the estimate given in Theorem 5.7
for the distance solutions are attracted to our time-dependent manifold is
The estimate obtained in [69] for this case was obtained using a different approach
based on the analyticity in time of the solutions. The estimate obtained there is

CAnl2. If one assumes f(t) is analytic in time, and uniformly bounded, then following
the arguments in [69], one would obtain the same estimate as in [69] for the distance
solutions are attracted to the time-dependent manifold.

A similar analysis is possible for other time-dependent manifolds. For example,
we may extend the AIM given in [21] to time-dependent forces. Set

(I)l(p, Qmf(t)) (pA)-l(Qmf(t) Q.B(p,p))
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(cf. 3) and

Ml(t) Graph(C1).

We have the following.
THEOREM 5.11. Under the hypotheses of Theorem 5.7 and for t, m su]ficiently

large, any orbit of (2.1) satisfies

distv(u(t), Adl (t)) <_ IIq(t) 0 (p(t), Q.f(t))l[ _<

Proof. The proof uses the same arguments as above, but one uses

dw
d-- + Aw + Q,B(p, p)

instead of (5.11).
Remark 5.12. If f is time-independent, then the bound given in Corollary 5.11

agrees with the estimates given in [21].
Notice that if < 1/2, then the estimate we obtain for the upper bound in the

distance solutions are attracted to our time-dependent manifolds is worse than the
estimate for the flat manifold in (5.3) (standard Galerkin scheme). We can handle
the case _< 1/2 in the following proposition. We also do not require ]Au(t)[ to be
bounded as t -- o.PROPOSITION 5.13. Assume supt>0 If(t)l <_ foo < o. Then for t >_ T,,

(5.22) disty(u(t)- Ad(t)) <_ [[q(t)- 8(p(t),Qmf(t))[I <_ K6
i/2
m+l

(5.23) disty(u(t)- 1(0) IIq()- (P(0, mf(0)ll I/2
mq-1

Proof. From Theorems 5.3 and 5.2, respectively, we have that IIq(011 K2

1-1/2and [[(p(),f())l] < rl"mW1 for $ T,. Equation (5.22) then follows with
K6 rl + Kh. The estimate (5.23) follows in a simil fhion.

If f(t) e L(O,; H) and if(t) e L(O,; H), then one can show that [du/dt[
is bounded, and hence [Au[ is uniformly bounded t (see [53]). rthermore,
Theorem 5.7 d Corolly 5.11 .apply with 0 1. They yield that the error of the
nonlinear Galerkin methods are of the order A, where the standard Galerkin

--1/2scheme gives an error of the order -’m+l" Moreover, in view of the example in [69],
1/2the bound [q(t)[ "+1 is sharp ymptotically, m , up to a ogarithmic

term for a chosen f which is time-independent. In particular, this f satisfies f
L(0,; H) nd f’() e L(0,; H). Thao, e x,ct that innth
nonlinear Glerkin methods wi]] give an improvement over the usual Galerkin scheme
in this ce well.
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DISPERSION IN PIPES WITH SLOWLY VARYING
CROSS-SECTIONS*

W. P. KOTORYNSKII

Abstract. An asymptotic solution is developed for the dispersion of solute in fully developed
laminar flow through a pipe with cross-section slowly varying in a longitudinal direction. The solution
is found as a power series in a small parameter chosen to characterize the slow variation of the pipe
boundary. Because of the presence of two different time scales the series is expressed as separate
expansions in regular- and short-time scale terms. A perturbative solution is considered in detail for
an example of dispersion in a spiralling circular pipe.

Key words, diffusion-convection, slow variations, Poiseuille flow, two-timing approximations,
mass-heat transport, effective diffusion coefficient

AMS subject classification. 76R

1. Introduction. The results presented here comprise a method for constructing
asymptotic solutions describing the dispersion of solute--or the diffusion of any other
scalar field, such as heat, which may be interest--within a fluid flowing down a pipe
of variable cross-section. For an infinite straight pipe of uniform cross-section with
a convecting Poiseuille flow the problem is a classic one. The theory was initiated
by G. I. Taylor [24] and there is now an extensive literature comprising subsequent
contributions of a large number of authors (cf., [1], [4], [7], [10], [14], [22], and [30]).
Previous work, as far as we are aware, has not addressed the situation in which the
dispersion takes place in those circumstances---of practical importance--where the
underlying flow is not strict Poiseuille flow. First-order effects due to secondary flow
in differing cross-sectional planes will be present: enhancement of the mixing of solute
or increases in heat or mass transfer will occur due to asymmetries.

Recent work by Mercer and Roberts (see [16], [17], [19], and the references
therein), in part, is complementary to this paper and, in particular, relates to anal-
ysis of long-time asymptotic behavior of the concentration that is addressed in 4 of
this paper. The derivations by these authors are based on invariant manifold theory,
which is capable of providing a systematic approach to the calculation of successive
approximations correcting the leading-order approximate equations and giving a de-
scription of the asymptotic evolution of evolving dynamical systems. At the same
time, the geometric picture of an invariant manifold gives a way of deriving correct
initial conditions for an approximation, a task that frequently demands careful, sep-
arate consideration.

In presenting a method for obtaining asymptotic solutions in the case of dispersion
in a straight pipe of uniform cross-section, Fife and Nicholes [9] systematized and
extended the theory of Taylor and others and, at the same time, clarified conditions
under which it is valid. By noting the existence of two different time scales in the
initial-boundary value problem they constructed approximations to this nonstandard
singular perturbation problem in the form of series of developed and transient terms
in powers of a parameter e. Our intent is to extend the ideas introduced by Fife
and Nicholes to an analysis of dispersion in pipes with slowly varying cross-sections

Received by the editors June 25, 1990; accepted for publication (in revised form), March 26,
1993.
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of a type previously considered by the author [12]. In that work, a solution of the
Navier-Stokes equations in three dimensions is determined in the form of a power
series in a small parameter e chosen to characterize the slowly varying nature of a
transverse section of the pipe relative to a longitudinal one. The expansion yields a
sequence of boundary value problems which, upon completion of the calculations to
low orders when pipe geometries permit, provides approximate perturbative solutions.
A fully three:dimensional flow is difficult to solve in closed form. By assuming a slow
variation in one direction we can distinguish the center-line direction and hence carry
out the analysis as a quasi two-dimensionM approximation (see, e.g., [27]).

The dispersal of solute in a moving fluid is a complicated process involving the
interacting effects of diffusion--primarily radialmand convection. In this paper scal-
ings are such as to make the P6clet number P6 of O(1) so that lateral diffusion and
convection terms are comparable. Since our primary goal is to develop a method
for analyzing the kinds of problems mentioned above, we confine our illustration of
the methodmvia an example in 5into those aspects of the theory that convey the
essence of the perturbative possibilities, omitting any detailed analysis with regard to
variations in other parameters on which the solution will depend.

We mention two results of the theory that are exhibited here, the more important
of which is not present in the uniform case. First of all, for those flows where the
downstream component of the normal to a cross-section of the pipe does not depend
on the transverse variables (or, for example, the large classes consisting of curved
or twisted pipes of constant cross-section) the dependence of the dispersion on pipe
geometry enters as the ratio of perimeter to area of a local cross-section. Secondly, the
effective diffusion coefficient De appearing in the partial differential equation for the
developed mean concentration is not necessarily larger than the molecular diffusion
coefficient D of the original convection-diffusion equation. In the definition of De
two terms of O(e) appear, one of which is of indeterminate sign until specifics of
pipe geometry are given. Thus, in the kinds of dispersion problems being considered
at present the underlying transport mechanisms may differ significantly (to a first
approximation) from those arising in strict Poiseuille flow.

2. Derivation of basic equations. We wish to construct asymptotic solutions
for the concentration C(5, t) of dissolved matter in an incompressible viscous fluid
evolving according to the equation

oc
+ U. VC DAC, (5, t) e R3 x (0,

U is the velocity of the convecting fluid, D is the diffusion coefficient, and A is the
three-dimensionM Laplace operator in (2.1). In addition, it is required that a function
f(5) and a constant cz be given so that, initially,

(2.2) C(, O) f(),

and on the boundary of the pipe

(2.3)
dC
dn - czC 0.

We disregard entrance effects and other discontinuities since local solutions for such
discontinuities can usually be joined to the slowly varying solutions that we consider
using the method of matched asymptotic expansions that render them uniformly valid.
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Alternatively, as demonstrated by Roberts [19], an approach using center manifold
theory may be employed, which permits a systematic derivation of asymptotically
correct boundary conditions for models of physical problems that are based on the
slowly varying approximation. When there is no transfer of concentration C(5, t) at
the pipe boundary to the surrounding medium the constant is zero. We anticipate
applications of the results here not only to dispersion but to analysis of convective and
diffusive heat transport as well--thus, (2.1) may govern evolution of a temperature
field in which case we permit to be positive in (2.3). (Note that c will be positive
in the concentration case as well if solute is being catalyzed at the pipe walls.) Many
previous studies (cf., [1], [5], [10], and [22]) focus on the evolution of the sectionally
averaged concentration C(x, t). When c > 0, however, conservation of the total heat
content or solute in the fluid does not hold due to the losses at boundaries; thus, to be
useful in the present problem, averaged quantities require some additional care. The
initial-boundary value problem (2.1)-(2.3) differs from the one usually studied in that
we allow a more general convective term U. VC, and a more general domain gt for the
pipe in transversal and axial extent, both features reflecting the three-dimensional
character of the problem. Of importance--and noted by Fife and Nicholes--is the
observation that two time scales are pertinent in the reduction of (2.1)-(2.3) to a
problem in dimensionless form. In the present work we wish to preserve scalings for
the convecting velocity U that were previously employed by the author in [12], and
to perform further scalings consistent with those employed by Fife and Nicholes. In
what follows, we confine attention to those circumstances in which the underlying
flow is steady since the details are readily at hand. Replication of the time-dependent
case is direct.

We turn now to the task of constructing a small parameter e, characterizing the
slowly varying nature of the pipe boundary from parameters in the present problem.
In the nondimensionalization of the Navier-Stokes equations a reference velocity U0 is
provided by the maximum (center-line) velocity of the dominant, i.e., the O(1) term
in the expansion for the axial flow velocity in the pipe. A reference axial length L is
obtainable in a natural way from the geometry of the pipe boundary (for example,
from periodicity of rotation when a pipe is slowly twisted in the downstream flow
direction; cf. [13]). A characteristic time T may then be related to the other two
reference quantities by T U-IL.

There is, however, in addition to L a second (shorter) length scale , available
from transverse variations of the pipe---and hence, a (shorter) time scale from
]2D-1. is a characteristic measure of the time taken for solute to diffuse ra^dially
to the pipe boundary. The dimensionless parameter e is then taken to be e LL-.
We remark at this point that c is required to be small, of order O(e) in the sequel,
and that in subsequent scalings a second dimensionless parameter appears in the
governing equations, 9/- DUL-, which we will take to be O(1). In the previous
[12] determination of U, and in this work as well, we recognize that the approximation
("slow variations") is founded on the assumption that the pipe boundary is assumed to
be slowly varying in the downstream direction X. (Variables, while still dimensioned,
are denoted by primes.) Thus, it is assumed that in the description of the pipe
boundary the quantity eX appears. In the following expressions the slow variation is
in the direction of the dimensionless laboratory coordinate x. To nondimensionalize
the problem we let

X y Z t
(2.4) x= L’ y z= t= T’
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U(X’, Y’, Z’) (Uou, Uoev, Uoew).

With this scaling the boundary value problem for the velocity U is recast into one in
which e no longer appears in the boundary conditions but in the governing Navier-
Stokes equations instead. A solution of the Navier-Stokes equations vanishing on the
boundaries of the pipe is then sought in a formal power series in e for the pressure p
and velocity components u, v, and w.

At each stage k in the expansion it turns out that the coefficients (i.e., dimen-
sionless velocities uk, vk, and w}) are obtained as solutions of the system of partial
differential equations (p.d.e.)

Ou
o- + -u +

72k
Opk
Ox

Op
0"- gk,

Op
hk,Oz

Owk
Oz O,

with u} v} wk 0 on the boundary. Here, and in what follows, V2 denotes the
two-dimensional Laplace operator with respect to y and z, the transverse variables.
The right sides fk, gk, and hk are known at each step in terms of previously deter-
mined quantities and--with the help of a certain consistency requirement--the u},

vk, and w} are determined uniquely.
The diffusion-convection equation (2.1) becomes

v c e(c c +uC + vc +c)

with

(2.8)
dC
d-- + aC 0

on the boundary, and, initially,

(2.9) C(x, y, z, O) f(x, y, z)

after the scalings (2.4)-(2.5). In contrast with the regularity of the expansion in the
equations governing the convecting velocities, the above problem is singular. Thus, a
solution of (2.7)-(2.9) is sought in the form of a sum of short-term (transient) terms
Wk and regular time-scale (developed) terms C (cf. Fife and Nicholes [9]):

(.10) c(, ) c(,) + w(,), ( -).
0 0

Substitution of (2.10) into (2.7) generates for the Ck and Wk the following sequences
of problems:

(2.11) V2Ck 0C_1 02C_
Ot Ox2
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and

CWk C2Wk 1V2Wk COT -- Ox2 k-l[.__ 1-j cWJcx 1-j cWjvy 1-j
cWJ+ uk- + v:_ ,q,., + w:_

j=o

(Terms with negative subscripts are interpreted as absent.) The initial and boundary
conditions (2.2)-(2.3) translate to the coupled conditions

(2.13) Ck (’, O) + Wk(Z, O) f(Z) k 0),

( 0, (k _> 1),

for t O, with (writing (nx, n, nz))

OCk-1 (k > 1),
(2.14) nuW +z 021 nx, cx + olCk-1

and

OWk OWk l O’

( OWk_ )
(k 0),

(2.15) nu cy + z cOz ,z
Ox + olWk_l (k >_ 1),

on the boundary. Because they are transient or short-scale terms the Wk(5, r) are
required to tend exponentially to zero as T tends to infinity.

The equations (2.11)-(2.15) are not the same as those of Fife and Nicholes: there
are additional terms throughout the equations and boundary conditions arising from
transverse velocity components whose presence will be felt, beginning with terms of
order e. We can proceed at the start, however, in a way similar to those authors since
x is typically carried here as a parameter in some of the calculations. The differences
arise in the special care required in consideration of the boundary condition (2.3),
where C and the normal derivative dC/dn will depend on all three space variables.

3. Boundary conditions and method of solution. The method of solution
is largely guided by the mathematical formulation of the preceding section. Thus,
it needs to be shown that (2.11)-(2.12) with conditions (2.13)-(2.15) determine all
terms in the assumed expansions (2.10) uniquely. The equations for the Ck have the
form

V2u f(x, y, z, t)

for each k 0, 1, 2,..., while those for the Wk have the form

72u Ou
Or g(x, y, z, r).

The existence and uniqueness considerations for these equations are standard (and
we employ them in the sequel) when f and g are known. They are not, however, the
equations that are actually solved in the construction of Ck, Wk. The latter differ in
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certain important respects from those of the uniform case due to asymmetry caused
by the transverse flow. We show now how the initial and boundary conditions serve
to determine uniquely the leading terms in the expansions--other terms being de-
termined analogously--and uncover thereby the interaction between terms possessing
transient or nontransient behavior.

The equations for Co and C1 are

(3.1) V2C0 0

and

OCo OCo ( OCo OCo OCo(3.2) V2C1-- Ot 7 0x2
/ uo + vO-y -wo]

with boundary conditions

(3.3)

and

OCo OCo

OCl OC ( OCo )(’1 + o--[ + Co

The corresponding equations and boundary conditions for the transient terms, W0
and W, are

OWo(3.5) v2w 0r
0

and

ow O2Wo ( OWo OWo OWo(3.6) V2W Or --7 ’Ox2 + uo "OX + v Oy + wo---z ],

subject to (3.3)-(3.4) with Co and C1 replaced by W0 and W1, respectively.

3.1. Calculation of Co and Wo. Equation (3.1), along with the necessary
condition for existence of a solution C to (3.2), produces two equations for the de-
termination of Co. To solve (3.1) together with the boundary condition (3.3) it is
sufficient that Co be independent of y and z. The particular function Co(x, t) is the
solution of an initial-boundary value problem in which the partial differential equa-
tion is a consequence of the existence requirement. Thus, the problem for Co has a
solution if and only if Co satisfies the solvability condition

(3.7) fa (OCo OCo OCo OCo-- -/ Ox2 + uo-ffx ]
dA a. (n + aCo) ds,

where Ft means the cross-section at a downstream x. Co does not depend on
(y,z) at any t. Furthermore--adapting notation of Fife and Nicholes--we write
uo(x, y, z, t) re(x, t)(x, y, z, t), where is a function whose mean over tx is 1
for all t. Thus, characterizes the spatial structure of the velocity profile while m
characterizes its overall speed. The requirement for a solution now becomes

(3.8) ( OCo 02Co-- Ox + m-x dA
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Until nowmapart from its slowly varying character in the x directionnthe pipe
cross-section has been arbitrary. In order to proced significantly further analytically
in the absence of specific pipe geometry, it becomes necessary to restrict somewhat
the kinds of cross-sections to which our results apply. For pipes with boundaries such
that the x-component of the normal to the boundary depends only on x, so n (x),
say, we obtain for Co(x, t) the partial differential equation

(3.9) OCo 02C0 [ P(fl.)
/-x2 + (x) A(fl,)

OCo P(’+ t) +

where P(x) and A(x) denote the perimeter and area of x, respectively. This
specialization includes two important classes of pipes that occur in natural applica-
tions: those which are curved and those which have undergone torsion. Both effects
may be present at the same time, of course. A more general example of a class of
pipe geometries that possess mathematical and practical interest and for which the
calculations are again simpler is a generalization of surfaces of revolution obtained as
follows. A regular plane closed curve C, which does not meet an axis in the plane,
is displaced in a rigid screw motion about l, that is, so that each point of describes
a helix (or circle) with as axis. If the screw motion is a pure rotation about l, then
the resulting surface is a surface of revolution . Choose the coordinate axes so that

is the x-axis and C lies in the yz-plane. If (f(s), g(s)) is a parameterization of C by
arclength s, then

5(8, u) (f(s) cos(u), f(s)sin(u), g(s) + cu), c constant

is a parameterization of the surface . Therefore, for a pipe whose bounding surface
is the one above, (x) is f(s)f(s) so that

/o. (x) ds f(s)f’(s) ds - (s) ds O,

since f2(s) is periodic. Many other kinds of pipes whose cross-sections possess the
property required of the normal mentioned above have been considered in the litera-
ture (cf., the survey paper [2]), and we shall illustrate the ideas of this paper in some
detail with such an example in the next section.

Equation (3.9) is of particular interest in that it exhibits an explicit dependence
of Co on the pipe cross-section , that dependence entering as the ratio of perimeter
to area of 9t. In fact, for pipes with cross-sections that have undergone curvature or
torsion effects only, this ratio is constant, implying unexpectedly simple dependence
of concentration on the pipe geometry to this (and the next) order. It should be noted
that even if n is not solely a function of x, a partial differential equation

(3.10) OCo 02Co OCo-- /-x2 + [N(x) + m(x, t)]-x + cM(x)Co O, M(x) P()
A()

is still obtained for Co(x, t), but this time without the interesting geometrical feature
mentioned above.

The initial and boundary conditions (2.13)-(2.14) are sufficient to enable us to
solve (3.10) (or (3.9)) for Co(x, t): for coefficients which are suitably regular (bounded,
for example), this is a uniformly parabolic equation, and existence-uniqueness theo-
rems ensure that the problem possesses a unique, solution (cf., [18]). In order to
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actually write down such a solution, recourse may be had to an extensive literature
devoted to transforming equations such as the one above into the classical heat equa-
tion (cf., [3] and [26]). The relevance to our application is that the latter equation has
a comparatively simple and elegant integral form of solution in terms of initial data

Another approach toward closed form solutions--finite integral transform meth-
odsmbecomes possible in circumstances of steady convecting flows in which case
m re(x) in (3.10), and we shall employ one of these methods in the example of
5. Alternatively, by applying a Laplace transform with respect to t, the resulting
ordinary differential equation for Co(x, t) can be put (after some transformations) in
eigenvalue form. The complete determination of all the quantities in following this
approach would require that C0(x, 0) be known.

The requirement that Co(x, 0) be known in order to employ techniques such as
those just mentioned, in fact, applies in general. This initial function Co(x, 0) is
determined at the same stage as, and in conjunction with, the transient function
Wo(x,y,z, 0). The initial-boundary problem for W0 is (see (3.5) and (3.3) with Co
replaced by W0)

OWoOWo OWo +n 0,(3.11) V2W OT O, n Oy Oz
and the data for Wo(x, y, z, 0) that is as yet unspecified. Because of the quasi two-
dimensional character of the slowly varying approximation, x is carried as a parameter
essentially in these equations, and hence a Fourier method of the solution is possible.
The solution Wo(x, y, z, T) of (3.11) is expressible as

(3.12)

where

cj(x) aj (x, y, z)Wo(x, y, z, O) dA, (a constant).

In (3.12) the (I)j are eigenfunctions of the problem

(3.13) V2(I)

and the basis functions for the Fourier expansion of Wo(x,y,z, O) in (3.12). It is
known that A1 0 (and all other A are > 0), and that (I)1 (x, y, z) is a constant (with
respect to y, z). The requirement then that W0 -o 0 as T -- cx) translates into the
condition

(3.14) C (x) A(gtx) Wo(x, y, z, O) dA =_ Wo(x, O) O,

where the bar denotes the average over a cross-section 2x. Upon integrating all
quantities in (2.13) over Ft and recalling that Co does not depend on y or z, we see
that

(3.15) Co(x, O)
and then

(3.16) Wo(x, y, z, O) f(x, y, z) f(x).
The initial-boundary value problems for Co and W0 are now completely specified.
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3.2. Calculation of C1 and W1. Since C1 and Wl--the O(e) terms in the
expansion of C(x, t)--measure the largest effects produced by the secondary flow in
the pipe, we restrict our efforts toward the calculation of Ck and Wk for k >_ 1 to just
these two terms. Higher-order terms would be obtained in a similar way. The p.d.e.
for C1

OCo O Co OCo(3.17) V2C1 0t 7---x2 + u0 0---’
with the boundary condition

OC OC ( OCo )(3.18) ny-y + nz Oz n+ aCo

has a solution of the form

(.9) C(, , , ) -(,)(,, z, )_0T + (,,,0C0) + C(, ),

where , 9, and C1h are solutions, respectively, of the problems

(3.20) de
d--=O on 0f,

a
CdA=O,

and

(3.21)

and

(3.22)

V29 N(x)-x + aM(x)Co

dg ( OCo )dn n--x +CCo on 0f,

a
dA =O,

V2Ch 0,

0.
dn

In all three partial differential equations above the right sides are known since C0(x, t)
has been determined at the preceding stage. We know that (3.20) possesses a solution
since (defined just prior to (3.8)) has a mean of one over f.

The partial differential equations in (3.21)-(3.22) above have come about from
the solvability requirement for a solution for C2 at the next stage. In (3.21), the
Neumann problem for q has a solution if and only if
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(after use of (3.7)), which implies existence of a solution if and only if

f(CC--oX OCo OCo )+ uo--x + Y(x + MCo dA O.

This condition is satisfied since the integrand is the left-hand side of the p.d.e. (3.10)
for Co.

From (3.22), C1h is independent of y and z. The actual form of Chl(x, t) is deter-
mined from a second p.d.e, which C1h must satisfy, and this comes from the existence
requirement for a solution of the problem for C2 that satisfies the p.d.e.

OC OCoOC 0C OC
vo
OC + wo + u(3.23) V2C2 7-0-x2 + u-x + Oy -z Ox

After some work, the following solvability condition is seen to be required:

(3.24)

-70x2 + m(x,t) Ox ]
dA +

n n
where (x, t) is known in terms of Co(x, t)"

(,t) f. [ (.oc0 o
_b) b_x (.oc0 o OCo,

0
(3.25) -foh. [n-x (mOC ) OCo

oc0 oc0 ]fn [v m u --Z-x + W mCz-x J
dA

/ [t " +m/vov / woz] dA.

A simpler equation for C1h results--as for Co previously--when it is assumed that
n depends only on x. The resulting equation

(3.26) OChl 02Chl [ P(12z: ] OChl P(12I (x, t)
Ot 70x2 + (x) A(2Z: + re(x, t) + A(2 Ch A(n)

once more reveals dependence on pipe geometry to be on the ratio of the perimeter
to the area of flz.

We turn next to the determination of W1, the order e transient term. The analysis
will at the same time yield the initial condition for C1h. The p.d.e, for W1 is

(0W1 G02W0V2W1 OT 70x2 + m(x, eT)(X, y, Z, eT) OWOox
OWo er) OWo(3.27) + 0(, v, ,) b + 0(, v, ,

0

=-- H(z,y,z,’).

To determine the condition for transience we first integrate the terms in (3.27) over
fl, noting that

/o (o o)V2W1 dA dW ds n--x + Wo ds
n dn n
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from the boundary condition for W1, and then integrate with respect to T, getting

/0"- /0"/o ( )(3.28) W1 (x, T) W(x, 0)- g(x, T’) tiT’-- nx

Letting T O in the last equation (and remembering that W(x, T) --. 0 is a require-
ment of transience) gives

/0 ((3.29) W(x, O) H(x, T) dT -[- nx + aWo ds dT,

and this is the determining equation for W1 (x, 0). Equation (3.29) serves to determine

Cth also. For, the initial condition C (x, y, z, 0) + W1 (x, y, z, 0) 0, and the form of
the solution Cl(x, y, z, t) gives upon integration over

(.a0) C(x, 0) -Wl(X, 0),

where the right side is once again known in terms of previously determined quanti-
ties. Finally, the initial condition for W(x, y, z, 0) itself is recovered from its average
W(x, 0) by tracing back to (2.13) via (3.29)-(3.30) and (3.19).

4. The large-time concentration and effective diffusion coefficient. The
kinds of pipe flows under consideration here lead to O(e) transverse velocities which,
in their turn, distort the effective axial diffusion. The latter is a combination of several
effects. In addition to molecular diffusion in the transverse direction and distortion
of the scalar field by the mean downstream convecting flow--the primary effects in
the uniform pipe situationmthe secondary flow terms contribute an additional com-
ponent in the expression for the effective diffusion coefficient, which reflects a further
distortion of the scalar field by the lateral convection. We have

C(x, t) A(a) C(x, y, z, t) dA

and thenmupon retaining terms in the expansion for C(x, y, z, t) in their explicit form
to O(e)mwe have that

(4.1)

(x, t) [C0(x, t) + eChl (x, t)] + e -(x, a) da

+ aWo] ds O(e2

When t is appreciably large, say t >> e, the second term in square brackets, which is
comprised solely of transient terms, is small, and we neglect it. The remaining term
in (4.1) is denoted by

c0( , t) +
(developed mean value in the terminology of [9]), and we seek an equation satisfied by
Cd. With (3.10), (3.24), and (3.25)--and after some algebra--we find

OCd[em2-- e fo nmCds] 02Cd
Ot 7 A(f) Ox2
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where

G(z,t) =-

The partial differential equation for Cd appears complicated; we note, however, that
except for the adjusted coefficients it has the same form as the one for Co. In spe-
cific practical situations--for example, flows through pipes with sections possessing
periodicity of n, or flows in which the velocity has the properties that m(x, t) is con-
stant or the transverse component of lowest order is radial--a number of the terms
comprising the coefficients will drop out of further consideration.

In order to fully specify a problem for Cd there remains the consideration of an
initial condition for Cdo For this, we generalize slightly an auxiliary "P-problem" as
set up by Fife and Nicholes to conveniently organize the calculations for both Wl(X, 0)
and ch(x, 0)--and hence, for Cd(x, 0)--to three (nearly identical) such problems. To
see how these intermediate functions can be introduced in a natural manner, substitute
for H into Wl(X, 0) while noting that the term in W0xx (x, r) is identically zero, and
then, because derivatives of W0 tend to zero exponentially as T becomes infinite,
within the current O(e) of accuracy,

0) u. joo u.OWoO) dT dAcox

+ fn v(x’Y’z’O)foo OW(x,y,z,r) dTdA
Oy

+ /n w(xy’zO)oo OWo (x, y, z, T) dT dA

+ n (x, y, z, r) dr ds.
Ox

At this point the calculations may be organized as follows. Introduce functions P, Q,
and R defined by the T integrals just above:

OWo dT,P =-- Ox
OWo dr,Q =- o---f

OWo dr.R =- Oz

But now, it can be seen that P is the solution of the problem

dP =0, /a PdA=O,(4.6) V2P-]x-fx’
a

where f is the given initial concentration, while the problems for Q and R are similar
to the one for P, differing only in the fact that the right sides of their respective
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partial differential equations are -f. and -fz. Once Wl (x, 0) (and hence, Chl(x, 0))
is determined, the initial condition for Cd(x, 0) is obtained from

(4.7)

Cd(x, O) f(x) + e Ira(x, 0)(x, y, z, O)P(x, y, z) / vo(x, y, z, O)Q(x, y, z)

+ w0(x, y, z, 0)R(x, y, z)] dA +[ nxP(x, y, z)ds).
/

The calculation of integral moments of C(5, t) has been employed by Aris [1]
and others (e.g., [5] and [30]) as a way of constructing the concentration distribution
to various degrees of accuracy and as a means of linking the effect of the initial
distribution of C(5, t) on its asymptotic form. In particular, the center of mass of the
average concentration

Xm (t) xC(x, t) dx, =0

in a coordinate system moving with a mean flow m(t) approaches a limiting offset
position

( /0 )b lim Xm(t) re(s) ds

Fife and Nicholes have shown (see [9] for details) that this offset position can be
related to the initial displacement of the center of mass of the developed mean, i.e.,
from Cd(x, 0). Since Wo(5,t) tends to zero exponentially, Xm(t) can be replaced by

(4.8) F /oxd(t) xCd(x, t) dx xd(O) + re(s) ds

(neglecting terms of O(e2)). We then have, after the relevant substitutions, the ex-
pression

e (/_oo /s [m(x, O)(x, y, z, O)P(x, y, z) + vo(x, y, z, O)Q(x, y, z)

+ wo(x, y, z, O)R(x, y, z)] dA dx

+ nxP(x, y, z) ds dx

for the offset position b here. The term with P was previously related to b by Fife
and Nicholes. In the present problem we have two additional integrals that contribute
to the displacement of the center of mass: first effects due to the transverse velocity
component as expressed by the integrals involving v0, w0, and, a boundary integral
that relates the change in the offset position to nonuniformities in pipe cross-sections.

In the equation (4.3) for Cd(x, t) the coefficient of the term in the second derivative
of Cd is of particular interest since it is the one which involves the diffusion coefficient
(when quantities revert to their dimensioned forms). We write

(4.10) De=D- U m2 1 o meds]
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for this coefficient in its dimensioned form. The part

(4.11) m2 -m2_1./ 17)12 dAA(,)

is <_ 0, in accord with the situation for the Poiseuille case of flow through a pipe of
uniform cross-section. The part

1 fo n,m ds,(4.12) A(,) n.,

however, is of undetermined sign in the absence of specific pipe geometry and initial
conditions. For certain classes of flows it can be easily seen that this term also is < 0.
On the other hand, for the interesting class exhibiting flow reversal (e.g., oscillatory
pressure driven flows) this term can be > 0, thereby inhibiting rather than augmenting
radial diffusion.

5. An example: spiralling circular pipe. Much attention has been devoted
to flow through a coiled pipe because of its practical importance (see, for example, the
survey by Van Dyke [27] ). Our intent now is to illustrate how the theory of preceding
sections can be applied to provide a perturbative solution to the dispersion problem
for flows in such pipes. First of all, it is necessary to extract certain results concerning
low-order terms in the expansions for the three velocity components from our previous
study [12] of flows in pipes with slowly varying cross-sections. We consider a spiralling
circular pipe that can be viewed as being generated by translating a circle of unit
radius so that its center moves along a helix of radius a while its plane remains
normal to the axis of the helix. (This differs from what is usually understood as a
helically coiled pipe but only in third-order terms). Introduce local coordinates (r, 0)
at a station x defined by

y a cos x r cos 0, z a sin x r sin 0.

At the stage k 0 in the problems for the velocity components defined by the system
of equations (2.6) we have as the solution for u0 the Poiseuille-like flow through a
straight circular pipe:

dp0
0)

With u0 now given, we solve for v0, w0 from the pair of equations

(5.2) X(voz Wou) O, vov + woz -uoz,

subject to v0 w0 0 on the boundary. The first of these is a consistency relation for
the system of equations (2.6) at the stage k 0, and it is obtained at the stage k 2.
Here, we quote the result that, to terms of order e, the flow velocity is independent
of O, and, since d2po(x)/dx2 O, dpo(x)/dx is a constant, which we denote by -#.
Then

(5.3)
#(1-r2), vo(x,r,O)= #a(1-r2) sinx,
# a(1 r2) cos xw0( , r, O)
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FIG. l(a). Unperturbed (zero-order) velocity profile in the spiralling circular pipe.

where, as in Poiseuille flow # is the pressure gradient along the pipe. Figures l(a)
and l(b) display the unperturbed (i.e., u0) and perturbed (i.e., by v0, w0) flow fields
at typical axial stations of the pipe. We notice that the perturbed field is slightly
inclined to the axis of the basic Poiseuille flow in a straight pipe. The correction
to the zero order profile is directed normal to a cross-section and in such a way
that the velocity distribution shifts toward the inner wall of the pipe. The resulting
shortened fluid path means that the flux ratio, a quantity of interest, defined to be
the flow rate through the curved pipe divided by that in a straight pipe under the
same pressure gradient, is actually increased by the slight coiling. Further effects of
curvature (together with effects of torsion and of the slight deviation from circularity
of the pipe) would appear in subsequent orders of the calculations. The circular
asymmetry causes enhancement of mixing and relocation of maximum and minimum
wall shear stresses from that of straight pipe flow. Since they are the most important
terms in applications, we proceed with the analysis for the concentration to terms of
order e only. By basing the transverse length scale on a-1, the ratio of the radius of
a cross-section of the pipe to the radius of the center-line helix, say, the parameter
e could be taken to be a measure of the center-line curvature of the helical pipe.
We do not attempt detailed parameter studies with respect to other parameters of
order unity because this warrants special consideration beyond the intentions of the
example treated here.

For the pipe described in the first paragraph we have, since nx -asin (t- s),
that

-a sin (t s) ds O.

Since (1/A(t))fax (1- r2) dA- 1/2, we will also have

(5.4) m(x, t) - =_ U, M(x) P(f)
A(f)

2.
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FIG. l(b). Perturbed velocity profile incorporating first-order transverse velocities.

The p.d.e. (3.10) for Co then is

OCo 0 Co # OCo(5.5) -&- - 0 8 0 2Co o.

We can reduce this equation to the equation for pure diffusion by the change of
variables

Co he-2’t x=+gt,
obtaining

A common set of initial conditions for Co(x, t) is to require

(5.6) C0(x, 0) f(x) 5(x xo),

which translates into

h(, 0) 5( xo).

Such an initial condition may be used to model a concentrated initial solute input
distributed uniformly over a cross-section of the pipe at a station x0. In this case the
solution for (5.5)-(5.6)is

The initial delta function profile for Co at x0 is propagated with speed U along lines
in xt-space whose slopes are proportional to the axial pressure gradiev.t #. Figure 2
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FIG. 2(a). Evolution of zero-order concentration with initial delta-function data and parameter
values 7 .3, 0 (Neumann boundary condition).

FIG. 2(b). Evolution of zero-order concentration with initial delta-function data and parameter
values 7 .3, .1 (mixed boundary condition).

graphs concentration profiles for two values of the parameter cma parameter that
characterizes the rate of the reaction catalyzed by the pipe walls or damping in the
case of transport of heat--corresponding to Neumann (c 0) and mixed (c > 0)
boundary conditions.

We give now a second example of an explicit solution of (5.5) for the concentration
Co(x, t), which evolves from initial data quite different in kind from the delta function
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above. Interest derives from the fact that this initial profile replicates an initially
oscillating concentration input. The corresponding evolution of an oscillatory form of
solution is a direct consequence of the initial-value problem posed--no additional ad
hoc assumptions in the modelling process are necessary. Specifically, we take

(5.8) Co(x, O) Ai [2 (x x0)]

(Ai (z) is the Airy function of the first kind) and seek an R-separating solution of
(5.5) as outlined in Morse and Feshback or [29]. Such solutions arise from an enlarged
separability definition of solutions, and they have the form

c(, t) R(, )V()V(), (, t), (, 0,

depending upon a parameter A. When we carry out the analysis for generating such
solutions we find in our case that

Co(x, t) 2 e-2a e-2(x-U+222-x) e-2X-s3 Ai [2 (x Ut + 2"2t2 x0)].

om stdd references on special functions we have that Ai(z) for z < 0 is oscilla-
tory d, ymptoticly,

Ai(z) (4)-z- exp (---2 )
for z +. Thus, the initi input Co(x, 0) in (5.8) oscillates for lues of x up
to x0 d it then decays exponentily to zero for x beyond x0. We note that the
resulting concentration distribution (5.9) is of the form

Co(x, t) e-2a*h(x Ut, t).

Zeros in the oscillato region lie on pMlel pabolm x- Ut + 22t2- xo con-
stant, while for x Ut > xo we obsee the exponentiMly decaying behavior

C0(x, t) t-] e2(-U*-)-a*

for M1 a. The evolution of the solutions (5.9) for Co(x,t) in xt-spe is depicted
in Fig. 3 for both zero d nonzero a, vues which correspond to circumstances of
nonreting (insulating) or reacting (noninsulating) pipe boundaries, respectively.

Next, we address the problem for W0, the first trsient term in the expansion
for C(5, t). For this, when the initial data is isymmetric, we employ the finite
nankel transform of the second kind over the interval [0, 1] (cf. [23]). Although (r, 9)
e local coordinates, the Laplace operator trsforms om laboratory rectl
coordinates into these coordinates in extly the same way for the usual pol
coordinates. Thus, the problem for W0 is

02Wo 10Wo 1 02Wo OWo
Or2 r Or r OO OT

(5.0) OWo (, , , ) o
0r
w0(, r, , 0) (, r, ) (),
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FIG. 3(a). Evolution of zero-order concentration with initial Airy-function data and parameter
values "--.3, --0 (Neumann boundary conditions).

FI;. 3(b). Evolution of zero-order concentration with initial Airy-function data and parameter
values 7 .3, a 2 (mixed boundary conditions).

where f(x, r, O) is the initial data for C(5, t). When this initial data is axisymmetric
we extract the usual 0-dependence via a Fourier decomposition and then, upon noting
the property

(5.11)
m2 2err + Cr- -- _2()_ -’(1)
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for a Hankel transform pair (, (I)), are left with a first-order ordinary differential
equation in T which is easily solved. The solution of the initial-boundary problem
(5.10) for W0 is

(5.12)

Wo(x,r,O,T) 2Jm(nr) e-"re’m [f(x,u)- f(x)]uJm(nu)du.
n=l m----oo

(Here, the n are the zeros of Jm(n) 0.) At large times the transverse variations
in concentration represented by the first transient term W0 are much smaller than
the axial and transverse variations represented by Co and Cx. Moreover, the series in
(5.12) converges very rapidly so that for large T it may be possible to usefully retain
only the first term in approximations. When the initial data is not axisymmetric we
must proceed differently. In this case a Laplace transform with respect to T is called
for, followed by a Green’s function approach. (See the calculation for W1.)

We direct our attention now to calculating the O(e) quantities C1 and W1, be-
ginning with the initial-boundary value problem for C1. We recall the form (3.19) of
the solution for CV

C1 (;T, r, O, ) m(Ir., $)b(x, r, O, )_x 4- (x, r, O, $) 4 Chl (x, )

The three terms comprising the right side of the representation for C1 are dealt with
separately. The term involving the derivative of Co is known at this stage: OCo/Ox is
given, for example, from (5.6) or (5.8), depending on the imposed initial conditions.
The function depends only on the dynamics of the flow--here, it is

(5.13) (x, r, O, t) 4(--3r4 4- 6r2 2),

while m(x, t) is given in (5.4). The calculation of the remaining two terms is a lengthy
and more involved process. As for the initial-value problem for ch(x, t), we note that
the operator in the equation for Ch is the same as the one for Co, so we may employ
the previously solved-for delta-function solution (5.7) as a Green’s function and use
it to express the solution of the problem

0C1h 0261h 0Ch _1(5.14) Ort --’Y 0g2 - 8 (g
’2Cgclh n(X’

Chl (x, O)
as an integral. Before we can do this, however, we must carry out two preliminary
tasks. They are as follows: providing at this stage a representation for the initial data
1(x, 0) and providing an expression for the driving term (x, t) as given by (3.25).
As for the first task, the data W1 (x, 0) is given by substitution of the expressions in
(5.3) into equation (4.5)"

(5.15)

Wl(X’0) j271"joj02’O132 v.:u (x, r, 0, T) a sin(x 0)(1 r2) cx Or (x, r, 0, T)

1 OWo+-a cos(x O) (x, r, 0, T) rdr dO dT
r cOO

a sin(x 0) (x, 1, O, T) dO d’,
J0 J0 -X
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with W0 obtained from (5.12) when the initial concentration C(5, 0) is axisymmetric.
W1 (x, 0) is recovered most easily, however, not from this last expression but from the
auxiliary functions P, Q, and R, defined just before (4.6) in the preceding section.
Here, these functions are solutions of problems of the form

10g 1 02g
(5.16)

02g - -}- (x, r,
0r- rrr r00

__Og (x, 1, O) O, g(x, r, O) rat dO O,
Or o o

where 5(x, r, ) is known from the prescribed data C(5, 0) f(5); for example, 5--
fx fx in the equation for P. When f is axisymmetric and possesses a Fourier
series in conventional polar coordinates, one may also obtain g as a Fourier series in
a standard way. In any case, the solution when the initial data is arbitrary can be
expressed as

g(x, r, ) [ N dA + Y,

where is a constant equal to the average value of g over fix. In this last expression
N is a Neumann function for

VN 5(r, O; r’, 0) dA

dN
--0.

dn

Purther progress toward explicit representations can be made in special cases. Nor
example, a separable form .f(, r, O) ()b(r, O) for the initial data is often assumed.
Then a separable form of solution for 9 can be found in the standard way. Purther-
more, i has been shown (see [11] or [16]) ha a radially distributed pulse, for example,
can be generali.ed to a prescribed distribution at x 0. Alternatively, if we initially
take a delta function profile for C(, 0), the calculations simplify once more.

As is involved in the construction of (x, t) we mustin order to complete the
second task in specifying a problem for haddress the problem for . This problem
is

(s.17)
d OCo
dn a sin (x )-x 2aC0(x, t),

using the additional condition

(5.18) [ dA 0

to fix the arbitrary constant. Define

d OCo[cos(x_)_cosx]_(Cor]"(’ ’) n o
dv’ a

We then have the representation

( r, 0, t) - b(, t, )
sin (0 )

d + cons
1 2r cos (0 ) + r2
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for . By now writing 8 r/, this last expression becomes

-Co r .[ [a(OCo/Ox) cos (x 0 +(.19) r, t)
8 r 1 2r cos

aer a direct calculation of the condition in (5.18) h been incorporated to fix the
constant. Via contour inteation, or otherwise, the lt inteal c be explicitly
evaluated to give

0c0 1
(.20) (,r,O,t) rsin(-O) + o(1-r)
Aer somewha lenhy bu sraighfod calculations for he evaluagion of (, t)
we find

(5.21) (x,t) [_a202Co (a2, ,) OCo a2 ]oX2 + S 96 +C0
Returning to the equation (5.14) for C we see that a fundental solution for

O2Co OCo(5.22) LC 1
a2 + at + aoCo

(L defined by (5.14)) is just the previously determined Co(x, t) for initial delta function
data given above in (5.7). Alternatively, with the change in viables

Oh
(5.23)

h(,0) -Wl(,0).

With the aid of a standard Green’s function we write

(5.24)
h(, t) $, $(, t’, t’)’(’, r) dr’ +$ (, t’, O) [-W(’, 0)] d’

and express the solution for

(.) C(, t) -h( Ut, t).

We are finMly in a position to write down the solution of the equation for C.
When cot (.), (.0), d (.) w hv

o i(-)-

1](.)

altogether. he paraboloidal erm C0[(1-r
or r 1 he torsion term (OCo/O)arsin(-0) becomes appreciable. All erms are

the problem for h is
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proportional to Co or (OCo/Ox) and inherit their decay properties. The expression
(1/192)(3r4 -6r2 + 2)(OCo/Ox) may be interpreted in the following way. For an
initially concentrated release of solute

(z, o, o)
at a point (x, r, 0) of a cross-section tx this expression is the average of the term
uo(OCo/Ox) in (3.17). It has the effect of displacing the center of mass of the concen-
tration distribution radially and longitudinally proportional to uo(OCo/Ox).

Further comment is warranted concerning individual terms in the above solution
for C1. The middle two at an axial station are multiples of Co and (OCo/Ox), which
are both homogeneous solutions of (5.22) and may be responsible for observed reso-
nances of Co in oscillatory axial profiles as given in Dravid et al. [8]. In a numerical
experimental study these authors exhibit computed axial profiles which "display a
startling characteristic feature: the axial temperature or heat flux profiles show large
amplitude oscillations that decay and damp out in the fully developed region." They
explain the rather complex first cycle in the oscillations and speculate that the second
and subsequent oscillations are resonances of the first. Secondly, the torsion term in
sin(x 0) is of interest in that it exhibits first effects on the concentration due to the
torsion of the convecting velocity. It is clear that the minimum point with respect to 0
in the concentration profile will rotate with the axial variable x. These authors found
this to be of interest in their numerically computed development of the temperature
field since it was in contradiction to the general belief. Thirdly, the "very peculiar
temperature profile in the fully developed region" computed numerically in [8] can
be qualitatively verified by our solution as follows. The computation takes place at a
fixed and x so it can be done where sin(x ) 0. Then the critical points of the
radial profile are found to be at r 0, and at

- c0 + ( c0) +
r=

l OCo < 1.

80x
Dravid et al. provide further experimentally obtained quantitative tests to substan-
tiate qualitative arguments of the kind presented above to explain their computed
profiles.

We conclude our example of .dispersion in a spiralling circular pipe with remarks
on the developed mean Cal. This quantity satisfies the equation

Ot 9/ + -4- e Ox2 + - + e #a + 2aC4

(.2’) -- a2 0 20 0 -- O(2)2 2__
Apart from the constants that are adjusted by O(e), we see that Cd satisfies an inho-
mogeneous equation with a differential operator of the same form as that governing
Co. Thus, we can use the solution (5.7) for Co for delta function initial data with the
new coefficients as a fundamental solution for the above equation. Make the change
of variables

(5.28) Cd he-2at, x + Udt,
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so that h satisfies

(5.29)
Oh 02h

+ v t, t) +

Here, 7d and Ud are the adjusted 7, U of the Co equation. With h given by

(.30)

h(, t) e V/47rTdt,e- "’*’ a(’, t’) d’dt’ + h(, 0) + O(e2),

we have

Cd(x, t) e-2th(x Vdt, t).

This representation for Cd(x, t), of course, requires Cd(x, 0) which, in turn, requires
h(, 0) in order that h be determined from (5.30). The correct choice of Cd(x, 0) is

6. Discussion and related problems. In this paper we have directed our at-
tention to extending the theory and giving a method for analyzing diffusion of a scalar
field C(5, t) in pipe flows with slowly varying cross-sections for which the convecting
flow is different from, but near, Poiseuille flow. Throughout, we have used most
frequently the terminology appropriate to dispersion of solute concentration for the
scalar field C. In such applications the value a 0 is certainly most likely in the
boundary condition (dC/dn) +C 0. A nonzero value of arises, however, if solute
is catalyzed at the pipe walls. Moreover, when applications of interest include transfer
of heat through conducting pipe boundaries, the influence of the wall conductance
becomes important. In this case, in order to investigate dependence of the effective
diffusion coefficient De on a, the transformation of the governing partial differential
equation (4.3) into the pure diffusion equation is involved and this merits a separate
study. In these transformations the introduction of a new time scale permits an ex-
pression of Cd(x, t) in terms of the mean of the initial concentration in an integral
form similar to (5.30), containing a delay-type kernel in the integrand (cf., [9] for the
uniform case). The solution in this form provides a potentially alternative attack on
problems of dispersion in oscillatory flows where the convecting flow results from a
harmonic longitudinal pressure gradient Op/Ox Po cos wt along the pipe (see, e.g.,
[6], [20], [21], and [28]). Methods similar to those employed in our work here make
consideration of such problems possible for pipes of variable cross-sections. Moreover,
in at least one instance [20], a delay-diffusion type of partial differential equation has
been employed in the modelling of the dispersion process in the uniform situation.

Analytical and experimental results in the case of flow in a pipe of uniform (cir-
cular) cross-section verify that the later stages of dispersion of the diffusing substance
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will be governed by an augmented apparent diffusion coefficient. At earlier times,
however, the dispersion process shows sensitivity to time of release of solute during
a cycle so that contraction of the distribution after ttow reversals may occur. This
implies the apparent longitudinal coefficient is negative. A relevant example is given
in [13] of a steady, three-dimensional flow where the O(e) correction to the underlying
flow exhibits regions of reversal. Taken together with the remarks noted previously
concerning the sign of the term (4.12) in De, this would suggest special attention to
the possibility of contraction of the distribution for variable cross-section pipes: there
is evidence [28] that effects of steady and oscillatory flow can be additive.

The noticeable effects on dispersion--in particular, on the rate at which the diffus-
ing substance is spreading transversally--underscores the importance of the inclusion
of transverse convective terms from the very beginning of the modelling process. Pre-
vious work has usually focussed on averaged properties of dispersion (over a period of
an imposed oscillation, for example) so that several potentially important oscillatory
effects are thereby excluded. The approach taken in this work avoids the early use of
averaged quantities.

Finally, we mention briefly two other quite different kinds of flows in which three-
dimensional effects seem to be important for dispersion enhancement. These are the
following: (i) impulsively started flows and (ii) moving boundary flows. In (i), start-
up effects on the dispersion can be quite prolonged and very significantly reduce the
transverse spread of the distribution over that observed in fully developed flow. In
(ii), it has been shown [25], in the nonviscous case at least, that for laterally moving
pipe boundaries dispersion enhancement is possible, but the methods employed in
that work are restricted to two dimensions.
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ON A LOCAL EXISTENCE THEOREM
FOR A SIMPLIFIED ONE-DIMENSIONAL

HYDRODYNAMIC MODEL FOR
SEMICONDUCTOR DEVICES*

BO ZHANG?
Abstract. A simplified hydrodynamic model for semiconductor devices, where the energy equa-

tion is replaced by a pressure-density relationship, is studied. The system of Euler-Poisson equations
is changed to a quasilinear wave equation in Lagrangian mass coordinates. The local existence of
a smooth solution of the Euler-Poisson equations is then obtained by using a known result for the
quasilinear wave equation.

Key words, hydrodynamic model, Euler-Poisson equations, Lagrangian mass coordinates,
quasilinear wave equation
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1. Introduction and main result. The hydrodynamic model for semiconduc-
tor devices is a generalization of the standard drift-diffusion model. For steady-state
subsonic electron flow in the hydrodynamic model, Gardner Jerome, and Rose [6]
proved the existence of solutions and convergence of Newton’s method. In this paper
we investigate a simplified hydrodynamic model in which the pressure is a given func-
tion of the particle density only. This assumption is commonly used in gas dynamics
for isentropic or isothermal flows [2].

After appropriate scaling, the one-dimensional time-dependent system in the case
of one carrier type (e.g., electrons) reads [7]

(1.1) pt + (pu)x 0,
1 u

(1.) + + -((p))
p T

(1.3) Cx, p-D,

where p(x, t), u(x, t), and (x, t) denote the electron density, velocity, and electrostatic
potential, respectively. The pressure function, p p(p), has the property that p2p(p)
is strictly increasing from [0, oc) onto [0, oc). A commonly used hypothesis [2] is

p(p) kp, / >_1, k > O.

The positive function T T(p, u) is the momentum relaxation time. The device
domain is the x-interval I (0, 1). The given function D D(x) is the doping
profile.

The system (1.1)-(1.3) is a set of one-dimensional Euler-Poisson equations with
an electric field term and a momentum relaxation time. For this simplified hydrody-
namic model, there has recently been some mathematical analysis. Markowich and
Degond [7] proved the existence of a unique smooth solution in the stationary sub-
sonic one-dimensional hydrodynamic model that is characterized by an assumption
on the current flow through the device that it is sufficiently small. Gamba [4] studied
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stationary transonic solutions for this simplified model. However, all of the above
results are for the steady-state hydrodynamic model. In this paper we study the
time-dependent system (1.1)-(1.3). The equations (1.1)-(1.3) are prescribed by the
following initial-boundary value conditions:

(1.4) (p, )1-o (po(), o()), o _< _< ,
(1.5) u(0,t)=0, u(1,t)=0, t_>0,

(1.6) (0, t) 1(t), (1, t) 2(t), t _> 0,

or more general boundary value conditions:

(1.7)
u(O,t) ul(t), u(1,t) u2(t), t >_ O,

(0, t) (t), (, t) (t), t > O,

where 1 and 2 are the applied bias. In the next section we will see that there is a
difference between (1.5) and (1.7).

Due to the formation of shocks, the initial-boundary value problem (1.1)-(1.6)
does not generally have a global smooth solution, no matter how smooth the initial-
boundary data and given functions are. For example, a steady-state electron shock
wave in a submicrometer semiconductor device was first simulated by Gardner [5].
At best, we should aim at establishing the existence of a local smooth solution on
a maximal time interval. For the existence of a physical global weak solution of
(1.1)-(1.6), see [11].

As usual, cm([0, T]; X) stands for the space of m-times (strongly) continuously
differentiable functions from [0, :/’] to a Banach space X. We take X as the Sobolev
space Hm =_ Wm,2(I) for nonnegative integers m, and set H0 -_- W0’2 (I). In order to
obtain a solution with the desired regularity we must assume that (1.4)-(1.6) and the
given functions satisfy certain natural compatibility conditions of higher order. We
need the following assumptions.

(A1) Regularity of given functions: T(p, u) E C3(]l-t- x ]), 0 < TO

_
T(p, U) M,

and D(x) e Ca[0,1].
(A2) Regularity of initial-boundary value conditions: i(t) C3[0, T], i 1, 2,

1 Ha"for a constant T > 0; Po _> m > 0, vo -= , uo
(A3) Compatibility conditions: Let

wo(x) vodx x vodx,

.,() o(),

k wlW2(X) V+l V0 T(VI, Wl)
+b,

k,(v+ 1) ,UoVo W2T
Wl _0 Duodx + c,
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where

2(0) 1 (0) f(f vodx)(1 Dvo)dx
b

f vodx

0(0) (0) fo u0(1 Dvo)dx : Uo(f: uodx)dx
c

f vodx

and assume that wi E Ha-iN H, i 1, 2, 3.
The main result of this paper is as follows.
THEOREM 1.1. Assume that (A1), (A2), and (A3) hold. Then, for suciently

small T e (0, ), the initial-bounda value problem (1.1)-(1.6) has a solution (p, u, )
3 m H4-m),such that p > O, p e =oCm([o, T]; H3-m), u e m=oC ([0 T]; and e

n=0c([0, T]; H-).
We will use Laangi ms coordinates to reformulate (1.1)-(1.3) into a qui-

line wave equation that is equivalent to the originM system. By a result of Dafermos
and Hrusa [3], we obtn the local existence and uniqueness of a smooth solution for
the quiline wave equation.

2. Proof of the loc existence theorem. The solution of the Poisson equa-
tion (1.3) for boundy data (1.6) is given uniquely by the following equation

(.) a(,)(-)+ +( ),

where G(, z) is ghe Green’s function defined by

(- ), < ,
z(- 1), >.

Subsgiuing he derivative of (2.1) for in (1.2), we have

(2.2) Pt + (pu)x 0,

1 f01(2.3) ut + uux + (p(p)) G(x z)(p- D)dz
u
+ 2 .

p T

3 m H3-mLet (p, u) be a solution of (2.2)-(2.3) such that p e Nm=oC ([0, T]; and
3 m H4-mu e N,=lC ([0,T]; ). The relation between the Euler coordinates (x, t) and

Lagrangian mass coordinates (y, t) is given by

X

(2.4) y p(z,t)dz,
(t)

where x(t) is a well-defined particle path satisfying the following ordinary differential
equation:

’(t) ,((t), t),

(0) =0.
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This transformation (x, t) - (y(x, t), t) satisfies the following equations:

(x, ),

-p(,Ou(,).

It follows from (2.2) that the transformation (x, t) -. (y(x, t), t) is consistent.
By this transformation, the system (1.1)-(1.3) can be conveniently reformulated

(2.5) vt up 0,

u+p(l = u,(2.6)
\v/ y V T

1 The initial-boundary value conditions (1.4)-(1.6) are translated intowhere v .
(.s) (, )1=0 (0(), 0()), 0 < < ,
(2.9) u(0, t) 0, u(1, t) 0, t >_ 0,

(2.10) (0, t) 1(t), (1,$) (2(),

__
0.

Here, we assume that f2 podx 1.
The problem (1.1)-(1.3) with boundary data (1.7) can be reformulated as the

following free boundary problem:

t(y (t), t) Ul (t), u(y2(t), t) u2(t), t O,

((t), t) (t), ((t), t) (t), t _> o,

vo(y)dy + (u2(t)- Ul (t))dt >_ mo > O.

For concreteness, we are concerned with the initial-boundary value problem (2.5)-
(2.10). Solving for from (2.7) and (2.10), we have

(2.12) _Uv =/(1 Dv)dy + f,
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where

f--(2-1-joiv (oY(1- nv)dy) dy) (o
Then, (2.5)-(2.7) reduces to

(2.13) vt uu 0,

vo dy)
-1

/o .
ut + p (1 Dv)dy- + f.

y T

Since the region IT =-- I (0, T) is simply connected, (2.13) implies the existence
of a function w such that

(2.15) v wu, u w.

Equation (2.14) then becomes

k-y w(2.16) wu +1w f
wy T

where

= ooV(1- Dwu)dY + (2-1+ f01 wu (j0v(1 Dwu)dy) dy) (foo1 vo dy)-1
The initial-boundary value conditions (2.8) and (2.9) become

(2.17) { /wl=o vo(y)dy + C,

w(0, t) C2, w(1, t) C3,

wtlt=o uo(y), O <_ y <_ l,

t>O,

where {Ci" i 1, 2, 3} is a set of constants such that C2 C1 and C3
C1. Without loss of generality, we assume C1 0.

a m Ha-m) (0, t)LEMMA 2.1. Assume that w E nm=oC ([0,T]; and wu o(o,t) > 0

for 0

_
t

_
T. Then, wu(y, t) is positive and there exists a constant C > 0 such that

I

W2t dy <_ C,

1 1
w’-ldy<-C ifT>l, or

f0llnwudy<_C ifT=1.

Proof. Let c(y) wu. Then, (2.16) can be written as an ordinary differential
equation

1 d
c(y) dy--"() V T
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It follows that

c(y)=p(0,t)exp a Wtt--f+--T dy

Then

w(y, t) >
1 { -1

sup_sup p(0, t)
exp -7 (y,t)eIT

0<t<T

From (2.5) and (2.9), we have

Then

or

wu dy vdy

Itl + Ill + > o.

vody =-

Ill < 2 1 + sup IDlo + sup (lCx(t)l + I(t)l)o M.
O<_y_<l

Multipling (2.16) by wt and integrating with respect to y over (0, 1), we obtain

d (fol k fol 1 ) folwt2 fo- w2t dy + dy + dy fwt dy if 7 > 1i’ W’-1 7"

/o )/od--- w2t dy + k Inw dy +

Then,

+

or

1 W2tdy fwt dy
T

0 1 0’ 01 W2 f0tf01k 1 1
dy+- r

wt dy dt < T dy dt
7 1 wTu -:

1 1 1 1 w2t dy dt < T dy dt- w2t dy + k Inw dy + - --
1W2t dy <_ C,

It follows that

1 1

wTu
dy <- C ifT>l,

follnwdy<_C ifT=l.

ifT= 1.

ifT> 1,

ifT= 1.

From Lemma 2.1, (2.16) is a quasilinear wave equation where the speed of prop-
In the following we change the nonhomogeneousagation, :--p, depends on p

boundary conditions to homogeneous boundary conditions. Then let

w w yvo.
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Then, the initial-boundary value problem (2.16)-(2.17) becomes

(2.18)

y

lt=0 vody Toy, 0<y<l,

1=o uo(y), 0 <_ y <_ 1,

(0, t) (1, t) O, O<t<T.

LEMMA 2.2. Assume that (Ax), (A2), and (A3) hold. Then, for suciently small
T E (0, cx)), the initial-boundary value problem (2.18) has a unique solution

4

(2.19) e N C’([0’ T]; Ha-’).
m--0

Proof. By the assumptions (A1), (A2), and (A3), and Lemma 2.1, all conditions
of Theorem 5.1 of [3] are satisfied, so that the result follows. For details, see [3].

Proof of Theorem 1.1. By Lemma 2.2, the unique solution of (2.18) satisfies
(2.19). It follows from the Sobolev embedding theorem [1] that C2(T). From

1 u t and is given by (2.1). The existence of(2.15), we have that p +Vo’
a smooth solution of the initial-boundary value problem (1.1)-(1.6) is equivalent to
that of (2.18). Therefore, the result is true.

Acknowledgment. The author is grateful to Professors Jim Douglas, Jr. and
Peter Markowich for their guidance, encouragement, and support.
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STABILITY OF SOME TEST EQUATIONS WITH DELAY*
V. B. KOLMANOVSKIIt, L. TORELLI, AND R. VERMIGLIO

Abstract. The authors propose some techniques to obtain stability conditions for certain dif-
ferential equations with delay. These techniques are applied to three concrete test situations. In
the first and second cases, they consider equations without instantaneous dissipative terms. This is
important because in real situations, such as control theory, finite time is necessary to measure char-
acteristics of the object and to treat the results of the measurements in order to create control action.
In the last section, general results are presented for the chemostat model. These test equations are
interesting examples for a forthcoming investigation concerning stability of numerical methods.

Key words, stability, test equation, delay differential equation, Liapunov method, chemostat
model

AMS subject classifications. 34D05, 34K20

1. Introduction. Many real phenomena can be modeled by equations with de-
lay, and the general theory of such equations has been considerably developed in the
last years. Several authors have investigated the analytical aspect, and the references
on this subject are very ample. The reader is referred to the following books for the
basic topics: Burton [7], Bellman and Cooke [4], Hale [18], Kolmanovskii and Nosov
[22], Hino, Murakami, and Naito [20], and Gripenberg, Londen, and Staifans [13]. Re-
cently the interest in and necessity for numerical schemes have been increasing, since
the possibility of obtaining the analytic solution is very poor even for the simplest
cases (see Barwell [1], Sellen [2], [3], Hairer, Norsett, and Wanner [17], Meinardus and
Nurnberger [23], Worelli and Vermiglio [24], Zennaro [27], and the references therein).

One of the most important problems in the study of dynamical models and their
applications is that of describing the nature of the solutions for large positive values
of the independent variable. From a numerical point of view, the stability properties
of the approximation schemes must also be studied. The usual approach to fulfill
such requirements is to have a set of test equations which are as general as possible
and for which explicit analytic stability conditions can be given, and to characterize
the numerical methods which, when applied to the test equation, show the same
asymptotic behavior under the same conditions.

In this part of our investigation we propose more general test equations and we
give some sufficient explicit conditions for the asymptotical stability of the solutions.
Namely, we consider scalar linear equations with variable coefficients and arbitrary
(distributed and discrete) delays and a two-dimensional system of nonlinear equations
of chemostat. In general, in the theory of stability for delay equations two approaches
are widely used, i.e., the Laplace transform together with the study of the correspond-
ing characteristic equation and the generalizations of Liapunov’s direct method [4],
[22]. Here both of these approaches are used. In the forthcoming second part we shall
present numerical procedures whose stability properties will be checked, according to
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the philosophy described above, by means of test equations studied in this paper.
Let us now quote some results and definitions from general stability theory of

functional differential equations that are used in this paper. For all the details the
reader is referred to some of the books mentioned above.

Consider the initial-value problem (IVP) for the general delay differential equation
(DDE)

(1.1) x’(t) f(t, xt), t >_ to >_ O,

(1.2) xto --(),

_
0,

where x(t) e Rn and x :- x(t + ),

_
O, f’[0,-t-o) x M --. Rn, M denotes a

complete metric space of continuous functions mapping the interval
with a metric p and the initial function o E M. We recall that if-T _< _< 0, equation
(1.1) is a DDE with bounded delay and M C[--T, 0] with

If-o < 9

_
0, equation (1.1) is a DDE with unbounded delay. In this case we

have several possibilities for the choice of the space M and metric p, which could be
taken properly for the problem (see [20], [12], and [22]). For instance, we can take
the space of continuous and bounded functions on (-oo, 0] with the norm [[o[[
sup0<0 [o(0)[ (see Krisztin [21]).

Let us suppose f and are such that there exists a unique solution to (1.1) and
(1.2) and denote such a solution by x(t, to, o). Without loss of generality we can
assume that f(t, 0) 0 for t _> 0, and thus we can investigate the stability of the
trivial solution.

DEFINITION 1.1. The trivial solution of (1.1) is called stable if for each e > 0
there exists (e, to) such that the solution x(t, to, o) of the problem (1.1) and
(1.2) satisfies inequality Ix(t, to, )1 <- e for t >_ to if o e B(0,

DEFINITION 1.2. If the solution x(t, to, o) of (1.1) and (1.2) is stable and in
addition for each to there exists A A(t0) > 0 such that x(t, to, o) vanishes when t --oo for all initial functions o B(0, A), then the trivial solution is called asymptotically
stable. The set f(t0) c_ M of all initial functions such that x(t, to, o) vanishes when
t --. o is the domain of attraction of the trivial solution at the initial moment to.

If f(t0) in Definition 1.2 coincides with the space of continuous functions M, then
the trivial solution is globally asymptotically stable.

If the same definitions hold independently of to >_ 0, we speak of uniform stability,
uniform asymptotic stability, and so on.

We recall the following lemma which we shall use in the next section.
LEMMA 1.3. Let ((t) be any nonnegative, uniformly continuous function on

[to, oo). If fro (t)dt < oo, then (t) vanishes as t --. o.

2. Linear equations with variable delays. In this section we are able to
derive sufficient conditions for stability of the zero solution for certain "pure" delay
differential equations, i.e., equations where the derivative depends only on the past
values of the solution. Our approach is based on. the application of suitable degenerate
Liapunov functionals. These conditions are easy to verify, and the comparison with
the existing results are presented in what follows.

We consider the following real scalar DDE:

(2.1) (t) t > 0
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and its generalization

N

(2.2) > 0,
i--1

which contains N delay functions. In (2.1) (respectively, (2.2)) we always assume that

(2.3a)

(2.3b)

(2.3c)

M is the space of continuous and bounded functions on [0, A-c)
with the norm !1oll- sup0<0 1o(0)1;
b (respectively, b)" [0, A-o) --. R is continuous;

T (respectively, T)" [0, A-Cx)
tiable, and T’(t) (respectively,

is continuous, differen-
for t > 0.

Remark 2.1. The hypothesis (2.3b) ensures that t- ’(t) (respectively, t-
has a differentiable inverse function denoted by g(t) (respectively, g(t)).

Observe that we allow the delay function to be unbounded. In the particular case
of bounded delays, several authors have investigated the asymptotic behavior of the
solutions of (2.1) and (2.2) as well as more general cases (see Yoneyama [25], [21],
Yorke [26], Burton and Haddok [8], Cooke [9], [10], Gyori [14], and all the references
therein). For (2.1) it is well known that if

(2.4a) b" [0, +x3) -- [0, +cx) is continuous;

(2.4b) b(t) < for t > 0;

(2.4c) r "[0, +o)-- [0, ql is continuous;

then the zero solution is uniformly stable if q _< and asymptotically stable if

3
(2.5) q < .
Furthermore, the upper bound - is the best possible for (2.1); in fact, if/q > -32 there
are equations with unbounded solutions. This result can be obtained by means of the
fundamental work of Yorke [26] for general, scalar, nonlinear equations (1.1), where
one of the main assumptions is the boundedness of the delay function. Yoneyama [25]
removed (2.4b) and proved that if (2.4a) and (2.4c) hold and

t+q 3
(2.6) sup Ib(s)lds < ,

t>0 d

then the zero solution of (2.1) is uniformly stable. More recently, Krisztin [21] gave a
generalization of Yorke’s theorem, which is flexible for more delays. For (2.2) we can
easily get that if

b, "[0, +) --* [0, +) is continuous for i= 1,..., N;

b(t)< fort>0, i=I,...,N;

T" [0, +) --. [0, q] is continuous;

then the zero solution is uniformly stable if -]N=I/3iqi _< 1 and uniformly asymptoti-
cally stable if N=l/q < 1 (for N _> 2 the estimate 1 is the best possible; see [21]).
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Other sharp results for (2.1) are given if b(t) and/or T(t) are small as t --, -t-cx (see
[8]-[10], [14], and [15]).

It is important to point out that, concerning stability analysis, (2.1) and (2.2)
cannot be considered as special cases of

N

(2.7) x’(t) -a(t)x(t) + b(t)x(t- vi(t)), t 0,

where we sume (2.3) and a "[0, %) [0, %) is continuous. The DDE (2.7) with
a(t) O, for t 0, h been studied, for instance, in [7], [11], [18], [22], and [16].

In ft, by applying the Liapunov direct method (see [22]) to the following
positive-definite functional,

N g(t)V(t, xt) := x2(t)+ Ibi(s)]x2(s- Ti(s))ds for t 0,
i:1

where gi(t), i 1,..., N, is defined in Remk 2.1, we can eily see that the triv-
ial solution of (2.7) with initial condition (1.2) is uniformly ymptotically stable if

=1 bi(t) is bounded and the following conditions hold:

(.aa) inf (t) (Ib(t)l + Ib((t))l(t)) > o,
tO

N g(t)(2.8b) up Ib,()ld < +.
t0 .=

Conditions (2.8) show that in order to stabilize (2.7), we must have that the instta-
neous feedback, defined by the positive nction a(t), dominates the delay effects. The
same considerations ise by analyzing the results of the authors mentioned above.
Thus for the analysis of the ymptotie behavior of pure delay differential equations
(2.1) d (2.2), we suggest the use of suitable degenerate Liapunov functionals with
a negative definite deritive.
THEOM 2.2. Consider the DDE (2.1) and assume (2.3). If

(2.9a) inf b(t) B > 0
t>0

and

(2.9b) sup b(s)ds < 1,
>0 d

the tvial solution 4 (2.1) with initial condition (1.2) is unifoly stable. Moreover,
if b(t) is bounded, then the tvial solution is unifoly asymptotically stable.

Proof. Introduce the following nonnegative functional

2

+ ((’( b()( ()le a.
Jt
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By computing its derivative V’ along the trajectories, by (2.1), by the Cauchy in-
equality (i.e., a2 + b2 >_ 2ab), and by (2.9b), which means that the average value of b
must be less than 1, we get for t

_
0,

V’=-2b(g(t))g’(t)x(t)(x(t)-f(t)b(s)x(s-T(s))ds)Jt

_< -2(1 )b(g(t))g’(t)x2 (t)
<_ -Cx(t),

where C is a suitable positive constant given by (2.9a) and inf,>0 g’(t) > 0. By
integrating we have, for t >_ 0,

V(t, xt) V(O, x0) Vt(8,xs)a8

_
-C x2(8)as,

and, since V(t, xt) is a nonnegative functional, we get

c ()a _< u(o,.) for t _> o.

Thus,

oo
X2(s)ds <

Moreover, by the same consideration, it follows that

(-) (())’((.)a _< u(O,o)

and so

fort >0,

o
b(g(s))g’(s)x2(s)ds <

Now by the definition of V, the Cauchy inequality, and (2.9b), we have

g(t)

>_ (t) (t) ()( ())
Jt

+ b(g(s))g’(s) b(u)x2(u T(u))du ds
Jt

> (t) 1 b()d b(s)( r(s)) 1 b(9(u))9’(u)du ds

(t)(1 ) b()(s
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Since V’ _< 0, we obtain

gCt)

x2(t)(1 fl) < V(O, xo) + b(s)x2(s T(s))ds,

which by (2.9) gives the stability of the trivial solution.
The boundedness of the function b(t) ensures that the derivative Ix’ (t) is bounded.

Thus we can apply Lemma 1.3 to a(t) x2(t) to get the thesis.
THEOREM 2.3. Consider the DDE (2.2) and assume (2.3). /f

sup fl(u)du B < 1 for each i 1,..., N,
t>o d

N ft(t(2.10)
sup bi(u)du B2 < 1,
t>0 --.=

inf f(t)= B3 > 0,
t_>0

where (t) := iN=l bi(gi(t))g(t), the trivial solution is uniformly stable. Moreover,
if -].N,=I bi(u) is bounded, then the trivial solution is uniformly asymptotically stable.

Proof. It is possible to prove this result by using the same technique in Theorem
2.2 defining the nonnegative functional

 (tl
i=1

N

jtg’(t) s+ fl(s) bi(u)x2(u i(u))du ds.
i=l

Remark 2.4. Since (2.1) and (2.2) e line, the trivial solution in Theorems 2.2
d 2.3 is globally uniformly ymptotically stable.

Remark 2.5. The boundedness of the solution b(t) in (2.1) is essenti to applying
Lemma 1.3 in order to get ymptotic stability. This hypothesis can be substituted,
for instance, by

b(s)ds L(t2 -ti) tl, t2 O, t2 ti.for eh

Remark 2.6. Observe that if the delay is bounded or it is constant, the conditions
(2.5) d (2.6) e shper than (2.9)and (2.10).

3. Equations with bitry unbounded delay. In this section we consider
the scalar real equation

(a.1) ’(t) a(t)(t) b(t) (t s)dk(), t

wigh ghe inigiN condigion (1.2). We sume thag

(a.2a) k(t) is a function in [0, ) wih bou aed viaion;

(a.b) (0) is such hat (t- s)dk(s) exists and is finite;

.[0, is continuous aria bounaea;
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Under the conditions (3.2) we know that (3.1) and (1.2) have a unique solution.
Concerning the bounded variation kernel k(t), it is well known that there exist

three uniquely determined functions k(1)(t), k(2)(t), and k(3)(t) whose sum is k(t),
i.e.,

(3.3) k(t) k(1)(t) T k(2) (t) T k(3)(t)

and such that k(1) (t) is absolutely continuous, k(2) (t) is piecewise constant, and k(3) (t)
is a Cantor step function, i.e., an increasing function with derivative almost every-
where equal to zero (see nalmos [19]). So k()(t) has the form f f(s)ds, where f is

an integrable function (density), k(2)(t) has the form
is the jump in the point hi and

If in (3.3) k(1)(t) =- O, k(3)(t) _= 0, we can rewrite (3.1) and obtain

(3.4) x’(t) a(t)x(t) b(t) E x(t Ti)ai.
i--1

Observe that (3.4) is a particular case of (2.2) and it reduces to the test equation in
[20] for/= 1.

If in equation (3.3) k(2) (t) _= 0, k(3) (t) --0, then we get

x’(t) a(t)x(t) b(t) x(t s)f (s)ds.

Equation (3.1) was studied, for instance, in [16] and [21]. We want to stress that
here we do not require the coefficient a(t) to be nonnegative. The following theorem
is the main result of this section.

THEOREM 3.1. Consider (3.1) and assume (3.2). Define

(3.5a) /i (t):= b(t + s)dk(s);

(3.5b) 72(t) :-- Ib(u +

(3.5c) 3(t) :-- Ib(t -- 8)] la(v -4- 8) "1 (V

(3.6a) sup[2(a(t) ’I (t)) -1-la(t) ’Tl(t)lu(t) + 73(t)] -A < 0,
t>0

(3.6b) sup2(t) B < 1,
t>0

then the trivial solution of (3.1) is globally uniformly asymptotically stable (see Remark
2.4).

Proof. To define the functional V, we shall construct two functionals, V1 and V2.
Let

V1 (t, xt) :-- x(t) b(u + s)x(u)du dk(s)
8
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so

V 2(a(t) "Yl (t))x2(t) 2(a(t) "1 (t))x(t) b(u + s)x(u)du dk(s).

If we apply the Cauchy inequality we get

V1 _< 2(a(t) "yl(t))x2(t) -t- la(t) /1 (t)l Ib(u + s)l(xU(t) + x(u))du]dk(s)l

(2(a(t) 1 (t)) % la(t) 1(t)lV2(t))x2(t)

+ la(t) -(t)l [b(u + s)lx(u)duldk(s)l.

Define another functional, V(t, xt)"

(t, xt) := a(v + s) 7,(v + s)l Ib(u + s)lx2(u)d dvldk(s)l,

so

V 9/3(t)x2(t) -la(t) -/(t)] Ib(u + s)lx2(u)duldk(s)l.

Now we are in a position to define the final functional V(t, xt)"

+
Observe that it is nonnegative for each t.

V’ V + Y < (2((0 ()) + la(0 ()l() + ())().
By condition (3.6a) we have that

V’ <_-Ax2(t),

and so, for each t,

(3.7) V(t,x,) V(O, xo) <_ -A x2(s)ds,

(3.8) A x2(s)ds <_ V(O, xo)

because V is nonnegative for each t. From (3.8) we get

(3.9) x2(s)ds < o.

Now, from (3.7) we have the inequality Y(t, xt) <_ Y(O, xo) for each t and from the
definition of V, and in particular because V2 is nonnegative, and using the Cauchy
inequality, we get

(1 -9/2(t))x2(t) <_ V(O, xo) + ]b(u / s)lx2(u)duldk(s)l.
8
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By the boundedness of the function b, by (3.9), (3.6b), and by the hypothesis on
the function k, we have that there exists a positive constant A1 such that x2(t) (_
A1Y(0, x0), and this implies that the solution x(t) is bounded, i.e., Ix(t)l < cx) for each
t. Now, by (3.1), the boundedness of x(t), and the coefficient a(t), we get Ix’(t)l < cx)

for each t. So, by applying Lemma 1.3 with a(t) x2(t), we get the thesis. D
THEOREM 3.2. Consider the equation

N

(3.10) x’(t) a(t)x(t) Z b(t) o x(t- s)dk(s), t >_ O.

Assume (3.2b-c) and that ki(s) and bi(s), i- 1,... ,N, verify, respectively, (3.2a) and
(3.2d)./f (3.6) hold with

then the tNvial soNtion 4 (3.10) is globally, unifoly, asymptotically stable.
Proof. It is possible to prove this result by using the se technique in Theorem

.1 defining ghe nonnegagive NncionNs

Vt (t, xt) "= x(t) bi(u + s)x(u)du dki(s)

Remark 3.3. We remember that conditions (3.6) do not imply that the coefficient
a(t) must be negative. For instance, we can put a(t) =_ 0 and obtain the same
conditions (3.6) with

8

Remark 3.4. If in (3.1) the coefficients a(t) and b(t) axe constant, i.e., a(t) =_ a,
b(t) =_ b, (3.5) reduces to

" b dk(s),

where fo sldk(s)l. Observe that ’)’1, "Y2, ’Y3 axe not depending on t. Conditions
(3.6) yield

(3.11a) (a- Ibl ]a- < 0

(3.11b) Iblfll < 1.
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It is easy to prove that (3.11a) is equivalent to (3.11b) provided that (a- "1) < 0. If,
in addition, k(t) is equal to 0 for t < T and equal to 1 for t >_ - (- > 0), we obtain
the equation

and conditions IblT < 1, a- b < 0. Note that these conditions are also valid if the
coefficient a is nonnegative.

Remark 3.5. If in (3.1) we have no delay or, equivalently, if k(t) is equal to 0 for
t < 0 and equal to 1 for t >_ 0, we get the equation

/ (t) b(t), "2(t) 0, "/3(t) 0, and the well-known condition

sup(a(t) b(t)) -A < O.
_>o

4. Stability ofchemostat equations with distributed delay. In this section
we consider an open system where nutrient is consumed by a micro-organism and
partially recycled. Under some assumptions such a system can be modeled in terms
of chemostat equations of the form (see Beretta and Bischi [5] and Beretta and Fasano
[6]) for t _> 0,

(4.1a) N(t) u al2U(N1 (t))N2(t) + be2 f2(t s)N2(s)ds,

(4.1b) N6(t) N2(t) -e2 + 72 f (t s)U(N1 (s))ds

where N1 is the concentration of the limiting nutrient, N2 is the concentration of
a species of micro-organism, u > 0 is a constant nutrient supply, a12 > 0 is the
maximum uptake rate, e2 > 0 is the death rate of micro-organism, 72 > 0 is the
maximum growth rate, and b E (0,1) is the fraction of the dead biomass that is
recycled as a new nutrient. The function U(N) is the quantity of nutrient consumed
by the species: it is a continuous, bounded, increasing function of N E [0, 00) with

U(O) O, U’(N) dU(N)
dN

> O, N--,oolim U(N) 1.

Integral terms in (4.1) reflect the influence of the previous values of N, N2 on their
current alterations. The functions f(s), i 1,2 are nonnegative, square integrable
on [0, cx)) and such that f f,(s)ds-- 1, i= 1,2. If

(4.2) e2 < f2, a2 > b2,

the system (4.1) has a unique, positive stationary solution N1, N2 given by

(4.3) N U-I ( e2 ) u

In the sequel both inequalities (4.2) are assumed to be fulfilled.
By following the usual linearization procedure, the study of the local properties

of the equilibrium (4.3) of (4.1) can be reduced to the investigation of the asymptotic
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stability of the trivial solution with respect to the initial disturbances in the uniform
norm of the following linearized equations:

--x2(t) + be2 f2(t s)x2(s)ds,(4.4a) x (t) -a12NU’(N )x1(t) al
/

(4.4b) x2(t) /2NU’(N) fl(t- s)x(s)ds.

In turn a necessy and sufficient condition for the ymptotic stability of the system
(4.4) (i.e., the trivial solution if ymptotically stable) is that

(4.5) D(z) := z2 + az + ae2F (z) be22aF(z)F2(z) 0 when Re(z) 0,
hi2

where a a2NU’(N[). Here

() e-"I()a, i ,
for i 1, 2 e ghe Laple gransform of he kernels ]i, i 1, 2. D() is defined
chrcteNtic equation of (4.4).

Noge gha under our sumpgions ghe functions Fi(), generally spewing,
even defined ag ghe half plane Re(z) < 0.

Also noge

F(z)F2(z) f(s) f2(s)e-"("+")dsds

fl (8) f2(82 8)e-ZS2d82d8

Hence by defining

we can rewrite he characgerisic equation of (4.4) in he following form:

he laer equation represengs a chacerisic equagion for ghe following scalar system
of he second order

"(t) + ’(t) + (t )I()a 0,

which is equivalen o he system of gwo differential equagions of he first order (t 0}

(.a) ’(t) (tl,
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Consequently, asymptotic stability conditions for (4.8) will be simultaneously suf-
ficient for the local stability of stationary solution (4.3) of system (4.1). Obtain these
conditions using the generalization of Liapunov direct method for functional differen-
tial equations (see [22]).

THEOREM 4.1. Consider the system (4.1) with the assumption (4.2). If
(4.9) f0 > 0, fl < a, 2 < +oo,

where o fo f(s)ds, [1 f slf(s)ds, 2 f s2f(s)ds, and f is given
by (4.6) and a ai2NU’(N), then the positive stationa solution (4.3) of (4.1) is
lolly stable.

Proof. Consider the nctional

v := + + v (t)
(4.10)

+ l/(s)l (y2(t2) + ox2(t2))e2elds,

where

Vo(t) := y(t) + ax(t) f(8) x(tl)dtld8.

By ghe assumption/0 > 0, < c, ghe functional (4.10) is posigive definite d
h upper infinigesimN limig. ind ghe derivagive V of ghis funegionN along
rajecgories of (4.8). Noe

(4.11) 2 -ay2(t) + y(t) f(s) sx’(Sl)dsds

rgher we geg, since 0 > 0,

(4.12)

inally, relagions (4.9)-(4.11) give us

< -2(a 3x)[/ox2(t) + y2(t)].
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By (4.9) we have that the system (4.8) is asymptotically stable. [:]

Remark 4.2. Note that inequality/0 > 0 is necessary for asymptotic stability of
(4.8). Really if/0 <_ 0, then characteristic equation (4.7) will have nonnegative real
roots because the function (4.7) is such that D(0) _< 0 and n(z) --, c as Re(z) --, oc,
Im(z) O.

Note also that for an ordinary differential equation of second order,

x"(t) + ax’(t) + ox(t) 0

(which arises if f(s) oS(S), where i(s) is a delta function), inequality (4.12) goes
into a > 0, f0 > 0, which are necessary and sufficient stability conditions in this case.
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HERMITE INTERPOLATION ON THE LATTICE zd,

KURT JETTER?, SHERMAN D. RIEMENSCHNEIDER$ AND ZUOWEI SHEN

Abstract. This paper deals with the interpolation of derivative data on the integer lattice
Zd by means of spaces generated by the lattice translates of several functions. The derivatives to
be interpolated can be of a general form, given by a set of linear constant coefficient differential
operators induced by a linearly independent set of polynomials on Rd; for example, successive partial
derivatives (Hermite interpolation) or powers of the Laplacian. The method used here is to adapt
the generating functions of the interpolation space to the derivatives to be interpolated. This is done
by introducing oscillations in the space through multiplication by certain shift invariant (1-periodic)
trigonometric polynomials. The resulting interpolation schemes do provide convergence to smooth
functions as the mesh size is reduced to zero under suitable restrictions.

Key words, cardinal interpolation, Hermite interpolation, multivariate interpolation, splines,
radial basis functions

AMS subject classifications. 41A05, 65D05, 41A15, 65D07, 41A29, 41A63

1. Introduction. In this paper we take another look at the general problem of
interpolating derivative data on the lattice Zd. So far the following situations were
considered in the literature:

interpolation of data on the lattice from spaces generated by lattice translates
of either compactly supported functions (cf. the survey [13]) or radial basis functions
(el.

hermite interpolation of derivative values by spaces of box splines [14] or by
similarly generated spaces (cf. [13]);

interpolation on periodic meshes [4].
For many spaces generated by lattice translates of compactly supported functions,

the exponential decay of the fundamental solutions for the interpolation is lost in
passing from interpolation of function values to interpolation of derivative values when
d > 1. The reason for this may be that the proper space of interpolating functions
has not yet been discovered (or that the univariate model is being forced on the
multivariate setting). In this paper, we search for an appropriate generating family
that will provide fundamental solutions with exponential decay when such solutions
exist for interpolation of function values. The essential idea is to introduce oscillations
in the approximating family that are appropriate to the problem at hand.

The general cardinal interpolation problem reads as follows: For given functions,..., Rd --, C

and functionals 1,..., At, we want to interpolate (real or complex) data

dk :-- k-- 1,...,r,
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on the lattice zd; i.e., we want to find sequences

cj (cj(a))aezd j 1,..., r,

such that S(x) := Eaezd ’=1 cj(a)j(x a) satisfies the interpolation conditions

(1.1) AkS(. + ) dk(), e Zd, k -1,...,r.

For simplicity, we use the following notation for the semidiscrete convolution of a
sequence with a function

,’ := (.

The solution S(x) then comes from the space

{ }s :=
j--1

and the functions 1,..., Cr are the generators of . In the references mentioned
above, the linear functionals are either point evaluation at the origin with r 1
for the interpolation of function values [12], [13] or point evaluation of successive
derivatives [14], [13], or the functionals Ai: f -+ f(Ti + with ri e [0, 1), i= 1..., r
in [4].

It is well known (cf. [13]) that problem (1.1) can be transformed to a system of
linear equations with the use of symbols. Define the (periodic) symbol of the gl(Zd)
sequence (AkCj(" + a)),ezd as

(1.2a) Akj() Z kj(" --()e-ia., e ]d, 1 <_ k,j <_ r.

aZd

More generally, the (complex) symbol of the sequence is the Laurent series

(1.2b) akS(z) Akj(" +
(Zd

so that (1.2a) equals (1.2b) on the d-dimensional torus

Td := {z (e-{O),...,e-i(d))’(m) C [0,2r), m 1,...,d}.

The symbol matrix for the interpolation problem is then given by

(1.3) A() := (Ak,g())k,j=l

and (1.1) transforms into the following linear system of equations:

(1.4) Z Ak,()Cy() Dk(), k-- l,...,r,

where

Cj()

_
c(a)e-’"’ and D() Zd(a)e-’’
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axe the formal Fourier series associated with the sequences cj and dk. Hence,

(1.5) det A() 0 for all e ]Id

is a necessary condition for the unique solution of (1.4) for the unknown functions C.
In turn, the properties of these solutions determine whether solving (1.4) is equivalent
to solving (1.1).

Of particular importance is the search for the fundamental solutions, where the
right-hand sides of (1.4) are chosen successively from the r-dimensional canonical unit
vectors, or equivalently, all data sequences in (1.1) are zero, except the one that is
the Kronecker sequence: t(0) 1 and i(a) 0, otherwise. Now if the entries of
the symbol matrix are analytic on the torus, and if (1.5) holds, then the solutions C
will be analytic on the torus as well, and the Fourier coefficients of these will decay
exponentially. In this case, (1.4) is equivalent to (1.1) for data sequences dk of at
most polynomial growth.

Our approach to this general cardinal Hermite interpolation problem (CHIP)
given in 2 can be described as follows: for given functionals A,..., A find a suitable
basis of generators ,..., Cr so that the symbol matrix is lower triangular with
diagonal elements Ak,k() 7 0, . d. It is shown that this property holds when
Cj a, where aj is a properly chosen trigonometric polynomial and i is a
function with a nonvanishing symbol. This particular choice of functions seems to be
somewhat reminiscent of the construction of a so-called Wilson basis in [7], although
they only considered the univariate case. The construction is carried out when the
functionals are given by linearly independent constant coefficient partial differential
operators. Two important cases, interpolation of successive derivatives as defined
by an arbitrary lower set of Z and the interpolation to powers of the Laplacian,
are given as the main examples. The simplest case occurs when the functions Cj
are all the same function (and consequently, the Cj are given by multiplication
of by the appropriate trigonometric polynomials). Concrete examples are given
by taking as a box spline in which case the approximating family is generated by
integer translates of compactly supported piecewise exponential polynomials with the
smoothness properties of the box spline. In 3 we consider the question of whether
the scaled interpolation operators provide the approximation order determined from
the Strang-Fix conditions. The Fourier transform of the fundamental functions shows
that the algorithms of [8] can be applied for numerical computations.

2. A general cardinal interpolation problem. We consider the problem of
interpolating derivative data on the integer lattice Z when the derivatives are given
by a linearly independent set of real constant coefficient linear partial differential
operators (complex coefficients could also be considered; see the remark below). Let
p,...,pr be linearly independent polynomials on Rd. Since we are dealing with a
linear interpolation process without loss of generality, we may assume the following:
(i) in the representation

n
P. f:i,m, f.i,m homogeneous of degree m,

m--0

the leading terms fj,, j 1,..., r, are nonzero and distinct; (ii) nk

_
nj if k < j and

the leading homogeneous term of pj contains a monomial that does not appear in Pk
for all k < j. (This may be achieved by taking linear combinations and relabelling the
polynomials. It should be noted, however, that our choice of generators will depend
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on this representation.) The linear functionals for the interpolation problem will be
Akf := pk(D)f(O).

We associate a homogeneous polynomial qj with each polynomial pj as follows:
Choose qj to be that portion of the leading homogeneous term fj,nj containing those
monomials not in pk, k < j. Define

(2.1) a:i(x :--q.(e2ri‘- 1), j---- 1,... ,r,

where we have adopted the multivariate notation

d

(2.2) (e2i 1)a :-- H (e2’(m)- 1)a(m)"

We remark that other choices are possible here. For example, we may discard some
monomials from qj, and/or we may replace e2ix- 1 in the definition of aj by sin(2rx)
and sometimes even by sin(rx). These changes require very modest changes in the
arguments presented below. Our choice of e2rix 1 makes the proof simpler, but it
may also make the interpolatory process complex even when the functions Cj and the
data are real-valued. However, in the latter case, the imaginary part of the interpolant
interpolates the zero data and goes to zero with the mesh size (cf. 3).

Let 1,..., Cr be given functions in C(Rd) with maxj nj and for which the
sequences

(2.3)

Denote their corresponding symbols by

(2.4) @() := Z (a)e-’a’ j 1,..., r.

Define the functions

(2.5) := a, j 1,..., r.

We are now in a position to state our main results.
THEOREM 2.1. In addition to the above definitions and assumptions, assume that

the sequences

(pk(D)j), := {(pk(D))(a)}ez e g(zd).

Then the symbol matrix A() (Akj())k,= for the linear functionals Akf "=

pk(D)f(O) and the generators ,..., Cr is lower triangular with diagonal entries of
the form

A,j() constj(),

where constj 0. In particular, det A() ?t 0 for all E Rd if and only if all the

@ # e
The proof is an immediate consequence of the following lemma.
LEMMA 2.2. We have

(2.6) (p(D)j)(() 0 for all e Zd if k < j.
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When k j,

(2.7) (pj(D)j)(a)- (qj(D)qj)(O)j(a), e Zd,

and (qj(D)qj)(O) is a nonzero constant.

Proof. Let

x# x
Pk (x) Z ak,-, and qj (x) bj,.

Then by our choices of Pk and qj, whenever j > k, given monomials x from Pk and
x from qj with nonzero coefficients, there is a component m m(,) for which
(m) < (m). Hence,

(D((e2’’- l)j))(a) ()(D"((e2’- i))D-"j)(a)=0
(2.8)

Va E Z,
by the Leibnitz formula since each summand contains a power of (e2ia(m) 1). This
gives relation (2.6).

The same is true if k j except when/ 7, which is now permitted. In this
case, only the term ]z f 7 in (2.8) does not give zero when evaluated on the
integer lattice; and that term yields (2ri)n7!() since 1’71 n. When these terms
appear in the evaluation of pj(D) on ajCj at the integer lattice, we obtain

(P;(D)J)(a) (q;(D)q;)(O);(a) ((2ri)’ i1=1b"]2/7!)
Remark. To allow for the complex coefficient polynomials pj, we could take the

functionals to be 7kf := pk(D)f(O), in which case the last proof is exactly the same
when pj (D) and qj (D) are replaced by 1(D) and (D), respectively.

We give three bivariate examples where the conditions of the theorem are satisfied:
for a (centered) 3-directional box spline M,,m, the symbol does

not vanish on R2 (even if we use shifted box splines M,,,m(X + and the shift
x is from a certain hexagonal shift region; cf. [3]). Since M,,,m E C(R2) with
a k + + m , 2 and # := max{k, *, m}, there are many choices available to fit
any interpolation problem;

in case of bivariate polyharmonic splines we may choose

’’j (x) (--V)k(x(1)2 + x(2)2)k-1 log(x()2 + x(2)2)
with (-V) the discrete Laplacian

(-V)f(x(),x(2)) 4f(x(),x(2)) {f(x(1) 1, x(2))+ f(x() + 1, x(2))

+ f(x(1),x(2) 1)+ f(x(1),x(2) + 1)}

and 2 _< k E N (cf. [6]); here we have Cj Ck-2;
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in case of the bivariate Hardy’s multiquadric we may choose

Cj _W3/2 V/1 + x(1)2 / x(2)2

with the fractional discrete Laplacian as defined in [6].
Let 4 denote the 2r-periodic functions with absolutely convergent Fourier series

and let be the 2r-periodic functions with exponentially decaying Fourier coefficients.
COROLLARY 2.3. Under the assumptions of Theorem 2.1, if the functions are

bounded and I1 > O, j 1,..., r, then the functions

(2.9) Lj "= Z Cm*’Cmj, j 1,...,r,
m--j

with coejficient sequences from the functions Cmj(y) - cmj exp(-iy) E ,4 de-
fined by

Cm,i O, m 1,...,j- 1,

(2.10)
m j,..., r,

are bounded fundamental solutions to the CHIP determined by pl D Pr D and
the space S generated by 1,..., Cr. In other words, Lj is the unique bounded solution

from S of the problem

(pk(D)S) 5k,5, k--1,...,r.

If the functions ,j 1,..., r, are also compactly supported, then the functions Lj
have exponential decay.

Proof. Each system of equations

Cl,j ()

A()

C,()

for the unit vectors ej of Rr has a unique solution since the coefficient matrix is lower
triangular and the diagonal does not vanish on Rd. Then the form (2.10) for the solu-
tion is nothing more than the one obtained through forward substitution. Moreover,
Cmj .4, as follows from (2.10) and the fact that each entry of A() belongs to ,4,
and Wiener’s lemma (which implies that 1/j belongs to ,4). In addition, if the func-
tions Cj are compactly supported, then by a standard argument, Cm5 since each
entry in A() is a trigonometric polynomial, and 1/j is analytic in a neighborhood
of the torus Wd. It then follows that the functions Lj in (2.9) are well defined and
have the stated properties.

Therefore, we may define the cardinal Hermite interpolation operator by

(2.11)
j-1
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whenever the semidiscrete convolution is well defined. Obviously, we must have f
C(Rd), a maxuj, but we must also limit the growth of the sequences
depending on the decay of Lj.

Example: classical cardinal Hermite interpolation. In multivariate Hermite in-
terpolation we use a successive series of partial derivatives as our functionals. This
can be described using the notion of lower sets

(2.12) ACZd with#A=r,

where (by definition) A E A and # Zd with/z < ,k implies/z A; here < is the usual
partial ordering of vectors in ]Rd. With A A we associate the polynomial p(x) x
and with an abuse of terminology the linear functional

," f Df(O) :--
(1) (a) f(O, 0),
(I)

corresponding to p,(D) D’. Hence Hermite interpolation of total order a N0
is described by the triangular set {A E Z; I,kl _< a} while Hermite interpolation
of coordinate order a e Nod is described by the rectangular set ( e Z; _< a}.
Moreover, every lower set A is the union of finitely many rectangular sets.

For the lower set (2.12) let

with - the ordering according to increasing total degree and with the lexicographic
order when the degrees are equal (hence A1 0). (The reader may check that the
argument of Lemma 2.7 remains unchanged if the pure lexicographic order were chosen
here.) This orders the polynomials pj :-p in a way that is consistent with (i) and
(ii). Then q p and

(Tj(X) "= (e2riz- 1).
The smoothness requirements on the functions Cj are that E C(]Ra) with a

max{IAI; A e A} IArl. Let Cj := aj; the symbol matrix (1.3) has the entries

Ak,j() Z
oEZ

k,j- 1,...,r.

The simplest__ situation is to have a compactly supported function with nonva-
nishing symbol and to take all the Cj equal to . When is taken as a centered
box spline, then we can compare the present method to the approach taken in [14].
In [14], the functions Cj were the derivatives pj(D)M of a fixed box spline M, where
the box spline is required to have linear independent integer translates and a direc-

tion set with only even multiplicities (which implies that M does not vanish on ]Rd).
But even then the symbol matrix had singularities, and it took effort to show that
for the expected solution (essentially from Cramer’s Rule) the singularities cancelled
sufficiently to give bounded fundamental solutions in L2(d). As far as computing
the solutions from [14], one could use the fit to obtain the coefficients but care must
be taken because of the singularities (see the methods used in [8]). With the method
here, we may take any centered box spline for which cardinal interpolation is correct
regardless of multiplicities. Moreover, the box splines here only need smoothness a as
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opposed to at least 2a in [14]. The latter means that the complexity of computing the
trigonometric polynomials comprising the rational functions Cm,j is reduced, and since
these rational functions now have no singularities, the fit techniques easily generate
a sufficient number of coefficients to handle practical problems. The relevant facts
about box splines can be found in [2]. Here in Example 2.4 is a concrete bivariate
example.

Example 2.4. Consider first-order Hermite interpolation with the centered box
spline M,c C2,2,1 E (R2). Here the functionals are point evaluation and the two first-
order partial derivatives and the functions Cj are given by

(1 (X(1), X(2)) (X(1), X(2)) M2,1 (x(1), x(2)),

2(x(1), x(2)) e2rix(1) 1)(x(1), x(2)),

The nonzero entries of the symbol matrix are given by

A1,1((1), (2)) ((1), (2))

1
2-{14 h- 4cos(1) q- 4 cos (2) - 2 cos((1) -- (2))},A2,2((1), (2)) A3,3((1), (2)) 27ri((), (2)),

A2, ((), (2)) A3, ((2), (1))

i
(-3sin(1) + sin(2) sin(() + (2))}.

The nontrivial rational functions Cm5 are simply

-A3,1-A2,1 C3,1Cl,1 2riC2,2 2riC3,3 1/Ai,I C2,1 Ai,iA2,2’ Al,iA3,3
All the denominators are powers of the complex symbol

(z,w) (14+ 2(z + Z-1) -- 2(W-t-W-1) + ZW- z--lw--l)/24,
which vanishes when z -w p--.2789.., and vanishes nowhere in p < Izl, ]w[ <
lip with p the solution of p / lip x/(1 / v/). The latter provides information
on the decay of the coefficients for the Cmh; namely, ICm,j(a)] O((p+ e)ll) for any
e > 0 (cf. [2, Chap. hi).

Example: Hermite interpolation to powers of the Laplacian. The powers of the
d 2Laplacian, A -]m=l Din, give rise to the functionals

y j r,

and the corresponding polynomials

fn--1
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Clearly, the ordering of the polynomials is consistent with (i) and (ii). For a given
function E C2r-2(]Rd) we put

d

Cj aJ-l with a(x(1),... ,x(d)) Z 2(1 cos2rx(m)).
m=l

Note that a is the symbol of the discrete Laplacian (-V) (with step size 2r). Here
we have chosen to take qj pj and to replace (e2ix 1) by sin(rx). The following
lemma replaces Lemma 2.2 for this choice of P2, Cj (under suitable assumptions on
), and a"

LEMMA 2.5. With the above notation, we have for k,j 1,...,r,

in case k < j, and

(Ak-j)(c) 0 .for all c e Zd

(Ak-lCk)(O) Ck((O0, O 7]d.

with ck Ak-lak-l(o).
Proof. The proof follows the lines of Lemma 2.2 and will be omitted.
Remark. The constants ck e given by

=(82)-1 ( .a),
il=_

and in pticul

k-
in ce d 2.

Nmple 2.6. aking (, ) (,) M,,(, ), a eengered box spline in
(N) ogeher wigh he funcionals

we have (,) 2(Z cos 2, cos2)(,), and he nonero entries of the
symbol marN e

,1((1,() ((,()

{: q os(x) + co() + o(() + ())}/

A2,((), (2)) 16-2((1), (2))

A2,1((), (2)) -4 + 2(cos() + cos(2)).

The nontr:, 1 rational functions Cm,j are

1
and 62,1 -A2,1/(Al,lA2,2).C1, 16r262,2 AI,

Here the complex symbol (z,w) (6 + z + z- + w + w- + zw + z-lw-)/12
vanishes when z -w p .4354... and nowhere in p < [wl, [z[ < l/p, where
p + lip 1 + V. In particular, the decay rate of the coefficients in ;his example is
not as fast as in Example 2.4.
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3. Approximation orders from Hermite interpolants. In this section we
observe that Hermite type interpolation can be carried out using our scheme without
loss of approximation order over that obtained by cardinal interpolation from the
space generated by the function :

t-l :-- {(*! C[C: 7/d -- C}.

For this study we make the following assumptions:
(a) Pl 1, p2,..., pr are linearly independent;
(b) Cj aj, where E C,a maxl<j<r nj, has a nonvanishing symbol,

() 0 for all e Rd, and satisfies the Strang-Fix conditions of order s <

(0) 1, and Df(27r()= 0 for I/ 1

Under assumption (b) it is well known (see, e.g., [5] and [11) that for all sufficiently
smooth functions the cardinal interpolation operator for a compactly supported
function and the space 81 provide optimal approximation order: if

h f -- f(h.),

then for f C8 (]d) with support in the compact set

(3.1) Ill- hf[]o, O(hS).

We want a similar result for cardinal Hermite interpolation as discussed in 2, and
therefore we would like to admit noncompactly supported functions as well. In order
to ensure that the cardinal interpolation operator is well defined on polynomials of
sufficient order, it will be necessary to impose some decay as Ix --. oo;

(c) For the given t and s, there is an e, 0 < e < 1, and a constant (depending on, t and s) such that

ID(x)l _< const (1 + Ixl)-d-- for all IYl _< a, and x e Rd.

Functions of this type have recently played a role in approximation order questions
in [11] and [9], and in a certain sense, the result for cardinal interpolation is a special
case of the results. We shall make use of the results detailed there, together with
a generalization of Wiener’s lemma [10] to sketch a proof for cardinal interpolation.
The inequality in (c) implies that the symbol belongs to Fd+s+, where

Za c(c)exp(-ic. e ,A Ic(c)l O(Icl -t) }
By an extension of Wiener’s lemma [10], (l)lgl > 0 and g e Ft imply 1/g e F,
and since (2)gl,g2 Ft implies gl + g2,glg2 Ft, we have by Corollary 2.11 that
Cmj Fd+,+ when satisfies (c). It therefore follows that

(3.2) sup 1( c.,j)(x)l(1 + < oo for all 1 < m,j < r.

Consequently, * f *’ fl is a well defined map on IIs_l to itself, 1- * is

degree-reducing on H8-1, and there is a finitely supported sequence b for which the
map T: f -. ( .’ b) .’ f is the identity on H-I [9, 2].
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The convergence result for cardinal interpolation for functions satisfying (a),
(b), and (c) can now be proven, for example, by the argument of [1, Tam. 3] when
the mapping/ used there is replaced by the mapping T (see also, the arguments in
[11]).

Define the scaled cardinal Hermite interpolation operator 3"h by

(3.3) flh :’-- -l/hffh, h f --* (h.),

with ff as in (2.11). For the approximation properties of the cardinal Hermite inter-
polation operator, we have the following.

THEOREM 3.1. If Pl,... ,Pr and satisfy the assumptions (a), (b), and (c)
above, then for all f E W+S(])d with support in an arbitrary compact set , the
corresponding cardinal Hermite interpolation operator ffh satisfies

]If- hf[[, O(h).

Proof. Since satisfies (b), the fundamental functions Lj are uniquely defined
with coefficient sequences Cmj Jr. Now observe that each L also satisfies (c)
(cf. [11]). Under the assumptions interpolation is unique so that 7(f) f since
ql c q. In particular Tp p for all polynomials of degree s- 1 since p p,
p e H8-1 c ql, when satisfies the Strang-Fix conditions of order s (cf. [9]).
Therefore, for the operators

we have

(3.4)

Hence,

7 := g- , 7Z := J ,
Thp 0, p IIs-1.

and it is sufficient to show that

IIn fll , 
We first obtain a representation for 7f. From Corollary 2.3 we have

C1,1 1/AI,1 1/
and

L1 ,’ ECI,I -[- (m *! Cm,l.
m--2

But it is well known that L0 :- *’ c1,1 with this choice of coefficients is the funda-
mental solution for cardinal interpolation from ,1. Thus, from (2.11) and Corollary
2.3,

(pj(D)f)l

j=l

(pj(D)f)l.
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From this we obtain

cm,j (pj(D)f)
j--1

m:l

,,
cm,j (pj(D)f)l),

j=l rn=j

with the last equality obtained by the shift invariance of a.
Let g be sufficiently smooth and Pw be the Taylor polynomial of total degree s- 1

for g at w. Then the remainder formula

g(x) Po(x) (x w)" fo tS_lDg(x + t(w x))dt

yields the estimate

(3.6) IPj(D)(g P)(f)l < const max {l(f w)-’l} max IID/gl[o

for some constant depending only on pj.
The estimate on the approximation order can now be completed as follows. For

x E 12, we take g hf and w x/h and estimate

nf(x) ng(x/h) 7Z(g- Po)(x/h).

By (c), the fact that the coefficient sequences cm, belong to Fd+8+ and (3.6), we
have

I,’ ,s (p(D)(g P))l(x/h)l (x/h c)c,,(( )(pj(D)(g Po)) (f)

< const3 hs max IID/fllo.
Il<nj

The estimate now follows from the representation (3.5). rl

Example 3.2. As a last example we note that our results seem new even in the
univariate setting. To illustrate this, we interpolate the function values and those of
the second derivative for the function

F(x) { 0

-(x2 9)a(e-’3(x+l"2)(x-l"6) 2e-’l(x-’5))/300 if -3_<x_<3,

otherwise,

using 1 , the centered cubic cardinal B-spline, and 2 (exp(27ri.)-1)2. These
two functions are plotted in Fig. 1. In this case the matrix A() takes the form



974 K. JETTER, S. D. RIEMENSCHNEIDER, AND Z. SHEN

-$ -2 1 0 -$ -2 1 0

Fxc;. l(a). 1 and for the cubic spline. The function F with its cardinal interpolant (h 1).

v
.0.01:5

FIG. l(b). The fundamental functions L1 and L2 for interpolation of F and F.

Consequently,

r

A(f)
(2 +cos(f))/3

[ -2 + 2 cos( ) 2(27ri)2(2 + cos())/3

3 9(cos()- 1) 3
Cx, ()

2 + cos()’ C2,x () 47r2(2 + cos())2, C2,2 87r2(2 + cos())"

The fundamental functions are also shown in Fig. 1. Finally, the error in approx-
imating F on [-3.5, 3.5] as estimated on a step size .01 using h 1, .5, .25, .125,
respectively, rounded in 6 places is

[0.470411 0.053301 0.003088 0.000185],

which already illustrates O(h) convergence. Only the cardinal interpolant is shown in
Fig. 1, the scale not permitting the other approximations to be distinguished from the
curve. (Only the real parts are shown in the figure, the imaginary parts are neglected
although they are included in calculation of the error.)
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CHARACTERIZATIONS OF ORTHOGONAL POLYNOMIALS
SATISFYING DIFFERENTIAL EQUATIONS*
K. H. KWONt, L. L. LITTLEJOHN$ AND B. H. YOOt

Abstract. In 1938, H. L. Krall found a necessary and sufficient condition for an orthogonal
polynomial set {Pn(x)) to satisfy a linear differential equation of the form

N

()() ().
i----0

Here the authors give a new simple proof of Krall’s theorem as well as some other characterizations
of such orthogonal polynomial sets based on the symmetrizability of the differential operator. In
particular it is shown that such orthogonal polynomial sets are characterized by a certain Sobolev-
type orthogonality, which generalizes Hahn’s charaterization of classical orthogonal polynomials.

Key words, orthogonal polynomials, differential equations, Sobolev-type orthogonality

AMS subject classification. 33C45

1. Introduction. Let us consider a linear differential equation of order N >_ 1
of the form

N

(i.I) (x)y()(x) Ay(x),
i=0

where i(x), i 0,... ,N, axe real-valued smooth functions on the real line with
g.N(X) 0 and A is a real parameter, and ask this question: When does the differential
equation (1.1) have an orthogonal polynomial set as solutions?

It is easy to see that if the differential equation (1.1) has polynomial solutions
Pn(x) of degree n for n 0, 1,..., N, then it must be of the form

(1.2)
N N

=0 =0

where j axe real constants and the eigenvalue paxameter is given by

(1.3) )n 00 -}- 11n --"""-- NNn(n 1)-.. (n N + 1).

In 1929, Bochner [2] (see also Krall and Frink [15]) proved that there axe essentially
(that is, up to a lineax change of variable) only four distinct orthogonal polynomial
sets satisfying the differential equation (1.2) for N 2. They are now called the
classical orthogonal polynomials of Jacobi, Laguerre, Hermite, and Bessel. He also
implicitly imposed the problem of classifying all orthogonal polynomials satisfying the
differential equation (1.2) for N > 2.

The classifying problem itself is not resolved yet in general except for N 2
(due to Bochner [2]) and for N 4 (due to grall [13]). However, Krall [12] found
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a remarkable theorem (cf. Theorem 2.1) characterizing all differential equations of
the form (1.2) which have an orthogonal polynomial set as solutions. Its proof in [12]
is based on the notion of a dual equation to the differential equation (1.2), which is
developed by Sheffer [25]. Later a second, simpler proof using the generating functions
of orthogonal polynomials was found by Krall and Sheffer [16].

In this paper, we present a third proof of Krall’s theorem as well as some other
equivalent characterizations. The advantage that this third proof has over the other
two proofs lies in its simplicity. Furthermore, this new proof makes use of the sym-
metry equations associated with the differential expression LN[.] defined in (1.2); see
Remark 1 following Lemma 2.2 below as well as the discussion in 4. These sym-
metry equations and their importance to differential equations and to the theory of
orthogonal polynomials was first observed by Littlejohn in [21] and [22]. Indeed, if
these equations have a simultaneous nontrivial distributional solution, it is an orthog-
onalizing weight functional for the corresponding sequence of polynomial solutions to
(1.2). This constructive technique was recently successfully used [17] to produce the
first known example of an orthogonalizing signed measure of bounded variation for
the Bessel polynomials.

This new proof is based on the fact that if the differential equation (1.2) has
orthogonal polynomial solutions, then it must be symmetrizable on polynomials; see

2 for further details.
As a consequence of this new proof, we shall show that an orthogonal polynomial

set satisfies the differential equation (1.2) if and only if it has a certain Sobolev-type
orthogonality (see Theorem 3.2 below). Much work is currently being done on the
general theoretic properties of polynomials that are orthogonal with respect to some
Sobolev inner product. Our Theorem 3.2 generalizes the well-known Sonine-Hahn
characterization (see [6] and [26]) of classical orthogonal polynomials which can be
restated as follows.

THEOREM 1.1. Suppose Cn(x) is a real polynomial of degree n (n O, 1,...) and
{n(x)}=0 are simultaneously orthogonal with respect to the two bilinear quadratic
forms defined by: (i) (p, q)o "= fR p(x)q(x)d#o(x),

(ii) (p, q)l := (P, q)o / fR p’(x)q’(x)d#l (x),
where #o and #1 are (signed) measures on the Borel sets o] the real line R, each having
finite moments of all orders. Then, up to a linear change of variable, (n(x)}=0 is
one of the following systems:

(a) Jacobi polynomials,
(b) Laguerre polynomials,
(c) Hermite polynomials,
(d) Bessel polynomials.
We believe that our proof sheds new light on the important problem of identifying

orthogonal polynomial solutions of the equation (1.2) as eigenfunctions of an operator
which is self-adjoint in some Hilbert (when the symmetry equations produce a positive-
definite weight functional) or Krein space (when the symmetry equations produce a
quasi-definite weight functional, as in the case of the Bessel polynomials). The reader
is referred to the contributions [5],[8],[9],[11], and [18].

This work continues the contribution [19] in which the case N 4 is discussed.

2. New proof of Kralls theorem. All polynomials in the following are as-
sumed to be real polynomials in one variable and we let P denote the space of all real
polynomials. We call any linear functional a on :P a moment functional and

(2.1) an :-- (a, xn), n O, 1,...
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the moments of a. We denote the degree of a polynomial (x) by deg with the
convention deg 0 -1. By a polynomial set, we mean a sequence of polynomials
{n(x)} with degCn n, n 0, 1,.... Any polynomial set (n(x)}’ determines
a moment functional a, called a canonical moment functional of {n(x)}, by the
conditions

(2.2) (a, 0> 0 and (a, Cn) 0, n 1, 2,

Note that a canonical moment functional of a polynomial set {n(x)) is uniquely
determined by {n(x)} up to a nonzero constant multiple.

DEFINITION 2.1. A polynomial set {Pn(x)} is called an orthogonal polynomial
set (OPS in short) if there is a moment functional a such that

(2.3) (a, Pm(x)Pn(x)) Knhmn, m and n O, 1,...,

where Kn are nonzero real constants. In this case, we call (Pn(x)} an OPS relative
to a.

Note that if (Pn(x)} is an OPS relative to a, then a must be a canonical moment
functional of

The main goal of this section is to provide a new, simple, and illuminating proof of
the following theorem due to Krall [12] as well as some other equivalent formulations.

THEOREM 2.1. Let {Pn(x)} be a polynomial set and {an} the moments of any
canonical moment functional a of {Pn(x)}. Then {Pn(x)}’ is an OPS satisfying
the differential equation (1.2) for each n O, 1,... if and only if {o’n} satisfy

(i) An := det[a,+j]ni,j=0 0, n 0, 1,...,

(ii) Sk(m) "= -/N=2k+l =0 (’-k-1)P(m 2k 1, i 2k 1)i,i-jam-j 0

for k 0, 1,..., [N___A] and m 2k + 1, 2k + 2,..., where [x] is the integer part of a
real number x and

P(n,k)={ 0, n=0

n(n-1)...(n- k / l), n= l, 2,

Furthermore, N must be even, say, N 2r for some r E {1,2,...}.
We begin by recalling a few well-known facts on the symmetrizability of linear

differential operators of the form

N

(2.4) L := L(x,D) a(x)D,
0

where D d/dx, hi(X) are real-valued functions in el(I), aN(x) O, and I is an
open interval on the real line. The formal adjoint of L is a differential operator L*
defined by

N

(2.5) L*(y) -(-1)i(aiy)(), y(x) in cN(I).
0

The operator L is called symmetric if L L*. It is called symmetrizable if there is a
real-valued function s(x) 0 in CN(I) such that sn is symmetric. Then we call s(x)
a symmetry factor of L.
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It follows easily from the above definition that (i) any symmetric differential
operator must be of even order.

(ii) The sum of any two symmetric differential operators is also symmetric.
With these two elementary facts (see [4] and [14]) we have that the most general

symmetric differential operator of order N 2r must be of the form

L(y) (-1)’(fy())(’)

o

or

L(y) ,y(2)
2j + 1 -3=0 =

e(2i--2j--B2i-2jji 1)y(2j+l)

where B2 are the Bernoulli numbers defined by

x x i B2 x2=1--:+
Now a symmetry factor of the differential operator L in (2.4) can be characterized

as in the next lemma.
LEMMA 2.2 [21],[23]. Let the Nth-order differential expression L[.] be as de-

fined in (2.4) with the previously mentioned conditions on the coecients ai (x) (i
O, 1,..., N; x E I). For any real-valued function s(x) 0 in Cr(I), the following are
equivalent.

(i) s(x) is a symmetry factor for L[-] on I; that is, sL (sL)*.
(ii) s(x), x I, satisfies the N + 1 equations

N

i--k

(iii) S(X) satisfies the r := [-] equations

r 2--2k-I-1

/
=k j=O

) (2t- 2k + I) 22-2k+2
1 j -k+l

1

B a(2-2k+l-j)(j)2-2k+2 2 a2k-18 O k 1,2,...,r.

(iv) s(x) satisfies the r := [-NI equations

N

(2.8) Jk(S)’= (--1)’(i-k-l)k (ais) (i-2k-1) O,
i=2k4-1

k---O, 1,...,r- 1.

(v) There are r + 1 real-valued functions fi(x) in C2’(I), i= O, 1,..., r [-1,
with fr (x) 0, and

(2.9) (sLy)(x) (-1)’[fi(x)y(’)(x)] (’), y e cN(I).
i=0
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Furthermore, if any of the above equivalent conditions holds, then N 2r must be

Remark 1. The equations R(s) 0 (k 0, 1,..., r- 1), given in (2.8), are called
the symmetry equations associated with the expression L[-].

Remark 2. We may add another equivalent condition to those listed in Lemma
2.2. Indeed, this condition is as follows.

(vi) For any two real-valued functions y(x) and z(x) in CN(I), one of which has
compact support in I, it is the case that

(2.10) (sL[y], z) :--- I z(x)(sLy)(x) dx I y(x)(sLz)(x) dx :- (y, sL[z]).

Indeed, this is quite often the standard definition of a formally symmetric differential
expression.

We point out here that (., .) is, in general, only a bilinear quadratic form and
not always a positive-definite inner product. We shall continue to use this notation
throughout this paper.

In order to adapt Lemma 2.2 to our situation we need the following simple formal
calculus on moment functionals.

For any moment functional a and any polynomial (x), we define two new moment
functionals a, the derivative of a, and Ca, multiplication of a by a polynomial (x),
by

(2.11) (a’, (x)) -(a, ’(x)),

(2.12)

for in P. Then we have the Leibnitz rule:

(2.13) (Ca)’ ’a + Ca’.
Finally, we need the following simple fact.
LEMMA 2.3. Let (Pn(x)} be an OPS relative to a moment functional a. Then

we have that follows: (i) For any polynomial (x), Ca =_ 0 i] and only if (x) _-- 0.
(ii) For any other moment functional T, (T, Pn> O, n >_ k + 1 for some integer

k >_ 0 if and only if T Ca for some polynomial (x) of degree <_ k.
Proof. (i) Assume that Ca 0 but (x) 0. Write (x) as

n

0

where n deg (>_ 0) and cj are constants with cn O. Then by the orthogonality
of (Pn(x)} relative to a, we have

0 p=) Cp=)

and so ca 0, which is a contradiction. The converse is trivial.
(ii) Consider a moment functional given by
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where cj are real constants to be determined. Then we have

(2.14) (o O n>k.

Assume (T, Pn) 0 for n > k. Then the equation (2.14) shows that if we take

cj (7", Pj (ff P. -1 j O, 1, k,

then (T, Pn) (, Pn) for all n _> 0 so that T since {Pn(x)} is a polynomial
set. Conversely, if T Ca for some polynomial (x) of degree _< k, then (T, Pn)
(a, CPn) 0 for n > k.

Now we are ready to give a new proof of Theorem 2.1. In fact, we shall prove the
following which is equivalent to Theorem 2.1 and is of interest in itself.

THEOREM 2.4. Let {Pn(x)}’ be an OPS, a a canonical moment functional
of {Pn(x)}’, and {an} the moments o] a. Then the .following statements are all
equivalent.

(i) For each n O, 1,..., P,(x) satisfies the differential equation (1.2).
(ii) aLN is symmetric on polynomials in the sense that

(2.15) <LN()a,> <LN()a, >
for all polynomials (x) and (x).

(iii) a satisfies the r :- [-] equations (with Rk as in (2.7))

(2.16) Rka 0, k 1, 2,..., r.

(iv) a satisfies the r :-[-] equations (with k as in (2.8))

(2.17) Rka O, k O, 1,..., r 1.

(v) {an} satisfies the r :-- [_A] recurrence relations (with Sk(m) as in
Theorem 2.1)

Sk(m) O, k O, 1, r -1 and m 2k +1, 2k + 2,

(vi) (an} satisfies the r :-[-] recurrence relations

r 2i

( 2i )P(m-2k/l 2i--2k+l)22i-2k+2--1:=
i

i=kj=0
2k-1

(2.18)
2k-1

S2i-2k+22i’j(Tm-2i+j -- Z 2k-l’j(Tm-2k+l+J O,
j=O

k 1,2,...,r and m-- 2k- 1,2k,
Furthermore, if any of the above equivalent conditions holds, then N 2r must

be even.

Proof. For all polynomials (x) and (x), we have from the Leibnitz rule (2.13)
that
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Hence, the condition (2.15) is equivalent to

N

k--0,1,...,N.

Therefore, the equivalences of the conditions (ii), (iii), and (iv) follow immediately
from Lemma 2.2. Now, assume that the condition (ii) holds. Equivalently, it means

that a satisfies the N 4- 1 equations in (2.19). Since LN(Pn) ’]o ’iP(i) is a poly-
nomial of degree < n, we may write it as

o o

where cj are constants depending on n. Then for k -0, 1,..., n, we have by (2.19)

N N

i--0 i--0

N N N

)-(-1)’ (;)(Pk(j) (,a)(’-) Pn) Z (0(P:
j=o i= .=o
N { 0_ ifk<n,ifk

Hence, we have ck 0, k < n and cn An so that LN(Pn) )tnPn.
Conversely, assume that the condition (i) holds. Multiplying LNPn )tnPn by

Pk and applying a we obtain

N N

(a,PiP(ni))--((-1)i(Pkia)(i),Pn)
o o

{oA. (a. PkPn)
A, (a.

if k #n,

if k-n.

If we set

N

vk := -’( 1)i(Pk )(i)iO"
0
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then the equation (2.20) implies (vk, Phi 0 for k > n so that by Lemma 2.3 we have

k

(2.21) vk Z(vk, Pj)(a, P])-Pj(x)a AkPk(x)a, k O, 1,
j=o

On the other hand, we have

N N N N

(2.22) Vk--Z(--1)i(Pkgia)(O--
i=o j=o i=j j=0

where
N

i--j

Hence, we have from (2.21) and (2.22) that

N k

(2.23) Vk AkPk(xla ’(J)u Z ’(J)u, k O, 1,..., N.
j=0 j=0

Now we claim that uj j(x)a, j 0,1,...,N so that the condition (2.19), i.e.,
(2.15) holds. For j 0, vo AoPo(x)a Pouo and so uo oa oa. Assume that
uj g..i(x)a, j O, 1,..., k for some k _< N- 1. Then from (2.23) we have

k

Vk+l k+lPk+la Z P:(j)
k+lUj -+- Pk(_+ll)Uk+l

j=O

and so

k

kTlaj

k

N k

j=0

Hence, uk+ ek+ (x)a.
Finally, the condition (v) (respectively, (vi)) is just a restatement of the condition

(iv) (respectively, (iii)) in terms of the moments {a,} of a (of. [22]).
Remark. The equivalence of two moment relations Sk(m) 0 in (v) and Tk(m)

0 in (vi) w first observed by Littlejohn [22] in which he gave the precise connection
between them (see equation (5.5)in [22]).

Now Theorem 2.1 follows directly from Theorem 2.4, since a polynomial set
{P(x)} is an OPS if and only if the moments {a,} of {P(x)} satis the
condition (i) in Theorem 2.1.

The rising interest in OPSs satising differential equations of the form (1.2) lies
partly in the fact that they provide good examples of realizing the general Weyl-
Titchmsh theory of higher order differential equations (see [5],[8],[9] and [11]). In
this sense, the equivalence of conditions (i) and (ii) in Theorem 2.4 is quite interesting.
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3. Sobolev-type orthogonality. The condition (v) for the symmetry factor
s(x) in Lemma 2.2 has an analogue for any canonical moment functional a of an OPS
satisfying the differential equation (1.2). To be precise we have the following.

THEOREM 3.1. Let (Pn(x)}, a, and r be the same as in Theorem 2.4. Then any
of the equivalent conditions (i)-(vi) in Theorem 2.4 is also equivalent to the following:

(vii) There are r -t- 1 moment functionals (Ti} such that Tr 0 and

(3.1) L2r()a- E(--1)i[(i)Ti] (i)

0

for every polynomial (x).
Moreover, the moment functionals a and (Ti) are related by the equations

min(r,k)

(3.2) gk(x)a= E (--1)( i ) k----O,l..., ,2r.

Proof. The proof of the equivalence of the condition (ii) in Theorem 2.4 and (vii)
in Theorem 3.1 is essentially the same as the proof of the equivalence of the conditions
(v) and (vi) in Lemma 2.2 except for the test functions used (functions in C2r (I) for
Lemma 2.2 and polynomials for Theorem 3.1) and the interpretation of the bilinear
quadratic form ).

To prove (3.2), let us expand the right-hand side of (3.1). Then we have

o(-1)i (k i_ i)(k)T( 2i-k)

k--i
2?/"

()a(),
k--0

where

min(r,k)

(i)T(i2i_k) k=0,1, ,2r.(3.3) a(k) E (--1)
k-i

Since (3.1) holds for every polynomial (x), we have (3.2) by comparing the coefficients
of (k) from both sides of (3.1). In particular, we have T (--1)g2(x)a, so that
Tr =-- 0 if and only if 2r(x) ------ 0 (cf. Lemma 2.3 (i)). This completes the proof of
Theorem 3.1. D

Now we are ready to give the main result of this section, that is, the Sobolev-type
orthogonality of OPSs satisfying the differential equation (1.2).

THEOREM 3.2. Let {Pn(x)}, a, and r be the same as in Theorem 2.4. Then
each of the equivalent conditions (i)-(vi) in Theorem 2.4 and (vii) in Theorem 3.1 is
also equivalent to the following.

(viii) There are r + 1 moment functionals (Ti} such that Tr 0 and

p.(i)p.(i)) MnSmn, m and n 0, 1,...(3.4) <Ti, , n
i-0
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where Mn are constants. Moreover we may require Mn 0, n 0, 1,..., if necessary.
Proof. Let {Pn(x)} be an OPS relative to a with (a, PmPn) Kn6mn. We first

assume that each Pn(x) satisfies the differential equation (1.2) with N 2r and let
{Ti} be the moment functionals in Theorem 3.1. Then (3.1) gives

AnKn6mn <a, PmL2r(Pn)> <L2r(Pn)a, Pro>

E(--1)’[Pn(i)Ti] (i), Pm E(Ti, P()P(ni)).
o o

Hence we have (3.4) with Mn nKn.
Conversely we assume that there are r + 1 moment functionals {T}, r 0 for

which we have (3.4). Then we may rewrite (3.4) with r(k in (3.3) as

2r

(3.5) E(a(), P)P,) O, m # n
0

for m and n 0, 1,..., since

E(,i, P2)Pn()) E(P()7"i,P(n))
0 0

We now claim that

r 2r

E(-1)([P()Ti](),Pn)= E(P)a(k),Pn).
0 0

(3.6) (a(k), Pn) 0

for n > k, k 0, 1,..., 2r so that by Lemma 2.3 (ii)

for some polynomial k(x) of degree _< k. For simplicity, let us assume that all Pn(x)
are monic. For k 0, we have a(0) ’0 from (3.3) and so from (3.4)

<a(o), Pn> <To, Pn> E<T,, (’)P.(i))-on 0
0

for n > 0. Hence (3.6) holds for k- 0.
Assume that (3.6) holds for k 0, 1,..., m- 1 (1 _< m < 2r). Then we have for

n > m from (3.5)
2r m

R(k)R >= E(a(k) P(mk)P,)0
0 0

m-1

E <a(k), P2)P,} + (a(m), P)P,}
0

m-1

0



986 K.H. KWON, L. L. LITTLEJOHN, AND B. H. YOO

by the induction hypothesis and the fact that deg ,(k)
-m <_ m < n. Hence (3.6)

also holds for k m and our claim is proved inductively. Moreover 2r(x) 0 since
Tr (--l)ri2r(X)a O.

Now consider L2r(Pn) rgipi) with t,(x) in (3.7). Since L2r(Pn) is a poly-
nomial of degree n, we may write it

0

where {cj} are constants depending on n. om (3.5), (3.7), d the orthogonality
of {P(x)} relative to a we have

Cm <a, P> a, Pm cjPj <a, PmL2r(Pn)>
0

2r

0

2r

0

for m 0, 1,..., n- 1. Hence c 0 for m 0,1,..., n- 1 and so L2r(Pn) c,P,
AnPn by comping the coefficients of xn on both sides.

Finally since the term o(x)y 00Y A0y is always common in both sides of the
differential equation (1.2) we may te 0(x) bitrily so that we may have An 0
d so Mn =AnK, # 0, n 0, 1,... by ting 00 suitably.

By ting 0(x) 0, we may have T0 0 in Theorem 3.2. In particular for r 1,
Theorem 3.2 with T0 0 reduces to the next corollary.

COROLLARY 3.3. An OPS {Pn(x)} is classical, that is, it satisfies the diffen-
tial equation (1.2) with N 2 if and only if {P(x)} is a weak ohogonal polynomial
set in the sense that there is a nontvial moment nctional T with

(3.S) <, P%Pt> O, #

for m and n 1, 2,
Remark. We refer the reader to 4 where a discussion is made of the representation

of the moment functionals a and {} of Theorem 3.2 in terms of Stieltjes (signed)
meures. The reader can then see that Theorem 3.2 is a generalization of Theorem
1.1. rthermore, notice that Corollary 3.3 gives an improvement over the Sonin
Hahn clsification (Theorem 1.1) in the sense that we may sume that {P(x)} is
a weak orthogonal polynomial sequence and not necessarily an OPS.

DEFINITION 3.1 (Chihara [3]). A moment functional a is called symmetc g

0,. 0,1,

An OPS {Pn(x)} relative to a is called symmetric g a is symmetc.
By definition, it is ey to see that (i) the sum of any two symmetric moment

functionals is also symmetric.
(iN) An even order derivative of a symmetric moment functional is also symmetric.
LEMMA 3.4 (Srall and Littlejohn [10]). If a symmetric OPS {Pn(x)} satisfies

the dierential equation (1.2), then 0 when + j is odd.
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Now we have the following characterization theorem of symmetric OPSs.
THEOREM 3.5. An OPS (Pn(x)} is symmetric and satisfies the dierential

equation (1.2) of order N 2r if and only if there are r + 1 symmetric moment
functionals {Ti} such that Tr 0 and (3.4) o o.

p ooI. 0, (3.4) becomes (TO, Po2) M0 0 so that a(o) TO o0a
for some constant 0o - 0 (cf. (3.7)). Hence a is symmetric if ’o is symmetric and
the sufficiency follows from Theorem 3.2. Conversely, assume that (Pn(x)} is a
symmetric OPS satisfying the differential equation (1.2) of order N 2r. Then we
have (3.4) with the moment functionals (Ti} defined by (3.2). We shall show that all
Ti are symmetric by induction on i r, r- 1,..., 0. First for i r, Tr (--1)rg2(X)a
is symmetric since a is symmetric and g2r (x) has only even powers of x by Lemma 3.4.
Next assume that (Ti}+ are symmetric for some integer k with 0 _< k _< r- 1. Then
we have from (a.2)

min(r,2k)

g2k(x)a-- Z (--1)i( i ) T(2i-2k)
k

2k -i

min(r,2k)

--(--1)kTk+ Z (--1)( i ) T(2i-2k)
k+

2k i

so that

(3.10) T (--1)k2a-

Hence Tk is also symmetric since g2a is symmetric by Lemma 3.4 and all T(2i-2k), i >_
k-t- 1, are symmetric as even order derivatives of symmetric moment functionals.
Therefore by induction all T, i 0, 1,..., r, are symmetric. Finally we may choose
M0 0 (cf. Theorem 3.2) so that TO 0. El

4. Integral representation of Sobolev-type orthogonality. By a classical
theorem of Boas [1] on the Stieltjes moment problem, any moment functional can
be represented as a Riemann-Stieltjes integral with respect to some signed Stieltjes
measure.

In this respect, it is natural to find integral representations of the moment func-
tionals a and (Ti} in Theorem 3.2.

As briefly discussed in 1, for any OPS (Pn(x)} relative to a satisfying the
differential equation (1.2) of order N 2r, an orthogonalizing weight functional w(x)
can be constructed by solving a certain overdetermined system of r nonhomogeneous
linear differential equations in the space 7)’ of distributions (see [7],[10],[17] and [22]).
More precisely, these r differential expressions are the symmetry expressions Rk(8)
defined in (2.8). However, instead of studying the general distributional solution to
Rk(s) 0 (k O, 1,..., r- 1), we solve Rk(s)(x) gk(x) (k O, 1,..., r- 1) where
g are suitable ghost functions; that is, they have zero moments:

xngk(x)dx O, n 0,1,

Once w(x) representing a is found, representations of the moment functionals
T r{ i}0 in Theorem 3.2 come directly from the equation (3.10) in which a is replaced
by w(x).
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The case of classical-type orthogonal polynomials (i.e., N 4) was handled in
[19] and we now illustrate it by an OPS satisfying the sixth-order differential equation.

The Krall polynomials [20] are polynomial solutions of the sixth-order differential
equation:
(4.1)
(x3 1)3y(6) + 18x(x2 1)2y(5) + [(3AC + 3BC + 96)x4 (6AC + 6BC + 132)x2

+(3AC + 3BC + 36)]y(a)

+[(24AC + 24BC + 168)x3 (24AC + 24BC + 168)xly(3)

+[(12ABC2 + 42AC + 42BC + 72)x2 + (12BC 12AC)x

-(12ABC2 + 30AC + 30BC + 72)]y"

+[(24ABC2 + 12AC + 12BC)x + (12BC- 12AC)]y’ A,y.

They are orthogonal with respect to the distribution

w(x) (1/A)5(x + 1) + (1/B)5(x 1) + CH(1 x2);
this is the classical Legendre weight function on (-1, 1) together with two mass points
at x 4-1. If we let wi(x) be the representations of moment functionals Ti, i 1, 2, 3,
then we have from the equation (3.10)"

(4.3)

(4.4) +

+
By substituting (4.2) into (4.3), (4.4), and (4.5), we can obtain the representations of
T3, T2, and T1. For example, we have

w2(x)--C[4(x)- 18(x2- 1)(5x2- 1)Ill(1- x)
so that

<T2, ((X)> C [4(X)- 18(X2 1)(5X2 1)I(x)dx

for every polynomial (x).
5. Remark. Let {Pn(x)} be an OPS relative to a satisfying the differential

equation (1.2) of order N 2r. Then by Theorem 2.4 (iii) for k r, a must satisfy

(5.1) r(2ra)’ -/2r-la 0.

On the other hand, since f2r(x)Pn+(x) is a polynomial of degree G n + 2r, we may
write it as

nq-2r

0
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for some constants {cj )-}-2r. Then we have from (5.1)
n+2r

o

-((Pk2rq)" Pn+l> IP2rr -b
l
Pk2r-lr’ Pn+l

for k 0, 1,..., n + 2r. Since deg (P2r + 7 r-1) _< 2r + k 1, the lasg germ and
so e is equal go 0 if k < n- (2r- 2). Hence we have

n+2r

(5.2) f2r(x)Pn+(x)- E cjP(x)
n--(2r--2)

which is the differential-difference relation characterizing the semiclassical orhogonal
polynomials introduced by Maroni [241. Therefore, {Pn(x)} is semiclassical and
{P+(x)}0 is quasi-orthogonal (see Theorem 3.1 in [24]).
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I. Introduction. Let w be a nonnegative weight function on ]R with infinite
support. Let {pn(w)}n__0 be a sequence of orthogonal polynomials with respect to
the weight function w. For p E R, quasi-orthogonal polynomial of degree n, qn(w), is
defined by

(i.i) qn(w) pn(w) + PPn-I(W).

The polynomial qn(w) is orthogonal to polynomials of degree n-2 or less with respect
to w. Quasi-orthogonal polynomials play an important role in the study of quadrature
formulae. It is well known that the zeros of nth quasi-orthogonal polynomials are the
nodes of a quadrature formula of degree 2n- 2. The case p 0 leads to a Gaussian
quadrature, which is of degree 2n- 1.

Let Hdn be the set of polynomials of total degree n in d variables, and IId be the
set of all polynomials in d variables. For a nonnegative function W on Rd, a minimal
cubature formula of degree m is a linear functional

N

(1.2) IN(f)-" Akf(xk), Ak > O, X,k ]d
k--1

where N, the number of the involved nodes xk, is minimal, such that f fW IN(f)
whenever f e Hd. It is known [17] that g > dimHd in general. Formulae that

L_m/z]
attain this lower bound are of the highest precision and are termed Gaussian cubature
formulae of degree m 2n- 1, or m 2n- 2.

These cubature formulae have been studied by several authors; we refer to
[17], [21]-[23] and their references. The multivariate orthogonal polynomials play
an essential role in the study of these cubatures. Let N0 be the set of nonnegative
integers, c, Nod and ]] (1 +... + od. We denote by {]}lol--nn_o, where

P Hdn, the orthonormal polynomials with respect to W, i.e.,

For convenience, we assume f W(x)dx 1 from now on. Mysovskikh [lll charac-
terized the Gaussian cubature of degree 2n- 1" in order such a formula to exist, it
is necessary and sufficient that nth degree orthogonal polynomials (]F}lal=n have

Received by the editors September 14, 1992; accepted for publication (in revised form) April 1,
1993.

Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222.

991



992 YUAN XU

dim IIn-1 common zeros. However, unlike the case of quadrature formula, Gaussian
cubature of degree 2n- 1 does not always exist. Mhller [8] found an improved lower
bound for the minimal number of nodes for the centrally symmetric weight functions.
Mysovskikh [11] showed that the minimal number of nodes depends on special prop-
erties of the weight function W and its support set, and obtained improved lower
bounds for the weight function W that satisfies W(x) W(-x). From their work it
follows that there exist no cubature formulae of degree 2n- 1 for most of the classical
weight functions (see [1], [2], [8], [10], [11], and [22]). The only weight functions that
are known to admit the Gaussian cubature formula of odd degree for all n are those
found very recently in [16]. On the other hand, Schmid [12], [13], Morrow and Pat-
terson [9] studied the cubature formulae of degree 2n- 2, and one surprising result is
that for W(x, y) (1 x2)1/2(1 y2)1/2 on [-1, 1]2 the Gaussian cubature of degree
2n- 2 exists, while the cubature of degree 2n- 1 does not. In general, they showed
that a Gaussian cubature of degree 2n- 2 exists if and only if the quasi-orthogonal
polynomials {Qna}ll=n, where

(1.3) Q Pan -t- Z ")’a,fP;-1

have dim II_1 distinct real common zeros. The even degree Gaussian cubature
formulae are also discussed in [11].

The purpose of this paper is to investigate the zeros of multivariate quasi-orthogon-
al polynomials, and use the knowledge gained to study the Gaussian cubature for-
mulae. Our main result in 3 characterizes the common zeros of quasi-orthogonal
polynomials as common eigenvalues of a family of block Jacobi matrices. For d _> 2,
the existence of maximal number of common zeros of {Q}lal=n is equivalent to that
{’a,f} satisfy certain nonlinear equations involving the coefficients of three-term re-
lations satisfied by the orthogonal polynomials. In 4, we derive these equations for
all d _> 2 and study their structures. Finally, in 5, we apply the results in earlier
sections to Gaussian cubature formulae, and to interpolation based on the common
zeros of quasi-orthogonal polynomials. Our approach is based on our recent study of
multivariate orthogonal polynomials [19]-[23], the notation and the preliminaries are
given in the next section.

2. Preliminaries. Our treatment of multivariate orthogonal polynomials is
based on a three-term relation in vector-matrix form. Let rn rdn dimHd,-
dim Hdn_l Let (P }lal=ng (Pat }j=l be a sequence of orthonormal polynomials
with respect to weight function W, where the elements are rearranged according to
the lexicographical order. Introducing vector notation

(2.1) n(x) [Pan (x), pn (x),..., p,an. (x)] T

we can express the orthonormal property of {P} by fnI?Tw 5,,nI, where I is
the identity matrix of size rn x rn. For our convenience, we call {I?n}n=0 sequence of
orthonormal polynomials. Throughout this paper, the notation A" i x j means that
A is a matrix of size i x j. For x E ][d we write x (Xl,... ,Xd). From the vector
notation it follows that {ln} satisfies the following.

Three-term relation. Or k >_ O, 1 <_ i <_ d, there exist matrices An,i rn x rn+l
and Bn,i r x rn, such that

T(2.2) xi]P An,in+l + Bn,in + An_I,i,-I 1 <_ i <_ d,



ZEROS OF MULTIVARIATE QUASI-ORTHOGONAL POLYNOMIALS 993

where ]P-1 O, o 1, and A-l,i is taken to be zero.
Rank conditions. For n > O, rank An,i rn .for 1 < i < d, and

(2.3) rank An ...AT T

Actually, if {]P,}n__0 is a sequence of polynomial vectors that satisfies three-term
relation (2.2) and equation (2.3), then {IPn}=0 is orthonormal with respect to a
square-positive, linear functional Favard theorem [6], [19], [20]. The equation (2.3)
also implies that there exist matrices Dk,i rk+l rk such that

d

(2.4) D,iAk, I.
i=l

We can take D= (DT,x] T TIOn,d) as the generalized inverse of An. The orthog-
onality of {lPn} also implies that the coefficient matrices in the three-term relation
satisfy the following conditions.

Commuting conditions. For n > O, 1 < i, j < d,

(2.5) An,iAn+l,j An,jAn+l,i
(2.6) An,iBn+l,j + Bn,iAn,j Bn,An,i + An,jBn+l,i
(2.7) AT T T

n-1,iAn-1, + Bn,Bn, + An,An, An_1,An-1, + Bn,Bn, + An,jAT,

These are the conditions that make the linear operators associated with
formally commuting. The spectral theorem for commuting family of selfadjoint oper-
ators have been used to study the integral representation of the linear functional in
the Favard theorem [20]. From the three-term relation (2.2) we also have [19] and the
next formula.

Christoffel-Darboux .formula. For n > 1, 1 < i <_ d,

n--1

gn(x,y) "= ](x)]Pk(y) [An-I’i]Pn(x)IT]Pn-I(Y) T

=0 xi Yi

For a e N0d and x e Rd we write xa xl..,xd. For n e No we denote by x
the rn-tuple {X}lal=n, where the elements are arranged in lexicographical order. In
our vector notation, xn severs the role of monomials, we can write ]Pn as

(2.8) I?= Gx + G,_x-1 +...,

where Gn is called leading coefficient matrix of ]Pn. Let Ln,i denote the matrices of
size rn-1 rn satisfying

(2.9) Ln,ixn xixn-l, 1 <_ i _< d.

The leading coefficient matrix Gn is invertible, and it is related to the coefficient
matrices An,i in (2.2) by nn,i as follows [23]"

(2.10) An,i GnLn+l,iGl.
Other properties of multivariate orthogonal polynomials can be found in [7], [8], and



994 YUAN XU

3. Characterization of zeros of quasi-orthogonal polynomials. Let
{Pn)n=0 be a sequence of orthonormal polynomials. Let the quasi-orthogonal poly-
nomials be defined by (1.3). Using our vector notation we can rewrite the nth quasi-
orthogonal polynomial as follows:

(3.1) Qn +
where F Fn is a matrix of size rn r-l. We consider the common zeros of
components of Qn. For convenience, we call them zeros of Qn. Our main result in
this section characterizes the zeros of Q as eigenvalues of truncated block Jacobi
matrices, we now define these matrices.

Let An,i and Bn,i be coefficient matrices in the three-term relation (2.2). The
block Jacobi matrices, T, associated with Pn are defined by

Bo, Ao,i ()

ATo, B,iA A,iTi
r2,

1 __< i __< d.
1,i

These infinite matrices can be considered as linear operators on ,2. For d 1, this is
the classical Jacobi matrix. The truncated block Jacobi matrices, Tn,, are obtained
from Ti by deleting block rows and block columns with numbers _> n. In [22] it is
proved that the joint eigenvalues of Tn-l,i, 1 <_ i <_ d, are zeros of Pn, which is well
known in the case d 1. For quasi-orthogonal polynomials, we define another set of
truncated block Jacobi matrices, Sn,i. Let F be the matrix appeared at (3.1). We

"B0, A0,i

AT Bl,i AO,i ,i

define

B,-2,i A,-2,i

( T Bn An-l,iFAn-2,i -1,i

l<i<_d.

We note that the size of Sn-l,i is k(n+d--2n--2/\(n+d-2n-2J, and the size of elements A,,i and
Bn,i increase with n. We shall denote by Sn the tube of matrices Sn (Sn,1, Sn,d).
If there exists a vector x and numbers Ai such that Sn,ix )ix for 1 < i < d, then
we call A (A1,... Ad) a joint eigenvector of Sn, or simply an eigenvalue of Sn. We
now state our main result in this section.

THEOREM 3.1. Let Qn be quasi-orthogonal polynomial defined at (3.1), and
Sn,i, 1 < i < d, be the corresponding truncated block Jacobi matrices. Then A
(A1,... ,Ad) is a zero of Qn if and only if A is an eigenvalue of Sn-1. Moreover, the
joint eigenvector is given by (PoT(A),..., pn_l(h)T)T.

Proof. If Qn(A) 0, then Pn(A) -FPn-I(A). It follows from the three-term
relation that

Bo,iPo(A) + Ao,iPI(A)=
A_,iIk-l (A) + Bk,iPk(A) + Ak,iPk+l (A)
T (B_ A_,F)?_ (h)A?_(h)An-2,iPn-2(A) + 1,i-

l<_k<n-2,
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for 1

_
i

_
d. Therefore, we have readily

x [0T(A) T T,., n_l(h)]

That is, A is the eigenvalue of Sn-1 with joint eigenvector x. On the other hand,
suppose that A (A1,..., Ad) is an eigenvalue of Sn-1 with a joint eigenvector x. Let

T )T where xj E ]Rr We also define xn O. Then we haveus write x (x,...,xn_
that {xj} satisfies a three-term relation

Bo,ixo +Ao,ixl Aixo,

AkT_l,iXk-1 /Bk,iXk + Ak,iXk+l )iXk, 1 <_ k <_ n- 2,

A_,x_ +(B_,- A_l,r)x_ x_

for1 _< i <_ d. We can normalize x such that x0 1 ll0. Let Yk k(A)
for 0 _< k _< n- 1, and let Yn Qn(A). From the three-term relation satisfied by
k we have that {Yk}=0 satisfies the same three-term relation that {xk}=0 satisfies.
Therefore, so does {uk}=o, where uk {Xk --Yk}. Since u0 0, we can use (2.4)
and induction to prove that uk 0 for 0 _< k _< n. In particular, we obtain un Yn
Qn(A) =0.

For F 0, this theorem is proved in [22] for d _> 1, and the case d 1 is well
known. For F 0 and d 1, we actually have

qn Pn + flPn-1 (ao...an-i)-det(xI- Sn-i).

This formula seems to be unnoticed in the literature. It is clearly very useful both
numerically and theoretically. We shall discuss this approach toward the quasi-
orthogonal polynomials in a much more general setting in a forthcoming paper. We
note that S,-,i is almost symmetric, only the block in the lower right corner is ques-
tionable. It turns out that Sn,i is symmetric if we want Q, to have maximal numbers
of zeros; see Theorem 4.1 below.

4. The condition for maximal number of zeros. Since the size of Sn-l,i is
dim H=_I dim Hn-1, it follows from Theorem 3.1 that Qn has at most dim Hn-1
zeros. The most interesting case is when Q= has these many zeros--the maximal
number of zeros, because then a Gaussian cubature formula of degree 2n- 2 exists,
and these zeros sever as the nodes of the cubature. For Qn to have dim Hn-1 zeros,
the matrix F has to be in a special form and satisfies a nonlinear matrix equation.

THEOREM 4.1. The polynomial vector Qn has N dim Hn-1 distinct zeros if
and only if for 1 <_ i <_ d

T T(4.1) A_I,F F A_,
and for 1 <_ i, j <_ d

(4.2)FT T T T T(An_l,iAn_l,j An-l,jAn_l,i)(A-I,iAn-,j An_l,:iAn-,i)F
(Bn_I,iA_,j B_I,A_,i)F- [(B_I,iA_5 B_sAn_I,i)F]T.

Proof. om Theorem 3.1 it follows that Qn can have at most N distinct zeros,
and Qn has N zeros if and only if Sn,,..., S,,d can be simultaneously diagonalized
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by an invertible matrix. Therefore, if (n has N distinct zeros, then Sa,i are diag-
onalizable, thus, commute (cf. [5, p. 52]). On the other hand, if (4.1) holds, then
Sa,i are symmetric, thus, diagonalizable. Since a family of diagonalizable matrices is
simultaneously diagonalizable if and only if it is a commuting family [5 p. 52], we have
Sn,iSn,j Sn,jSn,i for all 1

_
i,j

_
d. From (2.5), (2.6), and (2.7), these equations

are equivalent to

Bn-2,iAn-2,j h- An-2,iBn-,j An-2,iAn-l,jF

Bn-2,jAn-2,i + An-2,jBn-l,i Aa-2,jAa-,iF,

(4.4)
AT Aa_l,iFATn_2,jATe-2,iBn-2,j "" Bn-1,i n--2,j

T TAn-2,jBn-2,i + Bn-l,jATn-2,i An-l,jrAn-2,i,

and

T (Bn-l,i An-1 A_I,P)An_2,iAn-2,j + ,iF)(Ba-xd

AT_,A,_2,i + (S,_xd A_,F)(B_,,- A,_,r).

From (2.5) and (2.6) it follows that (4.3) is always true. Using (2.7) we can rewrite

T An-I,iFAn-,jFAn-l,iFBn-l,j --}- Bn-,iAn-ldF + An-l,iAn_,j
Aa_x,jFB,_I,i + B,-I,jAa-I,iF + Aa-ldATn_l,i Aa-ldFAa-l,iF.

Since Bn,i fXnTnw is symmetric, it is easily seen that (4.2) follows from this
equation and (4.1). Therefore, it remains to prove (4.1). From (2.6) it follows that
(4.4) can be simplified to

(4.6) A_ T T1,iFAa_2,j Aa_I,jFAn_2,i.

We shall show that (4.6) is equivalent to (4.1). One way is easy: if A_I,iF is sym-
metric, then by (2.5)

p T T T AT FTAT T F TAn-l,i An_2,j [’ An_l,i n--2,j n_l,jAn_2,i An-l,j An_2,i.

On the other hand, let Ln,i be matrices defined at (2.9) and G be the leading
coefficient matrix of F, then it follows from (2.10) that (4.6) is equivalent to

(4.7) Ln,iHnLnT_l,j La,jHnLTn_l,i, 1 <_ i,j <_ d,

where Ha GIF(GTn_I)-1. It turns out that (4.7) implies that Hn is of the special
form Hn (ha+o)l,l=n,lOl=n-1, where the order of elements in {c -Ic1 n} and
(fl Ifll n- 1} is taken to be lexicographical. The proof of this fact is rather
technical; we delay it to Lemma 4.2 below. Using this fact we can now complete the
proof of this theorem. Indeed, this special form of Ha allows us to introduce a linear
functional, *, defined on Hd such that *(x") ha, and write Hn g*(Xn(Xn-1)T).
From this we have, by (2.9),

Ln,iHn *(Xixn-1 (Xn-1)T),
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from which follows that Ln,Hn is symmetric. By the definition of Hn, this means

which, by (2.10), implies that An_I,F is symmetric. D
LEMMA 4.2. A matrix Hn satisfies the equation (4.7) i] and only i] it is of the .form

Hn (ha+)lal=n,ll=n_l, where the rows and columns are indexed in lexicographical
oI {Z: IZl

Proof. By using the 1:* as in the above, we see that the sufficient part follows
readily. We now prove the necessary part. Let Hn (ha,)lal=n,ll=n_l. We shall
call (a,/) and (a’,/’) related if la I’1 n, I/1 I/’1 n 1, and a+/ ’ +/’.
We need to prove that

(4.8) ha,/ ha,,/,

for related (a, fl) and (a’, fl’).
First we note that we only need to prove (4.8) for the special case that a and a’

differ at only two components--say, ai a and aj a--this implies that fl and fl’
differ at only two components, fli and flj fl, since a +/ a’ + fl’. Indeed,
if (a, fl) and (a’, fl’) are related, then we can always relate these two pairs by finite
many intermediate pairs (a(k), fl(k)), where two consecutive pairs, say, (a(k), fl(k)) and
(a(k+l),/(k+l)), are related and differ only at two components. Next, let

=,, {a W: a, > 0}.

We show that if (a, ) and (a’,/’) are related and differ only at their ith and jth
components, then either

(4.9) c E Afn,, E JV’n-l,j,

or (4.9) with i and j interchanged. Indeed, if a 0 then a 0, and from
or + c + c, we have 0. Also, from c +/ + we have/ 0.
It then follows from/ +/j =/[ +/ that

The same proof works if a 0. The case that , a, a, a are all nonzero is
easier. Thus, (4.9) is proved.

Suppose that (a, ) and (a’,/’) are related and differ only at their ith and jth
components, and that (4.9) holds. We only need to prove (4.8) for these two pairs.
We note that Ln, maps Afn to Afn,. Therefore, using (4.9), the equation (4.7) implies

Let (a,) (al..., a-l, c+1,..., ad) e Nod. Then the above equation is equivalent
to

(h(,),())e._l,e.,_. (h(),(,))e,_l,e,_.
in particular, h(a,),() h(a),(,). Since (a) and (aj) differ at only two components,
c and/j can be taken as depending on a and/, respectively. If we let a +/ k,
then we have
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where ha,la=a,=b means that aj and/3j are assigned accordingly and other ele-
ments of cz and/3 are unchanged in these equations. In particular, we have proved
(4.8) for the pairs (a,/3) and (a’,

COROLLARY 4.3. If Qn has dim HE-1 distinct zeros, then the associated matrices

Sn,i are symmetric.
For d 2 Theorem 4.1 was proved in [12] and [15], where the monic orthogonal

polynomials ]? GIPn xn +... were used. The equation (4.7) was stated
as that Hn is a Hankel matrix. For d > 2 the Hankel property is replaced by the
form Hn (ha+H). For F 0, this theorem reduces to Mysovskikh’s condition [10],
see [22]. Our condition (4.1) is essential in the proof of Theorem 4.4 below. It is
also essential in extending the result of [21] on Lagrange interpolation to Rd, d > 2;
see 5.

If A is a zero of Qn and at least one partial derivative of Qn at A is not zero, then
we say that A is a simple zero of

THEOREM 4.4. If Qn has dim HE-1 zeros, then all zeros are real, distinct, and
simple. Moreover, polynomials Qn and Pn-1 do not have common zeros.

Proof. By Corollary 4.3, all eigenvalues of Sn,i are real, thus, all zeros of Qn are
real. From the Christoffel-Darboux formula, we can write

where we have used (4.1). From this identity we have by dividing xi Yi and letting
Yi -- xi,

K,., (x, x) .-1T (x)A._t,,OQ, (x) QT (x)AT_t,,OP,.,-1 (x),

where 0i O/Oxi denotes the partial derivative with respect to xi. Therefore, if A is
a zero of Qn, then we have

n--1
T (A)A,_ ,i0iQ,(A) Z PkT(A)Pk(A) > O.P-I

--0

Thus, Oi(n(A) O, and n-l(A) 0.
For d 2 this theorem is proved in [21] using the se argument. We choose to

give the full proof here since the formulation in [21] is in terms of monic orthogonal
polynomials, thus, somewhat different. Part of this theorem h been proved in [13]
using the algebraic ideal theory.

5. Applications. As we mentioned in the Introduction, Gaussian cubature of
deee 2n- 2 exists if and only if there is a matrix F such that the corresponding nth
qui-orthogonal polynomial h dim Hn- zeros [9], [12], [13]. om Theorem 4.1,
we immediately have the following.

THEOREM 5.1. For a given weight function W, a Gaussian cubature of degree
2n- 2 ests if and only if there is a matx F that satisfies (4.1) and (4.2).

Two closes of these cubature formulae are found recently in [16], including even
cubatures of degree 2n- 1. The support set for these integrals is the image of a simplex
under the transformation Xk Uk, where uk Uk(Xl,...,Xd) are the elementary
symmetric polynomials of x1,..., Xd. The significance of Gaussian cubature of deee
2n- 2 perhaps lies in the fact that it may exist for the clsical integrals, while
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Gaussian cubature of degree 2n- 1 does not exist. For d 2 and the weight function
W(x, y) (1-x2)l/2(1-y2)1/2 on [-1, 1] 2 product Chebyshev weight of the second
kind, a cubature formula of degree 2n- 2 was found in [9] that has nodes based on
quasi-orthogonal polynomials with

Later, all F that lead to cubature of degree 2n- 2 for this weight function were
found in [14]. However, for d > 2 even the product of Chebyshev polynomials of the
second kind turns out to be difficult. In the following we verify the first nontrivial
case, d 3, n 2.

We recall that the Chebyshev polynomials of the second kind is given by Un (x)
sin(n / 1)//sin/, where x cos O. These polynomials are orthonormal with respect

to weight function w(x) /(1 x2)1/2, and they satisfy the three-term relation

+
Let W(x, y, z) w(x)w(y)w(z).
respect to W are given by

The multivariate orthonormal polynomials with

+ +

Using the vector notation lln, it is easy to verify that {In} satisfies the three-term
relation

xiln(x) 1/2Ln,iI’n+l(X) + 1/2 TLn_l,i]n_l (X),

where x (xi,x2,xa) (x, y, z). The first nontrivial case is n 2, where the quasi-
orthogonal polynomial is Q2 2 +F. There are six components in Q2. We choose
our F to be

FT= 0 1 0 0 0
0 0 0 1 0

Since we have

L2,1 0 1 0 0 0 0 L2,2 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0

i 0 1 0 0 0]L2,3 0 0 0 1 0
0 0 0 0 1

it is easy to verify that all conditions in Theorem 4.1 are satisfied. Therefore, there
are 4(- dim H3) zeros for Q2. They lead to a Gaussian cubature of degree 2 on
R3. Actually, we can write the components of Q2 out explicitly. They are U2(x),
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U1 (x)U1 (y) + U1 (z), U1 (x)U1 (z) + U1 (y), U2 (y), U1 (y)U1 (z) + U1 (x), and U2 (z). Since
U1 (x) 2x and U2(x) 4x2-1, it is easy to verify that the zeros are (1/2, 1/2,-1/2),
(1/2,-1/2, 1/2), (-1/2, 1/2, 1/2), and (-1/2,-1/2,-1/2).

However, we have not been able to find a proper F in the case d 3 and n 3,
not to say the general case for this weight function. From our initial investigation, we
believe that the result as simple as that in [9] for d 2 is not possible for d > 2, and
perhaps the existence of F that solves (4.1) and (4.2) is mostly negative, even for the
product Chebyshev weight.

Finally we mention another application of Theorem 4.1, concerning Lagrange
interpolation based on the zeros of Qn. Suppose ( has N :- dim Hn-1 zeros,

x N The question is to find a polynomial P in lin_l such thatdenoted by { k }k=l.

P(xk f(xk), 1 <_ k <_ N

for every function f. Let Ak be weights in cubature formula (1.2). Then we have the
final theorem.

THEOREM 5.2. Suppose that F satisfies the condition (4.1) and (4.2). Then the
polynomial Ln(x) L(f; x), defined by

N

Ln(x) f(Xk)AkKn(x, xk),
k--1

is the unique solution of the Lagrange interpolation based on the zeros
This theorem is proved in [21] for d 2. The proof for the case d > 2 is the same

in spirit, but (4.1) is vital. We note that monic orthogonal polynomials are used in
[21], thus some formulas need to be modified accordingly in order to carry the proof
to d > 2. The modification is mostly straightforward; we will not elaborate. The
L2 convergence of Ln(f) and other expressions of fundamental polynomials,
)kKn(’,Xk), are also discussed in [21]. The extension to d > 2 poses no difficulty.
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Abstract. Let C be a contour in the complex s-plane and p(s) be the solution of a Pearson-

type first-order difference equation with coefficient functions a(s) and (s), on the q-linear lattice
x(s) q-S, 0 < q < 1. For the cases in which (i) a(s), ’(s) are polynomials of degrees 2 and
1, respectively, and (ii) a(s) is a polynomial of degree 2 but T(S) has a simple pole, the integral

Ic P(s)q-S ds is considered. When C is the whole real line, q-analogues of some formulas due to
Ramanujan are obtained, and some of the questions raised in a previous paper are resolved. When
C is along the imaginary axis, the iteration technique in the parameters of p(s) works, permitting
alternative proofs of a formula due to Askey and Roy, as well as its extension by Gasper, to be given.

Key words, nonuniform lattices, difference equations, Pearson-type equation, basic hypergeo-
metric series, Askey-Roy integral
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1. Introduction. The purpose of this paper is to resolve some of the questions
raised in the authors’ recent article [25] on the beta integrals, particularly those con-
cerned with the sums and integrals on the q-linear lattice.

A difference analogue of the classical hypergeometric differential equation is

(1.1)
vo ( 11 LA (slJ + +e + 0,

where x(s) is generally a nonuniform lattice, s e C, xk(s) x(s+), k e C, /kf(s)
f(s + 1) f(s), Vf(s) /f(s- 1), A is a constant, and 5(x(s)), f’(x(s)) are
polynominals in x(s) of degrees at most 2 and 1, respectively. Difference equations on
nonuniform lattices are a familiar topic in the Russian mathematical literature (see,
for example, the standard Russian textbook [28]). However, a comprehensive analysis
of the solutions of (1.1), particularly the polynomial solutions, corresponding to linear
and quadratic lattices as well as their q-analogues, has only recently appeared in the
works of the Russian mathematicians; see Nikiforov and Suslov [19], Nikiforov and
Uov [20]-[22], Nikiforov, Suslov, and Uvarov [23], [24], Suslov [30], and Atakishiyev
and Suslov [9].

By denoting

(1.2) vi(s)
Ay(s) Avl(s)"=(")

equation (1.1) can be written in the form

0"(8)V2(8- 1) q- T(8)V1(8) + y(8) O,
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where

(1.4)
(7(8)

If p(s) satisfies the Pearson-type equation

(1.5)

then (1.3) can be expressed in a self-adjoint form

V [p(s + 1)a(s + 1)vl (s)] + Ay(s)Vxl (s) O.

It was shown in [10] that the hypergeometric property of (1.3), namely, that the suc-
cessive difference derivatives of y(s), vn(s) =/vn-z(s)/A xn-z(s) satisfy equations
of the same kind, is maintained if and only if the lattice x(s) is of the form

x(s)
Cq-8 -I- C2q if q 1,

1.7)
Cs2 -t-C2s if q- 1,

where C1 and C2 are arbitrary constants not both zero. When q 1, the lattice is
linear if x(s) s and quadratic if x(s) Cls2 + C2s, Cz = O. When q - 1 and Cz
and C2 are both nonzero, the lattice is called q-quadratic; if one of Cz, C2 is zero, then
the lattice is q-linear. For the purposes of this paper we shall assume that 0 < q < 1
when q - 1 and that the q-linear lattice is defined by x(s) q-.

In [25] we were concerned with solutions of (1.5), their sums and integrals in the
complex plane, over linear and q-quadratic lattices. We introduced a greater degree
of generality by allowing (7(s) and T(S) to have simple poles in addition to the zeros
just mentioned (see also [26]). In the concluding section of [25] we gave a summary
of results and left some question marks on the formulas corresponding to the q-linear
lattice. This paper is devoted entirely to this particular case.

For the domain of s in (1.5) or (1.6) there are two possible situations: (i) s is
discrete variable varying in unit steps from s a to s b- 1 (it is permissible for a
to be -cx and/or b to be cx); (ii) s varies continuously on a smooth curve in some
domain of the complex plane.

In case (i) we get the formula

b-1

(1.8) -p(s)T(S)VX(S) p(b)a(b) p(a)a(a).
8--a

If a and b are both finite, then usually they are both zeros of p(s)(7(s), so that the
right side vanishes and we get

bwl

(1.9) p(s)T(S)VX (s) O.
$--’a

This itself is not a summation formula, but usually this leads to a two-term recurrence
b-1formula for the sum ,=a p(s)Vxz (s) in terms of one of the parameters of p(s) and

hence can be iterated. This procedure ultimately leads to a summation formula.
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In the continuous case (ii) we may find a suitable contour C in the complex s-plane
that does not go through any singularities of the integrands, so that (1.5) gives

(1.10) /c A [p(s)a(s)] ds =/c p(s)T(S)VXl(S) ds.

If C has the property that

(1.11) fo( + 1)( + 1) fo, (’+ 1)(’ + 1)’,

where C’ is the contour obtained from C by the shift s’ s- 1, then (1.10) gives

(1.12) Iv p(s)a(s)Vxl(s) ds O.

Note that, by Cauchy’s theorem, (1.11) implies that there are no singulities of
p(s + 1)a(s + 1) between C d C’. Simil to (1.9), (1.12) is not an inteation
formula but les to an evaluation of the inteal fc p(s)Vxz(s)ds by iteration in
terms of the pameters of p(s).

The clsical beta integral of Euler, namely,

(1 la) - (1- )- a r()r() a(,) > 0,
r( + )’

h been exgended in my differen ways in ghe lg 200 yes, noably by Cauchy
[la], Bnes [11], [11, Ramanujan [7], and, more recently, Andrews and Askey [1],

Broadly spewing, a beta ingeal can be clsified into wo disgincg gypes. he
firsg is he Bnes-ge ineal, gical of which is Barnes’ firs lemma [11]:

1 f’ r( + )r( + )r(- )r(a- )a
2i

(1.1a)
r(a + c)r(a + d)r(b + c)r(b + d)

r(a + b + c + d)

Its q-analogue is due to Watson [31]"

(1.15)

where

(1.16)

1 r(+ )r( + )r( s)rq(d s)w(s)q" ds
27ri ioo

r( d)F(1 + d c) r( + )r( + d)Fq(b + )r( + d)qC
rq(c- d)rq(1 + d- c) Fq(a + b + c + d)

r(- )r( + s)r(d s)r(1 d + s)w(s) r(c- s)r(1 c + s--)f-J-- s-(1 d -T- s)
and Fq(x) is the q-gamma function defined by

(q; q)oo (1 q)1-(1.17) Fq(x) (q; q)o

with limq_.x- Fq(x) F(x),

0 < q < 1, x = 0,-1,-2,...,
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(1.18) (a; q)o 1-I (1 aq);

see Gasper and Rahman [16].
The second is the Ramanujan-type integral, typical of which is Ramanujan’s in-

tegral:

(1.19)

w(x) dx
o r( + ,)r( + ,)r(- x)F(d- x)

F(a + b + c + d 3) o1

r(a + c 1)F(a + d 1)r(b + c- 1)r(b + d 1) w(x) dx,

where w(x =l= 1) w(x) and Re(a + b + c + d) > 3. To our knowledge, no one has
found a q-analogue of this formula, and so we will give one in 5. That there may be
some problems with q-extensions of Ramanujan-type beta integrals could be antici-
pated from the following facts. There is a sum version of (1.19) known as Dougall’s
sum [14]:

(1.20)

o
1

zL, r(a + n)r(b + )r(- )r(d )

r(a + b + c + d 3)
r(a + c 1)F(a + d 1)F(b + c 1)F(b + d 1)’

Re(a 4- b 4- c 4- d) > 3. This may be written in the standard bilateral series notation

(1.21) 2H2[ 1-c’ l-d]a, b
r(a)r(b)r(c)r(d)r(a + b + c + d 3)

r(a + c 1)r(a + d 1)r(b + c 1)r(b + d 1)"

However, there is no such simple summation formula for the basic bilateral series 22-
The closest analogue we have is

(1.22)

22 ;q, abcd/q3
a, b

(0, q/o, ab/oq, oq2/ab; q) (q, ac/q, ad/q, bc/q, bd/q; q)
(1, aq/a, bl,, qlb; q) (a, b, c, d, abcdlq3; q)

o2 (q/a, q/b, oc/q, od/q; q) [ q2/oc,q2 (c, d, o/a, o/b; q) 22
aq/o,

q2/d ]q, abcd/q3
bq/

where labcd/q31 < 1, is an arbitrary parameter such that c q+, n 0, 1, 2,...,
and no zero factors appear on the denominators of the two expressions on the right
side. For the definition of 22 and other basic hypergeometric series that we shall
use in this paper, see [16]. Formula (1.22) is not listed in this particular form in the
literature (see, however, [25] for an equivalent form), but it can be easily deduced from
the general transformation formula [16, eq. (5.4.3)] by specializing the parameters. It



1006 MIZAN RAHMAN AND SERGEIK. SUSLOV

is not immediately obvious how (1.22) can be regarded as a q-analogue of (1.21) in
the sense that (1.22) leads to (1.21) in the limit q --. 1-. The limit is easier to take
if one chooses, for example, a -1 and uses the q-gamma functions. One can show
by replacing a, b, c, d by qa, qb, qC, qd that the second term on the right side of (1.22)
approaches 0 as q --. 1- if Re(a + b + c + d) > 3.

The technique of iterating with respect to the parameters of p(s) to evaluate
its integrals works very well for Barnes-type contours because of the vanishing of
the left side of (1.10) in most cases of interest, enabling one to reduce the evaluation
problem to two-term recurrences. This was the technique used by some of the authors
mentioned previously and by the authors in [25]. See also the interesting papers by
galnins and Miller [17] and [18].

However, this technique is not very efficient when one deals with a Ramanujan-
type integral where C is the whole real line or part of it. Generally, one gets a nonzero
contribution from the left side of (1.10), as we saw in [25], resulting in a nonhomoge-
neous two-term recurrence calling for a special treatment of the inhomogeneous term.
The problem is not too bad when one has symmetries with respect to all the param-
eters, as is the case for quadratic and q-quadratic lattices (see [25]), but it becomes
very messy in the q-linear case, where the symmetries are broken. It is in this sense
that the statements in the last paragraph of [25] about the difficulties with the q-linear
case can be defended.

However, for integrals on the real line one can resort to a simpler approach.
Suppose f(x) is continuous on [a, cx)), it has no singularities, and its integral on [a, cx))
exists. Suppose also that _,k__o f(x + k) converges uniformly for all x e [a,a + 1].
Then it can be shown that

(1.23) f(x) dx f(x + k) dx.
a k=O

For integrals on the whole real line the corresponding formula is

(1.24) f(x) dx f(x + k) dx,

provided f(x) has no singula, ities on R, k___o f(x + k) converges uniformly for
x E [0, 1], and the integral on the left side exists. These are the formulas that will
enable us to resolve the questions that were raised in [25] regarding the difficulties
with the q-linear case. We really do not need a Ramanujan to come to our rescue
or even a helping hand from Richard Askey, as we wished in [25]. The price is that
we now need to rely heavily on the summation and transformation formulas of basic
hypergeometric series, which is not the case for Barnes-type integrals.

The paper is organized in the following way. In 2 we shall consider the solutions
of the Pearson-type equation (1.5) for the q-linear lattice with different sets of choices
of the functions a(s) and a(s) + T(S)VXl(S). In 3 we shall give an integral version
of the q-Gauss sum

(a, q). (c/a,
(q, q)s--0 o:)

Ic/abl < 1; see [16]. An integral analogue of the nonterminating balanced 32 series
will be dealt with in 4 (see [16] for the definitions). In 5 we shall show that a
particular q-analogue of Ramanujan’s integral (1.19) is
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/? (aqs’ bqS’ cq-S’ dq-S; q)oo (ab)s w (s)qS-2s ds

q (q, aclq, adlq, bclq, bdlq; q)oo
(-a, -q/a, q)oo

-q, -qb

where lab/q3] < 1 d w(s 1)= w(s). Note the inteands in both inteals on
the right side e unit-periodic functions of s. By replacing a, b, c, d by qa, qb, qC, qd,
respectively, and taking the limit q 1- it is not hd to see that the limit of this
formula gives (1.19). In 6 we shall give an extension of (1.26). In 7 we shall give an
alternative proof of Askey and Roy’s formula

dO
2 (aeie, bei, ce-ie, de-i; q)

(1.27)
(a,q/a,oc/d, dq/ac, abcd;q)oo

(ac, ad, bc, bd, q; q)

where a is an arbitrary parameter with acd 0 and max (lal, Ibl, Icl, Idl) < 1; see [7]
or [16]. In 8 we shall give a proof of Gasper’s extension of (1.27) given in [15]. These
proofs will be based on two-term recurrences that we mentioned earlier.

2. The q-linear lattice and the solution of the Pearson equation. For
the q-linear lattice x(s) q-S, 0 < q < 1, we shall consider both polynomial- and
rational-function-type expressions for the functions a(s) and a(s) + T(S)VXl(S). For
the polynomial case we shall take

(2.1)
(8) 8384 (1 slq-s) (1 s2q-S),

(s) + T (S) VXl (S) (q-S S3) (q-S 84).

In the rational function case we choose

a (s) (1 81q-s) (1 s2q-s)/8182,
(.)

O" (8) q- T (8) VXl (8) q--2s (1 83qs) (1 saq) (1 sq)
1 qs+l/s6

with Sls2sases5s6 --q. From (2.1) we get

(2.3)
p (s + 1) q2S+2 (1 q-S/s3) (1 q-S/s4)

(1

(2.4) (1 q-S/s3) (1 q-S/s4)
(1 slq-s-l) (1 s2q-s-l)
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(2.6)

q2 (1--s3qS)(1--s4q8)

sas4 (1 slq-s-l) (1 s2q-S-1)"

For Ramanujan-type integrals on (-oc, cx)), the appropriate form is (2.3). For
Gauss-type integrals on (-cx,-b), (2.4) leads to the right asymptotics, while (2.5) is
the right one on (a, cx3), where a and b are finite. For the Barnes-type integrals on
the imaginary axis, however, the appropriate form is (2.6). The different appropriate
forms in the rational-function case are, likewise,

(2.9)

(2.10)

p(s+ 1) q2S+2 (1 q-S/s3) (1 q-S/s4) (1 q-S/s5)
sis2 (1 qS+l/s) (1 qS+i/s2) (1 s6q-s-)
(1 q-S/s3) (1 q-S/st) (1 q-S/ss)

(1 siq--) (1 s2q-s-i) (1 s6q-s-)

q2 (1 s3qs) (1 saqs) (1 s5qs)
(1 qs+l/s) (1 qS+/s2) (1 qs+l/s6)

q-2S (1 saqs) (1 saqs) (1 q-S/s5)
8384 (1 slq-s-) (1 s2q-s-) (1 s6q-S-1)

The general solution of (2.3) is

(2.11)
p p

p(s)(qs+l/sl,qS+l/s2, ql-s/s3, ql-S/sa;q)oo,

where

(2.12)
p (s + 1) q2S+2
p(s) sis2

We may take as the general solution of (2.12)

(2.13)

or

p(s) =qs q
w(s),

(2.14) p (s) (qs+l/oml, aslq-s, oqs+l/s2, s2q_S/a; q)oo’
where w(s :l: 1) w(s) and asts2 # O, a arbitrary. The general solution of (2.4) and
(2.5) can similarly be written in the forms

(2.15) p (s)
(qi-/s3, q-S/s4; q)
(slq-S:s2q-S;q) w(s)

and

(2.16)
(q /sl,q /s2, q)o q2

p
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respectively, with w(s+ 1) w(s). Note that the rational-function extension of (2.15)
is

(2.17) p (s)
(ql-8/s3, q-8/s4, q-/s5; q)

(sq-, s2q-, s6q-; q)oo

and that of (2.16) is

(2.18) p (s) q2S (qs+l/s’ qS+/s2, qS+I/s6; q)o
w (s).(s3q, s4q, s5q; q)o

Finally, the general solution of (2.6) is

(2.19) p(s)
(s3qS, saq -s, s2q-S;

with

(2.20)
p(s + 1) q-2
p(s) 8384

Since

(2.21) (1 q-8/(s3) (1 aq--X/s4)
(1 -(s3q) (1 saqS+/a)

q-
8384
, 08384 O,

the general solution of (2.20) can be written in the form

(2.22) p (s) (vs3q, q-S/as3, saq+I/a, aq-S/s4; q) qSw (s).

The corresponding solution in the rational-function case is

(2.23)
p (8) Pc (8; 81,82, 83, 84, 85)

(oqS/s2 slql-s/o, qs+l/os2 os2q-s qS+l/S6 q)
(83qs, 84qs, 85qs, Slq-s, s2q-S; q)oo

where, once again, w(s) is a unit-periodic function of s.
Since Vx(s)=q-/2(1-q)q-, the integral that we shall need to consider

throughout this paper is

(2.24) (s) Vxi (s) ds q-i (1 q) It’ p (s) q-S ds.

3. An integral analogue of the q-Gauss sum. Let us consider the integral

(3.1) I (81, 82, 83, 84) (83"----; s4qS; q)oo
oo w (s) 81828384 ds,

corresponding to (2.16), where Iq’ l < mi(is], I,s21) and
q [<1(3.2) sls2s3s=---

If we assume that [qas31 and 1qa84[ are not of the form q-k, k O, 1,2,..., then
the integrand in (3.1) has no singularities and behaves like (q/81828384) s

for large
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s, and so the integral converges provided that the periodic factor w(s) has, itself, no
singularities in [a, a A- 1], which we shall assume to be the case. Then by (1.23) we
have

/a+1 (qs+l/sl,qS+l/s2;q)cI (81, 82, 83, 84)
a

ds (s3qS-saqS;’ 81828384

"32 q’ 81828384
q8+1/Sl, qs+l/s2

Applying the transformation formulas [16, eq. (3.2.10)], [16, eq. II.24], and [16, eq.
(3.2.7)], in that order, we find that

83qs’ q’ 84qS
q

32 q’ 81828384
as+l/81, qS+1/82

(3.4)

(q, q/8184, q/8284, 83qs, qS+1/818283, 818283q-S; q)oo
(8183, 8283, q/81828384, qs+l181, qS+1182, ql--s184; q)oo

(q/SlS4, qs/sl, qS/82, 81S283ql-s; q)o 818283q
-s

(8283,qS+1/s1,qS+1/s2, q1-S/s4;q)oo 1--8183

8183, 81828384 81q1-s ]"32 ;q,q/SlS4
8183q 818283q1-s

if Iq/SlS41 < 1. Hence

Jo (s3qs, 84qS; q)o
d8

(q, q/8184, q/s2s4; q) oo
8183’ 8283’ q81828384; q)o

ds

a+1 (818283q-s qS+1/818283; q)
(SaqS,-q-Z---/-aiq)

(q/SlS4; q)o 818283 fa+l (qS/81’ qS/82’ SlS2S3ql--s;
(8283; q)o (1 8183) ,a

ds
(s--3-q-i sq’-Sl ql-s/84; q)oo

8183q, 818283q1-s
;q,q/sls4]
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In the special case 81828384 1, this reduces to

(3.6)

9a (qS+l/sl’ qs+l/s2; q)
qS

(s3 q----7 -q"/Sl S----s q)w s ds

818283 jo
1

-(1 8183) (1 8283)
W (s) ds

sxs .sa [a+l q)oo
(1 sis3) (1 s2s3) ,a (s3qS, qS/SlS2S3; q)ow (s) ds.

This is a q-analogue of Ramanujan’s formula [27, eq. (10.1)] in which there appears
to be an error in that there is no term corresponding to the first term on the right
side of (a.6).

Observe that a direct application of [16, eq. (3.2.7)] on the 32 series in (a.3) gives
another form of (3.5):

fa (qs+l/sl.qs+l/s2;q)oo
(s3qs, s4qS; q)oo ( )" d8

1 /+’ (q’/sl,q’+l/82;q)oo()"(3.7) 1 q ds w (s) q--
sssasa a (s3qs saqS; q)oo SlS2S3Sa

q, q/8283, q/8284
32 ;q, qS/Sl

q2/81828384 as+l

where the assumption Iq"l < Is l is needed to ensure the convergence of the 32 series.

4. An integral analogue of the balanced 32 series. Using (2.18), we shall
now consider the integral

(4.1) a= (qs+l/sl, qs+l/s2, qs+l. Is6; q)oo qSJ (81,82, 83, 84, 85) (s3qs, saq’, s5q’; q)oo
w (s) ds,

where it is assumed that the denominator of the integrand has no zeros on [a, c) and
that Iqal < min(Isll, Is21, Is61), with s6 satisfying the balance condition SlS2S3SaShS6
q. Proceeding as before, we have

(a.2)
s+l s+l s+la+l (q /Sl,q /s2, q /SO;q)oo aSJ (Sl, s2, 83, 84, 85) . ds

(s3qs, saqs, s5qS; q)oo
w (s)

q, 83qS 84qs, 85q
s ]a3

qs+l/sl, qs+l/s2, qs+l/s6
;q’ q

The 43 series is balanced, so that there are some transformation formulas that can
be applied on it. Thus, use of [16, eq. (2.10.10)] gives
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(4.a)
(qs+l/sl’qS+l/s2’qs+l/s6;q) [(83qs s4qs’ s5qS; q)o

q 83qs, 84qs, 85qs

qs+l/81, qS+1/82, qS+1/86 ;q’q]
s6q-S

(8386, 8486, 8586; q)o 32
8486 8586

q86/81 q86/82
;q,q

(qS+ySlS2S3, qS+yss2s4, qS+ysis2s5, qS+ySl, qS+ys2, qS+ys6, s6q-S; q)
(8386, 8486, 8586, 83qs, 84qs, s5q, q2s+l/8182; q)o

8W7 (q2S/sls2; qS/s, qS/s2, s3qs, s4qs, s5qS; q, s6ql-s),
where

(4.4)
8W7 (a; b, c, d, e, f; q, a2q2/bcdef)

a, q/’d, -qvfd, b, c, d, e, f
a2q2

q’
bcdef

/-d, -’d, aq/b, aq/c, aq/d, aq/e, aq/f

is the very well-poised 87 series; see [16]. Using the transformation formula [16,
eq. (2.10.1)]
(4.5)

8W7 (a; b, c, d, e, f; q, Aq/ef)

(aq, aq/ef Aq/e, Aq/f q)
(Aq, Aq/ef, aq/e, aq/f; q)o 8W7 (; Abla, Ac/a, Ad/a, e, f; q, aq/ef),

where - qa2/bcd, we can transform the sW7 series in (4.3) to a more convenient
form. The result of using (4.3) and (4.5) in (4.2)is

(4.o)

fa
s+l s+l s+lOO(q /sl,q /s2, q /s6; q)

aS(s3----- sa---q-: s--5q--Ti-q)---
oo w (s) ds

(q, qs6/si,qs6/s2;q)
86 (8386, 8486, 8586; q)oo

8386 8486 8586
;q,q f w(s) ds

/a+l (qs+l/sls2s3’ qs+l/sls2s4’ qs+lsls2ss; q)o
.,a

ds w (s) (s3qs’ s4qs, ssqS; q)

(qS/s6;q)o
(s6qS+/ss2;q)o 8W7 (s6qS/sls2; qS/sl, qS/s2, s3s6, sas6, 8586; q, q) }.
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5. A q-analogue of Ramanujan’s integral. As we saw in 2, the appropriate
solution of the Pearson equation in this case is given by (2.11), with p(8) as in (2.13)
or in (2.14). We will see that it does not matter which form of p(8) we choose since
an appropriate adjustment of w(8) leads the result of one choice to the other. For the
sake of definiteness let us pick (2.13), so that the integral to consider is

I (Sl,S2, S3, S4) (qS+1/s1,qS+1/s2, q1-S/s3, q1-S/84;q)

w (s)qs (SLS2) -s ds.

Use of (1.24) then gives

[1 (qs+l as+ /82, ql-s/s3, ql-s/s4; q)o w (s)I (81, 82, 83, 84) ds /Sl
J0

"q82 (SlS2)- 22 I 83qS’ 84qS’

as+l/81, as+l/82
;q,

81828384

By (1.22) and appropriate choice of the arbitrary parameter ( we have

83qS’ 84qS’
q

22 q’ 8182838
qs+l/81, q"+l/s2

(q, q/8183, q/SlS4, q/s2S3, q/s2S4; q)oo
C (qS+1181, qS+1182, ql-s/s3, ql-s/s4, q/81828384; q)oo

(__oqS __ql-s/0, __qS/08182, --018182ql--s; q)oo
(--qOSl --qos2 1/OSl 1/082; q)oo

oqs-1
(--o/s3,--o/s4, slq-S, s2q-S;q)c

(--Csl/q,--os2/q, ql-/s3, q1-/s4; q)oo

--q83/0, --q84/0,
"22 ;q,

--q2/081, --q2/082
81828384

This gives the formula

: (qs+l/sl,qS+l/s2, ql-S/s3, ql-S/s4;q)ocw(s)q (8182) -s d8

1 (q, q/sls3, q/s184, q/s2s3, q/s2s4; q)
o (-oqsl, -oqs2, -1/0Sl, -1/082, q/sls2s3s4; q)
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1

(-oqS,-q-S/o,-qS/omis2,-oms2qX-S;q)o qs (sis2q)-s w(s) ds

o (-ols3,-olsa;q)__. o [ -qs31’ -qsal’
...q

q (-omilq,-os21q;q)22 -q21s, -q21as2
;q, sssas

(,-,+/1,-,+’/;) + () .
Replacing s, s2, s3, s4 by q/a, q/b, q/c, q/d, respectively, d setting a 1, we obtain
(1.26).

If we repine qs (q/ss2) s
w (s) in (5.4) by the expression in (2.14) with a different, then we will obtain the formula corresponding to this second choice. So the two

e really equivalent.

6. An extension of (1.26). Let us now consider the rational-function extension
of the inted in (5.1) and te

s+l s+l 1 s 1 s 1 s(q /,q /, q -/,q -/,,q -/;q)
(.1) () (a,+/:q_(q,/G:=_,--]:;q_, q.: ()

where ss2s3s4s5s6 q, w(s 1) w(s), ass2 0, and sume that there e no
real poles. Then the integal that extends the one in (5.1) is

sA-1 s4-1 1 s 1 s 1 s(6.2) oo (q /81,q /s2, q /83, q /sa, q /s5; q)oo sw
c

s+l s s+l s s

By (1.24) we get

J(Sl,82, s3,84,85)

(6.3)

s+l s+l 1 s 1 s 1 s

ds (q----/s .__2’ q____/s2,_ q_ /s3__, q--/_s_a,, q /s____5"., q)._
sA-1 s sA-1 s s(q /OSl,0slq-,oq s2, s2q-/o/.,s6q-;q)oo

83qS 84qS 85q
s

q-Sw(s) 33
qs+l/sl, qS+l/s2, qS+l/s6

;q’ q

Using the transformation formula [25, eq. 15R] that can be deduced from [16,
eq. (5.4.3)], we find that

(6.4)

s3qS 84qS 85q
s ]33

qS+l/sl, qS+l/s2, qS+l/s6
;q’ q

(slq-s, s2q-s, s6q-, qi-S/s3, ql-S/sa, q-S/s5; q)
(sq-S, s2q-S, ls6q-S, qi-S/s3, ql-S /sa, ql-S /ss; q)o
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[ ]s3qS/, saqS/, s5qS/
"33

as+l/81’ as+l/182’ as+l//86
;q,q

(, q/, q, q/sx 83, q/sx sa, q/s85, q/szs3, q/s2sa, q/s2ss; q)o
+ (83s6, sas6, 8586, qs+l/sl, qs+l/s2, ql-S/s3, ql-S/sa, ql-s/ss; q)

(s6q-s’ q-288182’ q2s+l/8182; q)oo
(sq-S, qS+i/si, s2q-s, qS+X/82; q)o

(s3qs, 84qS s5qS; q)o
(qS+/sl, qS+i/s2, qS+i/s6; q)

{ 1 2
(s3qSl’ qi-S/83’ saqS/’ q-S/sa’ s5qS/1’ qX-S/s5; q)
(q+ -s5 : -]--s-2 -s2q----s-, qS+ / s6 s6q s -(qS+X/81, qS+i/82, qS+X/86, sxq-s, s2q-s, s6q-S;

(saqs’ ql-s/83’ saqS’ ql-s/sa’ ssqS’ ql-s/85;

s6q
-s

(1 sas6) (1 s5s6) q, 8386
8486q s5s6q

where is arbitrary, with 818286 # O. Replacing by _qS and substituting into
(6.4), we obtain the formula

(6.5)
s+l s-t-1 1 s 1 s 1 s

82-1 S s-f-1 s s
oo (q /0181, Omlq-- oq /s2, s2q- /0, 86q- ;q)oo

w (s) q-S ds

(q, q/sl s3, q/sl sa, q/sl ss, q/s2s3, q/s2sa, q/szss; q)o

jo (_qS,s+l_qi-S/, _qS+X/sis2s+X

--sis2q-S; q)o

f01 (qS+1/81, 81q
-s

(qs+l/tsi,osq_S,tqS+i/s2, s2q_S/t;q)ow(s) ds

;q,q

(1 8486) (1 8586) 32 ;q, 8386
8486q, 8586q,

s is s is s/1 (s3q q /83, s4q q /84, s5q ql-s/s5; q) q-2S
s s+l s(qS+I/asl,aSlq- ,aq /s2, s2q- /a, qS+i/s6, s6q-S;q)oo w(s)
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(qs+l/sl, slq-s, qs+l /s2, szq-S; q)o
(qs+l/OzSl, OZSlq-s, (l,qs+l/s2, s2q-S/oz; q)+

w (s) } ds.

Since a and/ are arbitrary other than the requirement that there are no poles in
any of the preceding expressions, we can choose them to simplify this formula as much
as possible. For example, if we choose a -q/sl and then replace sl, s2, s3, s4, s5,

and s6 by q/a,q/b,q/c,q/d,q/e, and q/f, respectively, so that abcdef qS, then
(6.5) can be rewritten in the form

(6.6): (aqs, bqs, cq-s, dq-s, eq-S; q)oo
o (_qS, _ql-’-: _----b---77- --_ "q-L--sT-- "q1-s/f q)o

(q, ac/q, ad/q, ae/q, bc/q, bd/q, be/q;
(-q/a, -a/, -q/b, -b/, q2/cf q2/df q2/ef; q)

(-c,-d,-e;q)oo
(-q/a, -q/b, -q/f q)oo

w (s) ds

i

w (s) ds

-q/;3c, -q/nd, -q/ne ]33
-a/n, -b/, -,f/n,

;q’ q

L (aqs’ qi-S/a’ bqS’ ql-s/b; q)o q-S
(_q., _q_./, _q._/, _q_./; q),o ()

(q, aq/f, bq/f; q)oo
(q2/cf q2/dr, q2/es; q)oo [ Jq2/cf, q2/df, q2/ef

32
aq/f, bq/f

;q’ q

Ll{ (qS+/c’cq-S’qS+l/d’dq-S’qS+/e’eq-S;q)o
(-, -q-./,-q-/, -q’-"/, Iq., q-./I; q)

n2 (-cJ,-qlcJ,-d,-qld,-en,-qlen; q)oo
(-a/J,-nqla,-b/n,-nqlb,-slJ,-qJlS; q)oo

(aqs’ q’-S/a’ bqS’ ql-S/b; q)oo w (s) qS }
Note that we have used the transformation formula [16, eq. (3.2.10)] in rewriting the
32 in series in (6,-5) in the preceding balanced form. Also note that this formula is
valid provided that

(6.7) (i) abcdef q5, (ii) Im f # 0,

(iv) ab=fiO, (v) 0<arg<r.
(iii) Iql:l < min (Icl, Idl, lel),

Formula (6.6) may be regarded as a q-extension of [25, eq. (5.23)1. Observe that
all the integrands on the right side of (6.6) are unit-periodic functions of s that are
continuous on [0,1] whenever w(s) is.
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7. A Barnes-type integral: Askey-Roy formula. Let us now consider the
integral

(7.1)
1 Iv (as3q’q-/as3’s4q+/a’q-/s4;q)

Ia (81, 82, 83, 84) r/ -(s-q--;: 84q--’71 slq-----7: s2q-S; q)o
oo ds,

which corresponds to (2.19) and (2.22) with w(s) 1. Here C is the part of the
imaginary axis from -iT to iT, where T- r/logq-1, that defines the principal
strip of the complex plane beyond which the integrand repeats its value by peri-
odicity since qs=l=2ikT__ qS, k 0, 1, 2, We will assume that as3s4 0 and that
max(ISll, I821, Is31, Is41) < 1. Under these assumptions one can show by an analysis
similar to the one given by Slater [29, Chap. 5] that the integral in (7.1) converges.

From (2.1) it follows that

T (S)VXl (S) (q--S 83) (q--S 84) 8384 (1 Slq-s) (1 s2q-s)
(7.2) (1 8183)(1 8184) q--S (1 81828384) (1 slq-s) q-S

81 81

(7.3) --84 (1 8183)(1 82S3)q-S + (1 81828384)(1 83qs) q-2S.

Hence by (7.2)

1 /c (1 8183) (1 8184) Ic (81, 82 83 84)
27ri

p (8)T (8) VXl (8) d8
81

(1 SlS283s4) Ia (slq, s2, 83, 84),
81

where

(7.5)

Since

pa(s)
(as3qS’ ql-/as3’ s4qs+l/a’ aq-S/s4; q)o q.

(83qs, 84qs, 81q-s, 82q-S; q)oo

p (s + 1)a (s + 1) 8384
(s3qs+l, q-S/as3 s4qS+2/a, q-S-1/s4; q) s+1q

(s3qs+1 s4qs+1 slq-s, s2q-S;

has no poles between C and C’, the line one unit to the left of C, because of the
restrictions on the parameters, the integral fc/k [p(s)a (s)] ds vanishes, and so by
(1.5) the integral on the left side of (7.4) also vanishes. This leads to the recurrence
formula

1 81828384(7.6) Ia (81, 82, 83, 84) (1 8183) (1 8184)
I, (81q, 82, 83, 84).

By symmetry we also have

1 81828384(7.7) I, (81,82, 83, 84) (1 s2s3) (1 8284) Ia (81, s2q, s3, 84).

Use of (7.3) gives

(81, 82, 83, 84) (1 8183) (1 8283) s---/
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Similarly,

(7.9)

Finally, it follows directly from (7.1) that

Ic (81,82, 83, 84) 283 I(q (81, 82, 83, 84).
84

It follows from (7.6)-(7.10) that

Ia (81, 82, 83, 84)
(7.11) (8183, 8184, 8283, 8284; q)

.Ua(sl,s2, s3, s4),

((, q/(, (s3/sa, qsa/ts3, s,s2s3sa; q)o

where Ma is symmetric in s:, s2 and satisfies the periodicity property

(7.12)

Ma (81, 82, 83, 84) Ma (slq, s2, s3, 84)
M, (s:, s2q, s3, 84) M, (s:, s2, s3q, 84)
M (s:, s2, s3, s4q)
Mq (si, s2, s3, s4).

We shall first prove that Ma is actually independent of s: and s2. Let k be a
positive integer, and let us replace s by sqk in (7.11). Then by (7.12) we have

(7.13)

(qks: s3, qkSl S4; q) oo

(qk81828384; q)
1 f (as3qS,_ ql-__s/__as3__:,s4__q.

s+._/._a_, aq__s_/s4: q)o ds
2ri Jc (s:q-s, s2q-s, s3q s4q; q)o

((, q/(, (sa/sa, qsa/ts3; q)oo
Ma (81, 82, 83, 84).(8283, 8284; q)o

Since the expression on the right side is independent of k, we conclude by use of the
Lebesgue dominated convergence theorem that

(7.14)

1 ((s3qs,ql-s/ts3, saqs+l/t,tq-S/sa;q)o
ds

27ri (s2q-s, s3qs, s4qS; q)oo

(a, q/a, as3/sa, qs4/as3; q)oo
Ma (s:, s2, s3, s4).(8283,8284;q)oo

It follows immediately that M is independent of sl, and so by symmetry it is inde-
pendent of s2 as well.

Let us now consider the dependence of Ma on c. Replacing c by (qk, k a positive
integer, and observing that

(7.15)

(om3qs+k, ql-s-k/os3, s4qs+l-k/O, oq-S+k/Sa; q)
((qk, q:-k/(, (s3qk/sa, saq:-k/tS3; q)o
(as3qS, ql-s/os3, s4qs+ /a, aq-S/s4 q)o

((,q/t,ts3/s4, saq/ts3;q)
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we conclude that Ma is also independent of . It follows that

Ma (81,82, 83, 84)

(7.16)
(8183 8184 8283 8284; q)

((, q/(, osa/s4, qsa/as3; q) (sts2s3s4; q)

.1___ [ ((s3qS,q__-__s./ts__.3, saqS___+/c, (q-S/s4; ds
2ri Jc (s3qs, saqs, stq-8, s2q-S; q)

is actually independent of st, s2 and a. So we may set, for example, Sl c/s4 and

s2 q/osa in (7.16) to cancel out some terms in the integrand, and we get

(7.17)
1 / ((saq__:s,_ s_4q+1./(; q_) ds.(q; q)oo Ma - (s3qs, saqS; q)o

Let us now replace 83, 84 by 83qk, s4qk, respectively, k a positive integer. Recalling
that Ma is periodic in s3 and s4, we find that

f (OS3q+k’ s4qS+t+kfo; q)1
lira ds(q; q)ooM 27r--- k--,o (s3qs+k, s4qS+k; q)oo

1/cds27ri

1 /.r/log q-1

27r #_/log q-

1
log q--l’

where the integration is done over the interval of length T 2r/log q-1. Thus we
have the formula

(7.19)

1 fc ((s3qS’ qt-S/ts3’ saqs+lf(’ (q-S/s4; q)
ds

2ri (s3q, s4q, stq-, 82q-S; q)oo

q/..
(q, 8183, 8184, 8283, 8284; q)oo logq-t

With a change of variable s i0/log q-t and a relabeling of the parameters one can
easily deduce (1.27) from (7.19).

8. An extension of the Askey-Roy integral: Gasper’s formula. We now
consider the integral

(8.1)

Jc (81,82, 83, 84, 85)

1 /C (qS/Sl’Slql-s/t’qs+l/ts2’ts2q-S’qS+l/s6;q)
ds,

27ri (83qS, 84qS, s5qS, 81q-S s;,s2q- q)

where C is the same as in 7, st s2s3s4s5s6 q. From (2.2) one finds that
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T (s) VXl (S) --(1 s185)(1 8285) q_.
818285

(1 SlS2S3S5) (1 SlS2S4S5)
818285

so that we have the recurrence formula

(8.3)
J (s:, s2, s, s4, ss)

(1 81828385) (1 81828485)
(1 slss) (1 s2ss) Ja (Sl, s2, s3, s4, qs5).

Iterating this n times and then taking the limit n --. 00, we find that

(81828385’ 81828485; q)oo
lim Ja (81, 82, 83, 84, s5qn)(8185, 8285; q)oo

Since limn-oo (qs+l+n/S6; q)oo/(sSqn+’; q)oo 1 for s E C, we have

limn-.oo Ja (Sl, s2, s3, s4, s5qn)

1 fC ((qSlSl’ slqX-sl(’ cs2q-S’ qs+llas2; q)oo
ds

27ri (slq-s, s2q-s, s3qs, s4qS; q)

(a. q/a...21.1, slqlas2. SlS2SaS4; q)oo
(q, 8183, 8184, 8283, 8284; q)oo log q-1

by (7.19). Thus we have the formula

(8.6)

1 /C (aqS/sl’slql-s/c’qs+l/as2’as2q-S’qSsls2s3sas5;q)
ds

27ri (81q-s, 82q-s, 83qs, 84qs, 85qS; q)oo

log q-1 (q, sis3, sis4, sis5, s2s3, 8284, 8285; q)oo

Changing the variable by setting s i0/log q-l, we get Gasper’s formula [15]"

2r 81 eiO, 82eiO, 83e-iO, 84e-i0, 85e-i0;

q, 8183, 8184, 8185, 8283, 8284, 8285; q)o
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VALIDITY OF THE QUASIGEOSTROPHIC MODEL FOR
LARGE-SCALE FLOW IN THE ATMOSPHERE AND OCEAN*

ALFRED J. BOURGEOISt: AND J. THOMAS BEALEt

Abstract. The well-known quasigeostrophic system (QGS) for zero Rossby number flow has
been used extensively in oceanography and meteorology for modeling and forecasting mid-latitude
oceanic and atmospheric circulation. Formulation of QGS requires a (singular) perturbation ex-
pansion of a set of primitive equations at small Rossby number, and the quasigeostrophic equation
expresses conservation of the zero-order potential vorticity of the flow. The formal expansion is jus-
tified by investigating the behavior of solutions of a set of primitive equations (PE) with a particular
scaling, in the limit of zero Rossby number. This primitive model represents adiabatic, inviscid,
incompressible flow with variable density and Coriolis force. Difficulties arise because PE, scaled
for small Rossby number, contains unwanted solutions varying on a fast time scale with frequencies
inversely proportional to the Rossby number. Without restrictions on the initial conditions, solutions
of the scaled PE model do not necessarily converge to solutions of QGS in the singular limit. It is
proven that, provided certain simple restrictions on the initial data are satisfied, solutions of QGS
are valid approximations of solutions of the scaled PE model, with error on the order of the Rossby
number. Going further in the PE expansion, the first correction to the QGS solution is obtained
and it is shown that the improved approximation is second order accurate. The essential part of
the analysis is to obtain energy estimates for the ageostrophic part of the solutions which allow
suppression of the rapid growth. A new proof of the existence of solutions of QGS is also given.

Key words, geophysical fluid flow, quasigeostrophic equations, Rossby number, beta plane,
bounded derivative method

AMS subject classifications. 86A05, 35B25, 76U05, 76V05, 86A10

1. Introduction. The well-known quasigeostrophic system (QGS) has been used
extensively in oceanography and meteorology for modeling and forecasting mid-
latitude oceanic and atmospheric circulation. In this paper we prove that solutions of
a quasigeostrophic model approximate solutions to a model for large-scale flows with
order e accuracy as the Rossby number e goes to zero.

By large-scale (or global) flow we mean solutions of a primitive model for oceanic
or atmospheric flow in which the equations of motion have been scaled for small
Rossby number motion. The traditional primitive equations for planetary circulations
[19] represent adiabatic, inviscid, incompressible flow with variable density and Cori-
olis force, with additional assumptions that the flow is Boussinesq and hydrostatic.
The Boussinesq approximation, which says that density (or potential temperature, in
the atmospheric case) variation is small compared to some reference value, allows the
horizontal momentum equations to be written without the density (potential temper-
ature) variable. Instead of the usual hydrostatic assumption, in our model we retain
the vertical acceleration term in the third momentum equation. Keeping this term
preserves the symmetry of the equations and defines a better-posed problem. We
later make a scaling choice resulting in a near hydrostatic model. So our primitive
equations (PE) differ from the typical primitive equations in this respect, and are
defined by (2.1)-(2.5), where we have chosen the oceanic case for definiteness. In the
atmospheric case, a modified pressure function is used instead of vertical height.
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Informally, large-scale motion refers to the major current systems of the ocean
(e.g., the Gulf Stream) and atmosphere (e.g., the Jet Stream), which vary on slow
time scales relative to one rotation period of the earth. Prediction of such global
phenomena is a fundamental problem in oceanography and meteorology. This type of
motion is primarily horizontal (measured relative to the earth’s surface) because on
large-scale, the fluid is confined to a relatively thin spherical shell. Also, the density
stratification resulting from the near hydrostatic equilibrium discourages vertical mo-
tion. The essentiM scales for describing large-scale motion are horizontal velocity and
horizontal length. Since relative accelerations become small over large length scales,
the horizontal acceleration is largely Coriolis, which is independent of length scale.
Thus global flow can be thought of as flow in which the Coriolis force is significant,
and is defined formally as small Rossby number flow, where the Rossby number is the
ratio of the relative horizontal acceleration to the Coriolis acceleration. This ratio is
small for motion with large time scale compared to the earth’s rotation period.

Formulation of QGS [20] requires a perturbation expansion of PE at small Rossby
number. The resulting zero-order equations express geostrophic and hydrostatic bal-
ance, in which the zero-order horizontal velocity is perpendicular to the zero-order
horizontal pressure gradient. These equations are not sufficient to determine flow
dynamics, and the first-order equations in are necessary to describe the time evo-
lution of the zero-order flow. Elimination of the first-order terms in the first-order
equations leads to a nonlinear evolution equation in zero-order pressure. This is the
quasigeostrophic equation, which is a conservation law for the zero-order potential
vorticity of the flow. See, e.g., [12] for the use of this equation to study the baroclinic
instability mechanism.

The quasigeostrophic equation, with initial data and boundary conditions spec-
ifying no normal flow and determining a mathematically well-posed system that de-
termines the time evolution of the zero-order flow. This system is simpler than PE
because it filters out fast time scale solutions. Previous existence and uniqueness
proofs for quasigeostophic systems have been given. Dutton [13] demonstrated exis-
tence of weak solutions on a bounded domain, and showed solutions are continuously
dependent on the initial data. Bennett and Kloeden [3], [5] established existence of
strong solutions.

For our system, we choose a horizontally periodic domain, as in [3], and a sim-
plified boundary condition that expresses constant density on the top and bottom
horizontal boundaries. We refer to this system as QGS. The object of this paper
is to justify the formal expansion mentioned above, by investigating the behavior of
solutions of PE in the limit of zero Rossby number , and establishing conditions in
which these solutions converge to the QGS solution. Difficulties arise because PE
scaled for small Rossby number contains solutions varying on a fast time scale t/z
and a slow time scale t. Without restrictions on the initial conditions, solutions do
not converge in the singular limit 0. We show that if solutions and their first time
derivatives are initially bounded independently of , then solutions of PE exist on an

arbitrarily long time interval for small enough , and these solutions converge to QGS
solutions with O() accuracy. To carry the expansion further, we derive equations for
the time evolution of the first-order correction and show that the QGS solutions with
this correction give O(2) accurate solutions of PE.

Analogous results have been proven by Schochet [23] for the quasigeostrophic
approximation of the shallow water model with no density stratification and no de-
pendence on the vertical variable, which is a hyperbolic system. Browning, Kreiss,
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and Kasahara [8], [9] have devised a general initialization procedure, referred to as the
bounded derivative method, for suppressing fast time solutions of linear hyperbolic
systems of partial differential equations containing multiple time scales. This method
has been extended to certain nonlinear symmetric hyperbolic systems [1]. However,
PE is nonlinear and nonhyperbolic. Klainerman and Majda [16], [17] have given a
rigorous treatment of a variety of related singular limits with rapid scales. In recent
work [7], Browning et al. have viewed the system we call PE as a reduced system
for slowing down gravity for compressible flow. Camassa and Holm [10] use a similar
set of starting equations for their new model of barotropic mesoscale ocean dynam-
ics, which incorporates dispersive effects due to weak hydrostatic imbalance in the
presence of topography and stratification.

1.1. Outline. In 2 we present the standard formulation of the quasigeostrophic
equation for an ocean model. We begin with the governing primitive equations (PE),
which are given in (2.1)-(2.5). Then we discuss how PE are scaled for small Rossby
number flow, and the resulting scaled primitive equations (SPE) are listed in (2.6)-
(2.10). Finally, we outline the standard derivation of QGS from SPE.

In 3 we prove an existence theorem (Theorem 3.4) for QGS. This theorem is
customized for use in our main theorem comparing QGS and SPE solutions. The
proof is new, and is patterned after a proof by Kato and Ponce for well-posedness of
the Euler equations [15]. It entails the use of a special L estimate on the second
derivatives of pressure in terms of vorticity [2], [15].

Our main result, described above, is given in 4 as Theorem 4.5. It essentially
says that SPE solutions converge with order accuracy to QGS solutions in the limit
of zero Rossby number, if SPE is initialized so that fast solutions are suppressed.
The bulk of the proof of Theorem 4.5 is in obtaining an energy estimate for the
ageostrophic velocity and density that allows growth only on the long time scale.

The Rossby number for global circulations can be large enough that the QGS
soluti on has significant error, and a correction term may be useful in such settings.
In 5 we derive an equation (5.10) for the first-order correction to the QGS solution.
This equation plays the same role at the first order as the vorticity equation in the
QGS model. Finally, in 6, we verify the accuracy of the formal approximation to
first order, obtained by adding this first correction term to the QGS solution. We
prove that the improved approximation is within order 2 of the SPE solution, again
with assumptions on the initial data.

A fairly high degree of regularity is assumed in order to estimate nonlinear terms.
It is likely that this degree could be reduced with further effort. Of course, fairly
general initial data can be approximated by smooth data.

1.2. Preliminaries. We use B for the open rectangular box in R3 described by

{(x, z). < z < < < 0 < < }.

The region B physically represents the principal flow region for our ocean models,
and the surfaces z h and z 0 represent the top and bottom boundaries of the
ocean, respectively.

The standard multi-index notation D 0:0:0xa denotes higher-order deriva-

tives, where c ((1, a2, a3) and I01 j=13 oj.

We use L2(B) for the Lebesgue space of square-integrable functions over B, with
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the corresponding norm

and inner product

Ifl0

We write HS(B) for the Sobolev space of horizontally periodic functions in B, with
generalized derivatives up to order s belonging to L2(B). We will also have need of
the Sobolev space HS,Pr(Bp) of fully periodic functions in the periodic box

{ (x, -1/2 < x < 1/2,-1/2 < < < z < }.
The spaces -ls’per 1 and __s,per Hs,per

"’even t,"p! "’odd (Bp) are (Bp) functions that are even and
odd, respectively, in z. The following theorem describes the correspondence between
gs(B) and the even and odd HS’Per(Bp) spaces.

THEOREM 1.1. For integers s, a function f in HS(B) can be extended to
if and only if all odd z derivatives of f with index less than s are zero on the bound-

._s,peraries z 0 and z h of B. A function f in Hs (B) can be extended to "’odd (Bp) if
and only if all even z derivatives of f with index less than s (including f itself) are
zero on the boundaries z 0 and z h.

We use

for the HS(B) norm. However, Ifl will denote the norm in L(B), that is,
SUPxeB If(x)l. We write C([0,T]; HS(B)), with corresponding norm

Ifl,T sup Ifl
O<t<T

for the space of functions f(x,t) on B [0, T], continuous in time with values in
HS(B).

In our estimates, C is used as a generic constant and may change from line to
line.

2. The quasigeostrophic equation for an ocean model. In this section we
briefly describe the standard formulation of the quasigeostrophic equation for the
motion of a stratified fluid on a rotating sphere. A comprehensive discussion can be
found in the text of Pedlosky [20], where the quasigeostrophic equation is derived
in spherical coordinates. A systematic derivation of the quasigeostrophic equation
in Cartesian coordinates is presented in [22]. Here we derive the quasigeostrophic
equation from an ocean model in a similar way. Our governing primitive equations
(PE) of motion for oceanic flow are

(2.1)
Du
Dt fv -qox

(2.2)
Dv
D--- + fu -y,
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(2.3)
Dw g+ o= -z,Dt 00

(.4) V.u O,

(2.5) D0 0
Dt

In these equations t is time, the Cartesian coordinates x,y, and z are directed east-
ward, northward, and upward, respectively, and u (u, v, w) are the correspond-
ing velocities. 7 (Ox, Ou, Oz) is the gradient operator and D/Dt is the material
derivative Ot + u.V. The Coriolis parameter f is 2Ftsin0, where is latitude and
gt 7.3 x 10-5sec-1 is the angular velocity of the earth. The Boussinesq approxima-
tion has been made, and the potential 9 equals p/oo, where p is pressure and 00 is a
reference density. We define (z) to be the (known) background density profile,
which we assume to satisfy z < 0,0 _< z _< h, and p p(x, y, z, t) to be the departure
from . Similarly, we let represent the departure from the background potential
(z). Therefore we have

+ +
2.1. The scaled primitive equations (SPE). The primitive equations are

made nondimensional with the following characteristic scales:

x Lx’, y Ly’, z Hz’, t t’,

Zt Uzt V Uv W .%H.w
oofoU______Lp,, foUL’.P’ P gH

The Rossby number s U/foL is the fundamental ordering parameter in the
forthcoming asymptotic expansion. A secondary ordering parameter is the scale ratio
of p to . This ratio is assumed to be , that is, we assume

pofoUL
gH

Thus the density expressed in the nondimensional quantities ’ and p’ is

P(’(z) + p’).

We make the usual -plane approximation f fo + 0Y, where f0 is the Coriolis pa-
rameter at a central latitude 80 of the region, y-(8 Oo)ro is the northward Cartesian
coordinate, r0 is the earth’s radius, and 0-2 cos Oo/ro is the northward gradient of

f at 80. In accordance with this approximation for f, we assume that L/ro is O().
Then defining

cot 8o L

we write

f fo 1+-- fo(l+efloy’).
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Substituting the above scales into (PE) and leaving off primes, we have

Du
(2.6) -- (1 + /3oy)v -x,

Dv
(2.7) e-- + (1 + eoy)u -y,

(e.8)

(2.9) V.u 0,

Dp
(2.10) -- + wOz 0.

In (2.8), the parameter 5 represents the scale ratio H/L. We consider the case in
which the rtio 5 approaches a fixed positive value in the limit as approaches zero,
so without loss of generality we assume 5 1. We will refer to the nondimensional
equations (2.6)-(2.10) as SPE (scaled PE). In 4 we prove an existence theorem for
these equations in a rectangular box with rigid upper and lower boundaries.

2.2. The quasigeostrophic system (QGS). QGS is derived by performing
a singular perturbation expansion of SPE over s. The region of flow is defined by
0 < z < h, with the rigid boundary condition w 0 on the upper and lower surfaces
z h and z 0. Assuming solutions U() (u(), p()), and substituting the formal
expansion U() U() +U(t) + 2Il(e) into SPE, the zero-order equations in are

(2.11) v(0) (0) u(0) _(0) p(0) _(z0) w() 0

Incompressibility and the fact that the zero-order horizontal velocity is divergence
free imply W(z) 0. The last equation in (2.11) then follows from the rigid boundary
condition. Equations (2.11) are referred to as the geostrophic equations.

The first-order equations in are needed to determine the evolution of (0). We
will use the notation

d =- Ot + u.V Ot + u()O, + v()O
for the zero-order (geostrophic) material derivative. Then the first-order equations in
s are

(2.12) dau() oyv() v(1) -(),

(2.13) dgv() + oyu() + u(t) -c(yt)

(2.14)

(2.15) 7"U(1) 0,
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(2.16) dgp() + w(1)z O.

The idea now is to eliminate (1) between (2.12) and (2.13) by cross differentiation,
then to eliminate the resulting first-order horizontal divergence u( / v(1) with (2.15)
and (2.16). Taking the two-dimensional curl of the first-order horizontal momentum

equations (2.12) and (2.13), and using u() + v(v) 0, as well as (2.15), we find

0.

Defining A(z) -1/z, and suming A(z) is bounded away from zero on [0, hi, we
have from (2.16),

since daA 0. Expanding the last term in (2.18), we have

(.) ((p(0))) (p(0)) + 0)(p(0)) + 7)((0)),
Using the zero-order equations (2.11), we can rewrite the last two terms on the right-
hand side of (2.19) as -Au) v) and Av)u?), respectively. So (2.19) simplifies
to

and (2.18) becomes

(dg(zp())) da(zp())z,

(:.e) (’) d(()).
Plugging (2.21)into (2.17) results in

Equation (2.22) represents conservation of potential vorticity

o) o) ((o)) + Zo
along material paths. Expressing everything in terms of (o), we have

Equation (2.23) is the well-known quasigeostrophic equation. QGS consists of (2.23)
with initial and boundary conditions on (0). om (2.16) and the third equation in

(2.11), the condition on (0) for rigid boundaries is dg) =0, since this forces w() 0.
Short-time existence of solutions that are periodic in x and y and satisfy the rigid hor-
izontal boundary condition dg) =0 on the upper and lower boundaries w shown
by Bennett and Kloeden in [3]. The quasigeostrophic model with periodic horizontal
boundary conditions has been used, for example, by Charney [11] for analytic studies
of geostrophic turbulence, and by Bretherton [6] for numerical mid-ocean modeling.
We will use periodic horizontal boundary conditions with the simpler, rigid, upper
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and lower boundary condition (z) =0. This simpler (Neumann) boundary condition
has been used in [13] and [5] to demonstrate long-time existence of solutions for a
reduced system called the simplified quasigeostrophic equations. This simpler bound-
ary condition is equivalent to the more general boundary condition dg(z) 0, if we

assume (z) is initially zero on the boundary. In 3 we provide a new proof for the
existence of QGS solutions satisfying this simpler boundary condition.

3. An existence proof for QGS. In this section we will prove an existence the-
orem for the quasigeostrophic equation in a rectangular box with periodic horizontal
boundary conditions and rigid horizontal boundaries at top and bottom. We define
the box-shaped region B E (0, h), where E (-1/2, 1/2) (-1/2, 1/2), and Ez will be
used to denote the horizontal cross-section E {z}. All functions and partial deriva-
tives considered here are assumed periodic with period 1 in both horizontal directions
for each fixed z and t. For each time t a constant can be added to the pressure poten-
tim (0) without affecting the system, so we will assume that fB (0) 0. We saw
in 2 that rigid horizontal boundaries E0 and h imply that the zero-order vertical
velocity w() in region B is identically zero. From (2.16), rigid boundary conditions on
E0 and h imply dgp() 0 on these boundaries. We impose the stronger (Neumann)
boundary condition p(0) 0. Omitting superscripts, we write the periodic QGS as

(3.1) v=x,

(3.2) u -y

(3.3)

(3.4) vx uy ()p)z w in B,

wt + u.Vw -0v in B [0, T],

(3.6) p 0 on E0 [0, T] and Eh [0, T],

(3.7) w(x, t 0) w0(x) in B at t 0,

where x--(x,y and [0, T] is the time interval 0 _< t _< T. We will prove a global
existence theorem for the periodic QGS problem (3.1)-(3.7). All functions in this
section are zero-order terms from the asymptotic expansion of SPE discussed in 2. In
this section, for example, u represents the zero-order velocity (u(), v(), 0). We leave
off the superscripts here because superscripts are reserved for sequence iterations in
the upcoming existence proof.

3.1. Local existence of solutions. We begin with the following short-time
existence theorem.

THEOREM 3.1 (QGS short-time existence). If the initial vorticity wo is in HS(B)
for some s >_ 3, with Iwols <_ M, then there exists a time T* > 0 and a solution w in
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C([0, T*]; HS(B)) to QGS, where T* is defined by (3.18) below and depends only on
M, B, , and o. The vorticity w satisfies the estimate Ilwlls,T. <-- 2M.

Proof. From (3.1)-(3.4) and (3.6), notice that is determined by w at each time
t through the boundary value problem

Cxx + Cyy + (ACz)z=w inB,

(3.8) Cz=0 onEo and Eh,

=0.

Let o be the initial pressure corresponding to wo. Then consider the iteration for
k 0, 1,2,...,

k k k k+ +
(3.9) k 0 on E0 and :’h

0

inB,

u

where (t) wo and (t) o. With each iteration k, the kth vorticity iterate k
is used to solve the Neumann problem (3.9). The kth velocity iterates are determined
from Ck by (3.10), and these velocities are used in (3.11) to get the (k + 1)th vor-
ticity iterate k+l. We assume that the initial vorticity wo satisfies the compatibility
condition fB Wo 0 for the initial Neumann problem. It can be checked that this
condition persists in time under (3.11), i.e., fB k+ldx has time derivative zero, and
therefore remains zero. This is necessary so that Ck can be determined from (3.9).

We will need the following lemma.
LEMMA 3.2. /f the initial vorticity wo is in HS(B) for some s >_ 3, and Iwol _< M,

there exists a time T > 0 defined below by (3.17) and depending only on M, B, A,
and o, such that for each nonnegative integer k, the kth vorticity iterate k is in
C([0, T’]; HS(B)) and satisfies [k(t)l s

_
2M for 0 < t <_ T’.

Proof. Since I(t)ls Iwo[s <_ M, the statement in the lemma is true for k--0.
Arguing by induction on k, we assume Ikl _< 2M for some k > 0. From elliptic
theory and (3.9), we have the estimate

where the positive constant Co depends only on B and . Now from (3.1), (3.2), and
our induction hypothesis, we can write

(3.12) lUk[s+l <--[als+2 <-- 2COM.
The linear vorticity equation

(3.13) + u -f ov
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has the unique solution k+l in C([0, T’]; H(B)); this degree of regularity is evident
from the following discussion. We differentiate (3.13) by Da, [a] _< s, and write
for Dk to get

O+

which we may rewrite as

(3.14) Ot

where

+ Da (uk.vk+l) _0vk

+ uk.DV+1 -F /0v

Fa D(uk’Vk+l) uk’DaVk+l

Since V. u 0, this is equivalent to

F DV.(ukk+l) uk-DV+1

We will estimate F with the calculus inequality

(3.15) ID’(fg) fDaglo <_ C( Ifls Igl + Vf ]gs-1 )
This inequality is well known for f Hs C and g H C. We need it here with
g Hs- C. The proof of inequality (3.15) can be found in [16] and is based on
the Gagliardo-Nirenberg inequalities. It can be modified with a passage to the limit
to show that it holds for g Hs- C. (Notice that the individual terms on the left
side of (3.15) may not be in 52.) Letting f u, g +, and replacing Da with
DaV and s with sT 1, we require uk Ss+l(B) Ca(B) and k+ US(B) CO(B).
By Sobolev’s lemma, this holds provided s > 3/2; therefore, from (3.15) we get

+ + Vul+
Again by Sobolev’s lemma, since s 3, there is a positive constant C such that

k+l Ck+l and Vukl Cuk+.
Combining these estimates and (3.12) results in

(3.1) F,0 C+1,
where we have defined C2 4MCCoC. Multiplying (3.14) by + and integrating
over B gives us

dt. o + u’V.+. .+ -F.. + o,+
The second term is zero by the divergence theorem and the periodic boundary con-
ditions. Now taking absolute values, applying the Schwarz inequality, summing over, Il , and using estimates (3.12) and (3.16), we have

dl+l < C. I+1 + Cdt
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where C3 2oCoM. Recalling 0&+l Cd0, we solve this differential inequality to get

s C2

We want to choose T’(M) so that if 0 _< t _< T’, this remains less than 2M. By defining

(3.17) T,= 1

22 In I + M + (C3/C2)

we see that Ik+l(t)[s <_ 2M when 0 _< t _< T’, and Lemma 3.2 is proved. []

Now we find a time interval for which the sequence of vorticity iterates {k(t)}
converges. From (3.13), the linear vorticity equation for the difference }+1_} is

__.0 (k+l k)
__

uk.V(k-t-1 k) _(Uk uk-1).vk 0(vk+l
Ot

Multiplying by (k-l-i
results in

k, integrating over B, and applying the divergence theorem

1 d ]k+l k 2 (2 dt 10 uk uk-1)’Vk 0(vk+l vk), k-t-1

therefore, we have

kl0 < (0 --Ivklo)Iuk uk-ll0 < (0 --Ivklx)IkA-1

By Sobolev’s lemma, since s >_ 3 and k E HS(B), there is a positive constant C4 such
that Iv(kl <_ C41(kl;; therefore, we can write

d kA-1 k k k-1

By Lemma 3.2, [k18 -< 2M for t _< T and we have

d[k+l klo < (2M + o)C4 [(k k-l[o,dt

provided that t _< T’. Finally, we solve this differential inequality to get

[[k/l [[0,T < (2M + o)C4T I1k

for any time T such that 0 < T _< T’. Choosing T* > 0 to satisfy

(3.18) T* < min { T’, [(2M -4- o)C4]-1 },
we have

which implies that {k} is a Cauchy sequence in C([0, T’l; H(B)). Let weC([O,T*];
H(B)) be the limit of {k}. We need to show that w is in C([0,T*]; HS(B)).

For. 0 _< s’ < s, we have the Sobolev inequality
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where we have again used Lemma 3.2. Since {k} is Cauchy in C([0, T*]; H(B)),
the above inequality shows that {k} is Cauchy in C([0, T*]; Hs’ (B)), for all s’ with
0 < s’ < s. Thus w is in C([0, T*]; Hs-I(B)). It follows from the convergence of the
k and elliptic theory that Ck converges in C([0, T*]; Hs+I(B)) to a limit , and uk

converges in C([0, T*]; HS(B)) to a limit u. It is now a simple matter to pass to the
limit in (3.13) and conclude that (3.5) is satisfied, along with (3.1)-(3.4). Thus w is
a solution of the QGS initial value problem.

For each t such that 0 < t _< T*, {k(t)} is bounded in HS(B) and therefore
contains a weakly convergent subsequence {k(t)}, which must converge to w(t).
Then we necessarily have

[w(t)l s <_ liminf I(t)18 <_ 2M,

and can conclude that w is in L([0, T*]; H(B)). It remains to show the continuity of
Iw(t)18 in time. We will use vorticity equation (3.5) and the method of characteristics.

Differentiating (3.5) by D, [a < s, we get

(3 19) Owa
0-- + u.Vw -F,

where

F DaV (uw) u.DaVw + lov

As before, since u is in H+I(B)[CI(B) and w is in HS(B)C(B), the calculus
inequality (3.15) shows that IFIo,T. is bounded. Now by the method of characteristics
and the Duhamel principle, the solution of (3.19) is

t) (x(0; x, t), x, t),

Y(,;x,t) z, dT,

where (X(T;x,t), Y(T;x,t), Z) is the position at past time T of a particle with
position x at time t. That is, for a fixed time T < T* and position x, the curve

(X(T; x, t), Y(T; x, t), z) is uniquely determined by the two-dimensional system of or-
dinary differential equations

dX dY
d--- u(X, Y, z, t) d-- v(X, Y, z, t)

with initial condition

(X(T; x, -), Y(v; x, T), z) x.

Therefore, for any two times t and t less than T*, we have

(3.20)

Iw.(t)- w(t’)lo < It- t’l suP0<t<T* ]F(t)lo

+[wo,(X(O;x,t), Y(0;x,t), z)
-wo(X(O;x,t’), Y(0;x,t’), z)10



VALIDITY OF THE QUASIGEOSTROPHIC MODEL 1035

We showed above that IFalo,T. is bounded, so the first term after the inequality
in (3.20) goes to zero as t approaches t. For the second term after the inequality,
we use the fact that the set of continuous functions on the closure of B is dense in
L2(B). Since the distance between the two points is bounded by It- t’ IlulI,T., we
see that if w0a is a continuous function on the closure of B, then the second term
after the inequality approaches zero as t approaches t. Since arbitrary w0a can be
approximated as closely as desired in L2(B) by such a function, it follows that the
same is true in general. Hence wa is in C([0,T*]; H(B)) for lal < s, and therefore
w is in C([O,T*];HS(B)). Since Lemma 3.2 guarantees IIknlls,T <_ 2M for each n,
then w must also satisfy IIwlIs,T. <_ 2M. This completes the proof of Theorem 3.1. U

3.2. Global existence of solutions. To show that solutions of QGS exist up
to arbitrary time T, we need a global estimate on the QGS vorticity w. Getting such
a global estimate requires the use of a special L estimate (see (3.25) below) on the
second derivatives of the QGS pressure . This estimate is derived in Appendix A
and results from the fact that the QGS pressure is determined by the QGS vorticity
w through the elliptic problem (3.8).

LEMMA 3.3. There exists a continuous function K(t) defined for 0 < t < cx3 that
depends only on Iwols, such that if w e HS(B), some s > 3, is a solution of QGS for
O < t < T, then

(3.21) Iw(t)l _< K(t), 0 <_ t <_ T

Proof. We will first use the a-derivative vorticity equation (3.19) to estimate

Iw(t)ls in terms of bounds on the initial data w0 and density and velocity gradients.
At each time t, O<_t<_T, the vorticity w defined by (3.4) determines the pressure

through the boundary value problem (3.8). We assume that w0 is given so that

fS w0 0. We noted at the beginning of the proof of Theorem 3.1 that this condition
persists in time, so that the compatibility condition fs w 0 for (3.8) is always
satisfied. From (3.8) we get the elliptic estimate

(3.22) lul + 
Applying the calculus inequality (3.15) to Fa in (3.19) for s, we have

Then using estimate (3.22) and the fact that IVul + IVpl, we get

(3.23)

Multiplying (3.19) by w, integrating over B, and using estimate (3.23) results in

dt ,, oo o
/

s

Upon solving, we have

(3.24)
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where C depends on /30 and T. To complete the argument, we will use a time-
independent estimate for IVul + IVpl in terms of the L norm of the initial
vorticity, with a slight dependence on the Hs norm of vorticity. In Appendix A we
derive the estimate

IVul + IVpl C 1 + log+

where C is a universal constant and log+a log a if a

_
1, log+a 0 otherwise.

Estimate (3.25) follows from the boundary value problem (3.8), and its derivation is
similar to the one presented in [2] for the free space problem. We use (3.25) here in
the same way Kato and Ponce [15] use a similar estimate to prove existence of global
solutions for the two-dimensional Euler equations. In the right side of (3.25) we want
an L estimate for w in terms of w0 on the finite time interval 0

_
t

_
T. From the

vorticity equation (3.5) it can be shown that

(3.26)

Now b(1 + log+

(3.25) to get

0<t<T.

a/b) is monotone increasing in b, so we can use (3.26) in estimate

IVulo + IxTpl <_ C lwol

Now using estimate (3.24) to eliminate

[Vu(t)lo + IVp(t)l < C l,o],,

By the Gronwall lemma, we then have

log+ ]

results in

(IVu( )l

Substituting this in the right-hand side of (3.24), we find

(3.27) I (t)l. <_ C exp { C (eC@lSt- 1)} K(t).

Notice K(t) is defined for all time t, and depends only on {wo}s. This completes the
proof of Lemma 3.3. [3

We now demonstrate that long-time solutions to QGS exist.
THEOREM 3.4 (QGS global existence). If wo is in HS(B) for some s >_ 3, s

arbitrary, then given any time T > O, there exists a solution w E C [O, T]; HS B to
QGS.

Proof. By the short-time existence Theorem 3.1, there is a time T (lwols) > 0 and
solution w E C([0, T1]; HS(B)) to QGS. If T1 is greater than or equal to T, we have
the desired solution. Otherwise, define

KT- max K(t),
O<t<T

where K(t) is defined by 3.27. Then ]w(T1)ls is bounded above by KT, and we again
invoke the short-time existence Theorem 3.1 to continue the solution to time, say,
T1 + T2. Notice that T2 depends only on the global bound KT. Again, if T1 + T2 is
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greater than or equal to T, we have the desired solution. Otherwise, by the global
estimate (3.21), we have

Iw T1 -t- T2 s KT

and by the short-time existence theorem we can continue the solution to time T1 / 2T2.
We can repeat this argument until T1 + sT2 is greater than T. Cl

3.3. Initial conditions on the boundary. With restrictions on A, QGS solu-
tions w have the property that if wz is initially zero on the boundary, it remains so.
We want to establish this result for use in our comparison of QGS and SPE solutions
in the next section, where we assume that A 1 (linear density profile) and that the
QGS data satisfy the boundary condition w0z 0 on Eo and Eh. To this end, we look
at a periodic quasigeostrophic system (PQGS) consisting of equations (3.1)-(3.5) and
(3.7), in the periodic domain

{ (x, -1/2 < x < 1/2,-1/2 < < < z < }.
All PQGS functions are assumed periodic in z with period 2h, with the same horizontal
periodicity as QGS functions. With only minor modification to our QGS proof, we
have the following existence theorem for PQGS.

per y_ys,perTHEOREM 3 5 (PQGS global existence) If wo is in for someeven
s >_ 3, then given any time T > O, there exists a periodic solution wper E C([0, T];

er l:
yen ,’P]) to PQGS. The corresponding PQGS pressure

(Bp)) is determined by wper, at each time t, 0<_ t <_T, through the periodic elliptic
problem

/kCPer wper in Bp

In the following discussion, we will apply Theorem 3.5 to QGS solutions for the
special case A 1 and

(3.29) Woz 0 on Eo and Eh.

We see from (3.8) that the initial pressure 0 is determined by w0 from

A0--w0 inB,

(3.30) oz=0 on Eo and Eh,

=0

Then the initial boundary condition (3.29) can be written as

(3.31) o 0 on Eo and Eh.

Let C([0, T]; H5(B)) be the QGS solution with initial data 0. Now (3.31) and
,.hPer 5,per(3.6) imply that we can make the even periodic extension ’0 Hewn (Bp) from

(cf. Theorem 1.1). Let CPr C([0, T]; H2(B,)) be the PQGS solution with initial
data er, guaranteed by Theorem 3.5. Then by the uniqueness of QGS solutions,
must agree with in B. Notice from equations (3.1)-(3.a) that the PQGS velocity
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and density corresponding to Cper are in [_[4,per (Bp) and r-r4’per
--even odd (Bp), respectively. We

summarize with the following corollary to Theorem 3.5.
COROLLARY 3.6. Suppose we are given 0 in H5(B) such that

(3.32) 0z 0z 0 on E0 and Eh.

For 1, let E C([0, T]; H5(B)) be the QGS solution with initial data 0.
for each time t, 0 <_ t <_ T, the QGS pressure satisfies

Then

(3.33) Cz=zz=0 on Eo and Eh.

More generally, this holds for A satisfying Az 0. With this restriction on A, a
consequence of the corollary is that if Wz is initially zero on the boundary, it remains
zero there. Notice we could just as well have expressed (3.33) as p pz 0 on E0
and Eh, due to the QGS identity p =_ .

4. The QGS solution as an approximation of SPE solutions. In this sec-
tion we show that SPE solutions converge with O() accuracy to QGS solutions if
fast solutions of SPE are appropriately suppressed. We will prove this for the case of
a linear density profile and zero/-factor. The SPE system with initial and periodic
horizontal boundary conditions is then

Du
(4.1) - v -x in B [0, T],

Dv
(4.2) -- + u -y in B [0, T],

Dw
(4.3) -- + p - in B [0, T],

Dp
(4.4) -- w 0 in B [0, T],

(4.5) V.u 0 in B [0, T],

(4.6) u(x, t 0) u0(x) in B,

(4.7) p(x,t= 0)= p0(x) in B,

(4.8) w=0 onE0[0, T] and Eh[0, T].

We assume fB 0 for uniqueness of solutions. Short-time solutions for this system
can be shown to exist by making a slight modification (for the Coriolis terms) of a

proof due to Valli in [25]. The factor can be treated as a time scale, and we are

guaranteed short-time solutions of SPE up to some time T*() > 0 for each fixed value
of . For each , the time T* depends only on a bound on the H8 norm of the initial

velocity and density. We state this formally in the following theorem.
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THEOREM 4.1 (SPE short-time existence). If initial data U0--(u0, P0) is in
HE(B) for some s > 3, with IUols < M, then there exists a time T* > 0 and a solution
U=_(u,p)eC([O,T*];HS(B)) to SPE. The time T* depends only on M, B, and .

The corresponding SPE pressure E C([0, T*]; Hs+I(B)) is determined by U and
its first derivatives, at each time t, 0 _< t <_ T, through the elliptic problem

(4.9)

I"

A v-u-p-e[u.Vu +
Cz=-p onE0 and

uu.Vv + Uz.VW] in B,

The equation for A in (4.9) is obtained by taking the divergence of momentum equa-
tions (4.1)-(4.3), and applying the incompressibility condition (4.5). The Neumann
boundary condition follows from (4.3) and (4.8). It can easily be verified that the
compatibility condition for (4.9) is satisfied.

Valli’s argument can also be used to prove a short-time existence theorem for a
periodic SPE system (PSPE) consisting of (4.1)-(4.7) on the periodic domain Bp,
defined by (3.28). This theorem is analogous to Theorem 3.5 for the periodic QGS
equations.

T TPerTHEOREM 4 2 (PSPE short-time existence). If periodic initial data "o
per .per per r._s,per (1s per ..per(uer,p0 in Bp is given such that uo vo are in ..even pj, and .wo o are in

s’pcr(" for some s > 3, with ]UCr]dd kP] < M, then there exists a time T* > 0 and a
solution Uper (uper,/)per) to PSPE such that uper, are in C([0, T* rrs,per( r

and wper, are in C [O, T*]; oddpper _[s,per (Bp)). The time T* depends only on M, Bp,
and .

Note that the corresponding PSPE pressure per E C([0, T*]; H_3+ldPer(Bp)) is
determined by Uper and its first derivatives, at each time t, 0<t <_T, through a
periodic elliptic problem similar to (4.9).

4.1. Initial conditions on the boundary. If we initialize SPE such that U0(e)
is in Ha(B) and Uoz, UOzzz, voz, Vozzz, wo, WOzz, po, and pOzz are zero on the boundaries
0 and Sh, then by Theorem 1.1 we can make the appropriate periodic extensions
of U0(e) to Bp. By uniqueness, the resulting SPE and PSPE solutions (guaranteed
by the above existence theorems) must agree in B for each e. Consequently, the
higher boundary conditions persist for the SPE solutions. We state this formally in
Corollary 4.3 below. Notice that initializing with P0 0 on Eo and ’h forces the
condition 0z -0 on S0 and Eh, due to the boundary condition 0 -Po in (4.9).
Thus the initial SPE pressure is consistent with the initial PSPE pressure, which is
an even periodic function of z in Bp.

COROLLARY 4.3. Suppose we are given data U0() in H4(B) such that

UOz ZOzzz O VOz VOzzz 0
(4.10)

wo woz O, Po Pozz O on So and ’]h.

Let U(e) e C([0, T*]; H4(B)) be the SPE solution with initial data U0(), guaranteed
by Theorem 4.1. Then for all time t e (0,T*), the solution U satisfies

Uz Uzzz 0 Vz Vzzz 0
w Wzz O, P Pzz 0 on So and ’h.
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4.2. Suppression of fast-scale motion. On some time interval [0, T], if we
want to compare QGS solutions with SPE solutions as e approaches zero, we must
initialize SPE in a way that guarantees existence of SPE solutions up to time T for all
e near zero. In general, due to the factor on the time derivative terms in (4.1) and
(4.2), SPE solutions will contain motions that vary on the fast time scale t/. QGS
solutions vary on the .(slow) time scale t, comparable by nature of the QGS scaling to
the rotation period of the earth. There is a simple condition on the SPE initial data
that is necessary and sufficient for suppression of fast-scMe motion.

THEOREM 4.4 (SPE initialization). If the initial data Uo() is bounded in
Hs+I(B) independently of, then SPE solutions U(e) have time derivatives Ut() ini-
tially bounded in Hs (B) independently of if and only if there exists 2 in H8+1 (B)
such that

(4.11)
[o -} o(e), Io + %1,, o(),

Ipo + g’l o(), Io1,, o().

Proof. First we want to show that if (4.11) holds, then the initial data satisfy

(4.12) Ivo ols 0(), luo + oyls 0(), [Po + Ozl O(e),

where o is the initial pressure determined by the initial data Uo. From (4.9) we have

[no o + u0 .Vvo + uo .V o](4.13) A0 in B,

and if we substitute (4.11) into (4.13) for o, uo, and p0, we get

(4.14)

Since we know Uo() is bounded in H+(B) independently of , the right-hand side
of (4.14) takes care ofthe term from (4.13). Also from (4.9) and (4.11), on the
boundary of B we can apply the trace theorem for Sobolev spaces to get

(4.15) ICz 01-/,o O().

Adjusting by a constant does not affect (4.11), so we can assume fB O. There-
fore we have

(4.16) f.(- 0) 0,

and by elliptic theory, (4.14)-(4.16) imply

(4.17) I 01+ O(.

By virtue of (4.17), initial conditions (4.12) follow from (4.11). Now using (4.12) with
SPE (4.1)-(4.4), we have

(4.18)

[vo o1 O(e),

=[po+ol=O(e), e - t=0

luo + o,1,, O(z),
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These equations imply that [(DU/Dt)t=ol8 is bounded independently of . By as-
sumption, U0 is bounded in Hs+I(B) independently of . Thus [(Ut)t=ols is bounded
independently of . Reversing the argument, (4.18) holds if we assume [(Ut)t=ol is
bounded independently of

4.3. The convergence theorem. Now we are ready to state and prove our
main theorem, which tells us when QGS solutions are valid approximations of SPE
solutions, with error on the order of . We choose the initial data for the SPE
solution close to data of QGS type, in accordance with Theorem 4.4, although we do
not directly use the conclusion of Theorem 4.4 in the proof of the main theorem.

Notice for the remainder of the paper, we use, for example, u(9) instead of u()

for the geostrophic velocity.
THEOREM 4.5. Assume we are given time T > 0 and initial QGS velocity and

density U(og) (U(og) p(0)) in H6(B) of the form u(0g) -() (g) 0), p(og) -(0gz
for some pressure function (og) satisfying (3.32). For -1 and fo-0, let U()

(u(g),p(9)) in C([0,T]; H6(B)) be the QGS solution with initial data U(og). We con-
sider initial SeE data Uo() -= (no(e), Po(e)) in Hh(B) satisfying (4.10), such that

(4.19) IUo(e)- U(oa)14 O().

Then there exists o > 0 and solutions U(s) =- (u(e), p(e)) in C([0, T]; H(g)) to SPE
(4.1)-(4.8) for all e <_ Co, which converge to the QGS solution in C([0, T]; H4(B)) with
0() accuracy, i.e.,

IU() u(g)I4,T O()

Proof. The theorem holds for the more general case /o >_ 0, but for simplicity
we assume 0 0. We write SPE solutions U() as the sum of geostrophic and
ageostrophic parts, i.e., U(e) _-- U(g) + eu(a)(e), where U(a) (u(a),p(a)). The main
part of the proof is to show the following.

CLAIM 4.6. With the initialization specified above, there exist o > 0 and constant
M such that, as long as solutions U(e) to SPE exist in Hh(B), then IU(a)(e)]4,T _< M
holds uniformly for 0 < _< 0, where T* <_ T is the time of existence. The bound M
depends only on 0, norms IC(0g) 16 and IU(oa) ()14 of the initial data, and the final time
T.

Once we have verified this assertion, the theorem is proved with the following
argument. In the short-time existence proofs by Valli [25] and Temam [24], it is
shown that as long as solutions exists, they satisfy a certain a priori estimate (see
pp. 45-47 in [25] and inequality (1.9) in [24]). We can modify these arguments to
get an improved estimate (see (4.20) below) for the growth of IU()Ih, in terms of the
"low" norm IU()I3. This involves use of calculus inequality (3.15) to get an estimate
involving IVU(.)I, which can be replaced by IU()I3 using the Sobolev lemma. The
reader may wish to confer with Chapter 2 of [17] for details on the use of the L
norm of velocity gradients for determining the maximal interval of existence of Hs

solutions for the incompressible Euler equations.
With this modification, it follows that as long as solutions U(e) to SPE exist in

HD(B), they satisfy the growth estimate

d
(4.20)
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where C(s) is O(s-1). Using (4.20) with Claim 4.6, as long as SPE solutions exist we
have

where Ks sup IU0(s)15 exp {C(s)(1 + IU(g)13 + M)t}.
O<t<T

Using the global bound Ka with the short-time existence theorem establishes the
existence of large-time SPE solutions in C([0, T]; H5(B)) for each s < so. Now having
established this, we can use Claim 4.6 to conclude that SPE solutions U(e)= U(g)+
sU(a) (s) converge in Hd(B) to the QGS solution U(g) to O(s).

Proving the claim, that IU(a)()14 remains bounded as s approaches zero, is dif-
ficult because of the factor of in the time derivative terms above. Our method
for getting the desired energy estimate for U(a)(s) will require use of the quasi-
geostrophic potential vorticity conservation equation (2.23). This entails taking the
two-dimensional curl of the horizontal equations of motion (4.1) and (4.2). As in the
standard derivation of the quasigeostrophic equation (2.23) in 2, this process annihi-
lates the dominant Coriolis force in the horizontal momentum balance, thus allowing
us to estimate the higher-order (ageostrophic) term U()(s). Thus estimating the
ageostrophic motion is brought about by considerations of vorticity dynamics, and we
should expect the quasigeostrophic equation (2.23) to come into play somewhere in
the argument. This will be explained in detail below.

For Claim 4.6 to hold, we must require that the initial ageostrophic motion is given
such that ]U(0a) (s)14 is bounded uniformly in s. We can see that this requirement is

() SU(oa) into initial condition (4.19).satisfied by substituting, for example, u0 -W0y +
In the derivation of the energy estimate for U(a) (s) below, we encounter boundary in-
tegrals (see (4.32) and (4.33)) that must vanish in order for U(a) (s) to remain bounded
as s approaches zero. We need the special QGS and SPE initial boundary conditions,
as specified in Corollaries 3.6 and 4.3, to conclude that these boundary integrals are
zero.

We begin the energy estimate derivation for U(a) (s) by differentiating equations
(4.1)-(4.4) by D, substituting U() + sU(a) (s) for U, and uing the zero-order rela-

tions (3.1)-(3.3). Using the subscript notation u(a) for Du(), etc., we have

(4.21) / s
Dt xDt

(4.22) Dt + s
Dt J +

(4.23) (Dw() ) p(,) _D,(’)s Dt’ +

(4.24)

Multiplying (4.21)-(4.24) by u(aa), v(aa), w(aa), and p(a), respectively, then summing
and noting the obvious cancellation, we have



VALIDITY OF THE QUASIGEOSTROPHIC MODEL 1043

(4.25)

"Dt + ’Dt ] + Dt

The term for example, in becomes after integrating
over B; therefore, if we expect to get
approaches zero, we must show that the sum of the "large" terms (those terms with
no ) in (4.25) is actually O(). We demonstrate shortly that the right-hand side of
(4.25) v&nishes upon integration. So we concentrate now on the remaining large terms

(4.26) + +

Our approach is to substitute for v), u), and p) in (4.26) from (4.21)-(4.23),
and use conservation of potential vorticity to eliminate the resulting large terms. We
introduce the notation

d u()0 + v()O + w(a)O

and represent the materil derivative as D/Dt do + d, where we recall the
definition of the geostrophic operator do Ot + u()0 + v(o)0. Using this notation
and making the aforementioned substitution, after the obvious cancellation (4.26),

(4.)

-’{ (Du(a)Dr)(D)Dr)(g) _(D)(a) Dt(tl) Dw(a)

When we integrate by parts, we will move a derivative from the ageostrophic pressure
occurring in the first three terms of (4.27), onto the geostrophic quantities dov(o)
-dou(o) and -dop() to form a potential vorticity term. This term is zero by con-
servation of potential vorticity (i.e., the quasigeostrophic equation), and the related
boundary term is zero by our periodic boundary conditions. The details are shown
below.

So we have eliminated the lrge terms in (4.27), but at the cost of acquiring terms
like

(4.28) (Du()) (Dr(O))(Du()) ( ) (Du()) ( )Dt Dt a Dt dov(O) + Dt dv()

which contain high spatiM derivatives of U(a). We cn properly estimate the first
term on the right-hand side of (4.28) because a derivgti can be moved from u()



1044 ALFRED J. BOURGEOIS AND J. THOMAS BEALE

to the (smooth) purely geostrophic part (dgv()),. This is described below in the
discussion for estimating expression A2,a. The second term on the right-hand side of
(4.28) will cancel with another term from (4.27) after a further substitution. In (4.27)
we substitute for Da(a) in the fourth term, using (4.21), obtaining

Using (4.22) and (4.23) to do the same kind of substitution in (4.27) for

Da) (dau()) and Daa) (dgp(g)),
respectively, we finally rewrite (4.25)

(4.30)

[ Du(a) Dv(a) Dw(a)

Dt
v() day(g) + Dt + u(a)

-va). D(dgv(g) -dgu(g) -dgp(g))

-(u(a)D(a) + v(a)D(() w(a)D()

We will use (4.30) to get an estimate on the growth rate in time of Iu(a)(t)14
Integrating (4.3o) over B, the first term on the right-hand side of (4.30) becomes,
after integrating by parts,

(4.31)

By the geostrophic relation u(g) --v(yg), we can write

and similarly [dgu(g)]y dgu?). Likewise, using u? p?) and via) -pg), we can

write Then by the divergence theorem, (4.3) bco

/Ba)Da(dgv(g)’ -dgu(g)’ -dgP(g)) n ds

+ fI IB a)p [dg(vg)_ g)__ g))] dx,
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where n represents the unit normal to the boundary cOB. The second integral is zero
because the quasigeostrophic (2.23) holds everywhere in B. Due to the horizontal
periodicity of solutions, and since n- (0, 0,-1) on E0 and n (0, 0, 1) on Eh, the
boundary integral reduces to

f/h (:)Da(dgP(9))dxdy //o (aa)Da(dgp()) dx dy

We claim that the integrand in (4.32) is identically zero on E for lal _< 4. When Da

consists only of horizontal derivatives, the integrand is zero due to the QGS boundary
condition (3.6). When D contains at most three vertical derivatives, the integrand
is zero by Corollaries 3.6 and 4.3. (For the case of three vertical derivatives, we dif-
ferentiate the equation for A in (4.9) with respect to z, and apply Corollary 4.3 to
get Czzz--0 on E.) For the remaining case of four vertical derivatives, we rewrite

04z(dp()) 03z(dgp(zg)) (see (2.20)), and then apply the conservation of potential vor-

ticity equation (2.22). (with/0 0 and 1) to get 04z(dp(g)) 03z[dgu(y) dv(xg)],
which is zero on E by Corollary 3.6.

The second term on the right-hand side of (4.30) becomes, after integrating by
parts,

The second integral is zero due to the incompressibility of the flow. Applying the
divergence theorem, the first integral becomes

We claim that the integrand in (4.33) is identically zero on E for lal _< 4. When D
consists only of horizontal derivatives, the integrand is zero due to the SPE boundary
condition (4.8). When D contains at most three vertical derivatives, the integrand
is zero by Corollary 4.3 (zz 0 on E as explained above). For the remaining case of
four vertical derivatives, we use 0(V. u) 0 and Corollary 4.3 to get that 04zw 0
on E.

We proceed with the energy estimate for U(a). To integrate, for example, the
term u(a) (Du(a)/Dt)a in (4.30), we write

u(=) (Du(=) )Dt + u(a) (u. Vu())

Ot + u.

where

(4.34) FI, (u.Vu())- u.Vu(a)

Then the integral of u(aa) (Du(a)/Dt), becomes, after using the divergence theorem
with our boundary conditions,

Dt a L2 2 dt Io + u(a) FI,
L2
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Similarly defining F2,a, F3,a, and F4,a for v(a), w(a), and p(a), respectively, we inte-
grate (4.30) over B for all a, [a[ _< 4, to get

(4.35)

ld{ u(a) 2 v()2 2 2}2 dt Io +1 Io + Iw()lo + IP()Io + Dt
dgv(g)

L

We will obtain an energy estimate for U(a) (t) in H4(B) by integrating (4.35) with re-
spect to time, summing over a, lal _< 4, and applying the Cauchy-Schwarz inequality.
In preparation for the time integration, we rewrite, for example, the term

occurring in the second term of (4.35) as

dt L

Doing the same for the third and fourth terms in (4.35), and integrating the entire
equation with respect to time, we get

(4.36)
2 2 wa) 2 2

AI, + A2,a + A3,a -where

0
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dT

If we define

and sum over a, [al _< 4, the left-hand side of (4.36) becomes 1/2[Y2(t)-y2(O)]. We
now proceed to estimate A,a, i 1, 2, 3, 4, in terms of Y.

By Lemma 3.3, when we apply the Cauchy-Schwarz inequality to expression AI,,
the purely geostrophic terms can be bounded by a constant that depends only on the
H6(B) norm of the initial QGS data; therefore, we have

(4.38) ( /0 )E IAI,l <- C Y(O)+ Y(t) + Y(T) dT

where C depends only on IU(og) 16-
In expression A2,a, terms like (u’Vu(a))a involve fifth-order spatial derivatives

of u(a) when lal- 4, and estimation in H4(B) is tricky. We first consider the easier
case where a3 = 4, i.e., at least one derivative is a horizontal one, say a >_ 1. We
may then integrate by parts once in x, leaving a third derivative of u.Vu(a). The
resulting term can be estimated by CY +CcY2.

When O3 4, estimation is more difficult. We may again integrate by parts in z.
The resulting interior term can be estimated as before, but there are now boundary
terms with integrands such as 03(u.Vu(a)) 04z(dgv(g)). The surface integrals appear
to present a problem because O(u.Vu(a)) involves fourth-order derivatives of u(a)

on the boundaries E0 and Eh. However, these surface integrals can be estimated in
terms of lu(a) 14 due to the boundary condition w 0. The most troublesome term is

with the last vanishing on Eo and Eh. For the surface integrals corresponding to the
two horizontal terms, we can again integrate by parts. After these modifications, each
surface integral involves at most third-order derivatives of u(). Now we know from
the trace theorem for Sobolev spaces that the L2 norm of 03u(a) on the surfaces Eo
and Eh is dominated by [03zu(a)ll, and therefore by lu(a)14

In summary, we obtain

(4.39) IA,I C [Y(T) + ey2(T)]dT.
lal_<4

We can directly estimate A3,a to get

(4.40) IAa,.I C [Y(T) / YU(T)]dT.



1048 ALFRED J. BOURGEOIS AND J. THOMAS BEALE

For A4,a, we need estimates for FI,, F2,a, F3,a, and F4,a. From definition
(4.34) for FI, and calculus inequality (3.15), we have

IF,lo < C(lu[nlVu(a)l / IVullVu(a)13)

and similarly for F2,, F3,, and F4,. Thus we have the estimate

(4.41)

Combining (4.a) with estimates (4.aa)-(4.40) and (4.41), and recalling the defi-
nition (4.a7) for Y, we have

y (t) c y(0) + y(t) + +

Using the inequality ab (5a2/2) + (b2/25), this reduces to

y2(t) C 1 + y2(o) + y2(T) d + y3(T) d7

where we Mlow the constant to depend on the time interval, since it is finite. Raising
each term to the 3/2 power, this becomes

y3(t) _< C [.(1 + y2(0)) 3/2

or using the Hhlder inequality,

3/9.

-t- OOt Y3(T) dT -+- 3/2

Letting Z(t) f y3(T)dT, we have Z’-- y3, which results in the inequality

(4.42) Z’(t) < Co (1 + Z + 3/2Z3/2 ),

In general, this nonlinear growth rate will cause solutions to blow up in finite time.
However, the 3/2 factor allows us to suppress the nonlinear growth term by choosing
small enough so that solutions exist up to any prespecified time T. To verify this,

notice that the solution (t) of the differential equation corresponding to (4.43) can
be expressed implicitly as

(4.44) t= oolnl[( ~)(1+3/2"(0))]=1 + 3/2X X(O)

where the constant Co now also depends on Y(0), i.e., on IU(oa)()14 Recall that

initial condition (4.19) ensures IU(0a)(e)14 is bounded uniformly in e. Finally, letting
X (Z -4- 1) 1/2, inequality (4.42) becomes

(4.43) X’(t) Co (Z -- e3/2X2 ), X >_ I.
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where X(0) is an upper bound for X(0), 0
enough so that

If we choose e0 > 0 small

1 1
(4.45) T

then for each e such that 0 < e _< e0, the solution (t) is defined up to time T* > T.
For each e, solutions X(t) of the differential inequality (4.43) are bounded by the
solution X(t) of the differential equation. Hence there exists a number K, depending
only on Co, X(0), e0, and T*, which uniformly bounds X and X’ on [0, T*] for all e
such that 0 < e <_ e0. From Z y3 and X (Z + 1) 1/2, we have Y (2XX’)1/3,
and we conclude that

(4.46) IU(a)(e)14,T
__
M, 0 < e _< eo,

where i- 2K2/3 depends only on IU(og)16, IU(oa)(e)14, eo, and T.
Thus we have established the claim stated at the beginning of the proof, and

therefore the existence of large-time solutions U(e) in C([0, T]; US(B)) for 0
which satisfy

IU(e)- U(g)I4,T- elu(a)(e)14,T <_ Me.

Therefore the SPE solutions converge to QGS solutions in H4(B) with O(e). This
completes the proof of our main theorem.

5. The first correction to the QGS solution. Our first goal in this section is
to derive an evolution equation for the first correction in e to the QGS approximation
of SPE solutions. That is, we seek an equation that determines the first-order velocity
and density U(1) (u(1),p()) in the formal asymptotic expansion U(e) U(g) +
eV(1) --e2U(2) -- of SPE. We find an equation (5.10) for the pressure field in
the first-order correction analogous to (2.23) for the QGS solution. We then derive
(5.20) for the exact ageostrophic pressure, which is defined as the difference between
the SPE pressure and the QGS pressure. To assess the accuracy of the improved
QGS solution, with the first correction, we need to compare the solutions of (5.10)
and (5.20). We do this in 6, and prove that, if certain initial conditions analogous
to those in Theorem 4.5 are satisfied, then Iu(a)(e) U()I3 is O(e). That is, if we
initialize to appropriately suppress fast solutions, then U(g) / eU(1) provides
accurate solutions of SPE. Recall from 4 that U(e) U(g) + eU(a) (e), and that U(g)

and U() are the same.

5.1. The correction term U(). To obtain an equation for U(), we begin
with the second-order equations in e and imitate the steps used for formulating the
quasigeostrophic equation for U(a) described in 2. Substituting U(e) U() +eU(1)+
e2U(2) +... into SPE (2.6)-(2.10) and equating O(e2) terms, we get

(5.1) dgu(1) + dlu() v(2) _(2)

(5.2) dav() + dv(g) + u(2) =-(v2)
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(5.3) dgw(1) + p(2)= _(z2)

(5.4) V"u(2) 0,

(5.5) dgp(1) + dip(g) + w(2)Oz 0,

where we have assumed 5 1, set 0- 0 for simplicity, and defined dl -= u(1)’V.
Cross differentiating the horizontal momentum equations (5.1) and (5.2), we find

W(z2) 0

where we have used the incompressibility equation (5.4) to replace U(x2)+ v(y2) by

-wz(2). Now recalling the definition (z) -1/z, (5.5) can be written as

w(2) Adgp(1) -t- Adlp(g)

so that

(5.6) [dgv(1)]x- [dgu(1)]
y

Next we use the first-order equations (2.12)-(2.16) to eliminate the first-order terms
U(1) in favor of various spatial derivatives of (g) and (1). Substituting the expres-
sions

(5.7)

V(1) (x1) -- dgu(a)
u(1) _)(yl) dav(a),
w(1) )dgp(g),

into equation (5.6), and noting that

dl -= u(1).V _((1) + dgv(g))oz + ((xl) + dgu(P))Oy + (.dgp())Oz,

we get

(5.s)

Expanding derivatives in (5.8), and using the zero-order relations
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we cancel some terms and rearrange to get

[’() z] +

-(dgu(g)v(g) + (dgu(g)u(g) + (,kd u(g),(g)xy yy g ]Fyz

Setting 1 for the case of a linear density profile, and using (2.11), we can write

(5.9) concisely as

dg(A()) + ,(td)(g)cb(1)v-y,v-x -(tq(xg))((yl)

(5.10) V(dg(=g)).V(=g) + V(dg(yg)).V(y) + V(dg?)).Vg)

An equation similar to (5.10) is derived by McWilliams and Gent (see [19, eq. 4.4]),
but there the pressure is not expanded in e. We can interpret (5.10) as a linear
evolution equation for A(), with coefficients and nonhomogeneous term determined
completely by the QGS solution U(a), provided we include the conditions

(5.11) ) 0 on E0 and Eh, 01) 0,

to determine from A. The boundary condition in (5.11) follows from the SPE
initial boundary condition p0 0 and the first-order relation p(1) _1); the second
condition is merely a normalization. Equation (5.10) thus has the form of a linear
transport equation for A(1) with terms of bounded linear dependence on this un-

known, as well as nonhomogeneous terms. The existence of solutions for (5.10) and
(5.11) can therefore be established by standard arguments, using techniques as in 3;
see Theorem 5.1 below.

Equation (5.10) plays the same role for the correction term U(1) as the quasi-
geostrophic equation plays for the QGS solution U(g), and is essential for our refined

convergence theorem in the next section. There we specify U1) at time t 0 in

terms of U(), and invoke (5.10) for existence of a unique solution U(1) (t) (see Theo-

rem 6.2). Notice that U) and U) uniquely determine the initial first-order pressure

1) through the elliptic problem

(1) u).Vug) u(g).Vvg) in B,+ + + +
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with conditions (5.11), where (5.12) is the divergence of the formal first-order equa-
tions (5.7). Then the initial’value problem (5.10) and (5.11) with data (01) determines
the first-order pressure (1)(t) for all time, which in turn, together with U(g)(t), de-
termines U(1)(t) through equations (5.7). For future referenc e, we state this as
theorem.

THEOREM 5.1. Given time T > O, a solution U(g) of QGS in C([0, T];
and initial data U(01) in HS(B), for some s. >_ 3, then there exists a unique solution
U(1) (u(1), p(1)) in C([0, T]; HS(B)) for the formal first-order velocity and density.

5.2. The ageostrophic term U(a)(). We would like to compare U(1) with
U(a) (). To do this, we derive an equation for U(a) () similar to (5.10). Again setting
0 0 for simplicity, we take the curl of the (exact) horizontal momentum equations
in SPE (2.6)-(2.10) to get

Substituting

+ ux + vy 0.

u u(a) +su(a), v v(a) +ev(a),
and using

results in

+ v(f o, + V(:)=

From (2.10), we have

Dv(a) ]+ dv() + Dt
Du(’O 1 w(’)dau(g) + D

Dp Dp()
W(a) )-- Adgp(g) + eAdap(g) + A Dt

and substituting this for w(a) in (5.13) gives us

I Dv(a)]
e Adap(g) + A O.-- dan(g) + Dt y z

(g) v() to rewrite the first two terms in (5.14) asWe can use the relation x

(5 16) [dg(g) d.(g) 2t- ’tt(yg)(xg) + V(yg)(yg) d..(g)
Y Y

Y

Also, using (2.20) and recalling that dg 0, we can rewrite the third term in (5.14)

(5.17) [Adgp(g)] dg(Ap(a))z.
z
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Now from (5.15)-(5.17) and the conservation of potential vorticity equation (2.22)
with 0 0, we see that (5.14) reduces to

Dv(a) dau(g) + Dt z

dav(g) + Dt x

Adap(g) + Dt J O,

which we rewrite as

Notice the similarity between (5.18) and (5.6). Mimicking the steps from our formal
asymptotics derivation in the beginning of the section, we substitute into (5.18) the
exact ageostrophic terms

( =-( dv( e dv( + Dr
v()=) + d() +e d() + D(S.l l

( Dp(a))w(a)=Adgp(g) + Adap(g) + A D
Dw(a)

P() =-) s
Dt

from SPE (2.6)-(2.10), where we recall that we are suming 5 1. Upon substitu-

tion, the first line of (5.18) becomes

+ dg dau(g) + Dt + dg dv(g) + Dt y Dt

[( Du(a) Dp(a),,, vg)]
Du() u) + Adap() + A ug)Dv(a) ug) + dau(g) + Dt -Drday(g) + Dt
n(a)

Xpg)+ dap(g)+X Xp7Dv(a) pa) + du(a) + Dt Dt z"- day(a) + Dt

The form of the terms ab6ve that are not multiplied by is identical to the form of
(5.8) for the formal variable (1). Therefore, setting 1 as before, (5.18) can be
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written concisely as

dg(A(a)) + (A(yg))(xa) (A(xg))(ya)
+ +

-[-dg((g)).(l(g)) -- [dg(dg(yg))]
x -[dg(dg(xg))]y- Q,

where

(5.21)

Dv(a) Du(a)
dP() + Dt ]

Dp(a)
Dt ) u?)]
Dp(a) /9?)]Dt )

In the next section, we will use (5.10) and (5.20) to get an estimate for the difference

(U(a) () U(1)) in H2(B).

6. Higher accuracy approximation of SPE solutions. In this section we
present a refinement to Theorem 4.5. We show in Theorem 6.2 below that if SPE is
initialized to suppress fast solutions, then the QGS solution, together with its first
correction in e, provides O(e2) approximations of SPE solutions. As before, we assume
a linear density profile and zero -factor.

6.1. Suppression of fast-scale motion. The main part of the proof of our
refinement theorem is showing that on any prespecified time interval [0, T], if we keep
e sufficiently small, Iua)13 is bounded on [0, T] independently of e. We now give
a simple condition on the initial SPE data that is sufficient for such suppression of
fast-scale motion.

THEOREM 6.1. Assume initial QGS data U(0g) (u(og),p(og)) in Hs+I(B), some
s >_ 3, of the form

U(o) (_,U) ,()O)W0y ,W0x,

For ,k= 1 and 0=0, let U(g) (u(g),p(g)) be the corresponding solution of QGS
(3.1)-(3.7), where

o)
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Suppose initial SPE data Uo() =- (uo(), Po(e)) is given in HS(B) such that

where dalt=o Ot- woy’(g)ox + ox’(g)oy. Then the corresponding solutions U()

U() + CU(a)() of SPE (4.1)-(4.8) have the property that Ua)
() is initially bounded

in HS- (B) independently of .
Proof. Using (6.1) to substitute for u, v, w, and p at time t--0 in the elliptic

problem (4.9) for , we find

la(o()- (o))1_ o().

(o))1_/.o. o().(6.2) (o()

.(o()- (o)) o

From elliptic theory, (6.2) implies

Io() (o) I+ o()

Then, for example, SPE (4.1) at time t 0 can be written

[ Du() 1 .()vo ox + O(2)[dgu(g)]t=o + 2 du(a) + Dt =0

in HS(B). Now replacing the geostrophic term dau(g) with its equivalent -dag),
and using the first equation in (6.1), we have

=o()(6.a) d(l + Dt

in H(B). his implies that )(e) is initially bounded in H(B) independently of e,
since the same is true of all the other terms in (6.a). In exactly the same way, we can

use SPE (4.2)-(4.4) with (6.1) to prove that v}), w}), and p) are initially bounded
in H(B) independently of e.

6.. he refined convergence theorem. We now state and prove a refined
convergence theorem.
TgON 6.2. Assume e are 9ive time T > 0 d iitial QGS velocit and

density Ua) (ug) pg)) in H6(B) 4 the form ua) (a) (a) 0) p) -)[-WOy Ox

for some pressure function a) satisfying (3.32). For = and o=0, let U(g)

(u(),p()) in C([O,T];H(B)) be the soZution of QGS (3.)-(3.7) with initial data

u). Dn) (u).)) in H(B)

t(01) -[dg(xg)]t=o V(o1) -[dg,(yg)]t=o
W(o1) -[dg?)lt=o /)(01) 0,
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and let U(1) (u(1), p()) in C([0, T]; H5(B)) be the corresponding formal first-order
velocity and density guaranteed by Theorem 5.1. We consider initial SPE data Uo(e)
(no(e), Po(e)) in H5(B) satisfying (4.10), such that

(6.5) IV0()- (V(og)- U(01))14 O(2)

Let U() (u(),p()) in C([O,T];H5(B)) be the corresponding solutions .of SPE
(4.1)-(4.8), for all <_ o, as guaranteed by Theorem 4.5. Then the SPE solutions
U(s) converge to U(g) + U() in C([O,T];H3(B)) with O(2) accuracy, i.e.,

(6.6) IU() (U(g) + U())I3,T O(2).

Proof. We will show at the end of this section that if IUa)()13 is bounded on

[0, T] independently of , then Iu(a)()- U(1)]3,T is O(), which gives us (6.6). So our

current task is reduced to estimating IUa)]3 Theorem 6.1 implies that it is bounded
independently of at t 0. We proceed we did for estimating [U(a)4 in 4. The
argument here closely parallels the one given there, and to avoid redundancy, some of
the details are omitted. We begin with the time derivative of equations (4.21)-(4.24),
which are

+ e
Dt -t,aDt

Dt t, Dt t,

() r,()Dw(a) A- t’t,a Wzt(6.9) e
\ Dt t,

+ "Dr t,Dt t, t,

where we use the subscript (t, a) to mean OtDa Multiplying these equations by ()
t

v() w() and-() respectively, then summing,

+v(a) +w(a) ()
t,a Dt t,a + ,t,a Dt

e ut,a Dt t, t, t,

+ v(a) + et,t,a Dt Dt+’ Dt t, t, t,

( ()(a) v()D() ()Da())t, Wxt t,a Wyt t, Wzt

This equation is analogous to (4.25), and we must similarly work on the "large" terms

(6.12) (a) D(9) ) ()(D(9) ) n(a)(D())+ Dr +

Using (6.7)-(6.9) we substitute for () () and () in (6 12) and follow precisely
the same steps we did in 4 o rewrite (6.11) as
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(a)nc,4(a) v(a) y)a(a) (a) l-)O,.h(a) )t,a "(’xt + t,a yt + t,a zt

This equation is analogous to (4.30), and we will integrate (6.3) to get the desired

growth estimate for U)[3. The first term on the right-hand side of (6.13) becomes,
after integrating by parts and applying the divergence theorem,

/ (a) OD ,-du(g) p(g) dst, (dav(g) ,-da )" n
B

The last integral is zero because the quasigeostrophie equation (2.23) holds in B for
all t [0, T]. The boundary integral reduces to

(6.14) / / () OD(dp()) dx dy / () OD,,a
o
w,,a (dgp(g)) dx dy.

The same argument used for (4.32) can be used to show that the boundary integrals
(6.14) are zero for ]a] 3. Also before, the second term on the right-hand side of
(6.13) vanishes upon integration.

We proceed with our energy estimate for Ua). To integrate, for example, the

term (a) in (6 13) we write, (Du() /Dt)*,"

t, Dt t,t’ D + t, ut"

(

*’" 0 + *’" u. () .Vu()

D (a)

*’" 0 + ,,,-.vu,,, + ,,,1,, + m,, u,.

where

(6.15) ) (a)G, u.Vu) u.vu,,,



1058 ALFRED J. BOURGEOIS AND J. THOMAS BEALE

and the integral of (a) ist, (Du(a)/Dt)t,a

ut’ Dt t, L2 2 dtlm’al / m,a
L a L

With similar definitions for Gi,a, i 2, 3, 4, we integrate (6.13) over B for all a,
Icl _< 3, to get

(6.16)
1 d { (a) 2 2, (a) 2 ,(a) 2 } ((Du(’) )---2dt Im,alo + v(a)t,[o + Iwt,alo + It’t,lo + Dt- t,

Equation (6.16) is analogous to (4.35), with the G’s analogous to the F’s defined
there. In preparation for the time integration we rewrite, for example, the term

occurring in the second term of (6.16) as

d[" ()(dgv(g) )dt t, L

1" (,) (day(a)
5

Doing the same for the third and fourth terms in (6.16), and integrating the entire
equation with respect to time, we get

(6.17) 1{, () ,v(,) 9. ,(a) U (a)2}lUt..lo +. t..lo + + Ipt..Io Bt,a+B2,a -f B3,a -4- B4,a A- B5,(,
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where

L

L

L2 I dT"

If we define

2 va) 2 2 2

then upon summing over a, I1 <_ 3, the left-hand side of (6.17) becomes 1/2[S2(t)-S2(O)].
We now proceed to estimate Bi,a, i 1, 2, 3, in terms of S.

For Bl,a, we get

( /0 )IBI,I < C S(O)+ S(t)+ S(T)dr
11_<3

where C depends on

In expression B2,, terms like (u.Vu())t, involve fourth-order spatial derivatives

ofua) when Is[ 3, and estimation in H3(B) requires the same trick we used in 4 for
the term A2, in (4.36). Assuming that c3 3, and, for example, ct _> 1, we integrate
by parts once in x, leaving a second derivative of (u.Vu(a))t. The resulting term can
be estimated by CS + CS2. When c3 3, we integrate by parts in z. The resulting
interior terms can be estimated as before, but the surface integrals involve third-

order derivatives of ua) on the boundary, in the term 02(u.Vu())t. However, these
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surface integrals can be estimated in terms of lua)13 due to the boundary condition
w 0. After these modifications, each surface integral involves at most second-order
derivatives of ua), and from the trace theorem, the L2 norm of these second-order
terms on the surface is dominated by lua) 13.

In summary, we obtain

(6.19) IB2,I <_ C IS(r) + eS=(r)]dr.

We can directly estimate B3, to get

(.o/ I,1 <_ c [s(l + s(lle.
113

For B,, we need estimates for G,, 1, 2, 3, 4. om definition (6.15) for G,
and calculus inequality (3.15), we obtain

where we have used (4.46), and C now depends on ]ug)16 ua)(s)4, o, and T.
Recall that So is chosen to satisfy (4.45); therefore, we have

(6.21) IB4,I C S2(T) dT.
lal3

Finally, from expression Bh,, we get

(6.22) IB5,I C [S(T) + eS2(T)]dT.
113

Combining (6.17) with estimates (6.18)-(6.22), we have

s=(t) c s(o) + s=(o) + s(t) + [s() + S=()]d

Using the inequality ab (5a2/2) + (b2/25), this inequality reduces to

S2(t) C 1 + S2(0) + S2(r) dr

The Gronwall inequality gives us S2 (t) Cect where C now also depends on S(0)
][ua)]t=ol3. Recall that initial condition (6.5), together with Theorem 6.1, ensures

S(0) is bounded uniformly in e. Thus we have established that there is a constant M,
depending only on Ug)]6, U")(e)]4, [va)(e)]t=ol3, co, and T, such that

(.ea) lv")(e)la,r 5 M, 0 < 0.

We will now use (6.23) to show that ]u(a)(s)- U(1)13,T is O(). We begin by
subtracting the exact vorticity equation (5.20) from the formal vorticity equation
(5.10), which gives us
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Defining --- A((1) -(a)) and recalling that u(g) (-(yg), (g), 0), we can write

+

Differentiating, we have

D"t + D"(u(g).V)- D"[(Au(g)).V(A-I)] eD’Q,

which can be rewritten as

D"t + u(g).D"V -Fa + Da [(Au()).V(A-I)] + eDQ,

where

Fa D (u(a).v{) u(a).Dv{

Multiplying by D and integrating results in

(6.24) - ]{, 10 F, {,
L2

For lal < 2, we conclude from the definition of Fa that

(6.25) IF lo C1 12
In Appendix B we show that

where C depends only on ]U(o9) [6" Therefore we have

where C now also depends on JU(oa)]4, e0, and T.
Taking absolute values in (6.24), using (6.25) and (6.26), and summing over

al < 2, we have

1 d 2< Cj]2 ( )
With initial condition o O(e), we conclude

(6.27)

Finally, using (5.7) and (5.19) for the difference (U(a) U(1)), it is easy to see that
(6.27) implies

IU(a) (e) U(1)]a,T O(e),

which proves (6.6). rl
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Appendix A. The L Estimate. Here we derive (3.25)"

IVUlL + IVPlL C I IL X + +
I lLoo

where s > 2 and u, p, and w satisfy the QGS equations (3.1)-(3.4), and (3.6). Es-
tablishing this estimate amounts to estimating all second derivatives of . The QGS
pressure satisfies the boundary value problem

L Cxx + Cyv + (A(z)z)z w in B

on Eo and Y]h.

Recall that A(z) _> A0 > 0. Letting o"2, we can make a change of variable in the z
coordinate that transforms the elliptic operator L to the Laplace operator to leading
order. Defining the new vertical coordinate ff so that d/dz a(z)-1 and 0 when
z 0, we have

0 0 0 0

where () =a(z). Using the notation (x, y, ) (x, y, z) and &(x, y, ) w(x, y, z),
05 is determined by the transformed boundary value problem

(A.1) A --1/.44 in /,
0 on Eo and Eo,

where A is the Laplacian in the (x, y, ) system, and 0 is the value of corresponding
to z h. Then it suffices to estimate second derivatives of in the new coordinates.

Defining f -= & +-1, we view (A.1) as A f, and seek a Green’s function
G(x, y) for the corresponding Neumann problem. This will actually be a modified
Green’s function, due to the lack of unique solvability. G(x, y) can be expressed in
terms of the Green’s function Gper(x,y)= Gper(x- y) satisfying the fully periodic
problem

(A.2) Ax(7per (x y) 5per (x y) (20)-1

where (7per and 5per are periodic in x, y, and on the periodic box

{x. <x<

and 5per represents the periodic Dirac delta function. The Laplacian of any periodic
function must have average value zero; thus the right-hand side of (A.2) has been
adjusted by subtracting the average value of 5per on Bp.

Using the method of images, we define

(A.3) G(x, y) Gper(x y) + Gpr(x y*),

where y* is the image point of y reflected across the boundary Eo. Thus by construc-
tion G(x, y) is symmetric, with normal derivative zero on the surface E0. Also, in the
original box B we have

AxG(x, y) 5(x- y) 0-1
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Applying Green’s second identity in the usual way, we obtain the representation

(A.4) (x) /B G(x, y) f(y)dy / ,
where is the average value of over B.

Before proceeding, we need to establish some facts about the smoothness of
G(x,y). Define the cut-off function EC(Bp) such that (x)= 1 for Ixl < r0--
min{1/4,0/4} and (x)--0 for Ixl > 2r0. Let H(x) be the periodic extension of
(x) (4r Ixl)- 1. Then

AH gper(x) 5per(x)

where the function gper(x) is periodic and C. Combining this with (A.2) results in

therefore, by elliptic theory, (]Per(x)4"H is a smooth periodic function. For x and
y in B we have the pointwise estimates [OxGPer(x- Y)I-< Clx- y]-2, where 0x
represents differentiation with respect to the jth coordinate of x. Since [x- y*]
Ix-yl, it is also true that 1Ox cper(x Y*)I <- CIx y[-2. Together with the remarks
above, these estimates imply

From expression (A.4) for we write

(A.6) 0x $(x) JB [0x G(x, y)] f(y) dy.

Our goal is to estimate 10xk0x[Lo in terms of ]f[Lo and [flHs using expression (A.6)
with estimate (A.5). We introduce a cut-off function r/(x) that satisfies r/(x) 1 for
Ixl < r, r/(x) 0 for Ixl > 2r, and IDar/(x)] _< (C/r) lal Here r _< r0 mi_n{ 1/4,
is a radius to be chosen suitably small later on. We use r/to express 0x as the sum
of the terms Qj and Rj by setting

(A.7)
Qj(x) fB[OxG(x,y)] r(x- y)f(y)dy,

Rj(x) fs[OxG(x,y)] [1 r(x y)] f(y)dy.

We first estimate 0xk Qj and 0xk Rj for the restricted case in which the first derivative
is horizontal (i.e., j 1, 2). This is necessary because the domain B has horizontal
boundaries. We claim that Qj can be written as

(A.8) Qy(x) =/ G(x, y) 0y [ri(x y) f(y)] dy, j 1, 2.

Observe that

(A.9) B[OxGPer
(X-- y)]ri(x-- y)f(y)dy --fB [COYper(x-y)]?(x-y)f(y)dy

JS GPer(x-y) Oy [ri(x- y) f(y)] dy, j 1, 2.
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The last step is justified by the horizontal periodicity of all functions involved. Simi-
larly, since y yj for j 1, 2, (A.9) holds if Gper(x-y) is replaced by Gper(x- y*).

Then (A.9) and (A.3) verify (A.8), which we now use to estimate 0xQj, j 1, 2.
From (A.8) we have Ox Qj Sj,k -- Tj,k, where

(A.10) Sy,k (x) .f. [0x G(x, y)] 0y [r/(x y)f(y)] dy,

(A.11) Ty,k(x) fsG(x,y) Oy[f(y)Ox(x-y)]dy.

To estimate Sj,k (x), we notice from (A.5) that 0G(x, y), a function of y, belongs
to L({y :x- y < 2r}) for p < 3/2. Using Hhlder’s inequality with p 4/3 results
in

Is, (x)l 10al/ IVfln + Ifln o- r- O
2 dp

Cr/ IVflL + viriLe, j 1,2.

Sobolev’s inequality yields ]Vf]L CIVfH CIfln ;therefore, it follows that

I,k (x)l Cr/4 Ifln + ClflL j 1,2.

For Tj,k (x) we have

]Tj,k (x) Cr-IGIL/ ]Vf]L + If]L O
-1 r-2 p2 dp

Cr/a]Vf]a + C]f]a j 1,2

above for Sj,k, and we conclude that

(A.12) ]OxQj (x)] Cr/4fn + CfL, j 1,2.

We now estimate derivatives of the second term Rj(x). om (A.7) we write

0xRj(x) /B 0X { [l (x y)] [0xG(x,y)]} f(y)dy.

Notice that the term 0x {[1 (x y)] [0x G(x, y)]} is smooth since [1 (x y)] is

zero when x- y is near zero. Using (A.5) to bound second derivatives of G(x, y), we
have

(A.13) 10x Rj(x)l <_ C p-3 p2 dp + p-2 r-1 p2 dp

_< c(1 + o (o/,’))l’l,o

Combining estimates (A.12) and (A.13) for Ox, Qj and Ox, Rj, respectively, yields

(A.14) ]OOx(X)] C{rl/afln= + (l + log(CO/r)) flL }
which holds for j 1, 2 and any k. Now from problem (A.1), the relation A f
implies
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Combining this with (A.14), we have established the estimate (A.14) for all second
derivatives of .

Now we need to eliminate f in the right-hand side of (A.14) in favor of &. Since

f & + - , it follows from (A. 1) that

We clearly have the L estimate

(A.16) IflL CIIL + CIIL
om Sobolev’s inequality we cn write

IIL CIIw, forp > 3.

We also know from elliptic theory that

IVlw, Ilw, CpIIL CpIIL,

where W’p(B) represents the Sobolev space of functions in Lp(B) whose first deriva-
tives are also in LP(B). These lt three inequalities imply

(A. 17) IflL
Then plugging (A.15) and (A.17)into (A.14) results in

Finally, choosing r in (A.18) such that r/a /mm{C0 IIL/IIH=) results in

OxOx(x) < C 1 + og+
i

Appendix B. Nstmate for Q. We will prove here that

(8.1) [12 C(IV(a)14 + Iv(a)[1 + Iva)[3 + lv(a)14lva)13)
where Q is defined by (5.21), and the constant C depends only on [U()[6. In the
expression for Q, we have the following five representative types of terms to estimate:

k , j] (V) [dav(a)]x
We begin with terms of type (III) since they are the eiest to estimate. Recall that

we are estimating Q in H2(B). A typical subterm of [d(du())]z is (vg)u(a)v(2)).
Wking its H2(B) norm, we have I(v?)u(a)v?))zl2 C IU(a)13 Notice that we have
bounded the norms of the purely geostrophic terms by constants. In this way we find
that

[vg)dav(a)] C ’u(a)[3(8.2)
x2
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and the same is true of the other similar type (III) terms in (5.21).
For the type (IV) term

we choose to look at the subterms

x[’V(g) Vt(a))x "J (v(xg)u(g)v(xa))x -- (v(xg)t(a)v(xa)) x"
Estimating each term in succession, we have

(B.3)

get
A typical subterm of type (V) term [dav(a)]x is u(a)qxx(a) + ’(a)’(a) and we easily

(B.4) day(a) ] 4

The relevant subterms of type (I) term [dg(du(g))]x are

tx

From these terms we get

(B.5) C (IU()I4 + IU’)I3)
Finally, the type (II) term

[d ( Du(a)
produces the two relevant terms

dg[(Du(a)
x

(a)lFrom d[(Du()/Dt)] we look at d[(Du()/Dt) + u() () + eu() . We need not

"D (a)/Dt) because, due to the incompressibilityestimate the high derivative term dg( u, Du(a)/Dt) + d(Dv()/Dt) + d(Dw()/Dt) inof the flow, it vanishes in the sum z

expression (5.21). From the term d ru()u()) we haveg\ x x

(a)
x x )t

2

u()(u()u()
\ ) C (Iua)13-t-
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(a) u(a)From the term dg(Ux x ), we have

(a)
x x )t

2

For (g) Du(a)
x (Dr )x, we have

( 2)
_

gC IU(a) [3 [Ua) ]3 -{- U(a) 14

Summarizing for the type (II) term, we write

(B.6) dg Dt x 2 - C IU(a) ]4 -- IVa) 13 + ]v(a) ]3 IVa) 13 + ]v(a)

Combining inequalities (B.2)-(B.6) we have (B.1) as claimed.
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REACTION AND DIFFUSION AT A GAS/LIQUID INTERFACE, II*
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Abstract. The authors consider a reaction/diffusion system consisting of parabolic partial
differential equations coupled through boundary conditions with ordinary differential equations. The
specific model example arises in connection with the "film model" for mass transport in a chemical
bubble reactor. Well-posedness is shown for the general system and convergence to steady state is
shown for the specific problem.

Key words, partial differential equation, system, reaction-diffusion, film model, well-posedness,
asymptotics
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1. Introduction. We will primarily be concerned with the approach to steady
state for the reaction/diffusion system

(1)
ut Duxx )uv #uw,

vt Evxx Auv,
wt Fw + uv #uw,

with the boundary conditions

(2) u u*, v 0, w 0

at x 0 and with boundary conditions at x 1 of the form

(3)
-Du: [us + Auv + #uw]/a,
-Ev [v +
-Fw [w Auv + #uw]/a.

The particular system discussed here corresponds to a (comparatively simple) chem-
ical process involving two irreversible reactions:

(4) A + B C, A + C - D "product"

with [u, v, w] representing concentrations for the reactants [A,B, C]; our eventual
hypotheses will reflect the consideration that concentrations must be nonnegative.
The treatment here continues the considerations of [2]; as in [2], the general form of
the system (1), (3) is suggested by the "film model" [8] (or, e.g., [1]) for a gas/liquid
interface.

The involvement of the time derivatives on the right-hand side of (3) is the most
unusual feature of the mathematics here. If we were to introduce auxiliary scalar
variables
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then these boundary conditions would take the form of a system of ordinary differential
equations for U, V, W involving as "sources" the transport terms

The physical interpretation is that U, V, W represent chemical concentrations in the
(stirred, homogeneous) "bulk liquid" while u, v, w are concentrations within a "film"
at a gas/liquid interface; a is a units-dependent normalization of the ratio of total
bubble surface to liquid volume. It is actually U, V, W (and the transport terms j)
which are of primary interest to the chemical engineer.

There is no real surprise as to the eventual steady state to be reached for (4).
Since the first reaction uses up the reactant B without replenishment and since "after
this" there would be no replenishment for C, used up then by the second reaction,
one can expect ultimate depletion of B, C while A continues to be supplied at x 0
at the level u*. Thus one can expect the steady state

(6) u_=u*; v=_0; w=0.

Nevertheless, the mathematical arguments for well-posedness of the system and for
the approach to steady state are not entirely trivial, and these will be our present
concern. We can consider a system such as (1), (3) as an example of a more general
abstract formmsee (7) or (11), below--and will formulate the problem in this context,
since it readily provides insight as to the significant aspects of the nonlinearities. The
well-posedness holds in much greater generality, both for the chemical kinetics and
the form of the transport terms. The arguments for convergence to the steady state
(6) and for the exponential decay rate of that convergence are a bit more specialized
and will be presented specifically in the context of (1), (3)--although it is clear that
variations on the argument would apply to systems with suitably similar properties.
In addition, we make some brief comments in 5 (following [2] and [3]) on the modeling
and related computation.

The technical difficulties associated with well-posedness are related to the lack of
a uniform Lipschitz bound for the quadratic nonlinearity; one cannot, then, a priori
exclude the possibility of blowup in finite time. In particular, the positive term +Auv
in the third equation of (1) makes it more difficult to obtain a uniform bound for w:
there seems to be no obvious invariant set. From (4), we expect to obtain bounds by
"conservation" but these are inherently L bounds and some effort is needed to see
that we will actually have exponential decay to the steady state in L. Furthermore,
it is not a priori clear that the regularity of the transport terms supports a classicM
interpretation for the ordinary differential equations governing the bulk concentrations
and it will be necessary to reformulate the problem so as to defer consideration of this
regularity.

2. Formulation of the problem. It will be convenient to formulate the prob-
lem abstractly as an ordinary differential equation on a suitable space and apply
semigroup methods. For a quasilinear equation

(7) i Az + F(t, z), z(0) =z,

We remark that if we had E F in (1), then there would be a separate equation for [v -t- w]
and it would be easy to bound this in terms of its initial data and so bound w as v _> 0. For E F,
however, this trick is unavailable.



REACTION AND DIFFUSION 1071

with A generating a Co semigroup one obtains an equivalent integral equation

(8) z(t) S(t) / S(t- s)F(s,z(s))ds

by the variation of parameters formula for the "mild solution." A fairly standard
argument gives a unique solution of (8) if, e.g., F is uniformly Lipschitzian with
respect to z. Our objective, in this section, is to put the problem

ut Dux Auv #uw, Ut =a [-Duxl=l] AUV #UW,

(9) v -Ev Auv, Vt --a [-Evl=] AUV,

+ +  VY- ,UW,

(10) u=u*--1, vx=0, wx=0 atx=0,
u=U, v= V, w= W at x= 1,

into the form (7) with F uniformly Lipschitzian in z so that we can consider (8). The
construction will clearly have greater generality than (9), extending to the range of
problems arising from the film model; a variant, corresponding to a new transport
model [3] will be sketched in 5.

If we set

u:---- v U:- V D:- 0 E 0
w W 0 0 F

then the system (9) takes the form

(11) x fofi=[Dux] + (. u), fl(1=4+ (.,U) (4 := -a [Du] l:)

with fo "JR+ x [0, 1] x ]R3 --+ ]R3, fl "JR+ x ]R3 -+ ]R3 given by

(12) fo flv UV V
w Auv- ttuw W

-AUV- #UW )-AUV
AUV #UW

To (11) we adjoin the boundary conditions (10) and, of course, initial conditions

(13) u It=0
o o

=u, u(0) =u.
o o

We require that u be bounded and that both u and I/be nonnegative:

o

(14) 0 _<tj (.) _< M, 0 _<Uj_< M,

i.e., the initial data satisfy 0 <_ u, v, w, U, V, W <_ M for a suitable choice of M >_ 1-
although we do not a priori require that the initial data be consistent with either the
boundary conditions (taken at t 0) or the coupling condition U ulx=l or even

that be regular enough for such consistency to be meaningful. By P we will refer to
the system (9)--or, equivalently, (11) using (12)--together with (10) and with (13)
subject to (14).
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We now introduce the spaces A" := L2(0, 1) x ]R and Z := X’3 with the norms

(5) II[y, Y] I1 :- llyll + IYI, 3

I1112 :- II[y, Yj]II 2x for z--[y, Y] e Z
j=l

and define a linear operator A by

(16) A: [y, Y] -, [(Dy’)’, ’] ( "= -aDy’l=)
(here’ denotes d/dx) for [y, Y] e :DA C Z, where we set

(17) :DA’= [y,Y]EZ:

Setting

Yj yj(1) and

yj e H2(0, 1) so (Dy’)’ e [L2(0, 1)]3;
one has { y(O) 0 for Dirichlet conditions;

}(0) 0 for Neumann conditions

(8) *=[u*,U*]:= 0 0 :=[fi, -*,
0 0

our first observation is that (10) is enforced by having [u, U]- z* =: z [y, Y] be in

DA and that (13) then corresponds to having z(0)- in (7).
A bit of manipulation, using the inner product of Z corresponding to (15), gives

{z, A, 1"= a yj (Vj[lh)’ dx + Y [yl

j=l 0

for z [y, Y], . [:,] in :DA--(17) then ensures that yy), vanishes at x 0 for
either Dirichlet or Neumann conditions and that the Cy terms at x 1 cancel. Just as
for the standard operator-theoretic treatment of y - y" with boundary conditions,
this shows that A is a negative self-adjoint operator on the Hilbert space Z; it follows
[5] that A is the infinitesimal generator of an analytic contraction semigroup S(.) on
Z.

Thus, if we set z := [y, Y] taking values in Z and corresponding to [u-u*, U-U*]
and define

F: IR+x[O, 1]xZ -, Z,
(19) It,., [y, Y]] -, [fo (t,., y + u*), f (t, V + U*)],

from (12), then we can write more succinctly as (7)--again subject to (14), noting
(18).

Since F, as given above, is not uniformly Lipschitzian, we will actually work with
a modified version of this system. In the specific case of (12) the functions fo and fl
are identical pointwise and we set

(20) $(u)= t; v :=
w W
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where, with M a constant and 2(t) M + AM2t (M to be determined later),
we set

(2) U>_M, (d’= M V>_M, I:= ./ W>_/,
else, V else, W else;

abusing notation slightly, we use (u) (t, u) as defined pointwise. We then replace
F in (7) by , given by

(22) (z) (t, [y, Y]):= [(y + u*), (Y + U*)].

(_Note that is, indeed, explicitly dependent on t since depends on t in defining
W from W as in (20); nevertheless, we will feel free to suppress this t-dependence as

above.) We denote this modified problem as

3. Well-posedness. We return now to the system (9) and will show that P
is well-posed, noting that, on any fixed time interval [0, T], M is bounded so the
variables r, ,1 appearing in (20) are restricted to a compact set and ’, as defined
by (22), is a uniformly Lipschitzian function. We will then show by a weak maximum
principle argument that the solution of 5 necessarily satisfies

(23) O <_ u <_ M, O <_ v <_ M, O <_ w <_ l/I,
so U, V, IV W, and similarly for u, v, w so (22) coincides with (19),
meaning that we will then have well-posedness2 for the problem :P, i.e., (9), etc., as
originally given.

LEMMA 3.1. The problem is well-posed.
Proof. We have noted that is uniformly Lipschitzian (for t E [0, T] with T > 0

arbitrary) and now sketch the standard argument that this gives contractivity for the
Picard map T, given by

[Tz](t) := S(t) , + S(t- s).(s,z(s))ds,

as a selfmap of Z *T C([0, T] ) with respect to the norm

here a := L/) for some < 1 with L the Lipschitz constant for . For any functions
z, z in Z one has

2 A technical delicacy intrudes at this point: while we show that the unique solution of (7) using
(22) satisfies (23), one might envision the possibility of there existing another solution of (9) which

did not satisfy (23) and so would not be a solution of . We will not provide details here but do
note that, interpreting the notion "solution of (9)" in a fairly general weak sense, one can still show
uniqueness for so the solution we construct here is the solution.
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Taking the sup over t on the left, we obtain

IITz Tz’llz < llz z’llz
so T is contractive and there exists a unique solution on [0, T] to . Since T > 0
was arbitrary, unique existence on [0, o) follows. To see that this solution depends
Lipschitz continuously on the initial data, we estimate similarly: for solutions z, z’
with different initial data one has

so IIz- z’llz < IIz(0)- z’(O)ll/(1- ), and the problem is well-posed. !-I

TnEOrmM 3.2. Subject to (14), the problem P has a unique solution satisfying
(23); this depends continuously on the initial data.

Proof. Using Lemma 3.1, it is sufficient to show that, given (14) and the cor-

responding choice of M for (21), the solution z [y,Y] of satisfies (23) with
u := y + u*, etc. To this end, it is useful to note that the semigroup solution ob-
tained above for 75 necessarily satisfies the system (9)modified corresponding to the
passage via (21) from F as in (19) and (12) to as in (22) and (20)--in its weak
formulation. One easily sees that this takes the form of the identities

(i)

(24)
(ii) a / vt + Vt + a/ Exux

+

(iii) a / wt + bWt

each valid, e.g., for any moderately smooth satisfying the coupling condition 1=1
and also, in the ce of (240)), satisfying the homogeneous boundary condition

[x=O O.
We show, first, the nonnegativity in (23). Take u_ u A 0 := min{u, 0},
U_ in (24(i)), noting that the boundary condition u[x=o 1 ensures that

[x=0 0. By a theorem of Stampacchia [11], we have almost everywhere

t=(u-)t={ut if u<0; 0 ifu0},
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etc. Thus ut [1/22]t
(240)) gives

and xux [x]2 Since _< 0 with 0 when # 0, etc.,

1 [ /2_(1)2] +a/D[x]2

2
a =0

and, since (14) ens,ures that It=0 0 and It=0 0, we may integrate this in t
to get 2_- 0, 2--0sou_> 0, etc. Using=v_, V_ in (24(ii)), the same
argument gives v >_ 0, noting that here x {v if v < 0; 0 if v >_ 0} gives Ix=0 0
in either case, and, similarly, using w_, W_ in (24(iii)) gives w >_ 0, noting
that > 0.

Next, we take (u- M)+ := max{u- M, 0}, (U- M)+ in (24(i)), noting
that the boundary condition Ulx=O 1 so any choice of M >_ 1 ensures that , are
admissible since ul=0 yl I=0- 1 Y1 1 U. Again ut [-122]t, etc., and we
now have >_ 0 and uv >_ 0, etc., so (24(i)) gives, using (14),

_1 Ia/2+(i)2] +a/D[]2<0.2

As before, this gives 0, etc., so u, U _< M and, similarly, we get v, V _< M by using
(v- M)+, (I):= (Y- M)+. Finally, we will set (w- M)+, (I) (W- M)+

in (24(iii)). Now

wt (w 1/I)+ (wt AM2) + (w /)+ AM2

+

Since wt <_ Fwx + AM2, it follows that (1/22)t _< Fwx when

Similarly, for ff we have

+ AM2 Wt <_ -ag2Fwx[=1 + AM2.

We conclude that these and also vanish identically so w, W _< M. rl

4. Long-term behavior. In this section we study the asymptotic behavior of
the specific system given by (9). We have already noted preceding (6) the heuristics
for expecting that approach to steady state. Note, however, that the correctness of
this ngive reasoning is not completely evident--certainly the "sequencing" cannot be
literally true. Furthermore, we note that the estimates used in the previous sections
do not even give a uniform bound for the component Cnthe bound M for w, W in

(23) grows unboundedly with t.
To prove convergence, we begin by defining the following functions of t:

(25)

(ill --0" v dx + V,

fo2 1 + O" W dx + W,

o11 - + (v 1)
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The function 991 describes the total amount of the component B at a given time so
we expect it to be decreasing and finally vanishing; this and similar statements for 992
and 993 must now be more exactly formulated.

LEMMA 4.1. Each of the functions 991, 992 and 993 converges as t -- oo. The
functions , 2 are decreasing with , integrable in t on (0, ). Moreover,
the functions ]w, W are bounded and ]ux2, ]]vx]] 2, wx]2 are integrable in t on

Proo Set v := Evx=. Noting the boundary conditions, we have

v dx v A uv dx,

and, since -av AUV, we have

)-A a uv dx + UV 0.

As a nonnegative decreasing function, h a limit T as t . The integrability
of then follows from the observation that, for arbitrary t > 0,

A similr calculation with anMogous conclusion is then possible for the function 2.
It follows that f uv, UV, uw, UW must ech be an integrble function of t on

We next consider the function 3. Multiplying the equations for u and U in (9)
by u- 1 and U- 1, respectively, and integrating, we easily see that

3(t) 3(s) + 2D II  li 2 2A a uv + UV + a uw + UW

Denote the integrand (...) on the right-hand side by G and note that we have just
shown that G is integrable in t on (0, ). Taking s 0 it follows that f ]]u2

3(0) + f G. Thus we see that the function ]]u] 2 is also integrable in t on (0, ).
We have the inequality

[3(t)- 3(s) 2D llu ll 2 + 2A a (t s),

and, since the right-hand side goes to 0 as s , we see that limt (t) exists.
It remains to prove the boundedness of w[ and W functions of t. Multiplying

the equations of the third line of (9) by w, W and integrating by parts, we readily
obtain the estimate

 llwll + llw ll + w 2A   vwUVW +  llwoll +

Since H (0, 1) embeds compactly in el0, 1], one has, for e > 0, an inequality w]]
Ce + e([[wx[ 2 + W2), etc. Thus we can obtain

0 a f uvw + UVW eM2]wx]]2 +. + Ce,
J
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where we have set

() := 1111 + F I111 + W,
[/01 ](t) a uv + Ug

Choosing e so eM2X _< F, we then have ?(t) <_ const + f1 and by Gronwall’s
inequality this gives

This is uniformly bounded as - is integrable which shows that Ilwll W are
uniformly bounded and that ]lwxll 2 is integrable in t on (0, c). Cl

LEMMA 4.2. Fixing > O, there is a fixed compact subset of C[0, 1] containing
the values of u(t, .), v(t, .), w(t, .) for all t >_ e.

Proof. As before, let z (u 1, v, w, U 1, V, W) and write the state of the
system at time t as

z(t) S(t- s)z(s) + S(t- r)F(z(r))dr,

where S is the analytic semigroup given by the linear system, etc. We first show
that u, v, w belong to a compact subset of C[0, 1]. To this end, we first consider the
operators3 A (0 _< vq < 1) for which we have

A#z(t) AS(t s)z(s) + A#S(t r)F(z(r))dr.

As S(.) is an analytic semigroup, we have [[AS(T)II <_ M"- (see, e.g., [5, p. 26])
and so obtain the estimate

IlAOz(t)ll <_ M(t s)-Oilz(s)ll + M(t r)-#llF(z(r))ll dr.

By Lemma 4.1 we know that z(.) and so also the term F(z) are bounded in t (one has
I]--#uWllL <_ #MI]wl]L <_ const, etc.). Now let M be a bound so IIz(.)ll, IIF(z(-))ll _<
M and fix > 0. For any given t >_ e, take s t- e and one has

( /0 )IlAOz(t)ll _< MM1 e- + r-dr

where the right-hand side is a fixed constant for < 1. Thus, z(.) is bounded in TA.
Looking only at the components y (u, v, w) and noting that these are in L2 (0, 1)

for v 0 and in H2(0, 1) for 1, an interpolation argument (see, e.g., [13]) shows
the uniform bound on u, v, w in H2#(0, 1) on {t _> e}for v9 < 1. By the Sobolev
embedding theorem, with v > 1/4, the functions u, v, w then take values in a compact
subset of C[0, 1].

3 One typically avoids technical difficulties with fractional powers in semigroup theory by requiring
that the generator be invertible. Here we have no difficulties since the generator is self-adjoint.
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We are now ready to state the theorem describing the long-term behavior of our
system.

THEOREM 4.3. The solution (u, v, w, U, V, W) of the system (9) converges
(uniformly in x for u, v, w) to the steady state (u,, v,, w,, U,, V,, W,) given by (6).

Proof. By Lemma 4.2, for any sequence tn "- O0 we can find a subsequence (tk)
for which z(tk) converges to some state z,. We need only show that this limit state is
always as given by (6)--which also shows that the convergence is independent of any
extraction of a subsequence.

Consider a new initial value problem with the original initial state replaced by
the state z,. Denote by o the corresponding function for (25). The function
is again decreasing; we show that it is in fact constant. Suppose, to the contrary,
that there would be some for which o(t < o(0). Since ol () clearly depends
continuously on z(t) which, in turn, depends continuously on by Theorem 3.2,
we may consider "initial value problems" starting with z= z(tk) and with z= z,,
respectively, and observe that we must then have 01 (tk + t -- 0() since z(tk) --, z,.
On the other hand, 0 (tk + ) -- limt--,oo 0 (t) 0 (0) so 0 () 0 (0).

It follows that (o)t -A(af3 u,(t)v,(t)+ U,(t)V,(t)) vanishes identically.
Hence, noting their nonnegativity, we see that u,v,(t) =_ 0, U,V,(t) =_ 0 and, from
the equation, we conclude that v,(t, .) and V,(t) remain constant. These constants
must each be 0, since otherwise one would necessarily have u, 0, contradicting
the boundary condition at x 0. The steady state for the components v, V has thus
been found and the asymptotics for w, W and u, U are subsequently found in a similar
way--using 02 and 03, respectively, in place of 01.

We next show that the decay to the steady state is exponential (in C[0, 1] for
u, v, w). We know at this point that a unique solution exists with 0 _< u, v, w, 0
U, V, W, with u, v, w taking values in a given compact subset of C[0, 1] such that
u -- u*, v 0, w --, 0 uniformly on [0, 1] as t oo. We first deal with v and V.
Fixing > 0 arbitrary, there is some T T() and M > 0 such that

In-u* <_ , O <_ v <_ M, O <_ w

_
M’ forxE[0,1], t_>T.

Now define := A(u* -e) so that Au _> for t >_ T and (t, .) (t):= Me-(t-)
We set

:= (v := (v- v)+.

Note that lx=. If x 0 one has vx _-- x (ae), and where : 0 one has

t =vt t vt + vt ,k +
t Vt )0 + iV.

Hence, using these o, in the identity (24(ii)), one has

2 [ 11 11 + +  [ 11 11 + + oEII  II
+ +

which (since o, 0 at t T) gives o, --: 0, or

0 <_ v(t, .), V(t) <_ Me-(t-’).
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Next choose # <_ #(u* -e), # <_ A and set := A(u* / e)/(A- #), #u >_ # and
#V) >_ Auv. Now set

"= (IT + ] -[M’ + C"M]e-(’-))+,

and note that lt= (wlt=r M’)+ 0. As above, wx ox where o # 0 and
where o 0 one has (a.e.)

t wt C? + #[M’ + CM]e-(-’) w C17 #[ (w +

SO

wt Pt + fiup + [(- p)?- #w] when # O.

Similarly,

Wt Ot + #O + [(A- /2)hV- #W] whenOiS-O.

Using this in (24(iii)) gives

Thus , (I) 0 and we have

0 <_ w, W <_ (M’ + 5M)e-#(t-r) =:

A small diversion is necessary before proceeding to show exponential decay for
’a--a* V-*

LEMMA 4.4. Let y be given on [0, 1] with y(O) O. Then

 [lyll 2 + y(1)2 _</()lly’ll 2,

with alp2 for the smallest positive root of the equation p tan p a.

Proof. Define L-z --. [y,y(1)] with y(x) f z and note that the adjoint L* is

given by L*- [), ]Y] -- ]Y + a f: ) (using the A’ inner product). Then is the largest
eigenvalue of the (positive, self-adjoint) operator L*L L2(0, 1) L2(0, 1). Thus
L*Lz z. With z y’ this gives y(1)+ a f: y y’. On the other hand, we get
the boundary conditions y(0) 0 and y(1) y’(1). Differentiating, we also get the
equation -ay y". Since > 0, a > 0, we have y(x) sin(x) and at x 1

the condition sin ,cos X/-, from which the claim follows. Observe
that p as a 0, so (a) --, 1 as a 0. Cl

Perhaps the simplest way to treat the exponential decay for := u- u*, "=

U u* is to use semigroup methods, noting that we have

(26) fit D: + g, fiix=o 0, x=l 0
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where g -Auv- #uw, G -,XUV #UW. From our previous estimates, we have
(with a suitable M)

0 <_ g, G <_ Me-5’(t-) for t >_ -.

We may write (26) in semigroup form: setting

.[y, Y] :- I-by",

with the domain D :- {[y, Y]’y" e n2(0, 1), y(0) 0, y(1) Y}, we observe that
/ is a self-adjoint positive definite operator on A’. Any eigenvalue for satisfies

111[, Y]II > DIl’ll > oDz()I1[, Y]II,
i.e., >_ aDl(a). Letting (t) denote the semigroup generated by -, one then has

IIk(t)[I sup{e-5’t" an eigenvMue of }
sup{e-t" A E aD(a)}.

By using the semigroup representation of the solution of (26) we have, with 0

K r-#e-St + (r p)-e-$(-p)e-npdp

Ke-$r r- + (r- p)-#e-P-$)Pdp

provided < aDd(a) so that one has an estimate

IIA(t)ll g(z)t-#e-$t.

The term above will be bounded uniformly in r r0 > 0- if < p(< A). As before,
we have Kll#[, 5] for > 1/4, so we obtain

llll,ll Ke-t fortTWr0,

provided < p and also < aDd(a). We have now obtained the desired sympoti-
cally exponential convergence.

THEOREM 4.5.

v, Ilvll o t a rate e-t

W, I111 0 t a t-u u*, Ilu u* I1o o at a rate e-$t

(any
(any/2 < min{A, #}),
(any/ < min{,k, #, aDd(a)}).

It is not difficult to see that the "shape" of u u* is asymptotically proportional
to the eigenfunction we found earlier: sin v/--// x. Thus, if a is taken to be a small
parameter we have sin x// x v/-/3 x for 0 <_ x <_ 1 and, uniformly for large t,

(27) (t, )=* + (u *)x + o(-;),
(t, )= (u *) + o(-z).
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The usual "film theory" analysis takes u as corresponding to its quasi-s_teady-state
form which (for v, w 0) is just the straight line, neglecting the o(e-ft) terms in
(27). This analysis takes

giving

Ut aDuxlx=l " -aD(U u*),

U- t ce-aDt as t

Comparing this to the decay rate obtained above, we see that f(a) > 1 so aD(a) >
aD and we actually get (slightly) faster decay than the film theory indicates (assuming, # > aD(a))--but with asymptotic agreement as a -- 0, giving f() 1.

4.1. Another example. To show that the applicability of the methods above
is not confined to irreversible chemical kinetics, we sketch briefly the corresponding
argument for the situation in which the second reaction in (4) is reversible:

(28) A + B C, A + C D.

To make this analysis feasible, we will assume that the diffusion coefficients are equal
(e.g., all 1) and that the Dirichlet boundary condition applies to B, rather than to A.
Thus, we are considering

(29)

ut uxx Auv q,

vt Vxx ,tv,

wt w + )uv- q,

zt zxx + q,

[-l_-] xv- Q,

[-I=] xv,
w = [-1=] + xuv Q,

z :o [-1:1 + Q,

where, for convenience, we have abbreviated

(30) q := #uw- z, Q := #UW- Z,

and with

(31) u=0, v=l, wx=0, z=0 atx=0,
u=U, v=V, w=W, z=Z atx=l,

and specification of bounded, nonnegative initial data.
We pass over the well-posedness argument, which parallels our discussion of 2

and 3 in using a semigroup construction for a modified problem. The nonnegativity
of all components of the solution is just as above. The bound on v, V (by M, with

O O

M >_v, V, 1) is obtained by the standard argument, as earlier, but the other upper
bounds are a bit different. Set a := u + w + 2z, A := U + W + 2Z so one has

(32) at ax, At a [-al=l]
with alx= A and axlx=0 0. Multiplication by (a- M)+ (with M a bound on
oo o o )a=u + w +2 z and on then gives, as earlier, that a, A

_
M; since the components

are nonnegative, this gives the separate bounds u, w, 2z, U, W, 2Z _< M. Next, setting
:= a f(w + z) + (W + Z) we see that d/dt A[a f uv + UV] >_ O. Since we already

know that is bounded, we must have uv E L([0,1] lit+), and UV L(]R+).
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As for (9), we get a precompact semi-orbit for [v, V] and v with 0 (as
uv integrable) so V 1; also V --, 1. Since uv is integrable and v 1, we have u
integrable, so uw is integrable as w is bounded. Now setting :-- a f z + Z, we get
d(/dt + integrable so ( is integrable (with -- 0) and so z, Z 0 also. At this
point we note that there is a semigroup associated with (32), which converges to the
X-orthogonal projection onto the (one-dimensional) nullspace of the generator so

afa dx+
(33) a A, A fi :=

a+l

Since we have already shown that u, z 0, we must have w a _= A and, similarly,

Altogether, we have shown convergence for (29)-(31) to the steady state

u0, v--. 1, wA, z-O

with A as in (33). As for (9) above, we can show that this convergence is in C[0, 1]
and obtain exponential decay rates.

5. Discussion. In the chemical literature, film theory is used for gas/liquid re-
actions to calculate the mass transfer from gas to liquid at the interface. From this
point of view, the "film" is a theoretical construct since only the bulk concentrations
are of practical interest. In the film theory this mass transfer is given by the flux at
x 0, normalized by the ratio a of total gas surface to bulk fluid volume.

We remark that the treatments in the literature and discussions with chemical en-
gineers have. not resolved the question of whether, as is implicit here, one actually has
a physically "reM" film of liquid moving with the bubble or whether this model may
be a metaphor for a singular perturbation analysis involving a boundary layer for the
pure diffusion. The former case is, indeed, plausible for a bubble reactorone would
expect from fluid dynamics considerations that there would be a boundary layer at
each bubble of relatively motionless fluid within which transport would be dominated
by molecular diffusion: this is the "film." Allowing for the fact that one must expect
some statistical fluctuation of layer thickness, interpretable interaction of the layer
with the bulk, alternative ways to model transient gas/liquid mass transfers are the
"penetration theory" and the "surface renewal theory," cf. [6], [1], as well a variant
that we sketch below but treat in more detail in [3].

The use of the film theory in chemical engineering is mainly restricted to steady-
state cases. Approximate ways of computing the "enhancement factor" due to fast
reactions in the interfacial layer have been considered in the chemicM literature [14] in
special cases with steady state and simple kinetics. Here, on the other hand, we have
assumed the system to be dynamic, with a given initial state at t 0. Such a system
adequately models two types of reactors: (i) a fully "batch" reactor characterized
by fixed amount of reactants in which the gas is brought into the liquid all at once,
so all the bubbles begin the reaction with the same initial conditions at t 0; (ii)
steady-state operation of a co-current column reactor for which the role of the time
variable t is played by the height coordinate of the column. A practicM example is
discussed in [4].

In the more common "semi-batch" reactor the bubbles are fed into the liquid
continuously and we note that our model does not quite fit this. The situation differs
from the full-batch one in that the bubbles have varying initial conditions: a bubble
coming in at time t T has the initial conditions in (13) where the right-hand
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sides are to be replaced by U(T), V(T), W(T). One then has u u(t, x, T) for t >_ T,
and the flux into U involves an integral with respect to -, etc. We intend to treat
such systems elsewhere.

In using nonsteady film models to compute the enhancement factor, perhaps the
most straightforward way to solve the parabolic system of equations numerically is
to use the method of lines: discretize the system with respect to the spatial variable
with a finite difference formula and then integrate the resulting ordinary differential
equation (ODE) system with any standard ODE solver. One may encounter numer-
ical problems of accuracy with very fast reactions, and one expects that some care
in selection of the difference scheme will be needed. Useful difference formulae are
discussed, e.g., in [9]. In systems like A + B - C the concentrations are bounded by
the initial values. In such cases the algorithm described should satisfy the discrete
maximum principle: the computed solutions also stay between the limits given by the
initial values. For more details, see [12] and [2].

In our treatment we have only considered in detail the specific system (9) but
the approach here is not restricted to this. Other kinetics can be handled by the
same methods. The number of components may be arbitrarily large. The essential
properties of the nonlinearity F appearing in 2 and 3 are that the modified " be
Lipschitzian and that its components satisfy such conditions as U-fl(U, v, w) O,
v_f2(u, v, w) 0, f3 const. The boundary conditions may also be modified.

A special case of interest might be to consider the situation when the first reaction
A + B C is "very fast" compared to A + C D. With an increasing reaction rate
constant A, the concentration profiles of A and B in the film become more and more
V-shaped since the reactants "eat" each other almost immediately. In the limit we
can expect A and B to meet at one moving point only. This ngive picture thus leads
to (i) a free boundary problem for the "reduced problem"; (ii) a singular perturbation
problem for the asymptotics of the relation between the problems. These questions
will be studied in [7].

5.1. A variant model. A related "surface renewal" model suggests the possi-
ble consideration of an (additional) distributed transport interaction in which a term
of the form -y[u- U] would be included on the right-hand side of the first reac-

tion/diffusion equation in (1) with the corresponding transport term modified to
be

:= a -Dul=l + udx

and a new term -FlU (with 1"1 o" f 3’1 dx) included in the ordinary differential
equation for U--with similar treatment of the other components. Thus we let

(34)
j a -Dj [ujlx 1=1 + 3"juj dx

{/o /o }I’ diag a 3’1 dx,..., a 3"m dx

be the the coupling terms. Here we suppose that a and each Dy is a positive constant
and that each 3’j 3’(.) is in L[0, 1]"

(35) 13’j(x)l <_ M a.e. on [0, iI.
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Remark. We do not pursue the possibility of a more refined treatment that could
permit, e.g., ,j E H-l(0, 1) with a one-sided bound; compare [10].

We are now considering systems of the form

(36)
/ [Dux] ’[u U] + f0 (., u),

fl+ (.,v),

together with the further coupling U ulx=l and for this we introduce the linear

operator A on Z "= [L2(0, 1) x ]R] 4, given by

A" [y, Y] - [(Dy’)’ 7(Y Y), rY]

[ /01 ](37)
with := a [-DY’]I=I + /y dx

for [y, Y] E 7:)A with 7)A C Z given essentially by (17).
Along the same lines as for (11) one can see, using the inner product of Z and

some manipulation, that A is a negative self-adjoint operator which generates an
analytical contraction semigroup. The well-posedness and long-term behavior of (36)
can also be established as was shown earlier.
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ON A NONLINEAR PARABOLIC PROBLEM ARISING IN SOME
MODELS RELATED TO TURBULENT FLOWS *

JESUS ILDEFONSO DIAZ AND FRANCOIS DE THELIN:

Abstract. This paper studies the Cauchy-Dirichlet problem associated with the equation

b(u)t -div (IVu- K (b(u))elp-2 (Vu- K (b(u))e)) +g(x,u)--f(t,x).

This problem arises in the study of some turbulent regimes: flows of incompressible turbulent fluids
through porous media and gases flowing in pipes of uniform cross sectional areas. The paper focuses
on the class of bounded weak solutions, and shows (under suitable assumptions) their stabilization,
as c, to the set of bounded weak solutions of the associated stationary problem. The existence
and comparison properties (implying uniqueness) of such solutions are also investigated.

Key words, nonlinear parabolic equations, degenerate parabolic and elliptic equations, stabi-
lization, existence and uniqueness of bounded weak solutions

AMS subject classifications. 35K65, 35K60, 76S05

Introduction. Physical models. The purpose of this paper is the study of the
following nonlinear boundary value problem:

(0.1)
b(u)t div (Vu K (b (u)) e) + g (x, u) f (t, x)
u--0
b (u (0, x)) b (Uo (x))

in (0, c) x ft,
on (O, cx) Oft,
on

where ft is a bounded regular open set of RN b is a nondecreasing continuous function,
K(.) and g(x, .) are continuous functions satisfying some additional assumptions, and

()--I1P-2 for somep> landanyEIN

(in (0.1) e denotes a given unit vector in RN).
When b is strictly increasing and p 2 the partial differential equation of (0.1) is

of the parabolic type. Nevertheless, it becomes degenerate when p
(for instance) and singular if 1 < p < 2 or b(0) 0 (for example).

Problem (0.1), or some special cases of it, arises in many different physical con-
texts. Here we shall mention two of them which are related with turbulent flows, thus
justifying the title of this article.

Model 1. Flow through porous media in turbulent regime. The infiltration of an in-
compressible fluid in laminar regime through a porous medium (assumed homogeneous
for simplicity) is governed by the continuity equation

Ot + div v 0
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and the Darcy law
v -K (0)grad (I)(0),

where O(x,t) is the volumetric moisture content, K(O) is the hydraulic conductivity
and the total potential (I) is given by (I)(0) (0)+ z with (0) the hydrostatic
potential and z the gravitational potential (obviously we have simplified the exposition
by assuming several constants equal to one: see details in Bear [7]). In turbulent
regimes (which appear, for instance, in the flow through rock filled dams) the flow
rate is different from that which can be predicted by the Darcy law, and so several
authors proposed a nonlinear relation between v and K(0) grad (I) (nonlinear Darcy’s
law)

(0.3) Iv] q-2 v -K (0) grad (I) (0) for some q > 2

(see Ahmed and Sunada [1], Hannoura and Barends [35], and Volker [54]). If e denotes
the unit vector in the vertical direction, by introducing

o
(0.4) (0) K (s) (P’ (s) ds, p q/ (q 1)

(notice that 1 < p < 2), we obtain

Ot div (IVp (0) K (0)elp-2 (Vo (0) K (0)e)) 0.

The functions and K are given by physical experiments (see the above references).
Usually they are nondecreasing functions, being strictly increasing for unsaturated
media. In the unsaturated case the function u (0) satisfies the equation of (0.1)
with b -1 and g f 0. The case of partially saturated media leads to the
same equation (for a different unknown u) but with b a strictly increasing function on
(-cx, u*) and identically constant (_= b(u*)) on the set [u*,oc) for some u*E ]1( (see
Bear [7]). The interest of the presence of the term g(x, u) appears when the action of
the roots of plants into soil is taken into account (see Gilding [33] and his references).
We mention that if p 2 and N 1 (0.5) is also known as the nonlinear Fokker-
Planck equation and has been intensively treated in the mathematical literature (see
the works Kalashnikov [39], Diaz and Kersner [25], Gilding [34] and their references).
Finally we point out that equation (0.1) also arises if the fluid is assumed to be
compressible and (again) turbulent (see Leibenson [44] and Bear [7]).

Model 2. Turbulent gas flowing in pipelines. Let p, p, v, and T be the density
pressure velocity and temperature of a perfect gas flowing in a pipe of uniform cross
sectional area. In the practical cases of interest the flow is turbulent, and so p, p, v,
and T can be assumed to depend on the scalar x (the distance along the pipe) and
time t (see, e.g., Shapiro [50]). The conservation of the mass and linear momentum
leads to the system

+ 0,

(0.7) pvt + pvv= + p=
2

plvlv,

to which we add the equation of the conservation of the energy and the constitutive
law pip T (after suitable normalizations). In (0.6) the term (A/2)plvlv models the
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frictional forces (A is known as the Darcy-Weissbach coefficient). Using asymptotic
methods it was shown in Diaz and Lifian [26] that if the lengh L of the pipeline is
considerably greater than the diameter D of the cross section, for large values of time
the term pvt + pvvx can be neglected obtaining

(0.s) plvlv.

An easy computation allows to see that u IPlP satisfies the equation (0.1) with
b(u) ui/2 sign u,K g f 0 and the exponent p of (0.2) given by p 3/2.
The study of incompressible flow leads to a similar equation (0.1) but with a linear

(see Lifian [45]). Finally, we mention that the interest of the presence of the term
g(x, u) in this context is motivated by the study of the behavior of solutions near the
extinction time (see Diaz and Lifian [26, Thin. 3]).

Problems like (0.1) appear in a variety of different settings (see Bermudez, Durany,
and Saguez [10], Diaz and Herrero [24], van Duijn and Uilhorst [28], Martinson and
Pavlov [47] and the monographs by Diaz [22], [23]).

This paper deals with the mathematical treatement of problem (0.1) (which some-
times will be referred to as the model problem). Motivated by the physical models, we
shall resctrict ourselves to the study of bounded weak solutions. This class of solutions
is introduced in 1, where we also show that under suitable hypothesis those solutions
stabilize as t - +c to the set of bounded weak solutions of the associated stationary
problem. This is done for a general class of nonlinear equations including the one of
(0.1). We extend the result of Langlais and Phillips [43] concerning the special case
p 2 and K 0 by passing to the limit by a variant of the already classical Minty
argument (see Lions [46]). The rest of the paper is devoted to the study of the model
problem (0.1).

The comparison properties (and uniqueness) of bounded weak solutions of (0.1)
and its stationary problem is analysed in 2. In the case of problem (0.1) we extend the
result of Alt and Lukhaus [3] valid only for p >_ 2 by giving a comparison criterion for
1 p

_
2. The results for the stationary problem needs a different type of assumptions

depending on whether g(x, u) is a strictly increasing function or not.
The existence of a bounded weak solution of (0.1) is carried out in 3 by coupling

regularity and sub-supersolutions arguments. The boundedness result of Boccardo
and Giachetti [17] for a general class of stationary problems is shown to be applicable
to our case, thus being systematically used in order to formulate our assumptions
on the data f and u0. References to some existence results for similar problems are
collected in Remark 6.

We finish the article by coming back to the stabilization question and checking
the assumptions of 1 for the concrete case of problem (0.1). In the first part we prove
this property by using the comparison principle and the uniqueness of the associated
stationary problem. That extends the result of KrSner and Rodrigues [41] concerning
the case p 2, b and K Lipschitz continuous functions (b being also assumed to
be bounded). Finally we treat the case of K(b(s)) As by purely energy methods
generalizing several results in the literature for special cases of b, p, and K 0.

Some notation used through the paper follows: given p > 1 we associate to it
the exponents p p/(p 1),p*= Np/(N p) if p < N and p* arbitrary in (p, +oc)
if p _> N and finally p# max (p, 2). The symbol (,)denotes the ,duality product

lpbetween the Sobolev space W0 () and its dual (W’p (Ft))*= W-1,p (Ft). Finally, we
shall use the common letter C to denote different constants if no other specification
is needed in the context.
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1. Notion of solution and a stabilization result for a general class of
equations. Let f be a regular open bounded set of NN. In this section we consider
the following problem:

b (u)t + Au + g (x, u) f (t, x)
u=0
b (u (0, x)) b (uo (x))

in (0, c) x ,
on (0, c)
in

where jlu denotes the operator

(1.2) jiu -div A (x, u, Vu)

for A Ft R x ]1N + ]tN a Caratheodory function (i.e., continuous in (r/, {) E R RN
and measurable in x) satisfying

(1.a) IA (x, r, )1 _< Co (IvlV*/v’ + Igl-) + ko (x)

for some Co > 0 and k0 e Lv’ (f) and

(1.4)

for any R, {, e ]IN and almost every x Ft. Obviously, the model problem
(0.1) corresponds to the special case

(1.5) A (x, r, {) ({ K (b (7)) e), ({) [{[p-2 {.

In that case (1.4) is trivially satisfied and (1.3) holds under an additional condition
(see (3.1)).

Here and throughout the rest .of the paper we assume the following conditions:

(1.6) b ]R --. R is a continuous nondecreasing function with b(0) 0,

(1.7)

g- Ft x lR - R is a Caratheodory function such that Ig (x, )l -</ (11) (1 + d (x))
for some d L (Ft)and some continuous increasing function/3,

(1.8) f E L ((0, T) a) + LP’ (O,T" W-l,p (t)), for any T > 0,

(1.9) u0 e L (Ft).

We shall use the notion of a weak solution introduced in [3]. By a bounded weak solution
of the problem (1.1) we mean a function u e Lp(O,T" W’P(Ft))N L((0,T) Q),
satisfying

(1.10)

b(l,)t Lp’ (0, T: W-1,p’ (Ft)) and fT <b(u)t, v)+ fT f [b(u) b (uo)] vt O,
for any v

_
LP(O, T: W’P(Q))CI W1,1 (0, T: L (Ft)), with v (T, .) O,
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(I.ii) + (., u, w). vv + (.,
for any v E LP(O,T W’P(n))N L ((0, T) x ),

where T is any positive number. In (1.11) we have used the notation

(1.12) oT /fv-- oT fflV-oT(f2, v)

if f- fl + f2 with f: e L((0, T) ) and f2 e Lp’ (0, T" W-1,p’ (’)).
The rest of this section is devoted to the study of the stabilization, as t x), of

any bounded weak solution u of (1.1). As usual, we define the w limit set associated
touby

w(u) {u W’p () L () 3tn ---* (X) such that u (tn, .) --
in Lp (), as n

In order to state our result we need some additional assumptions on f:

(1.13)
there exists f e L: () + W-:,p’ () such that f (t, .) f as

t - :x) in the sense that ftt+-:
Finally if foo L:()+ W-I,p’(fl) (i.e., foo foo, + foo,2, foo,1 ( L:(),foo,2
W-1,p’ (fl)) we say that uoo is a bounded weak solution of the stationary problem

(1 14)

if u Wo ’p (gt) N L (gt) and satisfies

(1.15) /nA(x, uoo, Vuoo) Vv+ fng(.,uoo)v-- /foov
for any v W’P() L(t) (we have used again the same abuse in the notation as
in (1.12)).

THEOREM 1. Let u be a bounded weak solution of (1.1) such that

(1.16) u e L(to, +c; W’P(gt)) for some to > 0.

Then w(u) . Moreover, ifu w(u) satisfies

(1.17) 3tn --+ -t-x such that u (tn - 8, ") -- u in Lr (-1, 1; LP (gt)) for any r >_ 1,

then u is a bounded weak solution of the stationary problem (1.14).
Proof. Let tn -- t_(. As {u(tn, ")} is bounded in W’P(gt) there is some subse-

quence (denoted again by tn) such that u(tn, .) converges in np(gt) and so w(u) . For
any e W’P(gt)L(gt) and for any e T)(-1, 1), _> 0 such that f-l (s) ds 1,
we define the function v(t,x) (x)(t- tn). For T >_ tn -- 1, we have

[ () (0)] v () Cv, (t t)
Jtn--1
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and from conditions (1.10) and (1.11) we get

Changing variables, namely s t-tn and defining Un(s,x)= U(tn + S,X) we obtain

(1.18)
b (Un) V’ (s) + A (., Un, VUn) V9 (8

S’_So (f

Since Un is bounded in L(_1, 1; Wd’p(ft)), by (1.3) and the Sobolev theorem
A(-, Un, VUn) is bounded in L(-1, 1; (np’ (ft))N). So there is a subsequence, denoted
again by U, weakly* convergent to uo in L (-1, 1; W’p(f)), weakly convergent to
uo in Lp(-1, 1; W’B(f)) and such that A(-,U, VU) converges weakly* to Y in
n(-1, 1; (Lp’ (ft))N). Moreover, from the assumptions on b and g the sequence b(Un)
converges to b(uoo) and g(., U) converges to g(., uo) in the space Lr((-1, 1) f) for
any r E [1, +c). Moreover, we have

Y V in (fo g (’, Uo)) .
Due to the quasilinear character of our operator, the main difficulty is to identify Y
as A(-, uoo, Vu). We shall show that by means of the following inequality which is a
variant of the well-known Minty argument (see [46])

A (., Uoo, VX)]" V (Uo ) >_ 0 for any X

If (1.19) is verified taking X uo + A, with A > 0 and arbitrary e W’P(ft) and
letting A 0 we obtain

A (., u, Vu)]. V( >_ O.

Hence Jluo -div Y and the conclusion of the theorem holds. The proof of (1.19)
follows from the next two lemmas.

LEMMA 1.

lim A (., Un, VUn)- V (Un Uo) (S) O.
n--++oo

Proof of Lemma 1. Let v(t,x) u(t,x)o(t t). By (1.10) and (1.11) we get

tn+ ltn-t-1<b (u)t u) o (t tn) + A (., u, Vu). Vuo (t tn)
t--I Jtn-1

itn’t-1 SI’-I If (t,-) g (., u)] uv (t tn).
Jtn--1
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Following Alt and Luckhaus [3], we define the real function

B (u) [b (u) b (s)] ds Vu e R,

and the time variable function

(t) ia B (u (t, .)).Zu

As B[u(.,-)] is bounded, then z e LI(0, T) and Lemma 2 of Bamberger [5] gives

ft+l f +1

(b (u) u) o (t tn) Zu (t)(p’ (t- tn)
Jtn--1 Jtn--1

--1 ’ (8) {b[Un (8, x)] b(ff)}.

By the dominated convergence theorem, the lt term converges to

/_ll ’ (8) fa u(x) {b[u (x)] b(a)}

which is identically equal to zero. Since Un (and, therefore, u) is uniformly bounded
and since f, LI() from the Egorov theorem, we deduce that

lim f,l (Vn u) (8) O.
n

Then, by the previous results on the convergence of U we have

lim [f (t + , .) g (., U)IU() [f g (., )].
n+

Then we get

lim A (., Un, VUn). VUnV (S) [f g (’, U)]U Y"Vu.
n+

LEMMA 2.

Y A (’,u,Vu).

Proof of Lemma 2. For any X E W’p (12) we have

i’--, i. vUn) v (") s’

where

i’_SoI1 A (’, Un, rUn). V (Uex) Un) (8) --+ 0 by Lemma 1,

/2 {A (-, Un, rUn) A (., Un, VX) V (Vn X.) (8)

_
0 by (1.4),



1092 JESUS ILDEFONSO DIAZ AND FRANCOIS DE THELIN

and

z3 A (., vx)- v (s).

By Lemma 2.1 of [46] A(., Un, VX) converges strongly to A(-, uoo, VX) in (Lp’ ([’))n,
and by (1.3) there exists C > 0, independent of n such that

f
sup/IA(’,Un, VX) V (U uo)Iess

s[--1,1] f

Whence, by the dominated convergence theorem, lim I3 0. By the same reason
lim I4 0, where

I4 [A (-, Un, VX) A (., u, VX)]" V (u X) o (s).

That proves the inequality (1.19) and the conclusion of the theorem follows, rl

We point out that the proof of Theorem 1 also gives the information that
u(tn,.) -- uoo(x) weakly in W’P(). The next result shows that this convergence
can be improved under the following additional coercivity assumption:

(1.20)

_< { [A(x, /,)- A (x, r/,)]. [- ] }/2 {kl (x)-]
for any r/e ]l{, , e NN, a.e. x E f/and for some C1 > 0, kl
k2 > 0 and some a (1, 2].

THEOREM 2. Assume the same conditions as in Theorem 1 and also (1.20). Then,
for any u e co(u), there exists a sequence {n}, -- +c as n -- +oc, such that
U(n, ") --+ u strongly in W’P(fl).

Proof. Taking X u in the proof of Lemma 2 we have

lim A (-, Un, Vu)- V (Un u) o (s) O.
n--++cx

So, by Lemma 1, we obtain lim=_+ In 0, where

In [A (’, U,, VU,) A (-, uoo, Vu)] V (Un uo) o (s).

Moreover, by (1.20) and HSlder’s inequality
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So, as Un is bounded in Lp(O,T; W01’p(gt)), for any e T)(-1, 1) _> 0 such that

fl (s) 1, we have

n--*-bcx)
V (tn -- 8, ") Vltcx) p (8) 0.

But that is impossible if for some _> 0,

VU (tn -[- S, ")- VUolp

_
for almost every s e (-1, 1). Then there is a sequence {Sn}, 8n e [-1, 1], such that

VU (tn J- 8n, ")- VUolp -0. D

Remark 1. The results of this section generalize previous results in the literature:
the case of ,4 -A (the Laplacian operator) was treated by Langlais and Phillips [43]
who showed convergence in L2(gt). Convergence in L8 () for some s _> 1 was given in
the papers Berryman and Holland [12] and Diaz and Lihan [26] for the special case
of the model equation with b(s) sl/m,g =- O, (p- 1)m _< 1,p 2, and p 2,
respectively. The convergence in LI(f) was shown in Chipot and Rodrigues [20] for
b(s) s and ,4 satisfying a coercivity condition stronger than (1.20). Concerning
strong convergence, our result improves the one by Krhner and Rodrigues [41] (for the
model equation, p 2 and b Lipschitz and bounded) and the results of E1 Hachimi
and de Whelin [29], [30] (for the model equation with b(u) u and g 0).

Remark 2. If w(u) consists of a discrete number of points it is easy to see that
in Theorems 1 and 2 the convergence holds for any subsequence tn, i.e., when t --+oc. A more difficult task is to prove such conclusions when there is a continuum of
equilibrium solutions. Some results in this direction are due to Matano [48], Alikakos
and Bates [2] and Diaz and Veron [27].

The assumptions (1.16) and (1.17) hold under additional conditions on the for-
mulation of the problem. Concerning the condition (1.17), we shall verify it (in 3) by
using suitable comparison arguments. Energy type arguments also lead to this condi-
tion once we have suitable additional information on the solution. This is contained
in the following result.

PROPOSITION 1. Let u C L((O, cx) gt). Assume that there is a continuous
strictly increasing function k from to with k(O) 0 such that k(u)
Lq(gt)) for some q >_ 1 and

t+l/t
(1.21) lim Ik(u)t q O.

t-*+oo Jr--1

Then, if there exists a sequence tn --+ +00 satisfying

(1.22) lim u (tn ")

condition (1.17) holds.
Proof. Let uo lim,_-.+o U(tn, ") in Lp(gt). Then there exists a subsequence

(denoted again by tn) such that u(tn,’) converges almost everywhere to uo. For
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s e ]- 1,1[ and x e ft, we define Un(S,x) U(tn + S,X). As u is bounded, by
the dominated convergence theorem, k[u(tn, ")] converges to k(u) in Lr(t) for any
r E [1, oc). Moreover,

-}- 8

Ik [it (tn -}- 8, ")1 k [it (tn, ")11 k(u)t (T, .) dT_
Ik(it)t (T, .)1 q dT

Thus using (1.21)

Ilk (Un) k [u (tn, ")]llLq(Ft) ---+ 0 as tn -
so, k(Un) converges to k(u) in Lq(Ft). Moreover k(Un), and Un converge in almost
everywhere point to k(u) and uo, respectively. Finally, as all these sequences are
bounded the convergence holds in the space Lr((-1, 1) x ft), for any r

2. Comparison and continuous dependence results for the model equa-
tion. In this section, we give several results on the comparison (and then uniqueness)
and continuous dependence of solutions of the model problem (0.1), i.e., (1.1) with A
given by (1.5). We make the following additional assumptions:

IK [b ()] K [b ()]l <- C I/- 1

for any )ERwith/> ifl<p<2,>p if p> 2,

g (., ) g (., )) _> -C* (b (r/) b ())) for some C* _> 0 and any r], e JR, r > .
Our operator is coercive in the sense that it satisfies the relation (1.20). This is a
direct consequence of the well-known inequality

(2.3)

which holds for any 0,/} ]1N and p > 1 with a p if 1 < p _< 2 and a 2 if p _> 2
(see Simon [51]). Inequality (2.3) generalizes the following one (sometimes referred as
Tartar’s inequality)

which only holds for p >_ 2. Moreover taking (),/} () and changing p by p’
we obtain the following inequality for any and in ]1N

where Z 2 if 1 < p _< 2 and Z P’ if p _> 2 and () Ilp-2 .
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THEOREM 3. Assume (2.1) and (2.2). Let (f, u0) and (], o) be a pair of data
satisfying (1.8) and (1.9). Let u and z be bounded weak solutions of problem (0.1)
corresponding to f no), (], o respectively, and such that

(2.6) b(u)t, b(t)t e L1((0, T) ).

Then
(i) if the data are ordered [i.e., f <_ ], uo <_ 0] we have u

(ii) if f fl+f2,]- ]1+) with fl,L G nl((0,T) x) and f2 ]2 e LP’(O,T"
W-1,p’ (f)), we have

IIb((, ")) b((, "))1151(,)
__

eC*t (lib(no)

Remark 3. Conclusion (i) of Theorem 3 for p _> 2 is a direct consequence of
Theorem 2.2 of [3] (see also Artola [4] and Chipot and Rodrigues [20] for b(u) u,
and p 2 and p _> 2, respectively). Indeed, from (2.5) we deduce that if p _> 2, then

Applying this inequality to -K(b()), -K(b(O)) and using the assumption
(2.1) we arrive to the hypothesis of the mentioned result (remark that 2- p’ E (0, 1)).
The case 1 < p < 2 needs a new treatment because the assumptions of the mentioned
papers are not satisfied.

Proof. (i) We only consider the case 1 < p < 2. For small 5 > 0, we introduce the
test function

( (r/)) for GR.v=6(u-), where 6(r/)=min 1, max 0, ?

We get

(2.7)

So lo [b(u), b (),] 6 (u ) + I1 (() -- 12 () + [g (’, ) (’, )] 6 (u )

where
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with A5 {(t, x)" 0 < u(t, x) (t, x) < 5}. By Young’s inequality, we have that for
any e > 0

/2 (5) <_ p I [Vu K (b (u)) e [Vt K (b ()) e] P

+ Ig [b()] g [b ()11

om (2.g) and (2.1)we obtain

e C
5_

Hence, if py > 1, we have

lim [21 () -t-/2 (()]

_
0.

5--,0

In the case when p- 1, we obtain the same result because we integrate on a set
whose measure goes to 0. From (2.1), (2.7), and (2.8), letting 5 0, we have

max {b(u(t)) b(t(t)), 0} [b (u) b ()]t
u>}(2.9)

C* max {b(u) b(), 0}.

om Gronwall’s lemma we deduce that b(u) b(). Using again (2.9) we also obtain
that b(u)= b(g)in the set A5. So I2(5)= 0 and (2.7) gives Ix (5) N 0. om (2.3) we
obtain

Iw g ( ()) el- Iw (b ()) el- 0.

Hence max (0, min (u- , )) is constant and this implies u since it is true on

(0,T) x 0.
(ii) Suppose first that C* 0. Using (2.9) and that f2 ]2 we have

[b [ (t, .)] b [ (t, ")1]+ [b (o) b (a0)]+

Adding this inequality with the similar estimate obtained for [b(u) -b()]_ the result
follows. Suppose now that C* > 0. Multiplying the equations by e-C*t (in the sense
that we multiply the previous test functions by e-C-t) the integrand in Ij() is also
multiplied by e-C*t and we can apply (2.8). Hence, we have

c,-c* [ [ (, )l [ (s, .)]]+ d
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Define v e-C’tb(u) and 0 e-C’tb(t). As sign+ (v- 0) sign+ (u- ) and
vt -C*v + e-C*tb(u)t we obtain

As before we obtain in conclusion that

-t- e-C*s fl(s, .) ,fl (s, ") ds.

Coming back to b(u) and b(t), we get the final estimate.
We shall end this section by studying the comparison of solutions of the stationary

problem

(2.10) -div (Vu K (b (u)) e) + g (x, u) f in ,
(2.11) u 0 on 0.

As a consequence, we shall prove the uniqueness of solutions of (2.10) and (2.11)" a
result which will be useful for the stabilization of bounded weak solutions of the model
problem.

PROPOSITION 2. Assume (1.6) and (2.1) and suppose that one Of the following
assumptions holds:

(2.12) g(., ) is a strictly increasing function on ,
(2.13) g(-, ) !)(’, b(r])) with (., s) a strictly increasing function on s,
(2.14) g(., r]) is a nondecreasing function on and we have one of the additional

conditions:
(a) p 2 and N >_ 2 or K is also a monotone function,
(b) g(b()) ) for some e R,
(c) 1 < p <_ 2 and there exists a constant

Ib ( K (b (r])) e) b ( K (b ()))

for any c NN and , C N.
Let f,] e nl() + W-I,p () such that f <_ ] on . Then for any uo,

bounded weak solutions of the associated problems (2.10) and (2.11) we have uo <_
on . Moreover, in any case, if f- ]o LI() then

(2.15)

Proof. For the sake of the notation we drop the subindex oc in the data and
solutions. Arguing as in the proof of Theorem 3 we have

I1 (() -t- I2 (() -I- [g(’, /,) g(’, t)])5(U t) (f :))6(U 1,)

_
O,
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where

I1 (() { [VU K(b(u))e] [V K(b())e]

-[Vu- g(b(u))e- V + g(b())e]}

/2 (5) { [Vu K(b(u))e [Vt K(b(t))e]- e [K(b(u)) K(b(a))]},

and A {0 < u- < 8}.
(i) Assume first 1 < p _< 2. From (2.1) we have (as in the proof of (2.8)) that

(2.16) lim [I1 (5) + I2 (5)] > 0

and so

(2.17) j[ (g(’,u)- g (., ))sign+ (u- )_</ft (f ]) sign+ (u-),

where sign+ (r) 0 if r _< 0 and sign+ (r) 1 if r > 0. If (2.12) is satisfied we have
that sign+ (u- t) sign+ (g(-, u)- g(., t)) and the conclusion is clear. Now sup-
pose that (2.13) is verified. Prom (2.17) and the fact that sign+ (b(u)- b(t)) <_
sign+ (u ) we have

(., b (u)) t (’, b ())) sign+ (b (u) b ()) <_ O.

As is strictly increasing we conclude that b(u) <_ b(t). In particular b(u) b() on
the set A. Then I1 (5) _< 0 and similarly to the evolution case the inequality I1 (5) <_ 0
and (2.3) imply that u _< .

(ii) Assume now that p > 2. The proof of (2.17) is the following: using (2.3) we
have

(2.18)

Using the Young inequality and the inequality of the Remark 3, we have

for some H E LI(Ft). As p’/- 1 >_ 0, letting 5 --, 0 we obtain (2.17).
(iii) Assume now (2.14), i.e., g(-, r/) is merely a nondecreasing function on r/. Again

we only have to prove that u _< because the inequality (2.15) is then a consequence
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of (2.17). For the special case p 2 the uniqueness of the solution of (2.10), (2.11)
was obtained in Carrillo and Chipot [18] under the assumption (2.1) (notice then that
/

_
1/2) and N

_
2 (see Theorem 6 of [18], [32], and [19]) or N 1 and K(b(17)

a merely continuous monotone function (see Theorem 3, (ii) of [18]). Some easy
modifications of the proofs lead to the comparison u

_ . In case (b), without loss of
generality we can assume that e el where el is the first term of a orthonormal base
of RN. Then we have

(w e) (-1), (v (-,)).

Using e-xl (u- )+ as test function we obtain

[ (v (-)) (v (-,))]. IV (-) v(-)] (-), < 0.

Applying (2.3) we conclude that u _< . Assume finally the conditions of case (c). Let
(u-) the same test function of the proof of Theorem 3. Then, if we denote by C*
the constant in (2.3) we have

c, i Iv (- )l
Iwl- + Iwl-"

-< in [ (Vu K (b (u)) e) (V K (b (u)) e)]. [V (u )]

<_ [b (V K (b ()) e) -(V K (b (u)) e)l. V (u )

I’-l(C + iV-ll-i + lullS-l+ I11-1)Iv (u-)1.

As in Boccardo, Gallouiit, and Murat [16] we notice that for any > 0

In consequence, taking T large enough, we have that

with

Introducing the function

H1 IWl" + IWl-" + IWl:-"
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is not difficult to show (see [16]) that the condition 1 < p _< 2 implies that H1, H2 E
Ll(f). Then, by Cauchy-Schwarz we get

1/2

Finally, using the Poincar inequality, for any fixed #, # > 5, we obtain that

meas (u t _> #} _/n
1/2

Letting i --, 0 we get the conclusion since fA Hi 0 as 0, for i 1, 2.

Remark 4. When N 1 the assumption (2.1) in Theorems 3 and 4 can be
generalized to the mere assumption that K(b(r)) be a continuous function of r]. This
is an easy adaptation of a result due to Benilan [9] (see also Wolanski [55]). We
mention the papers Kalashnikov [39], Ishii [36], and Yin Jingxue [57], [58] where the
authors prove the uniqueness (f the solution of different special cases of the model
equation on gt ]1N and without the regularity condition (2.6). The comparison
properties of some special bounded solutions without condition (2.6) will be given in
the next section.

We also point out that when g(., ) with > 0, the estimate (2.15) proves
that the abstract operator associated to ,4 is an accretive operator in Ll(t) (see
Benilan [8], [9] and Crandall [21] for the theory and applications of this class of oper-
ators). The proof of the case (c) of Proposition 2 is inspired in Boccardo, Gallouiit,
and Murat [16] (his result cannot be directly applied because their assumption (1)
is not satisfied in our case). Finally we remark that a revision of the proof of part
(c) shows that the conclusion still holds if the assumed inequality is verified merely
for any e R { Vuo(x), for some x e t} and any ,) e [-M,M] with
M max {[[uo[[, [[fio[[oo}. In particular it holds if we assume uoo e WI,() [or
o Wi,(n)],K(b(.)) locally Lipschitz continuous and - K(b(rl))e : 0 for any

Roo and /E I-M, M]. We point out that in the case of Model 1 of the Introduc-
tion the function K is usually taken as a regular function such that K(s) > c > 0 for
any s R and some c > 0 (see Bear [7], p. 492).

3. Existence of bounded weak solutions for the model problem. In order
to obtain the existence of bounded weak solutions of the model problem (0.1) we shall
need to assume some additional conditions on K, g, and f besides the already explicit
ones in 2. So, the structure assumption (1.3) will require to assume that

(3.1)
K is a continuois real fu;ction such that

IK (b ()){ _< C 1 + Il for all ? e R and some A e [0, p*/p].

Moreover the boundedness condition of the solution under investigation will be ob-
tained by assuming that g(., u)satisfies (1.7), (2.2), and also

(3.2) g(x,/)r/_>0 for anyr/]R anda.e, xEf.
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Concerning the right-hand side term, we have

(3.3)

f e L ((0, T) x gt) + Lp (0, T" W-1,p’ (-)) and If (t, x)[ _< f (x).= div c (x),
for some c e (Lq (ft))

g
with q > N/(p# 1)

if p# _< N, q max (p’, (p#)’) if p# > N,
where p# max (p, 2).

We shall obtain the existence of a bounded weak solution of (0.1) by using com-
parison arguments and suitable super- and subsolutions of the associated stationary
problem. The concrete statement requires previously the next result.

LEMMA 3. Let f be given by (3.3). Assume that g satisfies (1.7) and (3.2). Then
there exists u, E W’p (’) 1 L (f), with u <_ 0 <_ satisfying

-div (Vu- K(b(u))e) + g (x, u) f (x) in

and

(3.5) -div (Vfi K (b ()) e) + g (x, t) f (x) in

where again () IIP-2 and p > 1.
We postpone the proof to later and state our existence result on bounded weak

solutions of (0.1).
THEOREM 4. Assume that the hypothesis (1.6), (1.7), (2.1), (2.2), and (3.1)-(3.3)

are satisfied. Suppose uo L(ft) be such that

(3.6) < (x) < (x) x e a.

Then there exists a bounded weak solution u of problem (0.1).
Proof of Lemma 3. Define a" ]R ][N ]tN by

a (r/, ) ( K (b (r)) e) + (K (b (r)) e).

From (3.1) we deduce that

]a (r/, ) <_ C (Irllp*/p + Ilp-l)
and from (2.3)

1-c/2
C I1p <_ (a (, ). )a/2 (11. + i1)

with 2 if p _> 2 and c p if i < p _< 2. Equation (3.5) can be equivalently written
as

-div a (, V) + g (x, ) div (c (x) + h (u)),
with

h (u) (K (b (fi)) e).

Assumption (3.1) implies that

[h (r/) <_ C (1 + I?1") with # e [O,p*/p’]
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and so the existence of e W’P(t) N L() satisfying (3.5) is assured (if p _> 2) by
Theorem 2 of Boccardo and Giachetti [17]. The case 1 < p < 2 can be obtained by
obvious modifications of the mentioned work. This function also satisfies that > 0
on t as we deduce by standard methods once we are assuming (3.2) and div c(x) >_ 0.
The existence of u is proved analogously.

Proof of Theorem 4. Let M > 0, M >_ max (llllLoo(t),llUllL(f)), > 0 and
k, j, m, n E N*. We consider the regularized equation:

bm (u)t Au div [Vu Kj (bin (u)) e] + gn (x, t) fk,1 (t, X) (t) -- fk,2 (t, X),

where

bm (7) 7 +m (7) with m the Yosida approximation of b (it is well known
that m is a Lipschitz nondecreasing function such that I,1 _< Ibl and
m-- b; see, e.g., Benilan [8] ,[9]);

E C () satisfies IIKj IILo <-- [, where
K---- sup IK [bl (8)] and Kj -- KI[bl(-2M),b,(2M)] as j -- +;s_[--2M,2M]

gn e C (t IR) satisfies (uniformly on l) (1.7), (2.2), and
gn (x, 7) --* g (x, 7) in L () for any fixed 7 and in ]R for a.e. x

fk e C ((0, T) t) satisfies (uniformly on n) the inequality (3.3),
fk fk,1 4- fk,2 and fk,1
fk,2 - f2 in Lp’ ((0, T): W-l,p

0 is a truncation function satisfying 0 C (), 0 <_ 0 <_ 1,
0(7)=lfor 171-<Mand0(7)-0 for 171->2M.

We also consider the regularized stationary equation

-Au- div [Vu Kj [bm(u)] e] + gn(x, u) ](x)in t.

Applying Lemma 3 we obtain a function e,j,m,n W’p() fL(ft) satisfying (3.8).
Analogously we get the existence of the associated function ue,,m,. Finally we reg-
ularize the initial condition by considering u0,q C(ft) such that ue,j,m,n <_ uo,q 5
e,j,m,n and u0,q -* u0 in L(ft) as q -- cx. Equation (3.7) is uniformly parabolic
and so by well-known results (see, e.g., Ladyzenskaya, Solonnikov, and Uraltceva [42,
Chapt. V]) there exists a unique classical solution U- Ue,m,j,,k of (3.7) satisfying

U 0 on (0, T) OFt,(3.9) bm(U(O,x)) bm (Uo,q (x)) in ft.

In order to study the convergence of Ue,m,j,k,n we need the following result.
LEMMA 4. The solution V of (3.7) and (3.9) is bounded in LP(O,T W’P(f))

and this bound does not depend on , j, k, m, n.
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have
Proof of Lemma 4. We use again the notation U u. Multiplying (3.7) by u, we

But

LTj fk,lO(u)u <_ M

and using Young’s inequality there exists a constant C > 0 such that

So, we obtain

io Bm [u(T)] + IVu Kj [b,(u)] el" _< M*(T),

for some M*(T) > 0. Hence the result. Vl

End of the proof of Theorem 4. As bm(U)t e L ((0, T) x f) we can apply Theorem
3 and conclude the inequality u,j,m,n(x < U(t,x) < e,j,,,n(X) for (t,x) E (0, T) )<ft.

Moreover, a careful revision of the proof of Theorem 2 of [17] allows to check that
IIe,j,,,nllLo(n) is bounded by a constant independent of ,j, m, and n. Using this
fact, Lemma 4, and proceeding as in Theorem 1, we can pass to the limit as s --+ 0
and m, j, k, n -- +oc, obtaining that e,j,m,n --+ , lte,j,m,n -- t at least weakly* in

n(Ft), weakly in W’P(Ft), and also that U -- u weakly in LP(O,T" W’P()) with
u as a bounded weak solution of (0.1), satisfying

(3.10) u(x) < u(t, x) < t(x) for (t, x) e (0, T) )< f. V1

Remark 5. When b is assumed to be strictly increasing the existence of a bounded
weak solution of (0.1) can be obtained for any uo L(f) (i.e., not necessarily
satisfying (3.6)) if we suppose f LI(0, T L(gt)). Indeed, in that case we can
repeat the proof of Theorem 3 but replacing (x) by the supersolution

( /o’ ) t(t,x) b-1 ll oll ::(a) +
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The process followed in the proof of Theorem 4 is useful to obtain general com-
parison results. Indeed, Theorem 3 assumes the regularity condition (2.6) which is
very hard to check in some cases. We shall show in 4 that this condition is verified
by any bounded weak solution of (0.1) if we additionally suppose that b is a locally
Lipschitz function. Nevertheless we have the following result.

COROLLARY 1. Assume the same hypotheses on b, K, and g given in Theorem
4. Let (f, u0), (], 0) be a couple of data satisfying (3.3), (3.6), and the analogous
versions for ] and to. Assume also that f <_ ] and uo <_ to. Then there exist u and
t weak solutions of the associated problems (0.1) such that u

_
t in (0, T) Ft.

Proof. Let U Ue,m,j,n,k and ( te,m,j,n,k be the classical solutions obtained
by the process described in the proof of Theorem 4 associated to the regularization of
the data fk, fk, uo,q and 0,q. Without loss of generality we can assume that fk
and uo,q <_ 0,q. Then, as bm(U)t, bm(f)t e L((O,T) ) we can apply Theorem 3
and obtain U <_ r. Finally, the conclusion follows by passing to the limit as - 0
and m, j, n, k -- +.Remark 6. As far as we know the existence of solutions for the model problem has
not be treated in the literature. Nevertheless there are many papers which obtain the
existence of solutions for some similar problems. We mention explicitly the important
work by Alt and Lukhaus [3] and their generalization made in Ua0ur [37], [38]. Another
point of view is presented in Blanchard and Francfort [13], [14]. Other related works
are due to Bermudez, Durany, and Saguez [10], Bernis [11], Esteban and Vazquez [31],
Simondon [52], Tsutsumi [53] and Xu [56] (see also the references in the mentioned
papers). The comparison between solutions which are limits of sequences of more
regular solutions is already an old argument (see Benilan [8], Bamberger [5], [6], and
Blanchard and Francfort [14]).

4. Stabilization results for the model problem. Theorem 1 reduces the
stabilization of bounded weak solutions to the study of conditions (1.16) and (1.17).
We shall start this section by showing that the comparison principle (Corollary 1) and
the uniqueness of solutions of the stationary problem (1.14) allows reduction of the
stabilization property to the study of condition (1.16) for solutions that are monotone
in time.

PROPOSITION 3. Assume the hypotheses (1.6) on b, (2.1) and (3.1) on K, and
(1.7) and (2.2) on g. Assume also that the stationary problem (2.10) and (2.11) has
a unique bounded weak solution. Let f and fo satisfy (1.8), (1.13), and (3.3), and
assume that there exists f+(t,x),f_(t,x) satisfying (1.8) with f+ (respectively, f_)
monotone nonincreasing in t (respectively, nondecreasing) and such that

(4.1) -f(x)

_
f_(t,x)

_
f(t,x)

_
f+(t,x)

_
f(x) in (0, on))

(f given in (3.3)) and also satisfying

(4.2) lim f+(t .) tm f_(t, .) f(.) in L (gt) + W-,p ().

Let u, u+ and u_ be the bounded weak solutions of (0.1) associated to the data (f, no),
(f+, ), and f_, ), respectively, assured by Corollary 1 (with , u_u_ given in Lamina
3). Then if u+, u_ satisfies (1.16) for any woo e w(u) we deduce that uo is a bounded
solution of the stationary problem and in fact

u(t, .) --. u in Lr (2), as t oc, for any r e [1, c).
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Proof. We shall follows closely an argument already used in KrSner and Rodrigues
[41] (Theorem 6). First of all we point out that the assumptions made on g imply the
condition (3.2) and then by Corollary 1 and the proof of Theorem 1 we deduce the
existence of the mentioned bounded weak solutions u, u+, and u_. Moreover, we have

(4.3) u_(x) <_ u_(t,x) <_ u(t,x) <_ u+(t,x) <_ t(x) (t,x) E (0, c) t.

By comparison on the related regularized solutions and using (3.4) and (3.5) it is easy
to see that u+(t, .) (respectively, u_(t, .)) is monotone nonincreasing in t (respectively,
nondecreasing). Then there exists u,+(x), u,_(x) such that

(4.4) u+(t, .) --. uo,+, u_(t, .) -- u,_ in Lr (f), for any r

From (4.3) we deduce that

u,_(x) <_ uo(x)

_
um,+(x) in ft.

Now as u+, u_ satisfies (1.16) and (1.17) (due to (4.4)) then Theorem 1 shows that
u,+ and u,_ are bounded weak solutions of the same associated stationary problem
(i.e., (1.14) with A given by (1.5); recall (4.2)). Finally, from the uniqueness of the
bounded weak solution of the stationary problem and (4.5) we deduce that u,_
u u,+ and so we have the conclusion. D

The important assumption (1.16) will be obtained in the two following results.
THEOREM 5. Assume

(4.6) 1 < p

_
2,

g satisfies (1.7), (2.2), (3.2), and f verifies (3.3) and

(4.7)

/[[’f
L(0, c[:l[

L1 (")-W-I’P’ ("))[’l Wll’: (0’ L1 (t)/W-I’P’ (2))and
t+ Of < C, for any t > 0 and some C independent on t.

Jt ILZ(a)TW-I,P’(a)

Let uo satisfy (3.6) and also

(4.8) uo

Finally, assume one of the following set of hypothesis:

(4.9) b is a nondecreasing locally Lipschitz function,(A) (4.10) g is a locally nipschitz function satisfying (3.1),
or

(B) { (4.11)
(4.12)

b-1 is a nondecreasing locally Lipschitz function,
K(b(.)) is a locally iipschitz function satisfying (3.1) holds.

Then if u is the bounded weak solution given in Theorem 4 we have u L(0, oc

W’p(gt)). Moreover, for any t > 0 and some C > 0 independent oft we have

ft+l /ft(4.13) [b(u)t[ <_ C
Jt
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when (A) is satisfied, and

TM

in(4.14) [ut[ <_ C

if (B) holds.
Proof. Assume that case (A) holds. Multiplying (0.1) by u, we have for any

satisfying T > a _> T- 1 > 0

(4.15) L" in IVu K[b(u)]elP <- C.

This is obtained by an easy adaptation of the proof of Lemma 4. Let us define

E(t) in IVu(t)- K[b(u(t))]elP"

Assume that ut is regular enough (otherwise we first work with the approximate
solution Ue,m,j,k and then pass to the limit). Taking v ut in (1.11) we get

(4.16)

L So Io Sob(u)tut + E(T) E(a) + J + G(., u(T)) G(., u(a)) fur,

where G(x, .) is the primitive of g(x, .) and

J [Vu K [b (u)] e]
dK

[b(u)]b(u)t.

Then, using (4.1.0) and (4.6) and Young’s inequality

with q p/(2(p- 1)). From (4.15) we obtain

J <_ Ib( ),l ’ + c,

Moreover, by (4.7) and (3.10) if f fl + f2 with fl E L(0, oc- Ll(gt)) and f2 E
L(0, oc-W-l,p (gt))we have

(LTSn tl 2)
1/2__

Ca -- ((7" 0")I"1) 1/2 U _< C2.
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The term f (f2, ut} is treated in an analogous way to the proof of Lemma 4. From
(4.9) we have

for some L- L(M) > 0. Then, we obtain (for e small enough)

(4.17)
2L

Ib(u)t + E(T) E(a) <_ C.

In case (B) we use (4.11) and conclude

Moreover, by (4.10)

and as in the case (A) we arrive to

(4.18)
1

(ut)2
2L + E(T) E(a) <_ C.

The result follows from the following well-known result.
LEMMA 5 (Nakao [49]). Let o(t) >_ 0 be a locally bounded function satisfying

(t + 1) _< O [qa(t) qa(t + 1)] + p(t) for t > O,

where C is a positive constant and p > 0 for large t. Then as t --. +oc one has:

qa(t) 0(1) [respectively, o(1)] if p(t) 0(1) [respectively, o(1)].

When p > 2 we shall prove that condition (1.16) holds at least for the super- and
subsolutions u+ and u_.

THEOREM 6. Assume

(4.19) p _> 2

and suppose the same hypothesis than in Proposition 3 but with g(-, u) merely a non-
decreasing function satisfying (1.7). Then u+, u_ E L(O, oc W’P()).

Proof. From the proof of Proposition 3 we know that u+(t, .) is monotone and
nonincreasing in t and then b(u+(t,.)) satisfies this same property. Taking as test
function v - u+(t, .) in the conditions (1.11) for u+ and (1.15) for we obtain

II(t) --/ [(Vfi K (b (fi)) e) (Vu+ (t, .) K (b(u+ (t, -))) e)] (Vfi Vu+ (t, .))

_< (]- (t, .)) (t, .)),
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where we have used that v(t, .) >_ 0 for almost every t > 0 (see (4.3)). As in the proof
of Theorem 3 we write

I1 (t) I2(t)+ I3(t)
with

f
I2(t) .]o { [Vfi K (b ())e] [Vu+(t, .) K (b (u+ (t, .))) el}

{V- g (b ()) e Vu+(t, .) + g (b(u+(t, .))) e)

I3(t) ./ { [V g (b ()) e] [Vu+(t, .) g (b (u+ (t, .))) el}

elK (b ()) g (b(u+(t,.)))].

By Young’s inequality we have that for any e > 0

h(t) <

+

Using (2.15) and (4.a) we have that

h(t) <

for some 6’ > 0 independent of t. Prom (2.a), (4.2), and (4.a) we get

lw Vu+ (t, .) (K (b ()) K (b (/ (t, .)))e)lp _< 63

for some C3 > 0 independent of t. Finally using again that u+ E L((0, c) x f)
and that e W’P(f)N n(f) the conclusion follows for u+. The proof for u_ is
analogous.

COROLLARY 2. Assume the conditions of Proposition 3 and also (4.7), (4.8) and
[(4.9), (4.0)] or [(4.1), (4.12)] if < p < 2. Then iI u is the bounded weak solution oI
(0.1) associated to the data (f, u0) assured by Corollary 1, for any u w(u) we have
that u is a bounded weak solution of the stationary problem and in fact u(t, .)
in Lr(), as t -- oc, for any r [1, x).

Our last result proves the condition (1.21) for the special case of

(4.20) K (b (s)) As for someARandanys_0.

We point out that similar properties to (1.21) have been proved in the literature
when the elliptic operator ,4 is assumed to be the gradient (or subdifferential) of some
potential functional (see, e.g., Langlais and Phillips [43], Tsutsumi [53] and E1 Hachimi
and de Thelin [29], [30]) but we also remark that when K 0 the associated elliptic
operator .4 does not satisfy this structure condition.

THEOREM 7. Assume that g satisfies (1.7), (2.2), (3.2), and f verifies (3.3) and
(4.7). Let uo satisfying (3.6) and (4.8). Assume (4.20) and that b satisfies (4.9) or

(4.11). Then if u is the bounded weak solution given in Corollary 1, u satisfies that
u L(0, c" W’P()). Moreover we have that

(4.21) b(u)t e L2 ((0, c) x gt) if b satisfies (4.9)
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and

(4.22) ut e L2 ((0, ec) f) if (4.11) holds.

Proof. Assume that b satisfies (4.9). Without loss of generality we can assume
e el (the first term of the orthonormal base of RN); otherwise, it is enough to make
a change of base on RN. Multiplying by e-)’1 ut we have (assuming ut is regular) that
for any T > 0 we have

b(u)tute- + e(P-)x 0- IVe-P

+
T e-Ax-O G(., u) e-Axx fat.

The same kind of arguments of the proof of Theorem 5 leads to the conclusion

+ E(T)- E(O) <_ C

with C independent of T and then (4.21) follows. The proof of (4.22) is similar.
COROLLARY 3. Assume the hypothesis of Theorem 7 and also b strictly increasing

if (4.9) holds. Then if u is the bounded weak solution of (0.1) assured by Corollary
1 we have that w(u) and any u E w(u) is a bounded weak solution of the
stationary problem. Moreover, there exists n - +oc such that u(n, ") - uo strongly
in

Proof. Taking k(s) b(s) if (4.9) holds and k(s) s if b satisfies (4.11), from
Proposition 1 and (2.3) we have that Theorem 2 can be applied, leading to the con-
clusion. [:]
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ON A GLOBALLY EXISTING SOLUTION TO THE INVISCID
BURGERS EQUATION WITH A NONLOCAL TERM*

KAZUO ITO

Abstract. It is shown that the inviscid Burgers equation with a nonlocal nonlinear term admits
smooth global solutions for certain initial data which are smooth and nondecreasing. This result
corresponds to a similar situation in the classical inviscid Burgers equation and is complementary to
a result in a paper by R. Gardner [SIAM J. Math. Anal., 18 (1987), pp. 172-183].
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(2)

1. Introduction and main results. We consider the initial value problem

(/0 )ut + a + b u(z +/s, t)ux(x + s, t)ds 0 in R (0, c),

u(x, O) uo(x) in R

where a, b, and/ are real parameters with the constraint

Note that (1) involves a nonlocal term. Majda and Rosales proposed (1) as the
equation governing the planar detonation front of reacting gases ([4]; see also [3] and
[5]). When a- b 1, Gardner proved in [2] that (1)-(2) has local solutions with
Sobolev space data. He also showed that a smooth solution forms shocks in finite
time when u0, a, and/ satisfy the following conditions:

(i) uo e C(R) and supp u0 c (-c, 0],
(ii) there exists y < 0 such that U(x) > 0 for any x E (y, 0),
(iii) 0<a<l, />1,
(iv) 1 (1 a)( -/-1)/2 > 0.

Remark that from (i) and (ii) Uo(X) < 0 for any x e (y, 0).
By the way, we know that the inviscid Burgers equation

ut+() =0 inRx(0,x),

(X, 0) 0(X) e CI(R)

has a global classical solution if Uo(X) >_ 0 for any x /t while any Cl-solution forms
shocks in finite time if Uo(X) < 0 for some x JR.

From the above facts, we expect that (1)-(2) have a global solution if, roughly
speaking, u(x) <_ 0 for any x e R (accordingly, Uo(X) >_ 0 for any x e R ifu() 0)
and a and b satisfy some conditions. We will show that this is in fact the case.

To state our results, we make some arrangements for (1). Now we assume that
u has the second derivative with respect to x and u, ux --* 0 as x --* +c. We put

Received by the editors July 27, 1992; accepted for publication May 5, 1993.
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v(x, t)- (a- b)u(x, t) and substitute into (1) and (2). Differentiating under integral
sign and integrating by parts, we are led to

(3) V -- VVx b(a b) -1( 1)I(vx, vx) 0,

(4)

where

(x. o) ( )uo(x).

I(f, g) f(x + 13s)g(x + s)ds.

Hence, the equation we study from now on is

(5) ut + uu + "rI(u, u) 0 in R x (0, c),

(6) u(x, O) uo(x) in R.

Our main result is the following.
THEOREM 1.1 (global existence). (i) Let / < O. Suppose uo satisfies the following

conditions:

u0 E W2’1 (p, cx)) for any p R

and

(7) o(x) < o. ’o(x) > o. g(x) < o. Z.ot a x e (-o,o),

(8) 0(x) 0, z e Ix0. )

for some xo e R. Then there exists a solution u of (5) and (6) on R [0, oc) such
that

(9) "tte C([0, cx:)); wl’l(p, (x))) f CI([0, (x)); LX(p, c)),

for any p R.
(ii) Suppose further that

pl! W1,2u0 (p, oo) .for any pER.

Then the solution u also satisfies

uxx e C([0, oc); Loc(P,

ux e C([0, oc); L2(p, oc)) f L(O, oc; Wl’2(p,

for any p R, and such a u is unique. In particular, u C2(R x [0, x3)).
Remark. When a- b 1 in (1), the assumptions in Theorem 1.1 are complemen-

tary to those of [2, Thm. 2.1]. In fact, 7 < 0 means a > 1 (see (3)).
Theorem 1.1 is a consequence of a local existence theorem and a priori estimates

given below. To state them, we prepare several notations.
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We denote by lulw,.p(p,o) the wm’p(p, oc)-norm of u u(x). Let -oc _< p < 0,
0<T<_ocand0<_L<cx. We put

(10) Lo=l+ sup no(x),

(11)

and

UL(X, t) U(X + Lt, t),

(12) t(p, T, L) { (x, t) e R x [0, eo); t e [0, T], x e [p + Lt, oc)}.

Now we show a local existence theorem which improves that of [2, Thm. 1.1].
PROPOSITION 1.2 (local existence). (i) Suppose that

uo E W2’1(p, ec) for some p t.

Then there exists To To(luolw2,1(p,o)) > 0 and a solution u of (5) and (6) in
f(p, To, Lo) such that

(13) u(x,t) <_ no, (x,t) e ft(p, To, no),

(14) ULo e C([0, To]; wl’l(p, oc)) N Cl([O, To]; L(p, cx))).

(ii) Furthermore, assume that

ug’ w
for the same p as in (i). Then the solution u also satisfies

02xULo e C([0, To]; noc[P, ec)),

03xULo e C([0, To]; L2(p, oc)) N L(0, To; WI’2(p,

and such a u is unique. In particular, u C2((p, To, Lo)).
Remark. Our assumption on data is weaker than that of [2], for we do not require

the decay of data at x
PROPOSITION 1.3 (a priori estimates). Let " < 0 and uo satisfy (7) and (8). Let

u be a solution of (5) and (6) such that

u(x, t) <_ L for (x, t) e t(p, T, L), u e C2(t(p, T, L)),

UL L(0, T; W2’(p,c)), 3 LO W1,2O=UL e (0, T; (p,

for some T (0, oc) and L (0, oc). Then

(15) IuL(t)lL,(,o <_ lU(0)IL,(,), t e [0, T], j 0, 1,2,

and

(16) u<0, ux>0,

(17) u -=0,

ux < 0, (x, t) e t(p, T, L) n {x < x0},

(x, t) e 12(p, T, L) {x >_ xo}.
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2. Proof of Proposition 1.2. First we prove (i). We construct a solution of
(5) and (6) in t2(p, To, Lo) using the following iteration scheme:

(x, t) o(x),

(18)

(x, t) E t(p, To, Lo),

+ I(u,u++uu + u)=0
uk+l(x, O) Uo(X in [p, cx).

in(p, To, Lo), k>l,

For simplicity, we donote by ]Ulm,p the wm’p(p, oc)-norm of u and by [lullm,p,T the
L(O, T; wm’p(p, cxz))-norm of u.

Now we claim

(19) uk (x, t) <_ Lo, (x, t) E fl(p, To, Lo),

(2o) IIkLoll,,To _< M,

(21)

for k 0, 1, 2,..., where

ko e C([0,To];

(22) M 2[uo[2,a,

(23)

and

1 1 1
To min

]’)’IM2’ 4FaM’ M 4}log

(3
Indeed, (19), (20), and (21) can be shown by induction on k. Here we only show (20).
It is obvious for k 0. Suppose (20) holds for k. Let Xk(a; x, t) be the characteristic
curve in 9t(p, To, Lo) passing x at a t, that is,

(24)
x

(; x, ) (x(;., t) )
00"
X(t;x,t)=x.

Integrating (18) along the characteristic curve, we get

(25)

where

t), a)da,u+(x, t) o(X(0; x, t)) + /(x(o; x,

Note that (24) means

(26)

kf -Z(u,).

)k(X(T;x,t),T)dTXxk (a; z, t) exp ux
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Differentiating (25) and utilizing (26), we obtain

txk+l (X, t) "-Uo(Xk(O; X, t) )Xkx (O; X, t)
() foo+ f(x(;., t), o)x2(o; ,
and

+(x t) ug(X(0; x, t))x(0; , t)Uxx

t), a)x(28) + fxx(X (a; x (a; x t)2da

k k+l(xk(a;x,t),a)X)(a;x,t)2da.Uxx x

Simple computations show the estimates

() i(u,v)] (Z- )-]vl,

(3o) IO%I(u, ’V)ll

_
(/- 1)-1(1x[1[]1 -F lUlll’Vxll),

(31) 102I(u, V)ll

_
21ullvl.

Evaluating (25), (27), and (28)in the Ll(p, cx))-norm and using (29)-(31), we obtain

(32) IlUo+ll,,To _< (lUol, + rMTo)eMT _< M,

where the second inequality is due to (22) and (23). This shows (20).
For the convergence of the scheme, set

V
k uk-F U

k k O, 1 2

Then

(33)
vkt + ukvk gk in (p, To, Lo),

vk (x, 0) 0 in [p, x)),

where

gk Vk- fk fk---Ux +
Hence, we obtain as in (25)

(34) vk(x, t) gk(Xk(a; x, t), a)da

for (x, t) e $2 (p, To, Lo). Using (20), we have

(35) [Vo (t)]l _< r.MeMTlv(a)lda

for t e [0, To], where

re -[-r- 1l / [’rl(1 / (/- / )(- 1)-).
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Thus

IVo (t)li < 2M
(F214eMTo)k

k!
k 0, 1,2,...

for t E [0, T0]. Therefore, {ULo}’=0 is a Cauchy sequence in L(0, T0; nl(p, oc)).
Furthermore, by the Gagliardo-Nirenberg inequality Ifxli -< Clfli/21fxxli/2 and uni-
form boundedness of {02UkLo}=o in n(0, T0; ni(p, x))), we see that {OUkL }=0 is a
Cauchy sequence in L(0, T0; ni(p, cx)). There exists ULo E C([0, T0]; w’i(p,x)))
such that

ULo -- ULo in L(0, T0; wl’l(p,(:x))) as k -- (:).

Letting k --, c in (18), we see that u(x, t) ULo(X- Lot, t) is the solution we are
seeking.

The proof of (ii) proceeds as before. The main task is to show that (ux} and
(uxxx} are bounded in L(0, T; L2(p, c)) for some positive constant T. We omit
the details.

3. Proof of Proposition 1.3. Let

+(p, T, L; x0) (p, T, L) N {x >_ x0},

-(p,T,L;xo) (p,T,L) N {x < x0}.

First we prove

(36) u(x,t) < 0 in - (p, T, L; xo),

(37) u(x, t) =- 0 in + (p, T, L; x0).

The claim (37) is a direct consequence of [2, Cor. 1.2] and this gives (17). In order
to prove (36), we utilize the idea of [2, Thm. 2.2 (ii)]. We indicate the proof briefly.
Consider the following equation:

(38)
ut + uu + 9/I(u, u) -hh(x) in (p, T, L),

u

where 5 is a positive small parameter and we choose h so that h is in C4 and each
derivative is bounded, and so that h(x) 0 for x _> xo and h"(x) (x)(xo- x)2
for x < xo, where C is positive and 1 near xo. Let T > 0 be the lifespan
of the solution u5. From Proposition 1.2 we see that T is determined uniformly in
small 5.

We claim that there exists x (5) such that

(39) ux < 0

for (x,t) e (xl(5) <_ x < xo} -(p,T’,L;xo).
In order to show this, it is necessary to control the nonlocal term. Remark

u(x, t) =- 0 for x _> xo. From the uniform boundedness of (uxxx} and (uxxx} and

from the Gagliardo-Nirenberg inequality Ifl <- C[fl/21fxl/2, we have

jux(x t) 5 5 (y, t)dy <_ c(xo x).u(xo, t) + u
o
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This gives

IM, *)(,*)1 < (x0 x)

Hence

(40)

for x in some small interval [Xl(5),x0) and t e [0, T’].
characteristic curve passing x at a t, that is,

Next let X5(a; x, t) be a

OX
0

(; x, t) (x (; x, t), ), x(t; , t) .
Remark X is positive (see (26)). Differentiating (38) twice with respect to x, inte-
grating by parts in the nonlocal term, and integrating along the characteristic curve,
we obtain

(4)

It follows from (7) and (40) that the right-hand side of (41) is negative. Thus we
obtain (39).

On the other hand, since u(x) < 0 for x E [p, x0), and since u E C2((p, T, L)),
we have that

(42) uhxx(x,t) < 0 in gt-(p, tl(5),L;xl(5))

for some t(5) e (0, T’]. Thus from (39) and (42),

(43) (x,t) < 0 in 12-(p,t(5),L;xo).

We can extend this fact to

(44) (x t)<0 ingt-(p,T’ L;x0).txx

In fact, assume uhxx 0 for some point in gt-(p,T’,L;xo) \ Ft-(p,t(5),L;xo).
Let ((5), (5)) be a point with the smallest t-coordinate such that uxz5 (x, t) 0. Sub-
stitute (x, t) (&(5), (5)) in (41). Then we obtain a contradiction from minimality
of () and the hypothesis of initial data and parameters " and ft. Therefore, we have
(44).

As in the proof of Proposition 1. we can show that {u} is a Cauchy sequence
in L(0,T’; w2’l(p, o)). Thus

u6 u in Lc(0, T’; W2’(p, oc)) as 5 --. 0,

which implies

(45) uxx(x,t) <_ 0 in gt-(p,T’,L;xo).
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If uxx(x, t) 0 holds at some point of t- (p, T’, L; xo), then we obtain a contradiction
from the above method. Therefore,

(46) ux(x, t) < 0 in ft-(p, T’, L; x0).

We continue the proof, replacing uo(x) by u(x, T’) as initial data; then we get (36).
Now we show

(4) 0(x) < (x, t) < 0,

,()(48) 0 < u(x, t) <
1 + (1 --l)(x)t’

for (x, t) -(p,T,L; xo). The second inequality of (47) and the first inequality of
(48) are consequences of (36) and (37). Since u < 0, ux > 0, it follows from (5) that

(49) ut > 0 in -(p, T, L; x0),

which shows the first inequality of (47). For the second inequality of (48), we differ-
entiate (5). After an integration by parts, we have

+ + ( Z-1) + (1 Z-)(,) 0.

Since u < 0, u > 0, u < 0, < 0, and > 1, we obtain

2
uxt < -(1 3-)ux,

which gives the second inequality of (48). Finally we show (15). om (37) and (49)
we have

(50) OtUL 0 in [p, ) x [0,T].

Since UL O, it follows that [UL[ f uLdx, and from (50) we obtain

(51) Ot]uL(t)[1 O, t e [0, T].

This shows (15) in j 0. Also from (47) and (48) we compute

IOxuL(t)[ OUL(X,t)dx =--UL(p,t) [U0] lU0[1.

Similarly, we can prove boundedness of the Ll-norm of The proof is completed.

4. Proof of Theorem 1.1. We first prove (ii). Mollifying data, we then prove
(i).

(ii) Note L0 1. First we construct the solution on (-n, n, 1) for any natu-
ral number n. om Proposition 1.2 (ii), for some T there exists a solution u on

(-n, T, 1) satisfying the sumptions of Proposition 1.3. So u satisfies a priori
estimates, that is,

for t [0, T] and j 0, 1, 2. Also,

u<0, ux>0, uxx<0 in(-n,T,l){x<xo},
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u = 0 in gt(-n, T1, 1) CI {x > x0}.

Therefore, u(., T1) satisfies a similar condition to u0. If T < n, we solve the equation
by Proposition 1.2 (ii) with T as initial time and with u(., T) as initial data. We also
denote the solution by u and denote the time of existence by T2. Then, from a priori
estimates, we can take T2 T1 (see (23)) and u exists on t(-n, 2T, 1). If 2T1 < n,
then we proceed as above. Thus there exists a solution u on gt(-n, n, 1). We denote
this function by Un.

Now we define

u(x, t) un(x, t) for (x, t) e (-n, n, 1).

This definition is well defined by [2, Cor. 1.2]. Then u(x, t) is the solution on Rx [0, x)
we have been looking for.

(i) Let Je* be the Friedrichs mollifier. For the properties of Je,, see [1, Lemma
2.18]. We put

u(x)=(Je.uo)(x) forxeR, e(0,1).

Then

(5e) 5 e w,(p, ), ()’" e w,(p,)

for any p E (-c, 0). In particular,

(53) I(U)(J)IL(,)
for j 0,1,2, E (0, 1), p (-oc,0). Also,

(54) u<0, (u)’>0, (u)"<0 in (-x,x0+e),
u 0 in Ix0 + , cx).

Since u satisfies (52) and (54), or the assumptions of data in (ii), there exists a
solution ue on R [0, c). Then from Proposition 1.3 and (53),

(55)

for j 0, 1, 2, where

(, t) ( + t, t),

and

ue<0, ux>0, u<0(56) ue=0
in (-c,xo + e) x [0, c),
in Ix0 + e, c) x [0, c).

We claim that {fie}ee(0,) is a Cauchy sequence in L(0,T; W’(p, c)) for any
p l:l, T > O.

In order to show this, let Xe (a; x, t) be the characteristic curve passing x at a t,
that is,

x
(; , t) (x (o; x, t), )Oa

x(t; , t) x.
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Put U’ ue u and U’ u uS0, then

(57)
u 0)

Integrating (57) along the characteristic curve and estimating in the W1,1 (p, oc)-norm
as in (32), it follows from (55) that

IIre’Slll,l,T
_

Ia’SI1,1 exp(lugIL,(p_l,oc)T(1 + I exp

for some positive constant F depending on , and f. Thus we have

since IU’ill,1 -- 0 as , l 0. This shows our claim.
We conclude that there exists E L(0, T; W’(p, c)) such that

e fi in L(0,T; W,l(p,

ass--. 0 for anyp e R, T > 0. Then we easily see that u(x,t) t(x-t,t) is a
solution of (5) and (6) on R [0,
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A VARIATIONAL PROBLEM FOR HARMONIC FUNCTIONS IN
RING-SHAPED DOMAINS WITH PARTIALLY FREE BOUNDARY*

ANDREA COLESANTIt

Abstract. This paper considers two subsets fo and f of n, n 2 or n 3, and two
continuous real-valued functions go and g defined on 0 and 0fo, respectively. The position of f
is allowed to vary inside fo and the author looks for the minimum of the Dirichlet intergral of the
function u, which is harmonic in (i20 \ f) and verifies the following boundary conditions: u go on
00, u g on 0. Under certain hypotheses on the regularity of 0f0 and (0f, and on go and g, an
existence theorem is proved for the minimizing position of i2; it is shown through an example that
the solution of the considered problem is not unique in general.

Key words, harmonic functions, Dirichlet integral, partially free boundary

AMS subject classifications. 31C05, 35J05, 35R35

1. Introduction. We study a minimum-value problem for the Dirichlet integral
of harmonic functions in ring-shaped domains whose boundaries have given shape and
free position.

Let f0 and f be two bounded, connected subsets of n, n 2 or n 3, with
f0 open, F/closed, and i2 C f0, and let go and g be two given continuous functions
defined on 0f0 and 0, respectively. Let m be a rigid motion of n; we denote by
M the set of all m such that [-m m() (: [-0, and we define gm g o m-1, i.e., gm
is the datum g moved from 0f to Ofm. As m varies in M, namely, as f moves inside
f0, we want to minimize the Dirichlet integral of urn, which is the unique solution of
the following boundary-value problem:

(1) { Au,=0 infl0\fl,;
Um go on CQ[’0, Um gm on

This problem may be regarded as a generalization of the following: to minimize the
capacity of an electric capacitor bounded by two plates 0f0 and OFt, as the inner
plate changes its position inside the outer one.

Two problems, in some sense analogous to the one of the present paper, are
treated in [5] by Weinberger and Serrin, and in [1] by Alt and Caffarelli.

We assume that the following hypotheses hold.
(n0) G e C2(f0 \ f) N C(gt0 \ f) such that

G=g0 on0f0, G=g on0f.

(H1) sup{g0(P)" P e 0a0} < inf(g(P)" P e 0f}.
(H2) 0 \ f satisfies the outer sphere property at each point of its boundary,

uniformly in the radius of the sphere.
Our main result is the following.

Received by the editors March 29, 1993; accepted for publication (in revised form) June 16,
1993.
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THEOREM 1. If (H0), (H1), and (H2) hold, then there exists mo E M such that

[iVUmo]12dx< /
o\fo Fto\f,,

IlVUmll 2 dx Vm e M.

We remark that hypothesis (H2) guarantees the existence of a solution for problem
(1) and, together with (H1), allows us (see Lemma 1 in 2) to infer that along any
minimizing sequence {ink} in M:

lim inf dist (Omk Oto) > O

The proof of Theorem 1 is given in 2. In 3 there are some examples; in particular
the first one proves that if we drop hypothesis (H1), the conclusion of Theorem 1 may
fail, while the second one shows that the considered problem may have, in general,
more than one solution. Furthermore we make some short remarks about possible
generalizations of the considered problem in dimension greater than three.

2. Proof of Theorem 1. We prove Theorem 1 in dimension three; the two-
dimensional case is analogous. We need the following.

LEMMA 1. Let {mk} be a sequence in M such that

lim mk= m;

and

0. n Ofo # O.

Then, if dk denotes the Dirichlet integral of Umk, we have

lim dk

Let P be a point of 0Fro N Om. Let S be a sphere of radius R > 0, externally
tangent to 0Fro in P, and r be the tangent plane to S in P. We choose a coordi-
nate system such that P coincides with the origin and r {y 0}, where (x, y),
x g2, denotes the generic point in g3. Let (x) and Ck(x), for k sufficiently
large, be continuous, local representations of 0Fro and Om, respectively, defined in
a neighborhood B of P in rr. As m C "0, we assume without loss of generality that

We now integrate
estimate for dk:

(x) < Vx e B.

over a region smaller than (f0 \ gtm) to get a lower

(2) dk >_ IIVUm, II=dxdy >_ dxdy.

Be

As (H1) holds a positive constant N exists, such that

Um (x, Ck(X)) Umk (X, (X)) > N VxEB.
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Hence, by the Hhlder inequality and (2), we have

dk > N2/ 1

Ck(x) (z)dz.
B

Lastly we observe that for any k, there exists a ball of radius R (we can choose
the initial R small enough), internally tangent to 052m in mk(m-l(P)), whose center
Ck =-- (xk, Yk) converges to C -= (0, R). For some positive p we then have

(3) Ck(x)

_
Yk /R2 -]Ix- Zkll 2 in { ]lzl] < p};

(4)

By substituting (3) and (4) in (2), and letting k tend to infinity, we have

N2 / 1
lim dk > dx.

The right-hand side of this inequality is an improper integral whose value is +co, so
the conclusion of the lemma follows.

Proof of Theorem 1. Let # be the infimum of the Dirichlet integral of Um as m
varies in M; by hypothesis (H0) # < co. Let {ink } be a minimizing sequence:

lim f IIV?mk 2 dx.

As 0 and are bounded and as a rigid motion of Jia depends essentially on six real
parameters, M may be regarded as a bounded subset of 6. This implies that, up to
subsequences, mk converges to a limit m. By Lemma 1, it follows that

Om n Oto ;
that is, m is still in M. For simplicity, we write u instead of Um and Uk instead
of Um.The proof is divided into two steps: first we prove that the sequence
converges uniformly to u in every compact subset of (g/0 \ i2m); then we easily deduce
that

(5) lim [ IlVu.ll: dx _> [ IlWll dx;
,/ ,/

so that the conclusion of Theorem 1 follows.
Let P be a point on Om and S be a sphere with center Q and radius R > 0,

externally tangent to 0(0 \ m) in P. As (H1) holds, R may be chosen sufficiently
small so that it is independent of P, and it is obviously independent of k. We define

1 1
h(x) R IIx- QII

h is a barrier function for (0 \’m in P. By the continuity of gm and the positivity
of h far from P, for any given a positive constant C > 0 exists such that

Ig- (x) g, (P)l < + C’ h(x) Vx e Om.



A VARIATIONAL PROBLEM FOR HARMONIC FUNTIONS 1125

Furthermore, as m is in M, we may assume that

dist(Ofmk,OfO) >_ > 0 Vk;

and this implies that for some positive C,
Igo(x) gmk (P)I < e + C’ h(x) Vx e Oleo.

If Ce max(C, C)e we have by the maximum principle

lUk(X) uk(P)l < + Ceh(x) Vx e o \ ftrn.

It is easy to see that Ce depends only on the modulus of continuity of g, on go,
and on the quantities R and r, i.e., it is independent of P and k. Thus we have proved
that for any positive there exists 5 > 0, such that

and exactly the same argument as for functions uk may be repeated for u. On the
other hand, as m tends to Ftm, an index k0 exists such that

Ilm(P)- m(P)ll < 5 VP e Oft Vk E ko.

By these inequalities and by the maximum principle, it follows that u- uk is bounded
by 2 in absolute value in (gt0 \ (ftmk kJ ftm)), as k > k0. This proves that the
sequence {u} converges uniformly to u in every compact subset of (gt0 \ Ftm) and
as the considered functions are all harmonic, the uniform convergence holds for their
derivatives also.

Now let a be a fixed positive number and T be a compact subset of (ft0 \ ftm)
such that

T fo\tra

From a certain k on we have T C (ft0 \ gtm), so by the uniform convergence and the
definition of #

#>- k--.lim f IlVukll 2 dx J IIVUll 2 dx >_ f
T T Fto\Ftm

IlVUmll 2 dx a.

As a is arbitrary, this proves (5), i.e., the-theorem.

3. Remarks and examples.
Remark 1. Up to now the outer sphere hypothesis (H2) has been used, explicitly

or implicitly, only to prove the following three facts:
(i) the boundary-value problem (1) has a solution;
(ii) at each point of 0(f0 \ m) a barrier function exists like the one defined in

the proof of Theorem 1;
(iii) inequalities (3) and (4) hold in the proof of Lemma 1.
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One can easily check that these conditions are still verified in dimension two, if
we replace (H2) with the weaker hypothesis of outer cone property.

Remark 2. One may try to generalize the results of this paper for the problem
stated in the Introduction, in }Rn with n > 3. On the other hand, for n large, the
outer sphere property is not sufficient in general, to prove that the Dirichlet integral
of Um is unbounded when tm Do = , and then that the minimizing position of t is
"strictly inside" gt0. Hence to prove an existence theorem like Theorem 1, one would
be forced to enlarge the set of admissible positions of D, and consequently to consider
even weak solutions for the boundary-value problem (1). This kind of study is not
the purpose of this paper.

Example 1. This example proves that the minimum of the Dirichlet integral of
Um may be attained for an m such that

0gt0 n 0gt, : ,
if hypothesis (H1) is dropped.

Let t0 and D be as in Fig. 1; assume that along the straight-line segments PQ
and PQ’, g and go are equal and that they vary continuously between the values of 0
and 1. By the maximum principle, Um is constant on each component of 0(t0 \ tm)
so that its Dirichlet integral is zero and represents an absolute minimum. We observe
that for any other position of m such that 0t0 N ODm , the Dirichlet integral of
Um is strictly positive.

0 o -;po
FIG.

Example 2. The solution of our minimum-value problem is not unique in general.
Let t0 and D be as in Fig. 2, with data go 0 and g-- 1. Let m0 be such that
the Dirichlet integral of Umo is minimum. The length of the straight-line segment
PQ is smaller than the diameter of gt, so that tmo is not contained in the rectangle
PQP’Q’. So gtmo is in S1 or in $2, but then another minimizing position is obtained
by reflecting gtmo with respect to the y axis.

We observe that by slightly modifying the boundary of gt0, one may find another
example such that there are at least two distinct minimizing positions, and they are
not symmetric with respect to any direction (see [2]).

Example 3. Let D0 and t be disks in the two-dimensional plane and go -= 0,
g 1. In this case using a symmetrization argument (see also [3, Whm. 2.31]) one can

easily infer that the minimizing position m0 is unique and it is such that t0 and gtmo
are concentric. Furthermore, it can be proved (see [2]) that the Dirichlet integral of

Um is a decreasing function of the distance between the centers of D0 and tm.
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gO :0

go =0 p

g=O

go =0

FIG. 2
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THE THERMISTOR PROBLEM: EXISTENCE, SMOOTHNESS,
UNIQUENESS, BLOWUP*

S. N. ANTONTSEV AND M. CHIPOT:

Abstract. The goal of this paper is to study a nonlinear system modeling the heat diffusion
produced by Joule effect in an electric conductor. Existence, uniqueness, smoothness, and blowup in
particular are studied.

Key words, parabolic systems, existence, uniqueness, smoothness, blowup
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1. Introduction. The heat produced in a conductor by an electric current leads
to the so-called thermistor problem, i.e., to the system

(1.1a)
(1.1b)
(1.1c)
(1.1d)

ut-V.(a(u) Vu)=a(u)lVqol2 inflx(0, T),
u=O onr (0, T), u(.,0)=u0,
V.(a(u) Vo)-0 infx(0, T),
=o onFx (0, T).

We assume here that f is a smooth, bounded open set of Rn, F denotes its boundary,
T is some positive given number, o is the electrical potential, u the temperature
inside the conductor, a(u) > 0 the thermal conductivity, and a(u) > 0 the electrical
conductivity. The physical situation is when n 3 and f is the spatial domain
occupied by the body that we consider and which is assumed to be a conductor of
both heat and electricity. However, we will consider the general case n _> 1.

If :r denotes the current density and Q the vector of heat flow then the Ohm law
and the Fourier law read, respectively,

(1.2) : -a (u) Vo,
(1.3) Q -a (u) Vu.

Then equations (1.1a) and (1.1c) follow from the conservation laws

(1.4) V. 2" 0, pc -- + V Q :Y. ,f,

where $ denotes the electric field, p the density of the conductor, c its heat capacity
(see also [C.1], [C.P.], [H.R.S.], and [Ko]). We assume here that pc =_ 1.

Remark 1.1. Due to (1.1c), (1.1a) also reads

ut V ( (u) Vu + a (u) oVo) in f x (0, T).
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lUniversidad de Oviedo, Departamento de Mat(imaticas, Calvo Sotelo, s/n 33007 Oviedo, Spain.

:Universitd de Metz, D4partement de Mathmatiques, Ile de Saulcy, 57045 Metz-Cedex 01,
France.

1128



ON THE THERMISTOR PROBLEM 1129

The similarity with the two-phase filtration problem should be noticed. Indeed, if u is
the concentration and the pressure, then the equations of two-phase filtration read

, v. (. ()w + () v)
(0-(u) v)--o inf, (O,T).

in fl x (0, T),

We refer the reader to [A.K.M.] for details.
Instead of (1.1b) we will also consider the boundary condition

(1.1b’) On
=0 onFx (0, T), u(.,0)=uo,

where On/On denotes the outward normal derivative of u.
The paper is divided as follows. In 2 we will show existence of a weak solution

to (1.1). In 3 we will focus on the question of smoothness. In 4 we will analyze
the dependence of the solution with respect to the data and derive uniqueness results.
Finally, in the last section we will investigate the issue of global existence or blowup.

We will use standard notation for parabolic problems and we refer to [L.S.U.] for
details.

2. Existence of a weak solution. Let V be a subspace of Hl() containing
H0(), V its dual (see, for instance, [B.L.], [D.L.], [J.L.L.], or [G.T.] for the definition
and the properties of the Sobolev spaces). Recall first the following well-known result
of the theory of linear parabolic equations (see [D.L.], [L.S.U.]).

Assume

uo E L2

(2.1)
e L (fl x (0, T)),

where gl,/2 are two positive constants.
THEOREM 2.1. If f L2(0, T; W), there exists a unique u such that

(2.2) u e L2 (0, T; V) rG C ([0, T] L2 (gl)), ut e L2 (0, T; V’),

(2.3) - u, v + aVu Vv dx (f v) a.e. te(0, T), VveV,

u (0) no.(2.4)

Moreover, we have the estimate

(2.5)

((.) is the duality bracket between V’, V, I" I the usual Lp norm, IVI the Euclidean
norm of the gradient of u.)

We will assume that

(2.6)
(e.7)

ao e L (0, T; H () CI L ()),
continuous, 0 ( gl

_
g

_
g2, 0 ( ffl

_
0-

_
0"2,
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where ai, ai are positive constants. Then we can prove the following.
THEOREM 2.2. If (2.1), (2.6), (2.7) hold, then there exists a weak solution to (1.1)

with the boundary conditions (1. lb) or (1. lb’).
Proof. In the case (1.1b) Y will be H() and Y will be HI() in the case (1.1b’).

Choose w E L2(O,T;L2()); then for almost every t E (0,T) there exists a unique
(., t) solution to

(2.8) V.(a(w) V)=0 in, =0 onF(0, T),

and we have the following.
LEMMA 2.1. L(0, T; HI() C L()) and for almost every t we have

(2.9) v (, t)l dz < C (,, 0),

where C(al, (2, (fl0) denotes a constant depending only on a, a2, 0.
Proof. Assume that we have proved that is measurable in t; then from the

maximum principle,

Moreover, by multiplying the first equation of (2.8) by 0 e H0 () we get

() vv. v (v v0) 0;

hence

(T1 / [V(p (x)[2 dx
_
[/ a (w) V (x) Vpo dx

_
/ IV ()1 IVo (x)l dx,

which gives the result by the Cauchy-Schwarz inequality.
Let us postpone for the time being the proof of the measurability of .
Remark that by (1.1c) the right-hand side of (1.1a) can be written as

(2.11) a ()

It is clear then that

(V. (a (w) V), v) -/a a (w) V- Vv dx VvV

defines an element f of L2(0, T; V’). According to Theorem 2.1 there exists a unique
u satisfying (2.2)-(2.4) with a a(w). Let us consider the map

(2.12) w - u- F (w).

This map carries L2(0, T; L2()) into itself. Moreover, by (2.5) we have

(2.13)
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It follows, by Cauchy-Schwarz and Young’s inequalities, that

(2.14)

]o ]o1 2 1 2[u (t)l2 + 1 117u (t)]122 dt <_ - lu (0)12 -- C IIV (t)l12 11TU (t)l12 dt

1 2 1 ft< -lu (0)12 + ]0 IlVu (t)l12 dt
-2

62 ft 2+ ]o IIv dr;

hence

(2.15) 2 2 dt < C (u0, T, , a, a0).I(t)l + IIw(t)ll

From (2.3) one easily deduces

(2.16) lUtlL2(O,T;V,)
__
C (uo, T, , ai, ao)

(Note that f is bounded in L2(0, T; V’) by (2.9), (2.10)). So, provided we take R large
enough, w --. u maps the ball BR of center 0 and radius R in L2(0, T; L2(t)) into
itself. Moreover, since the space

{u e L2 (0, T; V)lut e L2 (0, T; V’) }

is compactly imbedded in L2(O,T;L2(t)), this ball will be carried into a relatively
compact set by (2.15), (2.16). If we can show that this map is continuous it will be
done by the Schauder fixed point theorem. So for that consider a sequence wn E
L2(0, T; L2(t)) such that

Wn -- w in Bit.

Define as in (2.8), n, fn V" (ff(Wn)OnVgn), and Un F(wn). We have to show
that

Un -’-+ U--- F (w) in BR.

For that, by subtracting the equation satisfied by u from the one satisfied by un, and
taking v Un u, we get, after integrating in t,

(2.17)

1 2I(tn t)(t)l2 -- tl IIV (u u)(t)1122 dt

(Wn) IV (tn U)I 2 dx dt< -I(n )(t)l +-2

--I1+I2.
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Set

I3 - IIV (un u)(t)ll 22 dr.

Then using Young’s inequality we get

II11= (a(w)-a(wn))Vu.V(u-u) dxdt

Il

Ih[ a (w)V a (w)V V (u u) dx dt

1
2

Thus, taking into account the definition of I3, we obtain

2 dt

(2.18) < 1 [min(l )]-{I ]]( (w) a (wn)) Vull 2 dt2

+ 1( ()1 at

Since is in a relatively compact set of B it is enough to show that is the only
limit point for n. Let be such a limit point, i.e.,

u= lim inB;

suming that we have extracted another sequence of n that we still denote by n
We sum

(2.19) Wnk - w a.e. in fl (0, T).
Then, since IVul 2 e LI( (0, T)) and by (2.19), In(w) a(wk)l2 - 0 almost every-
where by the Lebesgue theorem we get

2 dt I( (w) a (Wn))l2 IVu] 2 dx dt O.1(- () - ()) wl$

Next, for n nk the second integral in the right-hand side of (2.18) reads

dt

dt

dt+ ( (
T

2 dt+ () vvv- ()

I + II + III.
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Clearly,

By (2.9), (2.19), and from the Lebesgue theorem we can obtain III -- O. Next,
satisfies

Hence,

v. (()v) 0, ,=o onF.

a (w) V(f V (f (f dx =/ a (w) V(f V (fn (f dx

and

T (Wn) IV ((fn (f)l 2 dx ] (a (w) (Wn)) V(f" V ((fn (f) dx,

which implies

Thus,

V ((fn (f)l 2 dx <_ C Ja la (w) a (Wn)l2 IV(fl2 dx.

I

_
C [V ((fin (f)l 2 dx <_ C ]a (w) a (Wn)] 2 IV(f]2 dx 0

as above for III. By the Poincar inequality this implies

I(f (f dx --. O,

and up to an extracted subsequence we can assume

(f (f --, 0 a.e. on gt (0, T);

then the Lebesgue convergence theorem gives II -- 0 and u - u u in L2(0, T;
L2 ()). This completes the proof.

Proof of the measurability of (f. We want to show that (f is measurable in t with
values in HI(Ft). First remark that if w e C([0, T] ), then (f e C([O,T],HI(t)).
Indeed

Hence,

v. ( (, (t)) v (t)) v. ( ( (t,)) v (t,)) o.

a(w(t))lV((f(t) a(t’))l 2 dx fa a(w(t’))-a(w(t))V(f(t’).V((f(t) (f(t’)) dx
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and

v ( (t) (t,))l d

_
C/ I (w (t,)) (w (t))l IV (t’)l d - 0

when t --. t’ by the Lebesgue theorem. Now if w E L2(0, T; L2(E)), there exists Wn
in C([0, T] g) such that Wn --+ W in L2(0, T; L2(2)), and also almost everywhere on
f [0, T]. From (2.20) we deduce that

v (On p)l dx -- O,

and thus since n is measurable so does .
3. Smoothness of weak solutions. Existence of classical solutions. In

this section we will assume that (2.7) holds and that

(3.1) I[cI+(R), [alci+(R K, 0 < < 1,

where K is some constant. Recall that CI+a(R) denotes the space of C functions
with derivatives Hhlder continuous of order a, I" ICI+-(R) the usual norm on this space.
Ftt will denote the set t (0, t) and Iq,r,nT the usual norm on Lr(0, T; iq())
(see [L.S.U.]).

THEOREM 3.1. Let w (u, ) be any weak solution of the problem (1.1) with the
boundary condition (1. lb) or (1. lb’) such that

(3.2)

where (see [L.S.U.])

-+- =l-x.0<x<l, qE l_x,+oo rE l_x,+Oo
Then

and

(3.3)

W E C2+c,1+(c/2) (-)

Ilc.+,,+(.,.,() -< c (M0, dist (fiT \ fr), lul2,nr)
If in addition to (3.1), (3.2) we have

(3.4) [U0[c.+,() + [0[c.+,,l+(,/2)(rr) H < +oc,

then

UOlr 0 for (1.1b) or
COuo

0 for (1.1b’), rr r (0,T),
F

Iwlc2+,,l+(,/)(r) _< C (Mo, H).

Proof. The ingredients are well known results of the linear theory of equations
of elliptic or parabolic types (see [L.S.U.], [L.U.]). In the formulae below c will be a
number between 0 and 1 that may differ from one formula to another.
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Step 1. Consider u the solution to the equation

v. (. ()w + ), G aV e Lq (0, T; L

then we have

(3.6)

and in the case where (3.4) holds,

(3.7) [U]c.,./2((r <_ C1 (Mo, H)

for some 1 > c c(q, r) > 0 with a(q, r) - 1 when (q, r) -- q-oc.
Step 2. We have a(u(., t)) E C(Ft). Then consider o the solution to the elliptic

equation

V. (a (u (x, t))V) 0, lr 0.

Here t is some parameter and the estimates are not depending on t. We have

(3.8) sup [[c,+-(n,) -< C2 (C1, dist (gt \ gt’), M0),

respectively, in the case (3.4)-

(3.9) sup
$<T

Step 3. From (3.8) and (3.9) we now have

G aVo e L (0, T; Lp (gt’)) C Lp (fT),

respectively,

(3.11) G aqoV e L (0, T; Lp (gt)) C Lp (fiT)

for any p, 1 < p < +oc, with

(3.12) ]G]p,U,r <_ C3 (C1, C2) C3 (M0, dist (DT \ c), lul2,ur, P) Vp > 1

and in case (3.4)-

(3.13) ]GIp,T C3 (el, 62, p, H).

Moreover, (3.6), (3.7) are valid for any 0 < a < 1 if p is large enough. At the same
time we have also

IWlc.,o/,() _< c (c),

respectively,

(3.15)
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if p is large enough.
Step 4. Consider then the linear elliptic problem

Vu. v g E c- (n), 990.

From this equation we deduce

sup Iolc+-(a,) < C (C4, Mo),
t<T

respectively,

sup Ilc+(a) -< 5’ (, Mo).
t<T

We would like now to show that

Recall that V e Ca(gt) by (3.8) and (3.9). Introduce the function

(x, t + ) (x, t) V’r > O.

Then r is a solution to the following elliptic problem:

(3.18) V. ( ( (, t + ))v +v(x, t)) 0, 1 8

with an obvious notation for a’. From (3.6), (3.7), (3.14), and (3.15) we have that

( (., t)) E C 9 (., t) ( (., t)) v (., t) E C (a),

and consequently,

(3.19) sup IV’lc(a, <_ C (C, C),
t<T

or in the case of (3.4),

(3.20) sup IV’lc(a) <_ (C, ).
t<T

Hence,

and from the equation in u:

(3.21) ut (u) Au a (u (x, t)) IVI2 + ’ (u)IVul

we deduce

(3.22) lulc.+,,+(/.)(a,) < C (C, C)
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respectively,

(3.23) litlC2+,,+(,/2)(TT __< 7 (el, ’6, H)

We are now able to prove that

(respectively, Ca,a2 (TT) )

For this remark that

(3.24) V. (aVer + aCre) 0, o[r 0t.

From this equation we derive

(3.25) Vt C Ca (gt’) (respectively, Ca ())

with

t c C+ (’) (respectively, C2+a (t))

(3.26)
sup ltlc.+(,) _< C8(C6, C7)
t<T

(respectively, sup ]tlc2+(() A C8(C6, C7)).
t<T

Next, we introduce the function

, (, t + -) o (, t)
To

For o we get the equation

v. ( (, t + )v +) 0,

with

We have

Q aV + a[V (x, t + T) + atV.
sup IQIc-(a,) < C9(C6, C,, Cs)
t<T

(respectively, sup IQIc-(h) <-C9(C6, C7, C8))
t<T

from which it follows that

]lc,+-(a,) -< C10(C9) VT > 0 (respectively, I1c1+,() _< 10(9) VT > 0)

or

(3.28) Ix7olc,/.(a.) _< Cll (Clo),



1138 S. N. ANTONTSEV AND M. CHIPOT

or in the case where (3.4) holds,

(3.29) IV([lCa,a/2(’T 11 (I0)
This completes the proof.

Remark 3.1. Recall that for any weak solution of the linear elliptic problem

(3.30) V-(aV) 0, lr 0

we have

Here p p(T), T al/(a2 al) is a given function such that

(3.31) 2<p(-), 0<T<C, p(T)+ whenT+,

which is nondecreing with T (recall that al a a2).
In the twdimensional ce, i.e., when n 2 the assumptions of Theorem 3.2 are

fulfilled for r , q p > 2 n. Thus, in this ce any weak solution to (1.1) is
smooth classical solution in T (of course, if a C1+) and extends smoothly up to
the boundary if u0 C2+a(), 0 C2+a’l+(a/2)(F)

For n > 2 the above argument is valid only if a h a small oscillation in such
way that

Remark a.2. o complete Theorem 2.1, the situation regarding existence of
classical solution is the following:

(1) If n 2 for arbitrary smooth and any t;
(2) If n > 2 for smooth with small oscillations and any t;
(a) If n > 2 for 0 with a small oscillation and t small;
(4) If n > 2 for t small (, 0 arbitrary) then (1.1) has a clsical solution.
Situations (1) and (2) are clear. To show (a), sume that (2.7), (a.1), and

hold. Moreover, denote by M a small constant such that

(a.aa)
M < u0 (x) <

M
4 4

and

(3.34) n < P (o.2M alM )
with

aM= min a, a2M= max a, a2M--alM= OSC a,
[--M,+M] [-M,+M] [-M,+M]

p(T) being the function of Remark 3.1, osc denoting the oscillation. Define then a
function au by

a (T) if ]T] < M/2,
(3.35) aM (T) a (M) if T _> M,

a(-M) ifT_<--M,
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and such that

O"M E Cl+c, oscarM o-2
M o-V osc

R [-M,TM]

Then it is clear that (1.1) corresponding to aM has a classical solution (u, ) for all
t < T. Then choose to such that

M M
<u(x,t)<

M
fort<t0.lu (x, t) uo (x)l < -- or

2 -We have for t < to,

( (, t)) ( (, t));

hence u(x, t) is a classical solution to (1.1) for t < to.
To see (4), introduce the function

(u)
(, x) (o (x) )

(o (x) + )

if lu uo (x)[ < /2,
ifu<uo(x)-, xE,
if u0 (x) + z < u,

which is defined for x gt, /2 < lu- uo(x)[ < so that

(, x) e c,+ (R a), osc (, x) osc (, x).
Rxn [I,,-o()1<,rt]

Clearly, a(u,x) --+ a(uo(x)) when --, 0. We select small enough such that if

a (u, x)
T min

a (u0 (x))’ Rxn (max/k min )’

we have

n < ().
Consider now the problem (1.1), where o’(u) is replaced by ae(u, x). The equation for

reads

v. (v) 0.

By Theorem 2.1, there exists a weak solution to problem (1.1) corresponding to
a a(u,x). Let us show that this solution is in fact classical. Introduce v
a(uo(x))(x,t). Then, v satisfy

V. [M (Vv vV In a (uo (x)))] 0.

Note that Ae -- 1 when - 0. According to the fact that n < p(7") and (2) we have

Vv e L (0, T; Lp (f)), p>n,

and thus

o (o (x)) (Vv oVa (uo (x))) e L (0, T; Lp (gt)).
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Then, by Theorem 3.1, we have

U C C2Tc,1+(c/2) (=T)
Hence

I (, t) o (x, t)l _< c ()t.

Selecting t such that C(e)t < e/2 we have ae(u,x) a(u), and thus the existence of
a classical solution for small t is established.

Remark 3.3. So we have existence of a classical solution to (1.1) for small t. To
extend this solution for all t _< T we need estimates for t _< T. According to Theorem
3.1 the estimate (see (3.2))

2 n
IIV9911q,,ar <_ M, -+- 1-Xr q

is enough. We are now going to establish this estimate for

2+n
>2+n.r=q=l_ X

Indeed we have the following.
THEOREM 3.2. Let (u, 99) be a classical solution to the problem (1.1) and assume

that

(3.36) 0 < ffl

_
O"

_
(72 < --OO, [fftJ _< K

(3.37) sup (l01c() ;llv011p,) M, p > 2;
0<t<T

then for 2s + 2 > n and any T <

2s+2,aT + JJ990,12s+2,fT

where C c(s, n, T, 12, p, K, ai, M), and

k,tT Iflk,a --Iflk,k,aT"

Proof. The proof goes through several steps. The scheme is the following.
Step 1. Considering t as a parameter we derive local estimates inside gt for any

t _< T for the solution to the problem

(3.39) V-(a (u) V99) 0, 991r 990

Step 2. We derive local estimates for the solution u to the problem

(3.40) v. ( () w) v. ( (u)vvv) ()Ivl

where (a(u)99V99) a(u)lV9912 is considered as a given function of x and t.
Step 3. We deduce global estimates for (u, 99).
Let us first go through Step 1.
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Step 1. Let us denote by k, k 1,..., m smooth functions such that

m

Euk;2s+2 =1, Xet, 0_<k(X), [,V,V2I_< 1,

the diameter of their support being smaller than some small number that we will
choose later on.

First we have the following.
LEMMA 3.1. Suppose that qo is a classical solution to

V.(a(u) Vo)=0, xegt, Olr=
and that k(x) is a smooth function such that (qo- qOO)k(X) vanishes outside of the
domain tk C t. Then, for any 2s + 2 > n and t <_ T,

(3.41)

In the above inequality C C(s, n, k), 5 oscak (q qo0),

(3.42)

I1 (k) /t [(2s-t-2 )Vk]2s-F2

__
(.-F1 1(/9 qo0l s+l (IVkl2s-F2

k

+k dx,

qo0 being the function such that

A990 0, 0]r o0.

In particular, if

then

(3.43) /f l7qol2S+2 dx

_
C I/f lqool2S+2 + lTul2s+21dx

where C C(s, n, k, 19o Ioo).
Proof. The proof is similar to the one in [A.K.M., p. 254]. It is based on [L.S.U.,

p. 94, form. 5.8]"

(3.44)

C2 Tt2-_ 82
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From this inequality by Young’s inequality and local estimates of 72 in terms of A99
we deduce

(3.45)

We now use the elliptic equation

O-!
Ao- Vu.

to deduce

(3.46) k IAol2s+2 2S+2 dx < C’ [IIvgj2s+2 ]+ IVu128+2 ’k;28+2 dx

for some constant C’. Substituting (3.46) in the right-hand side of (3.45) with e
CC!5TM we obtain (3.41).

Step 2. Next we have the following.
LEMMA 3.2. Let u(x, t) be a classical solution to

OU
(3.47) ut V. ( (u) Vu + aV), u (0) uo, ulr 0, or -n =0

and k as in the preceding lemma. Then, for any 2s + 2 > n and t <_ T,

(3.48) 1Vul28+2 ;28+2 dx dT< C iV0128+2 ;2s+2 dx dT+ I2 (k, t)’k "k

where C C(n, s, a, T, (1, liPloo),

(3.49)

i1(1 )2s+2h (, t) (lifo (x),,,,.+,a
2s+2 dT./ IiVOkll2/2,a

112s+2 dT

e[(1)
J,k,a [flk,a + [[Vf[[k,n, Ok(x, t) is the solution to the problem

(3.50) A0 -V(. ( (u) Vu + aoV), x e f, 0lr 0.

In particular, if k 1, then

(3.51)

Proof. Introduce
(x, t) (x, t) (x).
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Then

OUk

Ot
v. ( ()w +ov+), xfta, Ulr=0,

u (0) u0, x e n, a (. (u)uV + v0).

We then deduce (see [L.S.U., Thm. 8.1, 8, Thm. 10.1, 10, Chap. III] and [A.K.M.,
Thm. 1, p. 230])

Hence

q q (1))IIW ,a, < c Ila II,a, + IIVII,a, + I10 II,a
< c [llVllq,a+h(k,t)

IlVu  ll" < c (llv   ll" )q,a q,a + 12

(this for any 1 < q < oc, t _< T, C C(ftk, T, n, q)). When q 2s + 2 we get (3.48),
and the proof of Lemma 3.2 is complete.

Step 3. Substituting (3.41) into the right-hand side of (3.48) and choosing the
domain ftk small enough in such a way that

we obtain

C5+ <_

/Ft 12s-1-2 f2s-t-2(3.53) IVu dx dT < C [11 (k) + 12 (k t)]

om (3.42) we have, (2s + 2 > n),

2s+2 < 2C I1oll+ < 0 (lloll <1> ) 2s+2(3.54) II1 (k)l C I1- oll,a ,a ,a

om (3.49) we also get

(3.55) Ih (k, t)! < C lluo,,e+e,a2 + Ilu,,2+=,a + IIV0,,2+,a

For the solution to the problem (3.50) we have the following representation formula:

0 P (( (u) w +v)v Ix), ()w v () d

where

P (9 x) [ z ( ) 9 () d,
k

I being Green’s function. Thus

vo v A( (u) dy VI V( (s) ds dy
0(3.56)

+ [ VI. V(aVdy.
k
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By the properties of the operator P (see [L.U.]) and (3.56) we deduce

(a.7)

IlVOll=+=. _< c [11,,11(=+=)/(=+=+). + I1,,11==+=. /

From (3.53), (3.54), (3.55), (3.57)we have

(3.58)

2s+2 dt < C ]ltoll (1) ,2s-b2 (1)Ilwll:+,a +, + I1+., + llv0ll+,a dt

+ ’ (llll(,+,)/(,+,+),a) ’+’
2+2 dtC U (u, ) + lu12+2,a + llVll(2+2)/(2+2+),a

Q.

From (3.43) we also get, for

(3.59) [[2s+2 2s+2
2s+2,t

Moreover, we have

(3.60) (2s+2)/2

and

(3.61)

,,2s-t-2 ,,(2s-l-2)/q ]](2s-t-2)(q--1)/q dtIIV(Pllq,a dt <_ ]lv(Pllp,a ]lVOil(q_l)p/(p_l),t

0

(2s+2)/q (2s+2)(q--1)/q dt

2s+2<_ e IIvoll2=+2,a / CH

(q (2s + 2)n/(n + 2s + 2),p > 2). Combining (3.59)-(3.61) we obtain (3.58), and
the Theorem (3.2) is proved.

Remark 3.4. The estimate (3.38) allows us to prove the existence of a solution to
(1.1) in the space of (u, o) such that

(Vu, V) e L2+2 (0, T; L2s+2 (ut, V2u, V2o) ( Ls+l (0, T; Ls+l
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4. Dependence on the data and uniqueness results. In this section we will
assume that (2.6) and (2.7) hold and that , a are Lipschitz continuous, i.e., that for
some constant K,

(4.1) I () ()1 -< K In1 1 Vttl, It2 e R.

Then we have the following.
THEOREM 4.1. Let (u, o), 1, 2, two weak solutions to (1.1) with the boundary

conditions (1.1b) or (1.1b’) corresponding to the data (u,o,,a). Assume that
(2.1), (2.6), (2.7), and (4.1) hold for (u, 99, , a), i 1, 2, and also that

(4.2) Vu,Vo E L2q/(q-n)(O,T;Lq(f)), q > nV2, i- 1,2,

where n V 2 denotes the maximum of 2 and n. Then we have

(4.3)
Iw (t)122 + ]]Vw (T)II22 dT+ I]Vo (T)1122 dT

( /o )2 dT_< c I01+ I1 + I1 + IIv011 Vt __< T,

where

Proof. Subtracting the equation satisfied by U2 from the one satisfied by u we
obtain

If we multiply by w and integrate over f we get

(4.4)
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Using (4.1) and HSlder’s and Young’s inequalities we easily see that

To estimate I, we need to estimate . So, we use the equation satisfied by 1 and 2
to get

(4.6)
--V" (O"1 (Ul) V(/9) --V" (O"1 (tt2) O"1 (Ul) V2)

V" ( (--) (U.) V,.).

Multiplying this equation by - 0 and integrating over gt leads to

(4.7)

From this equality it follows that

and by Young’s inequality,

<11,,11 ( )(4.8) IIVll= = + c IIV,=ll =1=,,/(,_=) + Io-loo IIVell= + IlXZ,z011
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We thus obtain

and so

(4.9)

Collecting (4.4), (4.5), and (4.9) and choosing 1/6 in (4.5), we get

(4.10)

1 d iw12 + IIVwll 2 < C IIu2ll 2 2 + i1,:112 iw122 dt 2 q + IIVllq q 2q/(q--2)

{ ++c I1 IlVn2112q + I.I IlVf211q

From the Gagliardo-Nirenberg interpolation inequality we have for some constant C,

( 22)n/2q1--(nlq) I"-’-’1 + IIVwll VW e H ().(4.11) IWl2q/(q_2) < c I1:

Hence (4.10) becomes

(4.12)

Hence by applying the Young inequality

ab < aqln -1-Cebql(q-n),

it follows that for any > O,

(4.13)
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where Ce is some constant depending on . Hence, by choosing 3 1/6,

(4.14)

2<C [(1 + IIVu2112q/(q-n) + IIVlll 2q/(q-n) 2q/(q--n>) IWl2dt q 2

+ I1 IIwll + IIvl + IIVoll2

If we set

(4.15) 2 dT,[W (t)]- IW]22 --tl ]IVW]]2

ll2q/(q_n) )2q/(q--n) + IIVl,,q / IIV2ll2qq/(q-n) e L (O,T)(4.16) H C 1 + IIVu211q

(see (4.2)), then (4.14) also reads

d 2 2 2[w]- H [w] _< In[oo IIVu2ll / [al Ilv2llq / IIVoll2d-
or

Hence, integrating between o and t,

fo H<>d i,12 IIW2112 + 10-12 live,2112q + IIVoll, d

/o 2 dT/ liVe,oil2

So we have

(4.17)

To complete the estimate (4.3) we go back to (4.8), which implies by (4.11),

(4.18)
( 2(1--(n/q)) (iwl22 + iiVwll) n/2 < c IIV2ll 2 Iw12

+ 10] 2 IIV2llq + IIVol12(X)
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Integrating between zero and t and applying Hblder’s inequality we arrive at

2q/cq-n) d I1 / IlWll d-r_< C IIV’,,q

c Io1 + I-ll + Ill + IIVoll d

sup [W[2(1-(n/q))2
T<t

by (4.17). This completes the proof of (4.3).
Remark 4.1. If _= 1, Theorem 4.1 holds when we just assume that

Vqoi e L2q/cq-n) (0, T; Lq (f)), q>nV2

since in the second side of (4.4) the two first integrals disappear.
COROLLARY 4.1. There exists at most one weak solution to (1.1) with the bound-

ary conditions (1. lb) or (1. lb’) such that

(4.19) Vu,V E L2q/(q-n) (0, T; Lq (f)) q > n V 2,

where n V 2 denotes the maximum of 2 and n.
Proof. If (u, qo),i 1,2, are two weak solutions to (1.1) with the boundary

conditions (1.1b) or (1.1b’) and corresponding to the same initial and boundary data,
then (4.3) reads

and the result follows (see also Remark 4.1)
THEOREM 4.2. Assume that (4.1) holds and that there exists one weak solution

(ul, 1) to (1.1) with the boundary conditions (1.1b) or (1.1b’) such that

VUl e L2q/cq-n) (0, T; Lq ()),
q>nV2,

VOl L4q/cq-n) (0, T; Lq ()),
bounded,

where n V 2 denotes the maximum of 2 and n. Then, every weak solution (or classical
solution) (u2, 2) to (1.1), which is such that qo2 is bounded, agrees with it.

Proof. If we set w Ul u2, o 1 qo2 we have

(4.21)
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If we multiply by w and integrate over ft we get

2 <I1+i2+i3+i4
1 d

iwl22 + 1 IIVw]I2(4.22)
2 dt

where

11 --./o (a (ttl) (7 (u2)) lVI"w dx,

I2 -./ a (u2) (Vl VW dx,

I -.fo a (u)V Vw dx,

14 --j (g (Ul) (2))VUl" VW dx.

Since a and the i’s are bounded we obtain, by HSlder’s inequality,

(4.a) 1 c. IVVlv dx C IVv,

1121 c.o I live, Vwl dx C Ilq IlVwll2 112q/<q-2>,

(4.24) 1/31 C. IV IlVwl dx C IIVII2 IlVwll2.

(4.25) 1141 C IVu IlVwll wl dx C IlVu IIq IlVwll2 Iwl2q/<q_2>

Since q > n from the Sobolev imbedding theorem, we get

(4.26) 1121 c IIVllq IIVwll2 IIVl12.
Now from the equation satisfied by ,2 we have

0 v. ( (,)v:) v. ( (,)v (: -:))+ v. (( (,)- ())v:,).

Multiplying by and integrating on we obtain

L (u )lV:l =/, v:,. v:
Hence by H61der’s inequality,

(4.27) ilVll c Iw IIV II Vl dx C IIVII2 IIV IIq Iwl2q/<q_2)

Collecting (4.22)-(4.27) we get

1 d
Iwl + , IlVwll < C { IIV IlqllVwll21wl2q<q-2> + IlVu IlqllVwll21wl2q/<q-2>2 dt

+ IIVllllVwll21wl2q/<q-2>}.

Applying Young’s inequality we eily deduce that

1 21 d
Iwi + IlVwll < C {IIVII + IIV-II + IIVII)Iwl2q/<q_2>e dt
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By (4.11) and again applying Young’s inequality we get

1 d tl 2(1-(n/q)) )n/q__
(IW[22 -I-117W1122 -l- Ce { 117C/91 I]2qq/(q-n) "l-11771112qq/(q-n)

+ llVllqala-n) } lwl2.

Choosing gl/2 we obtain

_d Iwl < C {1 + IlVulll/<-) + IIVIIa/<a-n> } Iwldt q q

Since

112ql(q-n) 4ql(q-n) E L (0, T),1 + }lVui,,q -4-IIVlllq
the result follows from the Gronwall inequality.

Remark 4.2. These results improve preceding results of [Ch.C.]. Note that (4.2)
holds automatically when n- 1; see [Ch.C.].

5. A blowup result. The results of this section improve and complete the
results contained in [A.C.1]. Interesting results on blowup could also be found in ILl.

Let us consider (u(x, t), (x, t)), a local solution to

(5.1)

u v. ( (u) w) / ()IX7l
Ou/On=O, xEF, t>0,
, (z, o) uo (x), z

v. ( ()v) 0, e , t > 0,

=0, xF, t>0.

x gt, t > 0,

Let us assume that

(5.2) u0 (x)

(5.3) 0<(s), a(s)<+oc Vs>_0, adifferentiable, a’(s)>_O Vs>_O,

(5.4) +o ds

(s) <

If dg/(x) is the superficial measure on F we remark that

--, f Io AI 2 d’x (x)

achieves its minimum value for

A - o d7 (x).
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So, if we set

we have, for some constant C,
1oa o dx,

F 10--12 d (x) <_ r IO--Ot12 d (x) <_ C/ [7(fll2 dx V99 E H ().

Let us denote again by C the best constant such that

o-9?l
2 d3’(x) <_C IVqol 2 dx VqoeH

Then we can prove the following.
THEOREM 5.1. Assume that

(5.6) fa fu+ ds

o() a (s)
dx < - 199o o d/ x dt

where

0 - o0 d- (x),

then (5.1) cannot have a smooth global solution.

Proof. Let us assume that (5.1) has a smooth global solution. Define

(5.7) Y(t)
(x,t) a (s)

dx.

From (5.2) and the maximum principle (see [F.]) it is clear that

(5.8) u(x,t)_>0, xft, t>0,

and thus Y(t) makes sense and is nonnegative (see (5.4)).
Differentiating we obtain, using (5.1),

(5.9)

dY (t) /a ut
dt a (u

dx

( () v) + ()Ivl
a (u)

dx

fa v (u) Vu)
1 Jfna (u)dx- IVol 2 dx.

Integrating by parts we have, since Ou/On 0 on F and by (5.3),

(5.10)
1 a (u)a’ (u)iVul2 dx <_ O.V-(a (u) Vu)’a (u)

dx
a2 (u)
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Hence

(5.11)
dY (t) < _/ IV9912 dx

dt

from which it follows that

dY (t) <
dt C 199o 0 d’y (x).

Integrating between zero and t we get

1/0t/ 0 _< Y (t) _< T (0) F Io ol2 d/(x) dt,

which by (5.6) is impossible for t large.
Remark 5.1. In the case where

(5.12) o 990 (x),

it is shown that (5.1) has a global solution if and only if

990 Const.

Indeed, in this case (5.6) holds except when

990 950 Const.

A more convincing example showing the sharpness of (5.6) under the assumptions
of Theorem 5.1 is the following. Consider t (0, 1). Then if 99 is a function in Hi(0, 1),

9 99 d’y (x) {99 (0) + 99 (1)}.

Moreover,

12 d-y (x) I (0) 1
I, (o)- (p (1)1

Now we have

I, (0)- w (1)1 99I (8) ds -- {fO (991(8))2 ds}
1/2

which shows by squaring that

(5.13) 199 (0)--99(1)12 JfF l j012 I- 1 d- (x)_< (99’ (s)) 2 ds.

in (5.13) is the best possible as it can be seen by takingThe constant

() .
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Then consider the one-dimensional version of (5.1) with

u (0) u0 Const.,

and look for a solution

depending on t only. Set

o (0, t) Ao (t), 99o (1, t)- A1 (t).

Then, clearly, the equation satisfied by leads to

7 (x, t) Ao (t) + x (A1 (t) Ao (t)),

and the equation in u becomes

(5.14) ut ( (u)(A1 (t) A0 (t))

or

ds ooo a (s) (A1 (s) A0 (s)) 2 ds.

In the case we are considering, the failure of (5.6) reads

+ ds ’0
+

o a (s) -> (A1 (s) A0 (s)) 2 ds.

This implies that (5.14) has a global solution which is bounded when

+c
> (A (s) A0 (s))2 ds,

and is unbounded otherwise.
Remark 5.2. In dimension 1 and when a 1 it is possible to show that u(x, t)

blows up globally, i.e., if t* denotes the blowup time then

u (x, t) --, +oc a.e. xEgt whent-t*.

Indeed, if for instance t (0, 1), then by integrating the equation

o

we get

Hence

o c (t).
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with

dx
(1, t) (0, t) C (t)

a (u (x, t))"
Setting A(t) 99(1, t) 99(0, t) the equation satisfied by u reads

Ut txx
2 (j01 dx )

-2

Differentiating in x we see that v ux satisfies

Vt Vxx 2
( (u) IO dx )

-2

V

v(x,t) 0, x 0,1, v(x,O) (uo)x.
Assuming that (u0)x E L(0, 1) it follows from the maximum principle, recall that

(x, t))
_> o,

that

Hence

x

u (x, t) u (x, t) dx + u (xo, t).
0

If u(xo, t) blows up, then u(x, t) blows up for any x since the integral is bounded
thanks to (5.15).
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EXISTENCE AND UNIQUENESS OF THE Ca SOLUTION FOR THE
THERMISTOR PROBLEM WITH MIXED BOUNDARY VALUE *

GUANGWEI YUAN AND ZUHAN LIU$

Abstract. The thermistor problem is modeled as a coupled system of nonlinear PDEs with
a quadratic growth on the gradient of one of the unknowns. The existence and uniqueness of Ca-

solution for this system with mixed boundary conditions is established.

Key words. H61der estimate, mixed boundary value, thermistor

AMS subject classifications. 35D05, 35K65

1. Introduction. Let t C TN(N >_ 1) be a C2+a-bounded domain. In the
physical situation that we have in mind, Ft represents an electric solid which is also
conductor of heat. If (x, t), u u(x, t) denote, respectively, the potential and
temperature inside gt, then we consider the following problem (P):

(1.1) V.(a(u) V)-0 in fiT ------ gt (0, T),

(1.2)

(1.3) o o0 on F (0, t) 099 0
On

on F (0, t),

u
(1.4) u 0, on F) x (0, t), 0-- 0 on Fv x (0, t),

(1.5) u (x, 0) u0 (x), in Ft,

where n is the outward normal to 0, and F, Fv F, Fv are relatively open subsets
with C2+a(N- 2)-dimensional boundaries such that

r vnr =, r vnrb=, P vuP =o , P vuP =oa
and meas F > 0, meas F > 0.

The system (1.1) and (1.2), with first boundary value, has been investigated
by several authors (see [1], [3], [4], [8], and [9]). Here we obtain the existence and
uniqueness of the solution for problems (1.1)-(1.5) by using the single-layer potential
analysis and fixed-point argument. After presenting the definition of the weak solution
for the problem (P) and some auxiliary lemmas in 2, we demonstrate our main result
in 3.

*Received by the editors October 1, 1992; accepted for publication May 10, 1993.

Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing, 100088,
China

:Department of Mathematics, Suzhou University, Suzhou, 215006, China
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2. Formulation and statement of results. We shall assume

(2.1) 990 990 (X, t) e C1+c,0 (T) (0 < a < 1),

u0 (x) C C" () f3 H (), u0=0 onF {0},

(2.3) (T (8) E C (Hi), 0 < (T, <_ (T (8) <_ (T* < --00 /8 ( n1.

Introduce
V {v H ();
U {v H ();

v 0 on F},
v 0 on r)}.

DEFINITION 2.1. We say that a pair {u, 99} is a weak solution of problem (P) if

(2.4) u

(2.5) 99 990 e C (T) 3 C (0, T; V),

and

(2.6) jfa(u) V99-V=0 VCeV Vte[0, T],

(2.7)

The main result of this paper is the following.
THEOREM 2.2. Assume that (2.1)-(2.3) hold. Then problem (P) admits a weak so-

lution. Moreover, in addition to (2.1)-(2.3), assume the open portion FD of O be
closed as well, then the weak solution is unique.

The following two lemmas will be useful in the proof of Theorem 2.2.
LEMMA 2.3. Let u C(tT) and 99 990 L2(0, T; V) satisfying

aa(u) V99.VCdx=0 VEV, vt e [0, TI.

Then

(2.9) ess sup ] a (u)IV991 2 dx < CRN-2+2a ’x0 , ’R > 0,
O<t<T JFtNB(xo,R)
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where B(xo, R) {x e nN; Ix- Xol < R}, c e (0, 1/2) and the constant C depends only
on a., a*, IIOOlILo(O,T;C,(()) and the smoothness of Of. Moreover,

(2.10) o o0 E C (T) Cl C (0, T; V).

The estimate (2.8) is the classical Hhlder estimate (see [7]). The inequality (2.9)
is just [2, 5, Lem. 3]. And the proof of (2.10) can be shown as in 3.

LEMMA 2.4. Set

Ix--12 for t > T,
F (x ,t T) [4r(t_r)]N/, exp [--

0 fort<_T,

w (, ) r ( , ) I (, ) ,
where f L(O,T;LI(ft)), f--0 outside ftT and

(2.11) ess sup If(x,t)l dx <_ C1RN-2+2 Vxo ft, VR > O.
O<t<T B(xo,R)

Then there exist constants (0, 1) and C depending only on the constant CI in
(2.11) and Of and T such that

This Hhlder estimate is just [9, Lems. 3.1 and 3.2].
3. The proof of the main result. To prove Theorem 2.2, we need the following

lemma.
LEMMA 3.1. Let f C(fT) and (2.11) hold. Assume v is the solution of the

following problem:

(3.1) vt Av f in -T,

OV
(3.2) 0--=0 on Of (O,T), v(x,O) O inf,.

Then there exist constants (0, 1) and C depending only on the constant C1 in
(2.11) and T and Of, such that

Proof. Let F(x,t) f fa(OF(x (,t- T)/On)f((, T)ddT for all (x,t) e Oa x
(0, T], where n is the outward normal to 0 x {t} at the point (x, t). We claim that

(3.3)

In fact, by using the following inequality

or (x , t )
On

C

(t T)" IX 1+1-2’-
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for t > T, E ft, X E Oft, for all (0, 1), for all # (1-//2, 1) (see [5], Chap. 5,
(2.12)), we have

oo t /B C If (, T)I
d dT

i=o )\S(,’) Ix--

<_ CT,

where #i and /i(i 1,2)satisfy #i e (1- i/2, 1),/3i e (0, 1) and

1-/ 1-20< 1--#1-- <a< 1--#2+2 2

Denote

or ( , t -)
M1 M(x,t;,r) 2

On,

Mi+l (x, t; , r) M (x, t; y, a) Mi (y, a; , T) dSy da,

(x, t) 2F (x, t) + 2 Mi (x, t; , T) F (, T) dS{ dr.

Recall that if 0 _< a < N- 1, 0 _< b < N- 1, then

dS { C IX 1N-l--b (a + b > N 1)(3.5)
la b -<

a Ix-y ly-l, c (a+b< N- 1).

By using (3.3)-(3.5) it follows from direct calculation that (x, t) is continuous on
0f x [0, T] and

(3.6) [[[[Loo(Oax[O,Tl) <-- C,

where C depends only on IIF[lLoo(ar), T and 0a (see, e.g., [5, Chaps. 1 and 5]).
Let

(x, t) P (x , t ) (, T) dS{ dT.

If we have proved that

(3.7) I1’1’11c,,.,,/=() < c,

where C depends only on JJlJLo(Oax[O,T]), T and 0f, then the assertion .of Lemma 3.1
follows from the fact that v(x,t) (x,t)+wl(x,t in fiT, and also from Lemma 2.4.
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+/oot/T1V\B(x.t_y/2,d)
=11 +12+13.

Observe that

Thus

It remains to show (3.7) holds. For all x, y E /N, x y, denote d Ix
I,I, (x, t) (,

<_ F (x , t )1 (, T)I d dT
(x,d)O

Ir ( , t -)1 _< c It TI -z Ix 1-z’+N (t>T, 0<1 <1).

F (x , t T)1 (, T)I d dTI1 E
FtCl(B(x,d/2i_l)\B(x,d/2i)i--0

(:X) (__.)N--2f (2)N-Xjot dT

=0 t

< Cd2-

where 1 (, 1). Similarly, I2 N Cd2’-1 holds.
To estimate I3, recall that if ( zl lx- y], 0 < 2 < 1, t > T, then

Clx-ur ( , t ) r ( , t )
(t-)- zl+-

where z (x + y)/2. Therefore,

It ,x yl , (Is < C d dr
X(,e))noa (t r) I zl+l-z’

[t[C
JoJoan(B(O,=,+,e)XB(O,=,a)) (t- r) Il

d dT
i=0

Cd (2+ld)N-
i=0

< Cd2=-

where 2 e (, 1). So we obtain that

(3.8) I (x, t) (y, t)l c Ix yl

Now let 0 N t= < t T, 0 < < 1.

+ F (x , tl T)I (, T)I d dT

II+h.
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One can estimate T2 by

1). Next notice thatwhere/1 ( (0, 1/2), 12 ( (5’
or (x , s )

Hence

I1 <_ dr ds

C< (s>r, 0</<1)
(, )1+ Ix- 1-"

or (x , s r)
8

< CE dr ds d dr
i=0 flN(B(x,2i+l)\B(x,2i)) (8 r)1+1 Ix ]N-2f

+ CE dr ds
i=0 g)(S(x,2-i)\S(x,2--)) (8 T) l+f2 IX__

CE 2(i+I)(N-1) dr
i=0 (s- T)1+’

(/)N--1 j0t2 jtl d8
+ CE 2(i+l)(N-) dr

i=0 (s- r)
_< C It1 t2l 1-/

where/1 and/2 satisfy 0 </1 < 1/2 < 2 < 1. So we have

(3.9) I (x, tl) (x, t2)l <_ C it1 t21e/2

Therefore, (3.7) follows from (3.8)and (3.9). v1

COROLLARY 3.2. Let f be the same as in Lemma 3.1, u E L2(0, T; U)gl L(0, T;
L2 ()). If u satisfies

-u - + Vu V{ dx dt f{ dx dt + uo (x) (x, O) dx,
T T

V{ e W’1 (’T) with 0 on rb x [o, T] and 0 on x {T},
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then

(3.10) IlUllco.,/((r) <- C.

Here constants 1 E (0, 1) and C depends only on the constant C1 in (2.11),
Iluollc.((), N, T and Oft.

Proof. Decompose u into the sum of v and , where v is the same as in Lemma
3.1, and is the solution of the following problem:

(3.11) t A9 0 in -T,

(3.12) =-v, on r x [0, TI, On
0 on Fv x [0, T],

(3.13) uo(x) on gt {0}.

Then Corollary 3.2 follows from both Lemma 3.1 and the Hblder estimate for the
mixed boundary value problem (3.11)-(3.13) (see [6], 4, Whm. 4). rl

Proof of Theorem 2.2. Introduce the Banach space B C,a/2(T) and the
closed convex subset K {u e B; Ilulls <_ C}, where a =//2, and/ and C are the
same constants as in (3.10). Let u e g and t e [0, T]. Denote by ou ou(-, t) the
unique solution to the following problem:

t) c v, a (u) Vo Vr dx 0 E V.

By Lemma 2.3, we obtain that

(3.14) (-, t)llc (n) _< c,

f
(3.15) ess sup [ a (u)Ix7  l dx <_ CRN-2+2 Vxo t, VR > 0.

0<t<T J2nB(xo,R)

Here C is independent of u and t, C C(a,, a*, IIv01l  (0,r;c-(n)), 0a).
Set

fn { ff (U)IVul2 in (Tn),
0 in TN-i-1 \ "(Tn)

where ft(Tn) {(x, t) aT; dist {(x, t), OaT} > 2/n}, and

s) fn (y,s) dyds,

where PN(’) and lOl (.) are mollifiers in x and in t, respectively.
Let v yen v(, is the unique solution to the problem: Find v E L2(0, T; U) C

L2(0, T; L2(ft))such that

(3.16) -v - + Vv V dx dt du dx dt + uo (x) (x, 0) dx,
T T

V E W21’1 (T), with 0 on F x [0, T] and 0 on x {T}.
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By Corollary 3.2, there exists a constant C independent of e and n, such that

(3.17) IlVllc,.,/2(T) <_ C.

So we can define a mapping A K -- K as follows: v Au. Obviously the image AK
is precompact. To show that the mapping A has a fixed point, we need only to prove
A is continuous. Let ui E K(i 1, 2,...) converge to u in B. Denote vi Aui, and
v Au. using (3.17) and choosing suitable test function in (3.16) we get

(3.18) ess IVv lsup v (x, t) dt + dx dt <_ C.
O<t<T T

Here C is a constant independent of i, e, and n. So a subsequence out of {vi} can be
selected (and relabeled with i) such that

in C",/2 (T)
in L2 (0, T; U) I’1 L2 (0, T; L2 ()).

If we can prove that there exists a subsequence of {Vu} such that

(3.19) Vu -- Vu a.e. in T (a i -- oo),

then

We must have 9 v Au, and hence the sequence (vi) itself converges to v in B.
Then the Schauder fixed-point theorem yields a solution (un, on} to the following
problem:

t) e y,
na

(ue) Vn VI dx 0

Uen e L2 (0, T; U) r Ci,f/2 (T),

VeV, Vte[O,T],

and

u - + Vu V dx dt dx dt + uo (x) (x, O) dx,
T T

V ( W;’1 (-T) with 0 on F x [0, T] and 0 on f x {T}.

By the estimates (3.14), (3.15), (3.17), and (3.18), there exists a subsequence out of
{un,} such that

un --, u in Ca,a2 (T),
Vu Vu in L2 (T).

If
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then it is easy to see that the pair {u, 99,} satisfy (2.4), (2.6), and (2.7). It remains
to prove (3.19), (3.20), and (2.5), and it is enough to show the following proposi-
tions. E]

PROPOSITION A. Let u E C(fT). For each to [0, T], we have

(3.21) 99 (., t) - 99 (., to) in CO (t) (as t --+ to),
(3.22) V99u (., t) - V99u (’, to) in L2 (t) (as t -- to).

PROPOSITION B. Let (ui} converges to u in C,/2(tT)(i -- cx), then

(3.23) 99u -+ 99u in L2 (fT) (as i --+

(3.24) V99u, --+ V99u in L2 (fT) (as i

Proof of Proposition A. Denote 99 99 for simplicity. Let {tn} C [0, T], t, --to (n --+ c). From (3.15) and (3.16) it follows that there exists a subsequence {t }
and a function 5(x) e Hl(t) such that

in CO (t) V99 (x, tn) --+ V@ (x) weakly in L2 (f).

So Vh(x) 990(x, to) on Off, and for any r/ V,

We conclude that 95(x) 99(x, to) in gt and (3.21) follows.
For any r/ V we have

aa
(u (x, tn)) V (99 (x, tn) 99 (x, to))" VI (x) dx

+/a [a (u (x, tn)) a (u (x, to))] V99 (x, to)- Vr/(x) dx O.

Choose /(x) 99(x, t,) 99(x, to) (99o(x, tn) 99o(x, to)) e V to obtain

lX7
(99 (x, t) o (x, to))l u <_ CL I (u (x, t)) (u (x, to))l 2 IX7o (x, to)l 2

/ C/a ]V (x, toll u IX7 (o (x, t) soo (x, tolll

Here C C(a,, r*). Therefore, (3.22) is proved, gl

Remark. By using Proposition A and (3.a) we deduce that 99u(x,t) C(fT),
Cl+aand since 99(-t) e loc (t), V99(x,t) is a meurable function on t. Thus

Proof of Proposition B. For any y V and any t [0, T] we have

a (u,) V (99, 99). Vr/+ (a (u,) a (u)) V99, V/} dx O.
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Let (x) u (x, t) (x, t) E V to obtain

Iv (v ) (, t)l < -- I( (, t)) ( (, t))l: Iv (, t)l .
Therefore,

1

O’.
(i -+

Proposition B follows.
Now the existence of the weak solution to problem (P) has been proved. For the

uniqueness of the weak solution it is enough to notice that by the standard elliptic
estimate

o E L (0, T; C1+ ())
holds under the assumption of Theorem 2.2, and then we can proceed as in [3] to
derive the uniqueness. The proof of Theorem 2.2 is completed.

Acknowledgment. The authors are very grateful to Prof. Lishang Jiang for his
guidance and encouragement.
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THE QUALITATIVE ANALYSIS OF A DYNAMICAL SYSTEM
MODELING THE FORMATION OF MULTILAYER SCALES

ON PURE METALS*

H. C. AKUEZUEt, R. L. BAKERS, AND M. W. HIRSCH

Abstract. Gesmundo and Viani modeled the growth rates of three-oxide scales by the system

dql K1 m- 1 K2
--=m
dt 2ql m 2q2
dq2 KI (m-i n) K2 n- l K3--m--+ +--
dt 2ql m m 2q2 n 2q3
dq3 n K2 K3
dt m 2q2 2q3

The authors consider the more general n-dimensional dynamical system:

dq__j_ _-- ai_ qi(t) >0, i--1,...,n.
dt qj

j=l

Under mild algebraic conditions on the constant matrix A (aij), it is shown that every solution
q(t) extends to a solution defined for all >_ 0, and limt-+oo qi(t) -cx). The difference between
any two solutions is bounded as a function of t. When A is an irreducible tridiagonal matrix, then
every solution is eventually increasing.

It is shown that when m, n > 1 the Gesmundo-Viani system admits a unique parabolic solution
qi(t) civ. The authors conjecture that this parabolic solution attracts all other solutions.

Key words, differential equations, dynamical system, nonlinear dynamical system, cooperative
system

AMS subject classifications. 34C35, 70K05

1. Introduction. The parabolic growth of complex oxide scales containing two
or three components of pure metals has been studied by Gesmundo and Viani [3]. They
obtained the following nonlinear three-dimensional dynamical system as a model for
the growth rates of three-oxide scales:

dql K1 m- 1 K2(1.1.1)
dt

m
2ql m 2q2’

dq2_ K1 fro-1 n K2 n-IK3(1 12).
dt -m-q + + --]m m 2q2 n 2q3
dq3 n K2 K3(1.1.3)
dt m 2q2 2q3

Here Ki > 0 (i 1, 2, 3) are rate constants, m > 0, n > 0 are parameters, and qi > 0
is the weight of oxygen contained in oxide i per unit area.

In the present paper we study (1.1.1)-(1.1.3) as a case of the more general n-
dimensional system:

ai-A qi(t) > O, i= 1,...,n.(1 2)
dqi

n

dt qjj--1
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We show that under mild algebraic conditions on the n n constant matrix A (aij),
in the long run the trajectories of (1.2) are well behaved in the sense that every solution
q(t) (ql (t),..., q(t)), t e [0, a], 0 < a < +cx3, can be extended to a solution on

[0,-{-x)), and limt__. q(t) /oc, i 1,..., n. Moreover the difference between any
two solutions is bounded as a function of t. Furthermore, if A is irreducible and
tridiagonal then all solutions are eventually monotone increasing.

Finally, we give a partial qualitative analysis of (1.1) in the case where the param-
eters m, n have values in the interval (1, /cx)) If m, n > 1 there is a unique parabolic
solution qi(t) ci/, ci > 0, t > 0. We conjecture that this parabolic solution attracts
all other solutions of (1.1). See the conjecture of Gesmundo and Viani [3].

For the two-dimensional case of (1.1) analogous results were obtained by Baker
and Akuezue in [1].

In obtaining our results we have made essential application of algebraic techniques:
the Kamke-Miiller comparison principle, and a theorem of Smillie concerning the
long-run monotonicity of flows of cooperative tridiagonal dynamical systems.

The following notation will be used:

Rn {(ql qn) e Inlqi > O, i- 1, n}
nR++ ((qi,--., qn) E R]q > O,i 1,..., n}.

I[xll is the Euclidean norm of the vector x.

Here are the main results:
THEOREM I. Assume that the n x n matrix A (aij) in (1.2) satisfies the following

four conditions:
(a) detA0 and ai >_ O, for i j;
(b) A is irreducible;

n(c) for all x (xl,... ,xn) e R, if xi -]= aixy 0 for i 1,... ,n, then
x-0;

(d) every real eigenvalue of A is negative.
Then every solution of (1.2) of the form

q- (ql,--.,qn): [0, a]-- R+, 0 < a < +cx3,

extends uniquely to a solution

q: [o,

and

lim qi(t)= +oc, 1,...,n.

Moreover, if r(t) (ri(t),... ,rn(t)),t e [0, +oc), is any other solution of (1.2) in

R+, then

sup IIq(t)- r(t)ll < +,

and hence

1, i- 1,...,n.
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Finally, if the matrix A is tridiagonal, then every solution q(t),t E [0, A-cx3), of (1.2)
in Rn is eventually monotone increasing on [0, A-cx3).

We define a solution q(t) of (1.1) to be parabolic provided it is defined for all
t > 0, takes values in R_, and has the following form:

q(t) (ql (t), q2(t), q3(t)), q(t) cv/, c > O, i 1, 2, 3.

THEOREM II. Assume that m,n > 1 in the dynamical system (1.1). Then
every solution p [0, a] -- R3 0 < a < +x3, extends uniquely to a solution
[0, +cx3) -- R_+ such that limt_+ pi(t) +cx3, i 1,2,3, and this solution is
eventually increasing. There exists a unique parabolic solution

q(t)--(ql(t),q2(t),q3(t)), q{(t) c{v/, c > O, i--1,2,3, O <_ t < cx3.

If p’[0, +cx3) --. R_+ is any other solution, then

sup
O<t<+c

lip(t)- q(t)ll < +;

therefore,

lim
pi(t)

=1, lim
pi(t) cA, l _< i,j_< n.

t-+o q(t) t-+o p(t) c
Based on numerical exploration of the system (1.1), we present the following conjec-
ture.

CONJECTURE. If q" [0,--00) 13 iS the unique parabolic solution of system+
(1.1), and if p’[0, +c) R_+ is any other solution, then

lira

2. Preliminaries. In this section we present background material that we will
use in the proofs of Theorems I and II. We also introduce a change of variable that
transforms system (1.2) into a more convenient form.

Let F W-- Rn be a continuously differentiable vector field on an open set
W C_ R, and consider the system

dxi(2.1) d--- Fi(Xl,...,x,), x (Xl,...,xn) e W, i= 1,...,n.

DEFINITION 2.1. An n n real matrix M is irreducible if for each distinct pair
of indices i,j with 1 < i # j < n, there exists a finite sequence i k0,..., km j
such that Mk_l,k O, r 1,..., m.

DEFINITION 2.2. Let E C_ W be any subset, where W is given in (2.1). System
(2.1) is called cooperative in E if OF/Oxj(a) > 0 for i j,a E; irreducible in E if
each matrix (OF/Oxj(a)),a E, is irreducible; and tridiagonal in E if OF/Ox(a)
-0 for li-jl > 1,a E.

The next lemma is the Kamke-Miiller comparison principle (the last statement
proved in Hirsch [5]). The following notation is used: For vectors x, y we write x < y
to mean x < y for all i. We write x _< y if x _< y for all i. If x _< y but x y we
write x - y.

LEMMA 2.3.- (Miiller [8], Kamke [7]). Assume that the system (2.1) is cooperative
in a convex subset E C_ W having nonempty interior. Let x(t), y(t) be solutions in E
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of (2.1) for a <_ t <_ b where a < b. Ifx(a) <_ y(a) then x(b) _< y(b). Ifx(a) < y(a) then
x(b) < y(b). When the system is irreducible in E, if x(a) - y(a) then x(b) < y(b).

The next lemma, due to Smillie [10] with improvements by Smith [11], demon-
strates long-run monotonicity of solutions to irreducible cooperative tridiagonal sys-
tems:

LEMMA 2.4. Suppose that system (2.1) is cooperative, irreducible and tridiagonal
in a convex subset E c W having nonempty interior. Let x(t) be a solution in E of
(2.1) on a maximal interval of the form [0, a), 0 < a <_ x). Then each coordinate x(t)
is eventually monotone increasing or decreasing.

We conclude this section by making the change of variable pi 1/qi in (1.2); this
transforms (1.2) into a more convenient form:

dt
pi aijpy Gi(pl, pn), pi(t) > 0, i 1,...,n.

j=l

Notice that the vector field (G1,..., Gn) is defined in all of Rn.

3. Proof of Theorem I. We begin with the following well-known consequence
of the Perron-Frobenius theorem.

LEMMA 3.1. Suppose that the n n matrix A (aij) satisfies (a) and (b) of
Theorem I. Then A has an eigenvector v > 0 and a simple real eigenvalue 0 such
that Av v and > Te for all other eigenvalues

The following standard property of cooperative systems is very useful in analyzing
the geometry of phase portraits.

LEMMA 3.2. Suppose that the system (2.1) is cooperative in R, and that F(O)
O. Let x(t), t e [0, hi, 0 < a < +cx), be a solution of (2.1) in R_ such that F(x(0)) < 0.
Then this solution extends to a unique solution in Rn defined for t E [0 +c)++
Moreover, x(t) is strictly decreasing on [0, +cx)) and converges to an equilibrium as

Outline of proof (compare Selgrade [9, Whm. 2.2] and Hirsch [5, Tam. 2.5]). It
follows from the Kamke-Miiller Comparison Theorem (Lemma 2.3) that x(t;x0) is
strictly decreasing on [0, hi, and that x(0) >_ 0. The usual compactness argument then
implies that the solution extends over the whole positive half-line. Since each coor-
dinate of the solution is decreasing and bounded below by 0, the solution converges,
necessarily to an equilibrium. [:]

Up to a change of variables (i.e., pi 1/qi), the next lemma amounts to a special
case of Theorem I.

LEMMA 3.3. Suppose the matrix A (aj) satisfies (a)-(d) of Theorem I. Let
p(t) be a solution of (2.2) defined for t [0, a], 0 < a < +oc, taking initial value
Po R_+. Then p(t) uniquely extends to a solution defined for all t [0, +(x), and
limt-,+o p(t) 0. Moreover, if A is tridiagonal then p(t) is eventually decreasing on

Proof. By standard theory p(t) extends to a solution defined on a maximal interval
[0, b), 0 < b _< c. We need to prove b-

Let v > 0 be the eigenvector of A given in Lemma 3.1 with simple real eigenvalue
a 0, so that Av av. Condition (d) of Theorem I implies that a < 0. Define
c= 1 +max<i<n {po/vi}, where P0 (P0,.. ,P0n) and v (Vl,... ,Vn). Note that
cv > P0. With Gi given in (2.2), it is easy to see that Gi(0) 0 and Gi(cv) ac3v3i
< 0 for i 1,...,n.
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By Lemma 3.2 there is a solution r(t), t E [0, +cx), of (2.2) in R, having initial
value cp0, which is strictly decreasing on [0, +c). Hence limt--.oo r(t) exists as an
equilibrium point of (2.2) in R. Since condition (c) of Theorem I implies that 0 is
the only equilibrium point in R_, therefore limt-+o r(t) 0.

Condition (a) of Theorem I implies that (2.2) is cooperative in R. We have
r(0) cv > P0 p(0), hence the Comparison Theorem (Lemma 2.3) shows that
r(t) > p(t) for all t e [0, b).

Because the identically zero solution of (2.2) exists we have p(t) > 0, and therefore
0 < p(t) < r(t) < cv, for all t [0, b). The usual compactness argument now shows
that b cx. Lemma 2.3 implies r(t) > p(t) > 0; therefore, limt__.+ p(t) 0.

The eventual monotonicity of solutions follows from Lemma 2.4.
LEMMA 3.4. Let the n x n matrix A (aij) satisfy conditions (a), (b), and (d) of

Theorem I. Let q(t) and r(t), t e [0, +cx)), be solutions of (1.2). Assume q(0) < r(0).
Then

(3.1) sup IIq(t)- r(t)ll < +.
0<t<+o

Proof. For t [0, +oc) and i 1,..., n, define

1 1
si(t) ri(t) qi(t), ui(t) w(t)

qi(t)

By Lemma 2.3, q(t) < r(t), and thus s(t) > 0, for t e [0, +cx).
Next define Hi(x1,..., x3n), i 1,..., 3n, by

n

E aijxjXj+nXj+2n
j--1

n
2Hi(xl,...,X3n) x aijxj+n

2
Xi E aijxj+2n

j--1

ifl<_i<_n;

if n + 1 _< i < 2n;

if 2n / 1 < i < 3n.

If we identify (s,u,w) with the vector x (Xl,...,X3n), then the vector function
(s(t), u(t), w(t)), t e [0, +cx) is a trajectory of the following cooperative dynamical
system in R+
(3.2)

dt
Hi(x), x e Rn+, i= 1,...,3n.

Let v (Vl,..., vn) > 0 be the positive eigenvector of A given in Lemma 3.1, and let
a 0 be the simple real eigenvalue of A given in that lemma such that Av cv. By
condition (d) of Theorem I, c < 0. Define z (v-l,..., v1, v,..., vn, Vl,..., vn).
Let c > 0 be arbitrary.

It is easy to check that Hi(cz) < 0 and Hi(O) 0, i 1,... ,3n. It follows
from Lemma 3.2 that there exists a solution x(t) to equation (3.2) defined for all
t e [0, +oc), having initial value cz and taking values in R_n, such that x(t) is
monotone decreasing on [0, +c).

Now fix c > 0 so large that cz > (s(0), u(0), w(0)). Then the comparison prin-
ciple implies x(t) > (s(t), u(t),w(t)) for all t. Therefore, because x(t) is monotone
decreasing with initial value cz, we see that 0 < r(t) -q(t) s(t) < c(v{l,..., v)
for all t e [0, +cx). This proves that (3.1) holds. [:]
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Proof of Theorem I. Suppose the matrix A (aij) satisfies conditions (a)-(d) of
Theorem I. Let q(t) (ql (t),..., qn(t)), t E [0, a], 0 < a < +oc, be a solution of (2.1)
in R+. Define p(t)= (pl (t),... ,pn(t)), t [0, a], by

1
pi(t) i= 1 n.

Then p(t), t [0, a], is a solution of (2.2) in R_+, and hence Lemma 3.3 implies that
this solution can be uniquely extended to a solution p(t), t e [0, +c), of (2.2) in R_+
such that limt_+ p(t) 0. Moreover, when A is tridiagonal then this extended
solution is eventually monotone decreasing on [0,

We uniquely extend q(t), t e [0, a], to all of [0, +c) by the definition

1
qi(t)

pi(t)’
1,..., n, t e [0,

Then this extension is a solution of (2.1) in R+ such that limt_+q(t) +x), i
1,..., n. If A is tridiagonal then the extended solution q(t) is easily seen to be

eventually monotone increasing. This proves the first part of Theorem I.
To prove the second part of Theorem I let r(t), t e [0, +x)), be an arbitrary solu-

tion of (2.1) in R_+. Let v > 0 be a positive eigenvector of A as given in Lemma 3.1.
Select c > 0 so small that C--I(v-1,..., V) > q(0), r(0). Using the same argument
that we used in the proof of Lemma 3.3, we see that (2.2) has a solution p(t) in Rn

++
defined for t [0, +cx), with initial value cv, which is strictly decreasing. Define
u(t) (u(t),...,un(t)),t e [0, +cx3), by

1
ui(t)

P V)-i""
i 1,...,n.

Then u(t),t e [0, +oc), is a strictly increasing solution of (2.1) and u(0) > q(0), r(0).
By Lemma 3.4 we have

sup IIq(t)- r(t)ll < +cx,
O<t<+oo

sup IIr(t)- u(t)ll
0<t<oo

This implies

sup [[q(t)- r(t)l < +.
0<t<+oo

For i 1,..., n, we have

qi(t) < IIq(t)
t e [0,

By the first part of Theorem I, we have limt_+ ri(t) +oc; it follows that

lim 0, 1,...,n.

This completes the proof of Theorem I. D
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4. Proof Of Theorem II. In this section we prove Theorem II. We first prove
that under the hypothesis of Theorem II, there exists a unique parabolic solution of
system (1.1). We prove the remainder of Theorem II by an application of Theorem I.

LEMMA 4.1. Let K1, K2, K3 > 0 and m, n > 1. Define the 3 x 3 matrix A (aij)
as follows:

mK1 m-lK2 0
2 m 2

mK1 [m-1 n l K2 n- l
+ --m 2 n 2

nK2 K3
m 2 2

Then A satisfies conditions (a)-(d) of Theorem I.
Proof. Condition (a) and (b) of Theorem I are easily verified. Because A (aij)

is tridiagonal and aj 0 whenever li- Jl 1, condition (b) is immediate. Condition
(c) follows from det A 0 and the fact that all the principal minors of A are nonzero.
Hence, to prove the lemma, it suffices to show that (d) holds.

To verify (d) we apply Gershgorin’s Circle Theorem (Golub and Van Loan [4]) to
the transpose of A, concluding that the eigenvalues of A are contained in the union
of the following three closed disks in the complex plane:

mK1 inK1D1 center radius
2 2

m+n-lK202" center
m 2

radius Im 11 + n K2
m 2

K3 n-lK3D3" center radius
2’ n 2

Because m > 1, n > 1 all three disks are in the closed left half plane, so all eigenvalues
have nonpositive real parts. Because A is invertible, all eigenvalues have negative real
parts. Thus real eigenvalues are negative. D

For the remainder of this section we will assume that Ks > 0, i 1, 2, 3 and that
m>l,n>l.

The next lemma is a key to proving the existence of a parabolic solution of (1.1).
The following notation is used. We denote by A2 the standard 2-simplex, i.e., the set

3of all points x (Xl,X2, X3) ( R_ such that i=l Xi 1; we denote the boundary
of A2 by 0A2. Define el (1,0,0),e2 (0, 1,0),e3 (0,0, 1). For 1 _< i,j _< 3, we
let [e, ej] be the boundary simplex determined by the pair e, ej, that is, [ei, ej] is
the convex hull of the pair ei, e. Observe that 0A2 is the union of all the boundaries
[ei, ej ], i j, 1 _< i,j <_ 3.

LEMMA 4.2. Let f" A2 ---+ A2 be a continuous map which maps each vertex to
itself and each edge into itself. Then f(A2) A2.

Proof. Standard theorems in algebraic topology show that any extension to the
simplex, of a continuous map of the boundary of a simplex to itself having nonzero
degree, must map onto the simplex. By looking at each edge it is easy to prove
that the restriction of f to the boundary is a map of the boundary to itself which is
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homotopic to the identity; it is well known that this implies degree 1. Therefore f is
onto. V1

Remark. In fact, one can prove that f is a homeomorphism of 0A2.
To introduce the notation used in the next lemma, define B to be the following

matrix:

m-1
-m 0

m

[m-1 n] n_llm +--
m m

0
n

m

1B-1Then B is invertible, hence we may define the 3 x 3 matrix P (Pij) to be -The matrices A and B are related by the equation A B diag (KI, K2, K3). A
calculation shows that Pij > 0 for all i, j.

LEMMA 4.3. Define f (fl, f2, f3) :A2 ---+ /k2 by

X (Xl,X2,X3) E A2 i-- 1,2,3.

Then f maps A2 onto itself.
Proof. It is easy to check that f is continuous and maps each edge of the simplex

into itself. Therefore Lemma 4.2 implies f is onto. v1

LEMMA 4.4. There exists a unique parabolic solution of (1.1).
Proof. Uniqueness: Let q(t) and r(t) be two parabolic solutions of (1.1), with

q(t) cx/,r(t) dv,c > 0, d > 0, (i 1,2,3). By Lemma 4.1, the matrix
A in (1.1) satisfies conditions (a)-(d) of Theorem I, hence by that theorem we have
1 lim--.+oo qi()/ri(t) ci/di, (i 1,2,3). Existence: Let Ki be as in (1.1) and
define y E A2 by

i--- 1,2,3.

Let f A2 --, A2 be defined as in Lemma 4.3; then by that lemma there exists a point
u A2 such that y f(u). Define , r by

1/2
3

ui Piyuy
i=1 j=l

Let c (/)x. Then y f(u) implies Ki ci -=1 Piycj for i 1, 2, 3. This last
set of equations is equivalent to

2 ci aij i-- 1,2,3.

Define q(t), t e (0, +c), by qi(t) ciV, i 1,2, 3. The preceding equations imply
that q(t) is a parabolic solution of (1.1). This proves the lemma. [:]
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Proof of Theorem II. To prove Theorem II, let p(t) (pl(t),p2(t),p3(t)),t
E [0, a], 0 < a < +cx3, be a solution of (1.1) in R_+. By Lemma 4.1, we may ap-
ply Theorem I to the system (1.1), hence there exists a unique extension of p(t), t
e [0, a], to a solution p(t) (p(t),p2(t),p3(t)),t e [0,+cx3), of (1.1) in R_+ such
that limt_+ pi(t) +cx3, i 1,2,3. Because the matrix A of the system (1.1) is
tridiagonal, Theorem I implies that this extended solution is eventually monotone
increasing on [0, +cx). By Lemma 4.4, there exists a unique parabolic solution q(t)

(c x/, c2v/, c3v/), (c, c2, c3) > 0, t e (0, +oc), of (1.1) in R_+; and by Theorem
I, we have

sup
O<t<+o

lip(t)- q(t)ll < +,

and hence

lim
t--.+ qi(t)

1, i 1,2,3.

Therefore, if 1 < i, j < 3, then

lim
t--,+ pj(t) =(c.) lim (P(t)/q(t))t--.+ pj(t)/qj(t)

this completes the proof of Theorem II. [3
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SPLAY-PHASE ORBITS FOR EQUIVARIANT FLOWS ON TORI*

RENATO E. MIROLLO

Abstract. This paper studies dynamical systems on the n-fold torus equivariant under a cyclic
permutation of coordinates. It is proved that under a mild condition, these systems have splay-phase
solutions. These are periodic orbits in which the n coordinates are given by the same function of
time, but equally separated in phase. Applications to systems of equations used to model Josephson
junction arrays are discussed.

Key words. Josephson junctions, ponies on a merry-go-round, splay-phase orbits

AMS subject classification. 34C25

This work is part of an ongoing effort to apply the techniques of nonlinear systems
to understand the behavior of Josephson junction arrays. Josephson junction arrays
are superconducting electronic devices, capable of generating very high frequency
voltage oscillations, up to 1011 Hz or more. We refer the reader to [4], [5], and [7]-
[14] for more information about Josephson junctions. To mathematicians, the most
important feature of the system of equations governing Josephson junction arrays
is the high degree of symmetry present in the system. We shall prove that certain
types of solutions to these equations, which we call splay-phase solutions, exist under
a mild condition. Moreover, the existence of these solutions essentially follows from
nothing more than the symmetry present in the Josephson junction equations. Hence
our results apply to any system of differential equations possessing this symmetry.
Accordingly, we will present our results in as general a setting as possible.

The. simplified equations we studied in [12] have the form

n

(1) 0 Cl -- C2 sin 0i + c3 sin
j=l

where 1,... ,n, cl,c2,3 are constants and (1,... ,On) is a point on the n-fold
torus Tn. This system is equivariant under any permutation of the coordinates Oi (we
will explain precisely what this means below). We studied two types of solutions to (1)
in [12]: in-phase and splay-phase solutions. In-phase solutions are, of course, solutions
(i(t),.... ,On(t)), where (t) Oj(t) for all t. Splay-phase solutions are solutions of
the form

(2) (t), t+-T ,..., t+T
n n

where has period exactly T. In other words, the coordinates each have the same
periodic behavior, but are equally staggered in phase. (For simplicity, we order the
phase shifts to correspond to the ordering of the coordinates, but note that solutions
to (1) are preserved by any permutation of the coordinates.) Other authors call these
"wagon wheel" or "ponies on a merry-go-round" solutions [4], [5].

Aronson, Golubitsky, and Mallet-Paret prove splay-phase solutions exist for this
system in [5]. Their proof uses functional analysis methods, and applies more generally
to a system like (1) with second derivative terms. We shall give a proof that (1) has

Received by the editors August 5, 1991; accepted for publication (in revised form) June 17,
1993. This research was supported in part by National Science Foundation grant DMS-8906423.

Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02167.
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splay-phase solutions using the Lefschetz trace formula. The only property of (1)
that the proof relies on is that the system is equivariant under a cyclic permutation
of coordinates.

Consider a system of differential equations on the torus Tn:

(3) fi (1,... ,On).

Define a: Tn --. Tn by the rule a(Ol,..., 6n) (2,..., On, 1)-Let Ft be the time t
flow for (3). Then we say (3) is a-equivariant if for all t, Fto a a o Ft. This means
a curve (Ol(t),... ,0n(t)) is an orbit for (2) if and only if (O2(t),... ,On(t),Ol(t)) is. In
terms of the components of the flow, a-equivariance means

(4)

The Josephson junction model (1) is an example of a a-equivariant flow on Tn. An-
other example is a "ring of coupled oscillators" given by equations

Cl -}- C2 sin (i+1 0i) -I- c3 sin (i-1 i),

where i 1,... ,n, cl,c2, c3 are constants and we interpret all indices modn. (See
[1]-[3] and [6] for a discussion of this example, nrmentrout found conditions for the
stability of splay-phase solutions for this model in [6].) We now state and prove the
theorem.

THEOREM. Let 0 fi(0i,..., On) be a a-equivariant flow on Tn. Suppose also
that

n

(6) fi(Ol,...,On) > 0
i--1

for all (1,..-, On) E Tn.

Then this system has splay-phase orbits.
Remark 1. For the Josephson array (1), this condition is

n

(7) ncl + (C2 + nc3) sin 9. > 0
j=l

which is true for all (01,...,0,) E T’ exactly if cl > Ic2/n + c31. In the ring of
oscillators (5), a necessary condition guaranteeing (6) is Cl > Ic2-c31. (This condition
is sufficient when n _-- 0 mod 4, or as n --Remark 2. The Josephson junction model (1) can have splay-phase solutions even
when condition (6) does not hold. See [12] for details.

Remark 3. Obviously a similar result holds if instead of (6) we assume

n

(8) fi (01,..., On) < 0
i--1

for all (1, On) Tn.

Remark 4. As mentioned above, the Josephson junction model (1) is of course
equivariant under any permutation of the coordinates Oi. This system is also invariant
under time reversal, in the sense that (Ol(t),... ,0n(t)) is an orbit if and only if
(r- Ol(-t),...,r- On(-t)) is. Our arguments do not rely on these symmetries
(again, see [12] for more details).
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Proof of the Theorem.
0 mod 2r. Since

nConsider the n- 1 torus E c Tn given by i=1 0i

n n

() f, (, o) > o,
i=1 i=1

there is a well-defined Poincar first return map on E which we denote by E --, E.
Actually, this is the only place we use condition (6). We make two claims, which
suffice to prove the theorem.. [:]

Claim 1. Suppose p e E satisfies (I)(p) a(p). Then the orbit of p is a splay-phase
solution.

Claim 2. The equation (I)(p) a(p) has solutions p e E.
Proof of Claim 1. Suppose (I)(p) a(p) for some p E E. Let Tin > 0 be the

time required for p’s first return to E. Recall that we denote the time t flow map
Ft Tn "-+ Tn. Now

(10) FT/n (p) (p) (T (p),

and since Fto a a o Ft for all t,

(11) F (p) (/.) (p) " () p.

Hence the orbit of p is periodic, with period Tim for some integer m > 0. Let

(01 (t),...,On (t)) F (p),

(2) (t) 0 (t).

Then since

(13) F+r/. (p) F, ( (p)) (F, (p)),

we see that

(14) O (t) =(t+--Ti) 1, n.

It remains to prove that m 1. Now

(15) E0(t)=E’ t+--i
n

i=1 i=1

SO

(16) O (t) dt (t) dt.
J0 i=1

Now

T/n
(17) O (t) dt 27r,

dO i=1
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since Tin is the first return time for p back to E. Hence

(18) f0
T

’ (t) dt 2r.

But if has period T/m, then f[ ’(t)dt is a multiple of 2rm. Hence m 1.
Proof of Claim 2. We need to prove that the map a- o <I) has a fixed point on

We shall do this by applying the Lefschetz fixed point theorem to the map a
First we show that the map 5] -- is homotopic to the identity map. We exhibit
the homotopy as follows. For any p Z, let t(p) be the time required for p to return
to 5]. For 0 _< s _< 1, let

(19)

Then set

(0) Gs (p) ({91 (p, 8),..., On-1 (p, 8),-- ({91 (p, 8) + + On_ (p, 8))).

For s O, Go(p) p, and for s 1, G1 (p) Ft(p)(p) O(p), so Gs is the required
homotopy.

Finally, we recall the Lefschetz theorem. If f X -+ X is a continuous map on,
for example, a compact n-dimensional manifold X, then the Lefschetz number of f is
given by

(21)
n

A (f) E (-1)P Tr (fp, Hp (X, q)),

where fp is the induced map on the homology group Hp(X, Q), and Tr denotes trace.
Of course, A(f) depends only on the homotopy class of f. Lefschetz’s theorem says
that if A(f) 0, then f has at least one fixed point. Under additional assumptions,
one may also calculate the Lefschetz number of a map as the sum of local contribu-
tions. Suppose that f is a smooth map, with finitely many fixed points pl,...,pm,

all nondegenerate. Then
m

(22) A (f) ipk (f),

where the local index ipk (f) is given by

(23) ink (:) sgn det (I- dfpk)
where dfpk is the derivative of f on the tangent space TpX.

In our situation, we wish to prove that the map a-1 o on E has a fixed point.
Since is homotopic to the identity map, a-1 o O is homotopic to a-I, so it suffices
to show that A(a-1) # 0. And since A(a) A(a-1), we might as well work on a. So
a has n fixed points on E, given by

(24) (2rkn 2rk)n for k 0, 1,...,n- 1.

They all have the same local structure, so it suffices to calculate the local index at
(0,..., 0). In local coordinates (a,..., an-1) -* (a,..., an-, (a +... + an-1))
near (0,..., 0) on E, a is given by the linear map

(25)
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The characteristic equation of this linear map is

(26) det (#I- A) #n 1
1 + # +-.. + n-1.#-1

Hence det (I-A) n, so ugH det (I-A) 1. Therefore A(a) n, so we are done. In
fact, it suffices to observe that det (I-A) 0 since all the fixed points of a on have
the same local type. And det (I- A) 0 because the equation Ax x, x E Rn-1

has no nonzero solutions.

Concluding remarks. The next question to ask about splay-phase solutions is
whether they are stable. Based on computer simulation, we believe that the splay-
phase orbits in the Josephson junction model (1) are neutrally stable. We can only
prove this analytically when n 2 (see [12]). In general, this question remains open.
However, Strogatz and the author have made some progress towards understanding
the stability of splay states. We have analyzed an infinite-dimensional analog of the
Josephson junction system, and calculated the Floquet multipliers around the splay
states. Our calculations predict neutral stability for the system (1) considered in
this paper. We conjecture that the splay states in the finite-dimensional Josephson
junction system (1) have the same stability behavior as in our infinite-dimensional
model. See [11].
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A VELOCITY FUNCTIONAL FOR AN ANALYSIS OF STABILITY
IN DELAY-DIFFERENTIAL EQUATIONS *

JAMES LOUISELL

Abstract. The author considers the linear delay-differential system (*)(t) Aox(t) +- Aix(t- hi). It is shown that there is a velocity functional which along with its Lie deriva-
tive is analogous in the theory of delay-differential operators to the velocity Lyapunov function
V(x) ((Ax, Ax)), which along with its Lie derivative xT(A + AT)x is used in the analysis of the or-

dinary differential equation (t) Ax(t). The Lie derivative can be written as 2((A0 +- aiAi), )
in a suitable inner product (,) for C vector functions given over [-7, 0], where the ai signify
delay operators having length hi and max (hi,..., hp). Next considering the nonlinear delay-
differential equation ()(t) f(x(t),x(t- hi ),..., x(t- hp)), the author gives a velocity functional
having Lie derivative which locally resembles that for the linear system (*). It is proven that if the
linear operator associated with this Lie derivative everywhere satisfies a certain stability property,
then the nonlinear system () will be globally contractive to a unique equilibrium.

Key words, delay-differential equation, velocity functional, nonlinear system, stability

AMS subject classifications. 34K, 58F

1. Introduction. In this paper the author presents a functional that will be
used to analyze the stability of delay-differential systems. Initially the analysis will
be applied to systems that are linear. The space of initial data will in this case
be the space C[-7, 0] of continuous functions mapping the interval [-7, 0] into Rn,
where 7 max (hi,..., hp) and hi,..., hp are positive real numbers representing the
delays. We will use the notation (Rp)+ to denote the set of members of Rp having all
components positive. After the nature of the functional we use is made clear, we will
investigate systems tha.t are nonlinear.

To begin, we consider the familiar linear delay-differential equation (*)(t)
Aox(t) + Aix(t- hi), where Ao,... ,Ap e Rnn, and h (hl,... ,hp) is any
member of (Rp)+. We can define the linear delay transformation L: C[-7, 0] - Rn
by L A0(0) /- Ai(-hi). For any trajectory x(.) of the system (*) and t _> 0,
we let xt denote the member of C[-7, 0] given by xt(u) x(t / u) for -7 -< u _< 0.
Then Lxt Aox(t)/- Aix(t- hi), and the delay-differential equation (.) is written
as (*)2(t) Lxt. We will frequently consider the extended vector xe(t) (x(t), x(t-
hi),... ,x(t- hp)) e (Rn)p+1, and the member of (R)p+1 having each of its p + 1
n-tuples equal to one fixed vector x will be written as xc (x,x,... ,x). We will
write B [A1..-Ap], and for members k- (k,..., kp) of (Rp)+, we will often have
occasion to consider the negative definite matrix D(k) diag (-kIn,...,-kpI).
Before presenting our first theorem on stability, we give a lemma on a matrix having
a special form which will occur in our analysis.

LEMMA 1.1. Let Ao,... ,Ap E Rnn and let k (Rp)+. Consider the n(p + 1)

*Received by the editors June 23, 1992; accepted for publication (in revised form) June 4, 1993.
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n(p + 1) matrix

[
p

]Ao + + B

BT D(k)
If Sk is sign definite, then the matrix A0 + - Ai is nonsingular.

Proof. If A0+’ Ai is singular, then one has x e Rn-{0} with (A0+- Ai)x
0. In this case, a calculation shows that xTc(Sk)xc 0. We thus see if Sk is sign definite
that the matrix A0 + -We can now introduce the basic functional used in this paper, in the process
giving a theorern on the stability of the linear system (*).

THEOREM 1.1. Consider the linear delay-differential equation (*)2(t)- Aix(t- hi). For each k E (Rp)+, consider the previously defined matrix Sk of
Lemma 1.1. If there exists k (Rp)+ such that Sk is negative definite, then the
system (*) is exponentially asymptotically stable.

Proof. Take any k (kl,..., kp) e (Rp)+, and let x(.) be any solution of the
linear delay-differential system (*) having range in Cn. Now define the real-valued
scalar function V(xt) of t by

P( ] )V(xt) (Lxt)* (Lxt) + E ki 2*(u)ic(u)du
t-h

for all t _> ,

where (-)* denotes the Conjugate transpose. Calculating the time derivative of this
function, particularly noting that Lxt 2(t), we find that

/(xt) ic*(t)A + E 2.(t hi)AT it(t) + 2*(t) Aoic(t) + E Ai2(t

p

+ E ki(k*(t)ic(t) ic*(t- hi)ic(t- hi)),

i.e., (xt) 5c(t)Sk&e(t) for t _> . If there exists k (RP)+ such that ,max(Sk) < O,
then set Amax(Sk) 2 and obtain

(xt) _< 2. 12e(t)l 2 _< 2-. 12(t)l 2 for t >_ ?.

Examining the expression (xt) _< 2-. I2(t)12,. we see that if there were > 0 such
that I2(t)[ 2 _> over [0, cx)), then one would have Y(xt) <_ 2-. I2(t)l 2 <_ 2-),. for t >_ ?,
and integrating (x) for r/_< T _< t, we would find that Y(xt) Y(xn)
for t _> ?. Thus there would be some t > making Y(xt) < 0. Since Y(.) _> 0, we see
that it is not possible that there exists > 0 with I(t)l2 >_ over [0,

If one now considers the characteristic function g(s) IsI- Ao - Aie-shl,
one can see that if there were some zero A A1 + iA2 of g(s) having A1 _> 0 and- 0, then one solution of (*) would be the function c(t) etw, where w is a
nonzero member of the null space of the matrix AI- Ao Aie-h. Noting that
d(t) etw, one sees that I((t)l 2 Iwl2e21t, and setting I.wl2, one would have
I6(t)l2 >_ for all t _> 0, which is impossible. Thus A1 < 0 if A 0 and A A1 / iA2
is a zero of g(s). Furthermore, since Sk is negative definite, we know that the matrix
Ao + - Ai is nonsingular, so that A 0 is not a root of g(s). Thus for any zero
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A A1 + iA2 of g(s), we have 1 < 0. We have now proven that the delay-differential
system (*)2(t) Aox(t)+ Aix(t- hi) is exponentially asymptotically stable. [:]

It is interesting to examine the rate of decay for the solutions of the system (*).
In fact, if A A1 + iA2 is any zero of g(s), then one has the solution c(t) etw as
in the theorem, where w is an eigenvector of AI- Ao - Aie-h We then have
I((t)12 IAWl2e2Alt, SO that

V(ct) I(t)12+ i" I(u)l2d IAwl2e2At+lAwl2 . e2Ad

t--hi t-hi

and after integrating, one obtains

g() I1 1 + ki"
1

This yields (ct) le2Nt I1 (1 + 2 (1 e-2Nlhi)/l) i..,
2Al( + . (1 e-ah)/2Xl)d(t)l for t 0.

If, as in the theorem, one h mx(Sk) 27 < 0, we then have (ct) .le(t)l
so that 21(1+ ki.(1-e-h)/2l)ld(t)l 2-Id(t)l, and noting that Id(t)l > 0,
we arrive at the inequality 1(1 + 2[ ki. (1 e-Xh)/2) 7. This inequality is
satisfied by the real part of any ero of 9(s), and thus setting sup {"
h a ero with Re (s) }, we find that (1 + 2 ki. (1 e-h)/2) 7, i.e.

It is also noteworthy that the condition that there exist k (R)+ making the
matrix S < 0 does not in any way depend on the vector h (hi,..., hp), i.e., the
type of stability given in the theorem does not depend on the delay durations. This
phenomenon is known stability independent of delay, and h been examined in
other contexts by several authors [1], [7]. Considering the inequality (1 + i" (1
e-h)/2) 7 satisfied by the real part of any eigenvalue of the system (*), it is
interesting that this expression does involve the delay duration. In Net, if h 0, we
learn that 7, giving a very simple link between the stability exponent and the
maximum eigenvalue of Sk. On the other hand, for fixed i { 1,..., p} having
the information immediately evident from the inequality more closely resembles the
mere fact that < 0, i.e., that the system is asymptotically stable.. In this section we establish an analogy between the theorem in the previous
section and a problem in linear ordinary differential equations. We begin by consider-
ing the ordinary differential equation (t) Ax(t), where A is any member of Rx.
or vectors z, e R, we write ((z, }? for the usual inner product of x and . We
can now introduce the quadratic form V() ((Az, A}), and for each solution z(-)
of e(t) Az(t), we consider the real function V(z(t)). Noting that A and
examining the time derivative of this function, we obtain

Via an analysis similar to that seen in the proof of the theorem from the previous
section, one finds that if the matrix A + AT is negative definite, then all solutions of
2(t) Ax(t) converge to zero at an exponential rate as t --, c.

This fact from linear ordinary differential equations has been used as a starting
point for an analysis of the global stability of certain nonlinear ordinary differential
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equations. To give an example, Markus and Yamabe [11] investigate systems of the
form (t) f(x(t)), where f: Rn -. Rn is continuously differentiable. They use
the Lyapunov function Y(x) ((f(x), f(x))), just as the Lyapunov function Y(x)
((Ax, Ax)) is used in the linear system above, and they consider the matrix M(x)
f’(x) / f’(x)T, defined for each x E Rn, just as the matrix A/AT is considered above.
Making fairly mild assumptions on det (M(x)) and trace (M(x)), they prove that if
M(x) is negative definite for all x Rn, then the system has a unique equilibrium in
Rn, and all trajectories of the system approach this equilibrium at an exponential rate
as t -- oc. For further applications of this method in the area of nonlinear ordinary
differential equations, including applications to the problem of estimating stability
basins, one can refer to the papers by Markus and Yamabe [11], Hill and Marcels [8],
and to the book by Krasovskii [10].

Returning now to the linear delay-differential equation (*)(t) Aox(t)
+ -. Aix(t hi), we recall that the space of initial data for this system is C[-, 0],
where r/ max (hi,..., hp). For each k (Rp)+, we can define a bilinear func-
tional (,)k on C[-r, 0] by (, )k CT(0)/)(0) "- -.(ki fOhi CT(u)(u)du) for, C[-, 0]. This bilinear functional (,)k is actually an inner product on the space
C[-,0], and C[-, 0] becomes a normed space with the norm IIllk ((, )k)1/2-
We now consider the space consisting of all continuously differentiable vector func-
tions mapping [-, 0] into Rn, and denote this space by C I-r/, 0]. We define a map-
ping A on that subspace of members of C1[-, 0] having A0(0) + ’. Ai(-hi)
lim-0_(u) by the formula - A, where (0) A0(0)/ -] Ai(-hi), and

(u) q(u) if -r/<_ u < 0. Motivated by the above formula (x) 2((A&, &)) occur-
ring in linear ordinary differential equations, we examine the functional (A,

(A, )k A0(0)+ Ai(-hi) (0) + ki. bT(u)(u)du
-hi

p

CT(0)AoT(0)+ CT(-hi)A(O)

)-[- (T(0)(0) --CT(-hi)(-hi)
1_
CT(O) Ao + ATo + kiI (0)

]+ (r(-hi)A(O) + CT(O)Ai(-hi)) T(-hi)(kiI)(-hi)

Recalling that B [A1-.- Ap], and writing T(0) leT(0) CT(_h)... CT(_hp)],
this acquires the matrix form

[
p

]1 Ao + ATo + kiI B
Ce(0),(A, )k T(0)

BT D(k)

i.e., 2(A, )k T(0)SkCe(0), where Sk is the matrix from Lemma 1.1 and Theorem
1.1.
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Now inspecting the proof of Theorem 1.1 in light of this inner product (., ")k,
we see that we had written Y(xt) (Axt, Ax)k for solutions x(.) of (*) (t)
Aox(t) + - Aix(t- hi), and we had obtained f/(x) 2(Ac,c)k for t _> , where
t is the member of C[-, 0] defined by &(u) &(t + u) for ? _< u _< 0. Thus the
quadratic functional V() (A, A)k is the analogue, in the area of delay-differential
equations, of the symmetric quadratic form V(x) given above for ordinary differential
equations.

In the next section we give stability theorems for nonlinear delay-differential sys-
tems. These theorems are deduced from the global behavior of the derivative of the
function defining system velocities, rather than from the behavior of values of this
function itself. With this perspective, we first explore the asymptotic convergence of
system trajectories, and after it is established that all trajectories with continuously
differentiable initial data do converge, in fact exponentially, we investigate the prop-
erties of possible equilibria, proving a type of continuous dependence of the equilibria
on the initial data. With this we will be able to arrive at the conclusion that there is
just one equilibrium for any nonlinear system of the type under consideration.

The vector function defining system velocities will be of the form f" (Rn)p+l
Rn. This function will display a kind of decreasing behavior made formal by our
assumption on its derivative, an assumption expressed in terms of global negativity
of a quadratic functional related to the nonlinear system in the same manner as the
quadratic functional V() above is related to the linear system. Although, in this
paper, we will derive the existence of a unique equilibrium and of exponentially con-
verging trajectories, it may be worthwhile to note that there is considerable literature
on the wider topic of nonlinear delay-differential equations for which each solution has
some constant asymptotic limit.

An early example of this is given by Kaplan, Sorg, and Yorke [9]. These authors
proved that if the function f is an order relation which is locally Lipschitz in the
first coordinate, then all bounded trajectories of the scalar delay-differential System
it(t) f(x(t),x(t- h)) do have asymptotic finite limits. In a later paper, Cooke,
Kaplan, and Sorg [2] gave similar theorems which applied specifically to the stability
of motion for a radiating charged particle. More recently, Haddock, Nkashama, and
Wu [4] have examined linear neutral scalar Volterra systems having unbounded delay,
giving a class of such systems for which, again, each solution has a constant asymptotic
limit. In a paper making extensive use of invariance principles applied to systems with
infinite delay, Haddock and Terjeki [5] arrive at theorems giving asymptotic constancy
of all solutions of certain types of nonlinear functional differential equations for which
each constant function is itself a solution. For an interesting narrative on this topic,
one can refer to the paper by Haddock [3].

3. In this section we investigate the stability of certain nonlinear delay-differential
systems in terms of their linearizations. We will consider nonlinear delay-differential
equations of the form ()(t) f(xe(t)), where xe(t) (x(t), x(t hi),..., x(t hp)),
as usual, and f: (Rn)p+1 ---+ R is continuously differentiable throughout Rn(p+). We
can define the nonlinear delay transformation F: C[-, 0] Rn by F() f((0)),
and with this the system () is written as ([)2(t) F(xt). Given any such system, it is
known that for each e C[-, 0], there exists Z > 0 and a unique x(.) x(, .) with
x(u) =_(u) for - _< u _< 0, which satisfies ([) over [0,/). It is known [6] that if there
exists >_ such that x(.) x(, .) is a noncontinuable solution over the interval
[0, ), then the solution x(.) is unbounded in Rn over [0,/). For vo,..., Vp e Rn, we
will write the derivative of f at v (v0,..., Vp) as f’(v) [A0(v)... An(v)], or merely
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aS f’(v) [Ao"" Ap], where Ai E R’n for i- 0,... ,p. Before proceeding, we prove
the following facts from linear algebra which will be valuable in the stability analysis
of the nonlinear system ().

LEMMA 3.1. Let
J= CT E’

where A AT Rnn, C Rnnp, and E Rnpnp. Let E blockdiag (El,..., Ep),
with each Ei Rnn. If there exists i {1,...,p} such that Ei 0, then J is not
strictly sign definite.

Proof. Suppose we have i E {1,... ,p} with Ei O. Consider any member
u (u1,..., Up) of (Rn)p having uj 0 for j i, and having ui nonzero. Then

[0 uTlJ uO =[0 uT] CT E u

Since

and u 0, we see that J is not strictly sign definite.
LEMMA 3.2. Let k (kl,...,kp) (RP)+. Let

[A c 1Jk= CT D(k)

where A AT e Rnxn, C e Rnxnp, and D(k) is as previously defined. Then for each
i 1,... ,p, we have Amax(Jk) + ki _> 0.

Proof. For each 1,... ,p, set Li Jk + kiI, where I denotes In(p+1). Now
note from Lemma 3.1 that Li is not sign definite, so that Amax(Li) >_ 0. Since
Amax(ni) )max(Jk)+ ki, we see that max(Jk)- ki

_
O, and the lemma is

proven, fl
In the next three lemmaS we provide a baSis for comparing the solutions of a

type of differential inequality with delay to the solutions of a corresponding delay-
differential equation. This will be valuable in establishing an exponential decay rate
for the derivatives of solutions of the nonlinear systems we will eventually analyze.
Before giving the first of these lemmaS, we introduce the notation C_ [-, 0] to denote
the set of all functions - [-, 0] --. R for which both (i) is continuous over the half-
open interval [-, 0), and (ii) limu--.0-(u) exists and is finite. Here it is not required
that (0) lim-.0_(u). It will be useful to consider the norm I1" II- defined on

this space by I111- (1(0)12 -" fO? i)(u)12du)l/2 i.e., (1111_)2 1(0)12 -(11112)2,
where 11112 is the norm of in n2(-, 0).

LEMMA 3.3. Let max (h,..., hp), where each hi > 0, let d > O, and let m"
[- , d) R have mo e C_[ , 0], i.e., suppose that m is continuous over [- , 0),
and that limu--.0- m(u) exists and is finite. Let a < 0, let b,..., bp be constants with
each bi >_ O, and suppose that m(.) is continuous and right differentiable over [0+, d),
with right derivative m+ satisfying the delay-differential inequality m+(t) <_ am(t)+
’: bim(t- hi). Now let n(.) be the solution over [0, cx) to the delay-differential
equation n’(t) an(t) + -P bin(t- hi) having initial data no mo e C_[- , 0].
Then m(t) <_ n(t) for 0 <_ t < d.

Proof. Define f: [-,d) -- R by f m-n. Then f 0 over [-?,0), and
f(0) 0. Noting over [0, d) that m+(t) <_ am(t)+ -P bim(t- hi), n’(t) an(t)+

bin(t- hi), we have f’+(t) <_ af(t) + - bif(t- hi) for 0 <_ t < d.
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Now suppose there was a point in [0, d) at which f attained a value greater than
zero. Then let c inf (t" f(t) > 0}, and note c >_ 0. By definition of , there would
exist i, having 0 < i < min (hi,..., hp) and e (c, c + ti), with f() > 0. Now
let 5- inf (T" f(t) > 0 for allt e [T,]}, and note that f(5) 0. Let t’ be any
member of (5, ) having f(t’) < .f(), and note that there would be some to
with f_ (to) > 0. Since f(t) <_ 0 for t <_ , and since c + i < ( + hi for each i, we
know for i 1,..., p that f(to hi) <_ O. Furthermore, since to E (5, ), we know that
f(to) > 0. This would then yield 0 < f’+(to) <_ af(to)+Y’ bif(to-hi), a contradiction
in light of the signs of a, f(t0), the bi and the f(to hi). We now conclude that there
is no point in [0, d) at which f attains a positive value. Thus f(t) <_ 0 over [0, d), i.e.,
m(t) <_ n(t) for 0 _< t < d.

LEMMA 3.4. Let a < 0, lal > j-’ Ibil, and consider the. delay-dierential equation
()n’(t) an(t)+ bin(t- hi). Then there exist constants c < 0, C > 0 such
that the following holds: For each E C_[-, 0], the solution n(, .) of () satisfies
In(,t)l < (CIlll-)e for all t >_ O.

Proof. Recalling the characteristic function g(s) s- a- y[ hie-sh we know
for Re (s) >_ 0 that Is- al _> lal > Ibl _> Ibe-h’l, and thus I-g(s)[ >_ i1-
al- Ibe-h’ll -> lal- Ibl > 0, i.e., Ig()l > 0 for Re (s) >_ 0. Noting the
well-known fact that g(s) has at most a finite number of zeros to the right of any
vertical line in C, we see, since g(s) has no zeros in {Re (s) >_ 0}, that there exists
a < 0 such that g(s) has no zeros in {Re (s) >_ a}. The lemma now follows from
well-established facts [6] in the theory of autonomous linear functional differential
equations. [:]

LEMMA 3.5. Let r max (hl,...,hp), where each hi > O. Let a < 0, again
let bl,..., bp be nonnegative constants, and suppose lal > }- bi. Then there exist
constants C > O, < 0 such that the following holds: If d > 0 and m: [-r, d)
is any function having mo C_[-r, 0] and satisfying the delay-differential inequality
m+(t) <_ am(t)+ - bim(t- hi) for 0 <_ t < d, then 0 <_ re(t) <_ (CIImoll_)et for
0<t<d.

Proof. From Lemma 3.3, we know that 0 _< m(t) <_ n(t) for 0 <_ t < d, where n(.)
is the solution over [0, oc) to the delay-differential equation n’ (t) an(t)+ bin(t-
hi) having initial data no m0. Since, by Lemma 3.4, we have In(t)l <_
for t >_ 0, we see that 0 _< m(t) <_ n(t) <_ (CIImoll_)et for 0 _< t < d, and the lemma
is proven.

We are now prepared to show how the functional from the preceding sections
can be used in the analysis of nonlinear delay-differential systems. It is convenient to
recall here that C1[-, 0] denotes the space of all functions : [-, 0] --. Rn which
have continuous derivative q over [-r, 0]. For reasons involving the continuation of
solutions, the remaining theorems will be stated for delay-differential equations having
initial data in this space C1[-, 0].

THEOREM 3.1. Consider the delay-differential equation (t)2(t) f(xe(t)), where

f is continuously differentiable throughout Rn(p+I). For vo,... ,Vp Rn and v
(v0,...,Vp), set f’(v) [A0---An]. Write B [A1.-. An], and suppose that there
exist 7 < O, k (Rp)+ such that for each v Rn(p+), the matrix

[
p

]Ao+A+k,I B

BT O(k)
satisfies )Imax(Sk)

_
27. Then for each E C [-?, 01, the solution x(,.) is de-

fined over [0, oc), and in fact there exists . e Rn such that x(, t) converges at an
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exponential rate to 2 as t -- ec. Furthermore, for 2c (2,..., 2), we have f(2c) 0.
Proof. Take any E C1[-?, 0], and let be any positive real number with the

solution x(-) x(,-) defined over [0,/). Now form a real function of t by setting
V(xt) F(xt)TF(xt) + -P (k "ft-h 5T(u)5(u)du) Noting for 0+ _< t < / that
F(xt) 5(t), and calculating the right derivative of this function Y(xt), we find for
0+ _< t < that

p

(xt) 2 ((f’(x(t)) 5e(t),5(t))) + E ki(hT(t)5(t) 5T(t hi)5(t hi))

p

2 (([Ao’’’ Ap] 5(t), 5(t)}) +E ki(hT(t)5(t) 5T(t h)5(t h))

5T(t)ATo + E5T(t- hi)AT 5(t)+ ST(t) Aoh(t)+ EAi5(t- h)

+ T(t) kiI (t)-

_
T(t- hi)(kiI):(t- hi),

1

where the derivatives 5(t) and 5(t- hi) are taken on the right. Writing Sk Sk(v)
with v xe(t), we see that /(xt) 5Te(t)S.khe(t).

Noting that Amax(Sk) _< 2"/, we have V(xt) <_ 2"/15e(t)l 2, and recalling the defi-
nition of V, we obtain dhT(t)5(t)/dt + - ki(15(t)l2 -15(t- hi)l2)

_
2"/15(t)12 + 2"/.

-] 15(t-hi)l2. Thus we have dlh(t)12/dt

_
(2"/-’1p ki)[5(t)12+-(2"/+ki)lh(t-hi)l2

for 0+_< t < . Now set re(t) 15(t)l2for -_< t < f, with 5(-) taken as usual
on the right. Set a 2"/- - ki, set bi 2"/+ ki for i 1,..., p, and note that

m+ (t)

_
am(t) + -] bim(t- hi) for 0

_
t < 3. Since "/< 0, we know that a < 0,

and also that lal -2"/+ ki > ki > hi, i.e. lal > - bi. Furthermore,
since bi 2-/+ ki >_ Amax(Sk) + ki, one can note Lemma 3.2, and see that bi _> 0
for each i 1,... ,p. Now for 0 _< t < 3, m(.) satisfies the above delay-differential
inequality with initial data m0 E C_[-, 0] given by too(u) I(u)l2 for - <_ u < 0,
and m0(0) --IF()I2 15(0+)12. Noting Lemma 3.5, we immediately see that there
exist constants Co > 0,(0 < 0 with re(t) < (Collmoll_)e"ot for 0 <_ t < . Setting
C (Collmoll_)l/2, a co/2, and noting re(t) 15(t)l 2, we have 15(t)l < Ceat for
0_<t </.

From this inequality for 151, we see that for 0 < t < T < /3, one has

Ix(T)- x(t)l-- _< _< c

i.e., ,X(T)--x(t)]_< ([--[)eat for0_t_T< .
Thus Ix(t)  (0)1 < C/ll over [0,/). Since/ was an arbitrary positive real number
for which the solution x(.) is defined over [0,/), we see that there is a fixed bounded
subset of R= which x(.) does not escape over its interval of existence, and conclude
that the solution x(t) is defined over [0, oo).

Using the Cauchy criterion with the bound IX(T)- x(t)l < C(ll)-et, valid for
T > t > 0, one can easily now see that limt-o x(t) exists, and we denote this limit by
2. Writing 2 lim__+ X(T) and noting this bound, we have 12- x(t)] < C(Io])-leat
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for t >_ 0, and thus the rate of convergence of x(t) to 2 is exponential, with exponent
less than or equal to at. Since x(t) --. 2, as t - cx), we know for i 1,... ,p that
x(t- hi) -- 2, as t --. c, and we have f(xe(t)) -- f(2,c) as t -- cx. Recalling the
inequality 12(t)l

_
Ce"t, we see that 2(t) -- 0 as t - c, and since 2(t) f(xe(t)),

we know also that 2(t) -- f(2,c) as t --. co, and thus f(2,c) 0.
COrOLLary 3.1. Consider the delay-differential equation ()2(t) f(x(t)), with

the hypotheses of Theorem 3.1. For each E C1[-, 0], define me C_[-, O].by
me(u) I(u)l2 for - _

u < O, and me(0) IF()I2. Then for each > O, there
exists 5 > 0 such that if IImll- < 5, then Ix(C, t) (0)1 < e for all t >_ O.

Proof. In the bound given in the theorem, we have Ix(,t)-
for 0 _< t < oc, i.e., Ix(,t)- (0)1 _< (C011m11_)/2(11)-1 for t _> 0. For any
ti with 0 < ti < (a2/Co)2 and t >_ 0, we thus have IImll_ < 5 ==, Ix(,t)-
(0)1 <_ (C0)1/2(101)-1(11m11_)1/2 Ix(,t)- ((0)1 < , i.e., if IImll_ < 5, then
Ix(C, t)- (0)1 < e for all t _> 0.

THEOREM 3.2. Let 9/ < 0 and let k (R’)+. Set a 27 Y k, and set b
27 + k for i 1,... ,p. Consider the delay-differential equation (i)2(t) f(x(t)),
where f is continuously differentiable throughout Rn(+). Let Z Vo x x V,,
where the Vi are open subsets of R, and Vi D Vo for 1,..., p. Suppose that for
each v (vo,..., Vp) e Z, one has )max(Sk)

_
2/ for the matrix Sk formed from

f’(v) [A0... An]. Let Co, co be the constants obtained from a and the bi, hi as in
Lemma 3.5, and let ( c0/2. For each e C1[-, 0], define me by me(u)
for -r <_ u < O, and me(0) IF()l2, and set C (Collm11_)1/2. Then the following
holds: If Vo D {x Rn "Ix- (0)1 <_ Cla-ll} and V D range () for i= 1,...,p,
then the solution x(, .) is defined over [0, oc), there exists
such that x(, t) converges at an exponential rate to 2, as t -- oc, and f(2,c) O.

Proof. Consider the set B of all nonnegative real numbers/? for which both (1)
the solution x(.) x(, .) is defined over the interval [0,), and (2) for 0
one has Vo x(t) and each D range (xt) for i 1,..., p. Noting that x(0) (0),
each D range (), and x(.) is continuous, we see that B contains a nonempty half-
open interval including 0. If it were the case that B was bounded, then one could
set f sup B. For 0 _< t < f, we could write the inequality Y(xt)
as usual, with 2(-) taken on the right, so that for re(t) 12(t)12 we again have
m’+(t) <_ am(t)+ }-.P bim(t- hi) for 0 _< t </. Noting the resulting inequality for
Ix(T)- x(t)l as in the theorem above, we find that Ix(t)- x(O)l <_ Cc-(et 1).
Thus, Ix(t)- x(O)l <_ C1-11 for 0 N t < . Since the solution x(.) is contained in
{Ix- (0)1 <_ CIc-ll} over [0,/), we know that x(-) is continuable, i.e., there exists

e0 > 0 such that the solution x(-) is defined over [0, + e0). Since we would now have
Ix(t)- (0)1 _< C1-11 over [0,], there would then exist e with 0 < e < e0 having
Vo x(t) over [0, + e). Thus for each i 1,... ,p we would have D range (xt)
for / _< t < / + e, since if t + u N 0, then xt(u) x(t + u) range (), and if
0 < t + u < + e, then x(t + u) lies in V0, hence also xt(u) Vi for i 1,...,p.
We would thus see for 0 <_ t < + e that Vo x(t) and each D range (xt), and
immediately conclude that / + e <_ sup B, which contradicts/ sup B. We now
conclude that B is unbounded, i.e., sup B oc. We can now write f/(xt)
for 0 _< t < oc, and note the again resulting inequalities. Particularly noting that x(t)
lies in the compact set {Ix- (0)1 <_ C1(-11} for 0 N t < oc, the theorem now follows
from the inequalities for Ix(T)- x(t)l as in Theorem 3.1.

The following lemma will be valuable in analyzing the issue of uniqueness of the
equilibria of the nonlinear delay-differential equation ()2(t)= f(x(t)).

LEMMA 3.6. Let f(v) be continuously differentiable on an open subset of Rn(p+I),
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and let k E (Rp)+. Again consider the matrix

[
p

]Ao + A + kiI B
1

BT D(k)

where f’(v) [A0..-An] and B [A1-.. Ap]. For Xc (x,... ,x), set d(x) f(xc).
If 4(2) 0 and Sk is sign definite at v 2c, then 2 is an isolated zero of d(x).

Proof. Note that d’(x) f’(xc) [I. I]T [A0.--Ap]. [I. I]T Ai(xc).
If Sk is sign definite at v 2c, we know from Lemma 1.1 that - Ai(x,... ,x)
is nonsingular at x 2, and the lemma now follows from the inverse function
theorem, v1

Although the theorems in this section are as previously mentioned stated for
delay-differential equations having initial data in the space C1[-, 0], it is convenient
here to introduce the supremum norm on the space C[-r], 0], i.e. for each e C[-, 0],
we define IIlls by IIlls sup {](u)] "- _< u _< 0}. We now examine the uniqueness
issue for the equilibria of nonlinear delay-differential systems of the form ()2(t)
f(xe(t)). The most challenging aspect of this will come in demonstrating the continuity
of the map taking members of C1[-, 0] upon the limit as t oc of the trajectory
x(, t). The idea will be that for time greater than some fixed value, the trajectory
x(, t) will be close to a zero of the above function d(x) f(x), and in this vicinity
f(v) has small magnitude. Since over finite time trajectories can be made close to
x(, t) by making initial data close to , trajectories with nearby initial data will at
least temporarily be close to the same zero of f(xc) as the zero approached by x(, t).
The previous lemma will tell us that this zero is isolated, and since trajectories are in
a vicinity of low momentum, they will be unable to escape the vicinity of the zero, so
that trajectories will converge to this zero.

THEOREM 3.3. Again consider the delay-differential equation ()2(t) f(xe(t)),
where f is continuously differentiable throughout Rn(p+l). Again suppose that there
exist k (Rp)+, / < 0 such that for each v (vo,..., Vp) (Rn)p+l, the matrix

[
p

]Sk Ao + A + kiI B

BT D(k)

formed from f’(v) [A0... Ap] satisfifis /max(Sk)
_
2. Then~ for each C1[-, 0],

there exists r > 0 such that if C[-,0] and I1- 11 < r, one has
limt-o x(, t) limt- x(, t).

Proof. The fact that the second of the above limits exists is an immediate con-
sequence of Theorem 3.1. The existence of the first limit will be established in the
proof. Begin by setting limt-.o x(,t) 2, and note from Theorem 3.1 that for
d(x) f(xc), we have 4(2) 0. Examining the constant matrix f’(2c) [A0..-An],
and recalling Theorem 1.1, we note that Sk(2c) is negative definite, and conclude
that the zeros of the function g(s) IsI Ao Aie-h’ have negative real part.
Considering the member 0 of C[-r], 0] defined by 0(u) 2 for - _< u _< 0, it now
follows from well-known facts in the theory of functional differential equations [6] that

there~ exists i > 0 such that for each E C[:, 0] having I1- 011 < 5, the solution
x(, t) exists for 0 _< t < oc, and limt-. x(, t) 2.

Now take to > 0 with Ix(C, t)-21 < 1/25 for all t _> to. By continuous dependence of

x(, t) upon over intervals of finite length, we know that there exists r > 0 such that
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for each e C[-r, 0] having I1-1] < r, the solution x( t) exists over [0, t0+ul, and
[x(,t)-x(,t)l < 1/25 uniformly over [0, t0-t-]. For such , we know from the triangle
inequality that ix(C, t) 2"1 < 5 for to _< t _< to + . Setting (u) x(, to + ? -t- u)
for - _< u _< 0, we see that I]- 011s < 5, so that the solution x(, t) exists over
[0, oc), and limt--.oo x(,t) 2". Thus limt-o x(,t) 2.. We have shown that
limt-oo x(, t) 2" limt-.oo x(, t) for any e C[-, 0] having I1- ells < r, and
the theorem is now proven. [:]

THEOREM 3.4. Again consider the delay-differential equation (l)k(t) f(xe(t)),
with the same hypotheses as in Theorem 3.1 and Theorem 3.3. Then there is a unique
point 2" e Rn having f(2"c) O. For each e CI[-r, 0], one has x(,t) --. 2" at an
exponential rate as t -- oo.

Proof. Noting Theorem 3.1, one need only show the uniqueness of the zero
of the function d(x) f(xc). Let C1[-?,0] have the supremum norm IIlls
sup {l(u)l _< u _< 0}, and let Rn have the standard norm. Define the map
T" Cl[-r, 0] --+ Rn by T limt--.oo x(, t). Noting that Cl[-r], 0] is connected, and
noting from the above theorem that T is continuous, we see that the image of T is
connected. From Lemma 3.6, we know that the zeros of the function d(x) are isolated,
and since the image of T is contained in the set of zeros of d(x), we see that the image
of T is a single point.

Now let {2"} be the image of T. For any x’ e Rn having d(x’) 0, let (u) x’ for- _< u <_ 0. Since x(, t) x’ for all t >_ 0, we have x’= limt-o x(, t) T 2",
i.e. x 2. Thus we see that the zero of d(x) in Rn is unique, rl

4. In this section we give examples of the theorems in 3. Although, for the sake of
simplicity, all examples presented are of nonlinear scalar delay-differential systems, one
can use the techniques found below to give examples of similar phenomena occurring in
nonlinear vector delay-differential systems. In the examples given we present nonlinear
delayed systems which will be shown to satisfy the hypotheses of Theorem 3.1.

Example 4.1. Let w be any fixed real number, let h > 0, and consider the nonlinear
delay-differential equation (l)(t) 5sin (wx(t)+ wx(t- h))- 3x(t).

In this case we write v (v0, Vl) (x,y), and we have f(x, y) 5sin (wx+wy)-
3x, so that co(x, y) Oil(x, y) 5w cos (wx + wy) 3, and al (x, y) D2f(x, y)
5w cos (wx + wy). Recalling the matrix

Sk= [ao-t-a+kI a ]aT1 -kI
we have

Sk [10wcos (wx + wy) 6 + k 5wcos
502 cos (02x + 02y) -k

One will find that the discriminant D for the characteristic polynomial of Sk is given
by 1/4D (k 3 + 5wcos (.wx + wy))2 + (5w cos (wx + wy))2. If we set k 3, then

1
D 50w2 cos2 (WX -- wy), and

$3 [-3+ 1002 cos (02x + 02y) 502 cos
502 cos (02x + 02y) -3

After performing routine calculations, the eigenvalues of $3 are found to be

: + , cos (x +)- . (:/)I,co ( +
2 3 -t- 502 cos (02x -I- 02y) -l- 5- (21/2) I cos (x / Y)I-
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For any 03 having 103l < .6/(1 + 21/2), we have 5(1 + 2/2)103 < 3, so that -3 + 5(1 +
2 /2)1 1 < 0, Setting -3-t- 5(1 d- 2 /2)1 1- we see that for each (x, y) R2, one
h Am(S3(x,y)) -2e.

Thus, for any w with ]w < .6/(1 + 2/2), the hypotheses of Theorem 3.1 are
satisfied, and for such w we now know that there is exactly one solution to the nonlinear
equation f(x,x) O. Writing f(x,x) 5sin (2wx)- 3x, and noting that f(0,0)
0, we see that the origin in R is the sole solution to f(x,x) O. Thus for each
e Cl[-h, 0], we have x(, t)_ 0 t . In fact, given e Cl-h, 0], there

exists r re > 0 such that if e C[-h, 0] and ]- [] < r, then x(, t) exists for
0 t < , and limt x(, t) 0.

Example 4.2. Consider the nonlinear delay-differential equation ()(t)
cos + x(t- h))

Again writing v (vo, v) (x,y), we have f(x,y) cos (x + y)- 3x, and
proceeding with techniques similar to those found in the above example, one can
show that the function f(x, y) satisfies the hypotheses of Theorem 3.1, so that there
is exactly one solution to the nonlinear equation f(x,x) O. Writing f(x,x)
cos (2x) 3x, we see that the solution of f(x,x) 0 is the x-coordinate of the
unique point in R2 where the line given by y 3x intersects the curve given by
y cos (2x). Thus for each e C[-h, 0], we have x(, t) t .

One can construct many interesting examples making use of the following prin-
ciple, which we first prove.

Slowed peurbations principle. If f Rn(p+I) Rn is a function satisfying the
hypotheses of Theorem 3.1, and g R(+) Rn is any C function with bounded
derivative over Rn(p+I), then there exists w0 > 0 such that for each w having ]w] < w0,

the function p(v) f(v) + g(wv) Mso satisfies the hypotheses of Theorem 3.1.

Proof. In fact, write if(v) IF0... F], g’(v) [G0... Gp], and write

B 0 B 0

where Bf [F...Fp] and Bg [G...Gp]. Now suppose that there exist some
fixed k E (RP)+,- < 0 such that for all v Rn(P+), one has Amax(Uk) _< 2" for the
matrix Uk given by Uk F +diag (koIn,-kI,...,-kpIn), where k0 ’ ki. Note
that if g has bounded derivative, we can set m--sup {llG(v)ll v e Rn(p+I)}, with
m < o. For j(v) g(03v), one knows that j’(v) 03g’(03v), so that if one writes
j’(v) [J0"" Jp] and

J0 + J0r

with Bj [J..-Jp], one then has J(v) 03G(03v). Thus we know that I03ml
sup {llJ(v)ll v Rn(p+)}. Now set S U + J, and note that S is the matrix for
the function p(v) f(v)+g(03v). Examining the quadratic form vTSkv vT(Uk + J)v
for v Rn(p+I), one will easily find that Amax(Sk) _< Amx(Uk)+]lJII. For any 03 having
Io31 < 21-l/m, we have Iwml < 21-1, so that IIJII < Imax(Uk)l for each v e Rn(p+I),
and Amx(Sk) _< 2" + I03ml < 0. With 030 21"l/m, we have shown that if I031 < 030,

then for each v e R(P+I), one has Amx(Sk) _< 2(’ + I03m/21), with " + I03m/21 < O.
Thus for I031. < 030 the function p(v) does indeed satisfy the hypotheses of Theorem
3.1.
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Example 4.3. We examine Example 4.1 in light of the above principle. Beginning
with w 0, the delay-differential equation is written &(t) -3x(t), and again writing
v (v0, vl) (x,y), we have f(x,y) -3x. Then F diag (-6,0), and for
any k E (0, 3), we have 2- Amax(Uk) -k for Uk as above. Writing g(x, y)
5 sin (x + y), we have j(x, y) g(wx, wy). This gives p(x, y) f(x, y) + g(wx, wy),
so that p(x, y) 5 sin (wx + wy) 3x, and the associated delay-differential equation
([)(t) p(x(t),x(t- h)) is (t) 5sin (wx(t) + wx(t- h)) 3x(t), as in Example
4.1.

Now g’(x, y) 5(cos (x + y), cos (x + y)), so that

G(x y) [ 10 cos (x + y)
[ 5 cos (x + y)

5 cos (x + y) ]
0 J

Calculating the eigenvalues of the symmetric matrix G(x, y), one can find that
IIG(x,y)ll <_ 5(1 + 21/2) for all (x,y) e R2. Letting Sk(.,-) be the matrix for p(.,-)
as above, we now see that for any k (0,3), one has /max(k)

_
-k--Iwml <_

-k + 5(1 + 21/2)1w for all (x, y) e R2. For any w having Iwl < 3/5(1 + 21/2), we take
k with 5(1 + 21/2)1w < k < 3, and set -k / 5(1 + 21/2)1w -2. We then see for
all (x, y) e R2 that Amax(Sk(x, y)) <_ -2s. For each w with Iwl < .6/(1 + 21/2), then,
the function p(x, y) satisfies the hypotheses of Theorem 3.1, and for such w we again
arrive at the conclusions of Example 4.1.

Finally, using MATLAB and noting the slowed perturbations principle, one can
easily construct many interesting examples for the case n _> 2, p _> 2 of functions

f Rn(p+1) --+ Rn which satisfy the hypotheses of Theorem 3.1. It is particularly
interesting here for the perturbation function j(v) g(wv) that g may be unbounded
over Rn(p+I), provided that the derivative g is bounded over Rn(p+l). The range
of the derivative of the perturbation, not the range of the perturbation itself, is the
object of interest following from the theorems of 3 which is relevant to the stability
of the system ([)(t) p(xe(t)).
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STABLE INHOMOGENEOUS ITERATIONS
OF NONLINEAR POSITIVE

OPERATORS ON BANACH SPACES*

TAKAO FUJIMOTOt AND ULRICH KRAUSE:

Abstract. For a sequence (fn)n of nonlinear positive operators on a Banach space which
converges to some operator f, conditions are specified under which the inhomogeneous iterates fn o

fn-1 o... o f2 o fl, after normalization, converge to the unique positive and normalized eigenvector
of f. This stability result extends, for discrete dynamical systems, the property of strong ergodicity
from finite to infinite dimensions.

Key words, positive discrete dynamical systems, nonlinear positive operators, inhomogeneous
iterations, strong ergodicity, Hilbert’s projective metric
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1. Introduction. For a sequence (fn)n>_l of nonlinear positive operators on a
Banach space, consider the inhomogeneous iterates fn o fn--1 o... o f2 0 f(x). It
is well known that under certain conditions on the fn there holds weak ergodicity,
meaning that the path defined by the normalized inhomogeneous iterates becomes
finally independent of the starting point x. (Cf. [2], [3], and [5]-[7].) Despite weak
ergodicity, the path itself, however, does in general not converge, as can be seen
already from simple examples of affine functions in two dimensions. The property of
convergence for inhomogeneous iterates, also called strong ergodicity, has been dealt
with for nonlinear positive operators in the finite-dimensional case in [1] and [2]. The
results obtained there are extended in the present paper to Banach spaces, whereby
the proof given cannot rely on compactness arguments as in finite dimensions, but
uses some refinement of a technique employed in [4]. Strong ergodicity, as well as
the notion of inhomogeneous products (of matrices), stems from the field of Markov
chains and appears in applications to nonautonomous discrete dynamical systems, in
particular those from biology and economics. (Cf. [1]-[3], and [6].)

2. Notation and definitions. Let (E, I1" II) denote a real Banach space, and let
K C E be a closed and normal convex cone. K induces an ordering <_ by x _< y if and
only if y- x E K for x, y E K. Without restriction the norm I1" may be assumed
to be increasing on K, i.e., Ilxll _< IlYll for 0 <: x_< y. hnoperator f" K-. Kis
called ray-preserving [2] if for every x K and every scalar A > 0 there exists a scalar
A(x) > 0 such that f(Ax) A(x)f(x). Denote by i the set U- (x K IIIxll- 1}.
An operator f K -- K is called ascending with respect to the norm I1" II, if the
following two conditions are satisfied [4]"

(i) There exists a continuous mapping [0, 1] -- [0, 1] with (A) > A for
0 < A < 1 such that for every A [0, 1] and every x, y U,

,x _< y implies (,k)f(x) < f(y);

(ii) for every x, y E U there exists a number

a a(x, y) > 0 such that af(x) < f(y).
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An operator f K ---, K is called U-bounded, if there exists scalars 0 < a < b and
u, v E U such that

au<f(x)<_bv for allxEU.

For an operator f" K -- K with f(x) /= 0 for all x - 0 the rescaled operator to f is
defined by

Tx= I(x) forxeU.

As a tool we shall use Hilbert’s projective metric d on U which is defined as follows
[2]-[6]" d(x,y) -log[A(x,y). ,k(y,x)], where A(x,y) sup{A > 01,kx < y} for
x,yU.

3. Stable inhomogeneous iterations. The main result of the present paper
is the following theorem.

THEOREM. Let (fn)n>_l be a sequence of operators fn g ---* K, fn(X) }A 0
for x /= 0, which converges uniformly on U to some operator f K --, K, which is
uniformly continuous on U, U-bounded and ascending (for the given norm). Then the
equation f(x) ;x with x U, ; > 0 has a unique solution x x*, ) )* and for
the rescaled operators Tn to fn there holds the stability property

lim Tn o Tn-1 o o T1 (x) x* uniformly on U.

In case the fn are ray-preserving the stability property becomes

lim
f, o fn-1 o...o fl(x)

n---,cx Ilfn o fn-1 o...o fl(X)l
uniformly on K\{0}.

In proving the theorem, we will need the following two lemmas.
LEMMA 1. (i) If f K --. K is U-bounded and uniformly continuous on U, then

the rescaled operator T to f is uniformly continuous on U.
(ii) If (fn)n>_l is a sequence of operators fn K --+ K, fn(X) 6 0 for x /= O, which

converges uniformly to an U-bounded operator f K K, then the sequence of the
rescaled operators Tn of fn converges uniformly on U to the rescaled operator T of f

Proof. (i) Since f is U-bounded, au <_ f(x), and hence allull N IIf(x)ll, for some
a > 0, u e U and all x e U. In particular, f(x)/= 0 for x e U. For x, y e U it follows
that

liT(x) T(y)II f(x) ()
Ilf(x)ll IIf(y)ll

1
x)-f(y) + (1-IIf(x)ll)llf(Y)ll

1 2
-(llf(x)- f()ll + lllf(y)ll- llf(x)lll) -llf(x)- f(y)ll.

Hence T is uniformly continuous on U.
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(ii) Similarly, it holds for x E U,

liT(x) T(x) f(x) fn(X)
II/()ll IIA(x)II

II/(x)ll
IIf(x)ll ) A(x)[f(x)- fn(x)+ (1 IlA(x)ll

1
-(llf()- A()II + IIIA(x)II- llf(x)lll)

LEMMA 2. If ’[0, 1] --* [0, 1] is continuous with () > for 0 < < 1, then
the function ’[0, 1] --, [0, 1] defined by (x) inf{sup{(u). (v)0 u x, 0
v x2}]xi [0,1],x x2 x} is continuous with (x) > x for 0 < x < 1 and
(x) (y) for x y.

Proof. (1) First, we show continuity of the function f defined by f(x)
sup{(u)]0 u x}. Obviously, f(x) f(y) for x y. By continuity of , to
e > 0 there exists 6 > 0 such that ](u) (v) e for u, v e [0, 1], ]u v] 5. Fix
x, y [0, 1] with Ix y] 5. If x y, then f(x) f(y) + e holds trivially. Suppose
y x and u x. If u y, then (u) f(y)+ e holds trivially. If y u x, then
u-y 5 and hence(u) (y)+e f(y)+e. Hence(u) f(y)+e for all
u x, and therefore f(x) f(y)+ e. Exchanging x and y gives f(y) f(x)+ e.
Thus ]f(y)- f(x) e for x- y] 5.

(2) With f from step (1), becomes (x)= inf{f(x).f(z2)]xi e [0, 1],x .x2
x}. Since f is uniformly continuous on [0, 1], to e > 0 we may choose 6 > 0 such
that f(u)-f(v) e for u,v e [0,1],u-v 6. Fix0 < e 1 and consider
x,y e [0, 1]. There exist y,y2 e [0,1] such that y= yy2 and (y) f(y)f(y2)-e.
For r, s [0, 1] define

min{1- r, 1- s} if r < 1, s < 1,

1- r if r < 1, s- 1,

1- s if r---- 1, s < 1,

1 ifr--l,s-- 1.

Let p-- min{6, P(Yl, Y2)}. Obviously, 0 < p _< 1. Now assume x -y[ <_ p2. Consider
first the case when yl < 1 and y2 ( 1 and put xl y + p, x2 x/x <_ (yly2 +
p2)/(y + p) <_ Y2 + P. It follows that x,x2 [0, 1] and x xlx2. Furthermore,
f(x) <_ f(y) + e and f(x2) <_ f(Y2) + e, which implies

f(xl)f(x2)

_
f(Yl)f(Y2) -[- 3e

_
(y) + 4e.

For y Y2 1 these inequalities hold trivially for any x,x2 [0, 1],XlX2 x.
It remains to consider, without restriction, the case when yl < 1,y2 1. (.)

holds by choosing x x, x2 1. From (.) it follows that (x) _< (y)+ 4e for

Ix Yl <- p2. Similarly, by exchanging the roles of x and y,

(y) <_ (x) + 4e for Ix Yl -< 2 with - min{6, p(x, x2)}.
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Hence

I(x) -(Y)I-< 4c for Ix- Yl <- 2 with /- min{,p(xl,x2),p(yl,y2)},

which shows the continuity of on [0, 1].
(3) Let 0 < x < 1. Since f is continuous on [0,1] by step (1), there exist

Xl,X2 e [0, 1] such that x xlx2 and (x) f(x)f(x2). From the definition of f
and (A) > A for 0 < A < 1 it follows that f(x)f(x2) >_ (Xl)(X2) > XlX2 X

because of x,x2 > 0, and min{xl,x2} < 1. This shows (x) > x. Finally, it will be
shown that is increasing on [0, 1]. Let x, y e [0, 1],x _< y and suppose y yly2.

If y 0, then x 0, and (x) _< (y) holds trivially. Assume y > 0 and choose
x yl,x2 x/yl <_ y2. Obviously, Xl,X2 E [0, 1],x XlX2 and, by the definition
of ,

(X) (_ {sup (t)(V)10 _( U _( Zl,0 _( V (_ X2}
<_ {sup (u)(v)[0 _< u <: Yl, 0 <_ v _<

By taking the infimum over Yl E [0, 1] it follows that (x) _< (y). [:]

Proof of the theorem. (1) By induction we show that for every c > 0 and m l
there exists an N N(, m) such that for the rescaled operators IITn+m o Tn+m-1 o

..o Tn+l(x) Tm(x)ll <_ for all x U and n >_ N.
By Lemma 1, the Tn converge uniformly on U to the uniformly continuous oper-

ator T. Hence there exists for > 0 () > 0, N(c) such that IIx Yll <- 5() implies
that liT(x) T(y)l <_ liT(x) T(y)l + liT(y) Tn(y)II

_
(/2) + (/2) for all

n >_ N(c). Settng N(z, 1) N(), this shows the desired approximation for m 1.
Suppose the approximation is true for some m >_ 1.

Then lITn+m o...oTn+(x)-Tm(x)ll
_
() for all u e U and all n >_ N(6(), m),

and hence

IIT+m+ o...o Tn+(x) Tm+(x)[[
[[Tn+m+(Tn+m o... o Tn+ (x)) T(Tm(x))ll

for all x e U and all n >_ N(5(c),m),n >_ N(e). Setting N(e,m + 1)
max{N(), N(5(), m)} completes the induction.

(2) Next we show that for an appropriate x* E U, for every c > 0 there exists
some m--m() such that

IIT’(x) x*ll <_ for all x e U.

This we shall derive from the corresponding statement for Hilbert’s projective metric

d, because of the inequality

[Ix- Yll <- 3(1- e-d(x’y)) for all x, y e V.

To see this inequality, let x, y U and Ax <_ y, #y <_ x with A, # >_ 0. Obviously,
A, # _< 1. It follows

0 _< x y q- (1 #)y _< (1 A)x q- (1 #)y <_ (1 A#)(x q- y).

Hence
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and therefore

This proves

II x Yll -< 3(1 A(x, y). A(y, x)),

and hence the desired inequality.
(3) To prove the above-mentioned statement

d(Tm(x),x*) <_ e for all x E U,

we must show that for some x* E U and for e > 0 given there exists m m()
such that A(x*,Tm(x)) A(Tm(x),x*) >_ 1- for all x V. Since K is a closed
and normal cone in the Banach space (E, I1" II), K does not contain affine lines, order
intervals (for <_ induced by K) are bounded, and K is sequentially complete in the
norm topology. Since f is ascending for II. we may apply Theorem 3 in [4] to obtain
for the equation f(x) ,kx a unique solution x* U, A* > 0. Consider x, y U such
that Ax _< y, #y _< x with A, # [0, 1]. Because f is ascending, it follows that

(,k)f(x)

_
f(y), (#)f(y)

_
f(x)

for some continuous function ’[0, 1] -, [0, 1],(r) > r for 0 < r < 1.
definition of A(., .) and using the definition of in Lemma 2, it follows that

By the

f(y)) A(f(y), f(x))
> < < 0 < , < x)} > z)).

Furthermore, by Lemma 2, (r) > r for 0 < r < 1 and (r) _< (s) for r _< s. Define
for x E U, n N,

a,(x) ,k(x*, Tn(x)) A(Tn(x), x*).

From T(x*) f(x*)/llf(x*)l A*x*/ll)*x*ll x* it follows that

an+2(x) ,(Tn+2(x*), Tn+2(x)) )(Tn+2(x), Tn+2(x*)).

By induction we show that

an+2(x)

_
Cn(a2(x)) for n N (n the nth iterate of ).

For n 0 this inequality holds trivially. From ,k(f(x), f(y)).A(f(y), f(x)) >_ (A(y, x)-
A(y,x)) it follows that ,k(T(x),T(y)). )(T(y),T(x)) >_ (A(x,y). A(y,x)). Hence

an+l+2(x) >_ (an+2(x)) _> ((a2(x)))= +l(a2(x))

by using the induction hypothesis and the monotonicity of . This completes the
induction. Next, we show that for some constant s, 0 < s _< 1, a2(x)

_
s for all

x U. From au <_ f(x) <_ by, where u,v U and 0 < a <_ b for all x E U it
follows that T(x) f(x)/llf(x)l <_ (b/llf(x)ll)v <_ (b/a)v and, since f is ascending,
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y(T(x)) < (b/a)f(v). By condition (ii) in the definition of an ascending operator,
there exists some cl > 1 such that f(v) < clf(x*) cA*x*, and hence

f(T(x)) <T2(x)
IIf(T(x))ll

bcl* x*(b/)y(v)
a

That is, A(T2(x),x*) > a2/bcA* > 0 for all x e U. Similarly, T(x) f(x)/llf(x)ll
au/llf(x)l > (a/b)u, and f(T(x)) > (a/b)f(u).

Since f(u) > c2f(x*) c2A*c* for some 0 < c2 < 1, it follows that

ac2/*
x.y(T(x)) > (a/b)f(u) >T(x)- llf(T(x))ll b b

hence A(x*,T2x) >_ ac2A*/b2. Thus, by setting s a3/b3. c2/cl,a2(x) >_ s for all
x E U, and 0 < s _< 1. From an+2(x) > Cn(a2(x)) and the monotonicity of it
follows that

an+2(x) > Cn(s) for all x E Uand n N.

Consider the sequence (bn)n> where bn cn(s), bn+l ff)()n(8)) >_ )n(8) bn,
because of (r) > r on [0, 1], and hence (bn)n> converges to some b e [0, 1]. By
the continuity of , (b) b, which is possible only for b 0 or b 1. If b 0,
then (s) b 0, which contradicts s > 0. Hence b 1. Thus we arrive at the
conclusion that for e > 0 there exists n(e) N such that

an+2(x)>l- for allxUandn>n().

(4) Now, from steps (2) and (3) we obtain IIT+(x)- x*ll 3(1- a+2(x)) _< 3
for all x E U and all n _> n(e). Setting m n(e) + 2, together with step (1) we obtain

IITn+m o Tn+m- o...o Tn+(x) =- x*ll < 4 for all x V and all n > N(e,n() + 2).
Finally, choose a starting point x0 U and set x Tn o Tn- o... o T (xo). Then
IITkoTk_l o.. "oT(xo)-x*ll <_ 4 for all k >_ N(,n()+2)+n()+2 and all x0 U.
This shows the uniform convergence of Tn o Tn-x o... o T (x) on U to x* for n --In case the fn are ray-preserving, one has for i, j arbitrary

f, (f(x)/llf(:)ll) II ,xf, o f(:) f o f(x)T o T() IIf (fj()lllfj(,)ll)II II),jf, f()ll IIf o fj(x)ll

with certain Aj > 0. Also due to the ray-preserving property, we may admit arbitrary
starting point in K\{0}. This proves the last statement of the theorem.

Remark 1. Step (3) in the proof of the theorem shows that it is sufficient to require
some iterate of f to be ascending (for the given norm), provided f is ray-preserving.

Remark 2. As a special case one may admit in the theorem that fn f for all
n. The theorem then yields for a single operator f K K, which is uniformly
continuous on U, U-bounded and ascending, that

fn(x) X* uniformly in x.lirnoT(x)=x* and lirnollf(x)l
(Cf. also Theorem 3 in [4].) When specialized to the standard cone in finite dimensions,
the theorem yields Theorem 6 in [2].

COROLLARY Let (fn)n>_x be a sequence of operators fn g -- K, fn(X) = 0

for x O, which converges uniformly on U to some operator f K K, which is



STABLE INHOMOGENEOUS ITERATIONS 1201

uniformly continuous on U, concave, and satisfies ae <_ f(x) <_ be for some 0 < a <_ b,
some 0 e E K, and all x U. Then the conclusions of the theorem hold.

Proof. By assumption, f is U-bounded. To apply the theorem, it remains to
show that f is ascending (for the norm). For x, y K with x _< y, y (1 -(1/n))x +
(1/n)(n(y- x) + x) for all u N and, by the concavity of f, it follows that f(y) >_
(1- (1/n))f(x) for all n N. Since K is closed, f(y) >_ f(x), showing that f is
increasing on K. Suppose, Ax <_ y with x, y U and 0 <_ < 1. If z y- ),x E K,
then y Ax+(1-A)(z/(1-A)), and concavity implies f(y) >_ Af(x)+(1-A)f(z/(1-
A)). From y Ax + z it follows that 1- A _< Ilzll, and, since f is increasing,
f(z/(1- )) >_ f(z/llzll ). By assumption, f(z/I]zll) >_ (a/b)f(x), and hence f(y) >_
)f(x) + (1 ))(a/b)f(x) () + (1 A)(a/b))f(x). Since f is increasing, this formula
holds trivially for 1. Thus f is ascending with V() + (1 A)(a/b).

4. Examples. The following two examples are concerned with E C(T), the
space of all continuous real-valued functions on a compact (Hausdorff-)space T,
equipped with the sup-norm I1" II. K- C+(T) (x C(T) Ix(t) >_ 0 for all t T}
is a closed cone in E and the sup-norm is monotone on K. Furthermore, U (x
C+(T) I1 11

4.1. Linear operators. Let fn C(T) --* C(T), n N be a sequence of linear
operators mapping C+ (T) into itself and converging uniformly on U to some contin-
uous linear operator f on C(T). Suppose for f that

c inf{f(x)(t)lx e U,t e T} > O.

Obviously, f maps C+(T) into itself. Being linear, the continuous operator f is

uniformly continuous on U. Let e(t) c for all t E T and let 1 denote the function
being constant 1 on T. There exists some b > 0 such that f(1) <_ be. Hence for x U,

e <_ f(x) <_ f(1) _< be.

Thus the corollary yields a unique eigenfunction x* C+(T), IIx*ll 1, f(x*)
)*x*,* > 0, and

fn o fn-1 o...o fl(X) X*
f,, o fn-1 o o fl (x)

uniformly on C+(T)\{0}. For the case of a finite T, i.e., C(T) N, this result is

well known as strong ergodicity for inhomogeneous Markov chains (or, more general,
for nonnegative matrices; cf. [6]). In that special case, the mappings fn, f can be
represented by nonnegative matrices An and A, respectively. The assumptions are
made to reduce to that of elementwise convergence of An to a strictly positive matrix.

(It would be sufficient to require some power of A to be strictly positive; see Remark
1.)

4.2. Minomax combinations of linear operators. The stability for inhomo-
geneous iterations of linear operators as seen above can be extended to the nonlinear
operators obtained by forming finite minima or maxima of linear operators. To derive
this directly from the result about linear operators would be rather clumsy, but it can

be derived easily as follows by using the corollary and the theorem, respectively. It is

enough to consider the minimum or the maximum of two operators.
Let fn, gn C(T) C(T), n e N be two sequences of linear operators with

f f, gn g uniformly on U for n and satisfying the assumptions made in
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4.1. Define hn,h" C(T) -- C(T) by hn(x)(t) min{fn(x)(t),gn(x)(t)},h(x)(t)
min{f(x)(t),g(x)(t)}(x e C(T),t e T). Still, hn --* h uniformly on U for n x and
h is uniformly continuous on U. Although no longer linear, hn and h are ray-preserving
and concave. Furthermore, as in 4.1, we have e _< f(x) <_ be and e’ _< g(x) <_ b’e’,
and hence min{e, e’} _< h(x) <_ max{b, b’} min{e, e’}. The corollary therefore yields

lim hn o hn- O o h x
x

n--.o Ilhn o hn- o...o h(x)l

uniformly on C+(T)\{0}. The corresponding case for the maximum, however, is not
covered by the corollary, because the maximum of two linear operators is a convex
operator. In this case we need to go back to the theorem. Let

hn(x)(t) max{fn(x)(t), gn(x)(t)}, h(x)(t) max{f(x)(t), g(x)(t)}.

As in the case of the minimum, hn h uniformly on U for n (x, h is uniformly
continuous on U, and there holds an inequality e _< h(x) <_ be with 0 e E C+ (T), b >
0. Hence h is U-bounded. To apply the theorem, it remains to show that h is
ascending. From the assumptions on f and g it follows, as in the proof of the corollary,
that x <_ y for x, y e U, [0, 1] implies ()f(x) <_ f(y) and ()g(x) <_ g(y) with, ’[0, 1]-- [0, 1] continuous and () > ,() > for 0 < < 1. Therefore,

min{(A), (A)} h(x) <_ h(y),

showing that h is ascending.
This, too, can be specialized to the case of nonnegative matrices. In the finite-

dimensional case the minimum of linear operators and the related stability problem
for inhomogeneous iterations appears in applications to economics [1].

Acknowledgment. The authors would like to thank the referee for his useful
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CANONICAL FORMS OF DIFFERENTIAL EQUATIONS FREE
FROM ACCESSORY PARAMETERS*

YOSHISHIGE HARAOKA

Abstract. Systems of differential equations free from accessory parameters are defined and
studied by Okubo [Seminar Reports of Tokyo Metropolitan University, 1987]. They are Fuchsian on

the complex projective line, and there is an algorithm of determining monodromy representations
for such systems. The Gauss hypergeometric equation, the generalized hypergeometric equation, the
Pochhammer equation and a one-dimensional section of the Appell hypergeometric system F3 are
known to be reduced to such systems. Recently Yokoyama classified all the systems of differential
equations which are irreducible and free from accessory parameters in terms of multiplicities of
characteristic exponents. This paper presents canonical forms of all such systems and will define
a new class of special functions.

Key words, systems of Okubo normal form, accessory parameters, characteristic exponents,
hypergeometric functions

AMS subject classifications. 33C20, 33C65, 33E30

The Gauss hypergeometric function is one of the most important special functions,
and there have been many efforts to extend it. Thus obtained are the generalized
hypergeometric function and the Pochhammer function, which are functions of one
variable, the Appell-Lauricella hypergeometric functions and the Aomoto-Gelfand
hypergeometric functions, which are functions of several variables, and so on; they are
also interesting special functions. Note that together with the Gauss hypergeometric
function, they are characterized as solutions of linear differential equations. Then, if
we find a good differential equation, it will define a new special function. From this
point of view, we follow the Okubo theory and then determine a class of extensions of
the Gauss hypergeometric differential equation.

In [5] Okubo developed a global theory of Fuchsian differential equations on the
complex projective line Pi(C). The theory consists of the following three parts: (i)
Reduction to a normal form: Every Fuchsian differential equation on p1 (C) is reduced
to a system of a normal form which we call the Okubo normal form. (ii) Definition of
systems free from accessory parameters. (iii) Algorithm of determining monodromy
representations for systems free from accessory parameters. Once a system free from
accessory parameters is given, we can apply this theory to find a monodromy rep-
resentation for the system (e.g., [7] and [8]). The Gauss hypergeometric equation,
the generalized hypergeometric equation nEn-, and the Pochhammer equation are
free from accessory parameters. Moreover it is known that a one-dimensional section
of the Appell hypergeometric function F3 satisfies a system of Okubo normal form
of rank 4 that is free from accessory parameters [1], [7]. Then it is natural to ask
what is the whole set of systems free from accessory parameters. Recently Yokoyama
has classified the set of irreducible systems free from accessory parameters [9]. Using
this result, we determine all systems which are irreducible and free from accessory
parameters. Thus a new class of extensions of the Gauss hypergeometric function is
defined.

In 1 we review part (ii) of the Okubo theory, introduce the result by Yokoyama,

*Received by the editors May 26, 1992; accepted for publication (in revised form) May 25, 1993.
fGraduate School of Science and Technology, Kumamoto University, Kumamoto, 860, Japan
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and give the canonical forms of irreducible systems free from accessory parameters in
Theorems I, I*, II, II*, III, III*, IV, and IV* according to Yokoyama’s classification.
These theorems are proved in 3. Lemmas and propositions employed in proving the
theorems are collected in 2. The main tool in 2 is expansion in partial fractions of
rational functions, which we owe to the work of Kimura and Okamoto [3].

Notation. Ik: the identity matrix of size k, for k E N. M(k,/): the set of k
matrices with entries in C, for k, E N.

1. Systems free from accessory parameters. Let n be a fixed positive inte-
ger. We consider a system of differential equations

(xIn T)
dY

AY

on pI(C) of rank n, which we call a system .of Okubo normal form, where

T tlInl ("" ( tpInp,
ti C(1 <_i<_p),
tl zt- "" np: nA e End (n, C).

ti tj (i j)

We denote the partition (nl,..., np) of n by A. Corresponding to the partition A, we
decompose A into (nl,..., np) blocks:

A (Aij)l<i,j<p, Aiy M(ni, niC).

We denote the set of eigenvalues of Au by A for i 1,..., p, and the set of eigenvalues
of A by Ao. By virtue of the invariance of the trace of the matrix A we have

p

(1.2) E E = E p"
i=1 )Ai pA

The system (1.1) is Fuchsian over PI(C) with regular singular points at x tl,..., tp,
cx). The set of the characteristic exponents at x ti is hi for 1,..., p, and the set of
the characteristic exponents at x oc is A. The relation (1.2) is the Riemann-Fuchs
relation ([5, Chap. II, Thm. 1.1.]).

With the partition A we associate the subgroup GA of GL(n, C) by

GA GL (nl, C) @... @ GL (np, C).

By a Gh-valued gauge transformation

(1.1) is transformed into

Y PZ, P GA,

(xIn T)
dZ
-x P-1APZ"

Note that A1,..., An,A are invariant under this transformation.
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We assume the following:

(1.3)
(1.4)

A is diagonalizable.

Aii is diagonalizable for every i 1,..., p.

DEFINITION 1. We assume (1.3) and (1.4). If the system (1.1) is uniquely deter-
mined by T, A1,..., Ap,A up to GA-valued gauge transformations, (1.1) is said to
be free from accessory parameters.

Let L (ml,..., mq) denote the multiplicities of the eigenvalues of A:

Ao (pl,, pl,..., pq, pq ),
ml mq

pi pj (i j) ml+...+mq=n.

We assume further that

(1.5) For every i 1,..., p, the entries of Ai are mutually distinct.

Then (1.5) implies (1.4). Define the integer N(A,L) by

P q

N(A,L) n2 n + 2- Eni-E
i--1 j--1

Then Okubo showed that, on the assumptions (1.3) and (1.5), (1.1) is free from ac-
cessory parameters if N(A, L) 0 [5, Chap. 2, Whm. 1.2].

DEFINITION 2. A system of differential equations

dY
dx

A(x)Y, A(x) e End(n,C(x)),

is said to be reducible if there is a transformation Y P(x)Z,P(x) e GL(n, C(x)),
such that the coefficient matrix B(X) of the transformed system

is of block triangular form. Otherwise the system is said to be irreducible.
Now we introduce the result by Yokoyama.
THEOREM (Yokoyama [9, Thm. 2]). If the system (1.1) with the assumptions

(1.3) and (1.5) is irreducible, and if N(A,L) O, then one of the following holds.

(I) A (n- 1, 1), L (1, 1,..., 1),
(I*) A (1,1,...,1), L (n- 1,1),
(II) A (m, m), L (m, m- 1, 1),

where n 2m is an even integer equal to or greater than 4.

(II*) h (m, m- 1, 1), L (m, m),

where n 2m is an even integer equal to or greater than 4.

(III) A (m + 1, m), L (m, m, 1),
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where n 2m + 1 is an odd integer equal to or greater than 5.

(III*) A (m, m, 1), L (m + 1, m),

where n- 2m + 1 is an odd integer equal to or greater than 5.

(IV) A (4, 2), L (2, 2, 2),

where n 6.

(IV*) A (2, 2, 2), L (4, 2),

where n 6.
For each case in the above theorem, we give a canonical form of the system (1.1).
THEOREM I. The case is A (n-l, 1), L (1, 1,..., 1). Set T tlln-l(t2, A1

(A1,...,An-I),A2 (#) and Ao (pl, pn), where

(F)
n--1 n

i=1 j=l

We assume (1.5) and

(1.6) for every i e {1,...,n- 1} and j e {1,...,n}.

Then the system (1.1) is transformed by a GA-valued transformation into

(xIn T)
dZ
x AZ

with

where
YI l<_j<_n i Pj

i 1,... ,n- 1.i --H l<k<n_l (i k)

THEOREM I*. The case is A (1, 1,..., 1),L (n- 1, 1). Set T tl (t2(...(
tn, hi (Ai), i 1,..., n and Ao (pl,..., pl, p2), where

n--1

n

(F,.) E Ai (n 1)Pl + P2.
i=1

We assume (1.5) and

(1.7) Ai # pj for every e {1,...,n} and j e {1,2}.
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Then the system (1.1) is transformed by a GA-valued transformation into

(XXn T)
dZ
-x AI. Z

with
1 A1 Pl )1 -/91

A2 -/91 A2 A2 -/91

)n Pl An Pl An
THEOREM II. The case is A (m, m), L (m, m- 1, 1), where n 2m is an

even integer equal to or greater than 4. Set T tlIm (t2Im,A (/k,..., Am),A2
(#,-..,#m) and A (p, pl, p2, p2, p3), where

m m--1

where

with

AII
#1

Oij

m

l<k<m

ij--(i--O1) I
l<k<m

Ak -{-- #j Pl

# #k
i,j 1,...,m.

THEOREM II*. The case is A (m, m 1, 1), L (m, m), where n 2m
is an even integer equal to or greater than 4. Set T tIm t2Xm--1 ( t3, A1
(,..., Am), A2 (#,..., #m-), A3 (u) and h (pl,..., pl, p2,..., p2), where

m m

m m--1

(Fix.) Ei -- E #i 2t-12 mpl -k- mp2.
i=1 i=1

(FH)
i--1 i--1

We assume (1.5) and

(1.8)
,i Pl,i Pl for every E {1,... ,m},

( Ai + #k C pl + P2 for every i, k E {1,...,m}.

Then the system (1.1) is transformed by a GA-valued transformation into

(XIn T)
dZ
-x AHZ
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We assume (1.5) and

(1.9)
Ai pj for every i e (1,...,m} and j

Ai + ttk C pl + p2 for every e (1,...,m} and k e (1,...,m-1}.

Then the system (1.1) is transformed by a GA-valued transformation into

(xIn T)
dZ
xx All* Z

with

where

i 1,...,m, j 1,...,m- 1,

1,...,m- 1, j 1,...,m,

THEOREM III. The case is A (m+ 1, m), L (m, m, 1), where n 2m+ 1 is an
odd integer equal to or greater than 5. Set T tlIm+l @ t2Im, A1 (1,...,A,+1),
A2 (#l,...,#m) and A (pl,...,pl,p2,...,p2,p3), where

m m

m+l m

(FIII) E i + E/-ti rap1 + mp2 + P3.
i--1 i-1
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We assume (1.5) and

Aipj foreveryiE(1,...,m/l.} andje(1,2},
(1.10)

Ai + #k Pl + P2 for every i (1,...,m / l} and k e (1,...,m}.

Then the system (1.1) is transformed by a Gh-valued transformation into

(xIn T)
dZ
X AIIIZ

with

where

oij (i Pl)

Zo

AIII )m+l

\ #m

1,...,m + 1, j 1,...,m,

i 1,...,m, j 1,...,m+ 1.

We assume (1.5) and

Ai Pl,tti Pl(1.11)
Ai + ttk Pl + P2

m m

E ,k, + E #’ + " (m + 1)Pl -[- ?Ttp2.

i-’l i--1

for every i {1,...,m},
for every i e {1, m} and k e {1, m}

with

Then the system (1.1) is transformed by a Gh-valued transformation into

(xln T)
dZ
x AIII* Z

AIII,

(FIII*)

THEOREM III*. The case is A (m, m, 1), L (m + 1, m), where n 2m
1 is an odd integer equal to or greater than 5. Set T tlIm @ t2 @ t3Im, A
(A,...,Am),A2 (),A3 (#,...,#m) and Ao (pl,...,pl,p2,...,p2) where

m+l m
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where

Oij=(i--pl) H
l<k<m

Pl + P2 )k ttj I i, j 1, m,

l<k<m

i,j 1,...,m,

)i D1
"fi-- H l_k_m (k- i)’

i= 1,...,m,

/ti Pli H <_k<_m (ti tk

II (1 + .),
k=l
m

J YI (,k -}- ttj Pl P2),
k=l

j=l,...,m.

THEOREM IV. The case is n 6, A (4,2),L (2,2,2). Set T tlI4 (R) t212,
hi (A1, A2, A3,,a),A2 (#1,#2), and A (pl,pl,p2,p2,p3,p3), where

4 2

(FIv) E Ji-" E ti 2pl - 2p2-- 2p3.
i=1 i=1

We assume (1.5) and

(1.12)

; 7 pj for every i E {1,2,3,4} and j {1,2,3},
Ai + ;kj + ttk # P + P2 + P3 for i, j {1,2,3,4} with i T j and k {1,2}.

Then the system (1.1) is transformed by a GA-valued transformation into

(xln T)
dZ
X AIvZ

with
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where

[I=1,, Pe
0/ij (j j,) H1K_k<_4 (i k) aij,

4

all (1 + k + 2 Pl P2 P3),
k=2

4

aij + i + j, P P Pa, 2,3,4, j 1,2, {j,j’} {1,2},
N 1,

N (al+a+.-01-0-oa), i=2,a,4, j=l,2.
k=2,a,4

i-- 1,...,4, j 1,2, (j,j’)

where

with

(FIv*)
We assume (1.5) and

(1.13)
#1, #i ?t/91,/zi ?t Pl

,i q-#j q-k 2#1 q-P2

for every i E (1, 2},
for every i, j, k ( 1, 2}.

Then the system (1.1) is transformed by a GA-valued transformation into

(xIn T)
dZ

AIv*Z

1 0/13 0/14 0/15 0/16

fill ill2
f121 fl22 2 fl25 fl26
")’11 "/12 313 ")’14

21 "/22 23 "2a

,i Pl

flij #i Pl

vi pl

vi vi’

a3 [121],
a23 [222],
bl [211],
521 [222],
Cll [122],
c2 [111],

a, for i= 1,2, with{i,i’} {1,2},j =3,4,5,6,

bid fori=l,2, with{i,i’}={1,2},j=l,2,5,6,

cij

a [1]. . [].
a [1].. [].. [].
b12 --[112], b15 --[112], b16 --[122],
b22 [121], b25 [111], b26 [121],
C12 [121], c3 [121], c14--[122],
c22 [112], c23 [111], c24 [122].

for i= 1,2, with{i,i’} {1,2},j 1,2,3,4,

THEOREM IV*. The case n 6, A (2, 2, 2), L (4, 2). Set T ttI2 @ t212 @
t312,A (1,2),A2 (#,#2),A3 (vl,v2) and hoo (pt,p,pl,p,p2, p2), where
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Here we have set

(1.14) [ijk] )ti + tj + uk 2pl P2

for i, j, k 1,2.
For each J I, I*,..., IV, we call the system of differential equations

(xln T)
dY
-x AjY

the system (J). The system (I) is transformed into a single differential equation of order
n which is known to be the generalized hypergeometric equation [4], [6]. The system
(I*) is also transformed into a single differential equation of order n which is known
to be the Pochhammer equation [2]. The system (II*) with m 2 is transformed into
a one-dimensional section of Appell’s hypergeometric system F3 [1], [7].

After preparing several lemmas and propositions in 2, we shall prove this theorem
in 3.

2. Lemmas and propositions. Throughout this section we assume that pl,...,

Pm, ql,..., am are mutually distinct complex numbers.
LEMMA 1.

m H<k<m (Pj--qk)
k#i 1

j=l

for i 1,. ,m.
Proof. Put x qi into the both sides of the partial fraction expansion

m m

1-Ikm=im (x qk)
1 + E 1 1-I=l (PJ qk)

l-Iy=l (x p) x py 1-Ii<e<. (p pe)
j--1

to show the lemma.
LEMMA 2.

l_i=x (p q)

Proof. We use an auxiliary variable qo. Put x qo into the both sides of the
partial fraction expansion

m m

k=l =1

1-Ik=Om (x-qk) =x+Ept-Eqk+E 1 YIk:o (pJ-qk)
1-Ij=l (x py)

=1 k=0 j--1
x pj 17[ l<<m (P Pt)

to show the lemma.
PROPOSITION 1. The inverse matrix of

Pi qj <_i,j<_m

is C- (7) with

1-Ikm=i
H [I I<k<_m (q qk)
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for i, j 1,...,m.
Proof. Put x pi, into the both sides of the partial fraction expansion

to show that
m

1

jl "ji
Pi’ qj

which proves the proposition.
The following proposition can be shown in a similar manner.
PROPOSITION 2. The inverse matrix of

Pl --ql Pl --qm

Pro-- ql Pm qm

1 1

is C-1 (/) with

H l<<m--1 (qi P)

YI l<k<m (qi qk)

fori 1,...,m,j 1,...,m- 1.
PROPOSITION 3. Let

lax
be diagonal matrices. Suppose that there are

U e GL (m, C)

satisfying

(2.1) U-1QU + P.

Then we have

(2.2) J?J H l<<_m (Pj Pt)’
j= l,...,m,
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so that j 0 for every j. Moreover we have

U DC-1

where D is any nonsingular diagonal matrix and

Pi qJ <_i,j<_m

which appeared in Proposition 1.

Proof. Denote the proper polynomial of P- by f(x). We shall calculate f(x)
in two ways. Following the definition, we have

f(x) det (x- (P-

det

m

j--1 l<k<m
kj

On the other hand, since the eigenvalues of P are q,..., qm by (2.1), we have

m

f(x) 1-I
k--1

Comparing the above two expressions of f(x), we obtain

mJJ +l=HX--qk
x--pj x--pk

j=l k--1

and the partial fraction expansion of the right-hand side proves (2.2). It is easy to see
that

,Ok

Pm --qk

is a q eigenvector of P (r for k 1,..., m. Therefore, we have
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with a nonsingular diagonal matrix D, which completes the proof.

3. Proofs of theorems. We prove Theorems I-IV* in 1.
Proof of Theorem I. By using G/x-valued transformation if necessary, we may

assume that
1 al

)n-1 an-1

bl bn-1
The proper polynomial fA (x) of A is

fA (x) det [xIn A]

(x) (x- .)-
x-

j--1

where o(x) n-1YIj=I (x- Aj). Since pl,..., pn are eigenvalues of A, and since we have
assumed that pi Aj for any i, j, we have

f (,) 0. (p,) # 0

for i- 1,..., n, and hence

n--1
ajbj

jl P ,. P #, i=l,...,n.

Using Proposition 1, we can solve this system of linear equations in al bl,..., an-1bn-1
to obtain

1,..., n 1,

(p )

where we have used Lemmas 1 and 2 and (FI) to show the last equality. By assumption
we see that ai 0 and bi - 0 for every i. Then if we set

al

an-1
1

P E Gzx and P-AP AI, which proves the theorem.
For later use we note that, if U E GL(n, C) satisfies

U-1AIU
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then we have

where D is a nonsingular diagonal matrix.

Proof of Theorem I*. Let k be an integer between 2 and n. Let A(k) be a k x k
matrix such that

A(k) "’.
DlZk-1

A P

where p(2k) i=1 Ai- (k- 1)pl. Let G(k) be the group of k k nonsingular diagonal
matrices. We prove that

there is a p(k) E G(k)such that

)11 ,)il Pl ,’1 Pl

P(k)-A(k)P(k)
,k2 pl 2 A2 pl

,k Pl k Pl k

by induction on k; then the theorem follows when k n. (3.1)2 is esily shown. We
assume (3.1)k-, and shall show (3.1) k. Set

A()=( A)n )
with Ak) e M(k- 1, k- 1), e M(k- 1,1), and e M(1, k- 1). Since
rank (A(k)- pIk) 1, and since Ak- p 0, we have

(3.2) A) pIk- (Ak P)-.
The (1,1) entry of Ak) pIk- is p, which differs from 0 by sumption (1.7),
so that Ak) plIk-1 O. Then it follows from (3.2) that

rank (Ak)- pllk-1) 1.

Hence p is (k- 2)-ple eigenvalue of Ak), and the other eigenvalue is

k-1
(k--l)

i=1

by virtue of the invariance of the trace. If, for any (k- 1) elements il,...,ik-1 in

{1,...,n},

(3.3)
k-1

E Ai (k- 1)pl
j=l
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would hold; we should have 1 2 ,n, and hence

should hold for every i by virtue of (3.3). This contradicts the assumption, and then

k-1

Aij (k- 1)pl
j--1

for some il,..., ik-. Thus, by an appropriate exchange of rows and columns, we may
k-1assume that ’i=l i (k- 1)pl, and hence

Then we have
(k-l)Ak) plIk-2 ( P2

Now we can apply the induction assumption (3.1)k-, and by the help of (3.2) we see
that (3.1)k holds. This completes the induction and hence the proof of the theorem.

Proof of Theorem II. We may assume that

A-
A2 M

where

L= ".. M= "..
)Im m

and A1,A2 E M(m,m). Since A pIm (R) p2Im- P3, we have

(3.4) rank (A- plIn rank ( L pllm A1
A2 M pIm m,

rank (A pIn) (A p2In) 1.

By the assumption hi p (i 1,..., m),L- pIm is nonsingular, and hence from
(3.4) it follows that

(3.6) M plIm A2 (L plIm) -1 A1.

By the assumption #i pl (i 1,..., m), M- pI, is nonsingular, so that A and
A2 are nonsingular. Using (3.6), we have

/
(A- pI,) (A- p2I,) A2 (L pIm)- )

1)1 (R) {(L pI,)(L pI) + A1A}

(- pl/’m) -1 A1 )



1218 YOSHISHIGE HARAOKA

Set

Then (3.5) holds if and only if

U (L- plIm)-1A1.

rank [U (M plIm) U-1 + (L p2Im)] 1.

We can apply Proposition 3 to (3.7) to see that there are nonsingular diagonal matrices
D1, D2 such that

U DICD2,

where

( 1c
( ,) (m p,) ,

Define a nonsingular diagonal matrix P by

where

m

fi H ()i )k), fm+i II ()k + #j Pl P2), i= 1,...,m.
l<k<m k=l

Then P E GA, and we see that

p-lAp AII,

where we have used Proposition 1 to calculate the entries of C-. This completes the
proof.

Proof of Theorem II*. We may assume that

L Ax )A= A2
M a
b u

where A1,A2 e M(m,m),a e M(m- 1, 1),b e M(1, m- 1),

L= ".. M=

Since A pIm @ P2Zm, we obtain that

rank A pIn) m,

(3.9) (A- pxI,) (A- p2I,) O.
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Noting the assumption Ai 7 pl for 1,..., m, we obtain from (3.8) that

[" M plIm-1
b

\a
A2 (L- plIm)-1 A1.

’- Pl

Then it follows from (3.9) and (3.10) that

(3.11) (L plIm) (L p2Im) + AIA2 O.

By the assumption (1.9) we see that A1 and A2 are nonsingular. We define U E
GL(m, C) by

A2 -U (L p2Im).

Then we obtain from (3.10) and (3.11)

U_ (M pllm-1
b

\a U p2Im- L.
]

In the proof of Theorem I we have determined unknowns a, b, and U of equations of
this form. Applying the result, we obtain

aibi 1-I (m

U- HVD,

i 1,...,m- 1,

where we have set a t(al,..., am-l), b-- (bl,..., bm-1) and

H= V=
am-1

1 m+o-)-,- m+p.-),,-,,-

1 1

and D is a nonsingular diagonal matrix. Define a nonsingular diagonal matrix P by

H fn--1

where
m--1

fi fl ()i -t- #k Pl f12),
k=l

1-I
l<k<m-1

Then we see that
p-lAp =AII*,

i= 1,...,m,

j 1,...,m- 1.
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where we have used Proposition 2 to calculate the entries of V-1. Since P E Gzx, this
completes the proof.

Proof of Theorem III. We may assume that

A=
A2 M

where

Am-I-1 #m

and A1 M(m + 1, m), A2 M(m, m + 1). Since A plIm @ p2Im @ p3, we have

rank (A- plIn) rank (A- p2In) m + 1.

Then, noting the assumption A pj for i 1,..., m + 1 and j 1, 2, we obtain

A2 (L plIm+l)-1Ai M plIm,

A2 (L p2Im+l)-1 A1 M p2Im.

Set

A1 (BD1), A2-- (S2 a)

with B1,B2 e M(m,m),a t(al a,) e M(m, 1) and b (bl bm) e M(1, m).
Then from (3.12) and (3.13) it follows that

B2 (L’ plIm)-1 B1 -t- (,m+l Pl) -1 ab M plIm,

B2 (L’ p2Xm)-1 B1 if" ()m+l P2)-1 ab M p2Im,

where we have set

Eliminating the terms containing ab from (3.14) and (3.15), we see that det B1 0
and obtain

(3.16)

B2 (M + (,m+l Pl P2) Ira) B; (L’ plIm) (L’ ,m+lXm)-1 (L’ p2Im)

Put (3.16)into (3.14), then we have

(3.17) B--1QIB1 -[- g Q2,

where
Q1 (L’- ,,m+lIm)-1 (L’- p2Im),

Q2 (M + (,m+l Pl ,02)Ira) -1 (M- fllIm),
E (,m+l Pl) -1 (M + (,m+l Pl p2)Im)-1 ab.
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Applying Proposition 3 to (3.17) and using Proposition 1, we can calculate aibi (i
1,..., m) and the entries of B1 and B-1. In particular we have

1

where D is a nonsingular diagonal matrix of size m. Define a nonsingular diagonal
matrix P by

Im+

where

Ai --/91
fi (Am+l Pl)HeLl (Ai +/ze 01 p2)’

m

I. II (..+1 + .- pl p),

fm+l+i eel
p2 m+l

i= 1,...,m,

i=l,...,m.

Then, P E GA, and we see that

P-AP AIII,

which completes the proof.
Proof of Theorem III*. We may assume that

L a A1)A= b c

A2 d M

where

and A, A2 M(m, m); a, d M(m, 1); b, c, M(1, m). Since A pIm+l @ p2Im, we
have

(3.18)
(3.19)

rank (A PlIn) m,

(A-pI,)(A-p2I,) =0.
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Noting the assumption Ai pl for i 1,..., m, from (3.18) we obtain

(3.20)
- pl b(L- plIm) -1 a,

c b(L- plIm)-1

d A2 (L plI)-1 a,

M plIm A2 (L plI,)-1

Using these relations (3.20), we have

(A- plI,) (A p2I,)

b(L-pllm)-1

A2 (L plZm) -1

1 1 1
x 1 1 1 (R) {(L- pllm) (L- p2Im) + ab+ A1A2}

1 1 1

x (L pllm) -1 a

(L- pllm) -1 A1

Then (3.19) holds if and only if

(3.21) (L plIm) (L p2Im) A- ab + A1A2 O.

Noting the assumption/x # Pl for i 1,..., m, from the fourth relation of (3.20) we
obtain det A1 0, and hence

(3.22) A2 (M- plIm) A-{ (L-

Putting (3.22) into (3.21), we have

(3.23) A1 (M plIm) A-{ + ab (L #llm)-i p2Im L.

Applying Proposition 3 to (3.23) and using Proposition 1, we can calculate a.ibj (j
1,..., m) and the entries of A1 and A-l, where we have set a t(al,..., am) and
b (bl,..., bm). In particular we have

A1 (uij)i,j D-1,
ai

ij
Pl + P2 --,Xi ftj

i,j 1,...,m,

where D is a nonsingular diagonal matrix of size m. Then using the second and the
third relations of (3.20) and Lemma 1, we can calculate the entries of c and d. Define
a nonsingular diagonal matrix P by

p= (Im+l D
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where

m

--1

Then P E GA, and we see that

i= 1,...,m.

p-lAp AIII*,

which completes the proof.
Proof of Theorem IV. We may assume that

LA=
A2

where

A4

and At E M(4, 2),A2 M(2, 4). We set

11 U12 tA1 U21 ?22

U31 U32

?41 42

V21 V22 V23 V24

Since A plI2 @ p212 ( p312, we have

(3.24) rank (A- pI6) 4

for i 1, 2, 3. Noting the assumption Aj pi for j 1, 2, 3, 4; i 1, 2, from (3.24) we
obtain

(3.25) A2 (L piI4) -1 A1 M piI2

for i 1, 2, 3. By using the assumption (1.12) we see that none of uij and vii is 0. By
solving (3.25), we can write the entries of At and A2 in terms of u22, u32, ua2, Vlt and
v2t. Define a nonsingular diagonal matrix P by

1

Vll

v21
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where

3Hi--1 (/2 Or)
(2 #1)Hk=l,2,4 (/3 k)

3H--1 (3 P)

[12; 1]
U32V21

[13; 1]
t42V21

3YIe:I (A4 Pc) [14; 11
Here we have set

[ij; k] Ai + Aj + #k Pl P2 Pa

for i,j 1,2,3,4;k 1,2. Then P E GA, and we see that

p-lAp AIv,

which completes the proof.
Proof of Theorem IV*. We may assume that

L A1 A2)A A3 M A4
A5 A6 N

where

A2 2 I]2

and A1,A2, Aa, A4, AD, A6 M(2, 2). Since A plI4 p212, we obtain

(3.26)
(3.27)

rank A p116 2,

(A p116) (A p216) O.

Noting the assumption A pj for i,j {1, 2}, from (3.26) we obtain

(3.28)

M p112 Aa (L p112)-1

A6 A5 (L- p112) -1

A4 A3 (L- p112) -1 A2,

N- plI2 A5 (L- 0112) -1 A2.

Again noting the assumptions Ai py, #i py and vi pj for i, j {1, 2}, we see
that every A is nonsingular for i 1,..., 6. Then we solve (3.28) to obtain

(3.29)

A3 (M plI2) Ay (L plI2)

A4 (M plI2) AIA2,
A5 (Y- p112)A (L-
A6 (N plI2)
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By the help of (3.29) we have

(A p116) (A p216)

(M plI2) A-
(N plI2) A

x 1 1 1 (R) ((L p2/2) -- A1 (M #1/2) A-1 + A2 (N pl/2) A-1 }
1 1 1

x A1
A2

Then (3.27) holds if and only if

(3.30) (L p212) / A1 (M p112) A + A2 (Y p112) A O.

We set

(1 U2) AI_.: (WlA1
U3 4 W3 W4

and determine the ui’s and the wi’s by solving (3.30). First we note that, on the
assumption (1.13), none of the ui’s and the wi’s are 0. Then we introduce nonzero
parameters 1,02, T1, T2 and T3 by

,1 Pl 1 Pl
I I U2 2I 2 I 2

1 1
Wl (1 Pl)(1 2)

"T1, W2 (2 --Pl)(1 2) "T2,

1
W4 (A2 Pl)(2 Pi)

"T3.

Now we can write the entries of A1 and A, and hence the entries of Ai (i 1,..., 6)
by (3.29), in terms of 01,02, T, T2 and T3. Define a nonsingular diagonal matrix P by

[121][122]
01TI

[112][122]
02T1

T3[121]
T2 [I12] )

where [ijk] is defined in (1.14). Then P E GA, and we see that

p-lAp AIV*,

which completes the proof.
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ON MONOTONE SPLINE APPROXIMATION*

X. M. YUt AND S. P. ZHOU

Abstract. The present paper shows that one cannot expect the Jackson type estimates to hold
for higher degree moduli of smoothness in monotone (or comonotone) spline approximation. This
result gives a complete negative answer to a question raised by DeVore for m > 2 in monotone
spline approximation. It also indicates that an equivalence between monotone polynomial approxi-
mation and monotone spline approximation claimed by Wang is wrong in one direction. There are
corresponding results in Lp spaces.

Key words, monotone approximation, comonotone approximation, spline, Jackson type esti-
mates
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N1. Introduction. Denote by C[o,1 the class of real functions which have N con-

tinuous derivatives on the interval [0, 1], C[0,1] L[0l Co,1], and by C[0,] the class
of real functions which are infinitely differentiable on [0, 1]. Let Lo,1 be the space of
real integrable functions of power p on [0, 1], Hn the class of algebraic polynomials of
degree at most n, and for k >_ 1,

Ak={f’Af(x)>0, xe[0,1-kh], h>0},

where

k

j=O

More generally, let A(r) denote the class of functions such that f(x + h) f(x)
changes its sign exactly r times on the interval [0, 1 hi for sufficiently small h > 0.
Then A(0) A.

For f . C[a,bl, let

Ilfllt,bl-- max If()l
a<x<b

and
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As usual,

Wm(f t)L sup { IlArf(x)llLo,_.l .0<h_<t},

Wm(f,t) =Wm(f,t)Lo.

Let S(m + 1, n), m > 0, denote the space of all splines of order m + 1 on the n + 1
equally spaced knots (i/n}’=o, that is, s 6 S(m / 1, n) if s is a polynomial of degree
m in each interval [i/n, (i + 1)/n] and s(m-l) is continuous on [0, 1] (if m 0 s is a
piecewise constant with no continuity at the knots).

If f e L0,1 Al(r), denote

En,m(f, r)L. inf {llf- SilL.),

where the infimum is taken over all s S(m+ 1, n), which are comonotone with f(x),
that is, (s(x + h) s(x))(f(x + h) f(x)) >_ 0 for x e [0, 1 h] and sufficiently small
h > 0. Write

En,m (f, r) := En,m(f, r)L,

En,m(f)Lp := En,m(f 0)Lp,

En,m(f) := En,m (f, 0).

Throughout the paper, we will use C(x) to denote a positive constant depending
only upon x and C an absolute positive constant, which may, in general, vary in
different relations.

For many years, comonotone approximations of functions by algebraic polynomi-
als and by splines are very active fields in approximation theory. The special concern
in these fields are focused on Jackson type estimates by many scholars. In mono-
tone approximation by splines, DeVote [3] established the Jackson type estimate for

fCo,1INA to be

(1.1) En,m(f) <_ C(m)n-Jw(f(j), n-)

for 0 _< j _< m, and remarked in the same paper that it is preferable to get the Jackson
type estimates of the form that

(1.2) En,m(f) < C(m)Wm+(f n-1)

for f 6 C[0,11 fq A1.
This estimate is true for m 0, 1. If m 0, it is a special case of the above result

(1.1). For m 1, it was actually proved in Newman [7], and we will give some brief
remark on it in 2 of this paper.

Leviatan and Mhaskar [5] improves the above results to

En,m(f) <_ C(m)?z-16dm(f’, rl,-1)
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Afor f e C[0,1 f3

It was not far from the preferable result (1.2). However, some surprising phenom-
ena occured.

Wang claimed in [9] that for f C[0,1] fq A1,

(1.4)

is equivalent to

En,m(f) < C(m)Wm+l(f n-1)

<_

where E(n1) (f) is the best monotone approximation of f by 7rn in the uniform norm.
By having (1.4) imply (1.5), Wang proved that for m >_ 3,

(1.6) sup +x.
n>_l Wm/l(f, n-l) f e Ct0,11N A

Although Wang’s result means that the estimates (1.2) cannot hold for a constant
C(m) depending upon m only for m 3, it still might be possible that for every given
function f C[0,] A1, there is a constant C(f, m) that is independent of n but may
depend on f such that for m 3,

(1.7) E,(f) C(f m)w+l(f, n-).

(This is a wek form of the question (1.2).) rthermore, taking the fact that (1.2)
holds for m 0, 1 into account, we may ask wht happens in the ce m 2. The
present paper will investigate those problems. We will establish the following result.

THEOaEM 1. Let m O. Then there exists a function f Cd0,1 A1 such that

En,m(f)
lim sup

1) +"

Theorem 1 follows as a particular case from the following, a slightly more general
result.

THEOREM 2. Let m >_ O. Then there exists a function f C0,11 A such that

E,m(:)
lim sup

I) -I-(:X3,
 3(f. n-

where

E:,m(f) inf {Ill all},

and the infimum runs over all s e S(m + 1, n), which satisfies s’(O) > O.
Theorem 1 completes the research in monotone spline approximation. It gives

a complete negative answer to DeVore’s question (1.2) as well as to (1.7) for all
m >_ 2 and thus shows that Leviatan and Mhaskar’s result (1.3) is the best possible
Jackson type estimates in monotone spline approximation. In addition, Theorem 1
also indicates that Wang’s claim of the equivalence between (1.4) and (1.5) is wrong
in one direction, that is, (1.5) cannot guarantee (1.4) (we will strengthen the other
direction in 3), since Theorem 1 holds and we have already that

E(nI) (f) C2(f, ?z-1)
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for all f E C[0,11 A1 (see DeVore [2]).
There are some essential differences between monotone spline approximation in

continuous space and that in Lp space for 1 <: p
THEOREM CSW (Chui, Smith, and Ward [1]). If f A is a j-fold integral of

an L0,1 function, then for a nonnegative integer 0 <_ j <_ m, one has

E,,m(f)Lp <_ C(m)n-Jw(f(j),

for1 <_p<
THEOREM LM1 (Leviatan and Mhaskar [5]). Let 1 <_ p < oo, f(x) A with

absolutely continuous f’(x) in [0, 1] and f" e L0,1], then

(1.8) <_ (I", n

In comonotone approximation by splines, Leviatan and Mhaskar [6] proved the
following.

THEOREM LM2 (Leviatan and Mhaskar [6]). Let m >_ O, f(x)
O <_ j <_ m. Then

En,m(f,r) <_ C(m,r)n-Jw(f(J),n-1).

It is a very natural question to ask whether the estimates (1.3) for continuous
function space can also hold for Lp spaces for 1 <_ p < oo, in other words, whether
or not the estimate (1.8) can be improved. Although in most cases Lp spaces for
1 _< p < oo behave similarly to the continuous function space, in 4 we show that the
estimate (1.3) is no longer valid in Lp for 1 < p < oo. That also indicates that the
estimate (1.8) given by Leviatan and Mhaskar is actually the best possible Jackson
type estimate in Lp for 1 < p <

We will establish some general results in comonotone approximation case.
THEOREM 3. Let r >_ O, 1 < p < oo, m >_ O. Then there exists a function

f e C}0,1 [’)Al(r) stch that

E:,m(f)LP
lim sup

where

E,m(f)Lp inf {llf SilL,,},

and the infimum runs over all s ,(m + 1, n), which satisfies s’(O) >_ O.
COaOLLAaY 1. Let r >_ 0, 1 < p < oc, rn >_ 0. Then there exists a function

f ( Co,11 [A such that

En,m(f,r)L,
lim sup

From Theorem 3, another direct corollary that is a corresponding result in Lp,
1 < p < oe, to Theorem 1 follows.
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COROLLARY 2.

C[,I N tl such that
Let 1 < p < x, m >_ O. Then there exists a function

En,m(f)L’
lim sup

1)

We still do not know what exactly happens in L space; however, we have the
next theorem.

THEOREM 4. Let r >_ 0 and m >_ O. Then there exists a function f C[o,1]NA (r)
such that

E,m(f)L
lim sup

COROLLARY 3. Let r >_ 0 and m >_ O. Then there exists a function f C:0, N

r) such that

lim sup
n--. n-w3(f’,n-)L

By a quite similar way, in continuous function space, Theorems 1 and 2 can be
generalized to the following

THEOREM 5. Let r >_ O, m >_ O. Then there exists a function f C:0,1 A(r)
such that

E (f)
lim sup

COROLLARY 4. Let r >_ O, m >_ O. Then there exists a function f Co, A1 (r)
such that

En,m(f,r)
lim sup

2. DeVore’s question (1.2) for m 1. Newman [7] actually proved that for
a function f e C[0,] there is a polygonal function Pf(x) which agrees with f(x) at
{i/n}’=o so that

Ill- Pf]l <- Cw2(f,n-)
We note that, in addition, if f E A1, then clearly Pf A, too. This observation
leads to the positive answer of DeVore’s question (1.2) for m 1.

3. The relation between En,m(Je). and E(nl)(Je). In this section, we are
going to prove the following.

THEOREM 6. Let f C[0,l N A, and m > 1 be a positive integer. Then

E(nl)(f) C(m) {En,m(f)-}-m-l..l(f,n-l)}.
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First we show the following property for s E S(m / 1, n).
LEMMA 1. Let m be a positive integer and s S(m + 1, n). Then we have

Wm (S’, n-’) <_ C(m)nwm+l (s,

Proof. Let 0 < h _< 1/(n(m / 1)2) __. h0. Since s’ is a polynomial of degree m- 1
in each interval I "= [i/n, (i / 1)/hi, if x e I, and x / mh e I, then A’s’(x) O.
Now suppose that there is some 1 _< j _< m such that x and x / (j 1)h I, and
x + jh and x + mh E//+i. Denote s(x) p(x) for x E/. We hve

Hence

IAs’(x)l <_ C(m) max { Ip+l (x) p(x)] x e [(i + 1)/n, (i + 1)/n + mho]}
<_ C(m)mx{IP+() P()I e [( + 1)/, ( + 1)In + mho]}.

On the other hand, noticing that for x e [(i + 1)In, (i + 1)In + mho], both x (m +
1)mho and x- mho I, and we have

Am+is (x (m + 1)mho) p+l(x) p(x)mho

From this it follows that

IzxF’()l _< C(m)nmax {,m+ll,,,ho s (x (m + i)mho) x e [(i + i)/n, (i + i)/n + mho]}
IAm+l< C(m)nmaxxei ,...mho(X)l <_ C(m)nwm+l(s,m/(n(m + 1)2)).

Then

wm(s’,n-1) <_ C(m)w, (s’,l/(n(m + 1)2)) _< C(m)nwm+l (8, m/(?l(m-- 1)2))
<_ C(m)nwm+l(s,n-1).

LEMMA 2 (see Shevchuk [8]). Let m be a positive integer. Then, if f e Co,11AA1
we have

E(J)(:) <_ C(m)n-lWm(:’,

Proof of Theorem 6. Let s e S(m + 1, n) A A and Ill sll En,m(f). Since s’
is continuous, from Lemmas 1 and 2, we have

E(nl)(s) <_ C(m)n-lWm(s’,n-1) <_
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Hence

z(nl)(f) _< En,m(f) + E(nl)(s) _< C(m) {En,m(f)+Wm+l(f,n-1)}.
This completes the proof. [:!

COROLLARY 5. If f E el0,1 CI A1, and

En,m(f) <_ C(m)Wm+l(f,n-1),

then we have

<

4. Proof of Theorem 3. In this section, we always assume that 1 < p <
LEMMA 3. Let xj 1/2 + , j 1, 2,..., r for r >_ 1. Define

for r >_ 1, and

f: (z, o)

Then f (x, r) has exactly r single zeros 0 < l < 2 < < r < 1. Furthermore,
there is a positive constant A independent of x so that for x [0, fl/2] (in case r O,
we put :/2 I),

f (x, r) >_ Ax.

Proof. The argument is quite straightforward.
LEMMA 4. Given en > 0 with en 0 as n cx. Let n >_ 2,

hn --enX.

Then there exist functions fn(X) C[0,:] such that

=o,

2W1/p

Furthermore, there is a positive constant B independent of n and x such that

If (x)l Bx.

Proof. Let n >_ 2,

x
Oln (X)

X
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for x [0, n), and

9n(X) nXea(x) d- hn(x)

gn(X), X e [0,n),
fn(X)

hn(x), X e [f-n, 1].

We have for j > 1 and x

-5
dj

en 3" dJ exp( Y ) < C(j)ej(4.1)
ux-

e"() y y 1

We only need to prove the last inequality; the argument for the others is quite
straightforward. For x e [0, en/2), by (4.1),

d .()Ig’n()l <
X< Ce Ix el + Cx <_ Cx,

similarly for x E [e,/2, en),

and for x E [en/2, 1],

d () <_ 2en + Cx <_ Cx,d---enXe

Ih’ (x) en < 2x.

All above estimates imply that there is a positive constant independent of n and x
such that

IfL(x)l < B. D

LEMMA 5. Let 0 1 1/p > O, en n-1-0/2. Define

Ft (x) "= n18f, (x),
j--1

Ql(x) := ql(x) h- n?/Shn, (x),

where hn(x) and f,(x), n > 2 are the functions we defined in Lemma 4, /1 (x)
fl (x, r) appearing in Lemma 3, qt (x) is the algebraic polynomial of best approximation

in the uniform norm of degree mt [n/(16p)] + 1 of Ft_(x), and {nL} is a sequence
of natural numbers chosen by induction: Set n 1,

(4.2) n,/ > IIFt)ll
for l= 1, 2,..., where Ix] is the greatest integer not exceeding x, k [9o-] + 3. Then
the following estimates hold:

(4.3) [IFt- QtllL, n/s[lfn hm lln, nt m
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(4.4)

(4.5)

Since, by (4.2),

and

Proof. Applying Lemma 4, we get

--0/8IIF @11. lint (fro hn,) + (Fz-1 q)ll..

hence from Lemma 4,

II- qll < Cl’() llmF < CnFl--1

n-[ls+tl, > n-t3ls
-nl

IIF- qll z Cn1811f. hn, I1"
Together with (4.5), (4.3) follows. At the same time,

Q(0) q(O)

Applying a theorem on simultaneous approximation to continuous functions and their
derivatives by Leviatan [4], together with Lemma 4 and (4.2), we have

Iq(O)l Iq(O)- F/_(0)I < CIIF, IIm+ < CIIF[_ IIn?
therefore,

Q(O) <-nTO/s +. Cn <-Cn:/s,
that is, (4.4) holds.

LEMMA 6. Let 0 < 1 < 2 <"" < r < 1 be the r single zeros of f(x) in
Lemma 3, write/r+l 1, and denote by 7j the maximum point of If(x)l within

(##,##+1), j 1,2,...,r. Set

5= min { j }1_<_<,- --’ If(7)l

In addition to all conditions of Lemma 5> assume further that

(4.6) nl+l > [28/0 (max{l, (B/A)S/}nt + m16p/0 + 5-1+ 28/0)] + 1,

where A and B are positive constants appearing in Lemmas 3 and 4. Then

f(x) E n-flsf" (x) e C[),li n Al(r),
j=l

and f’(x) > 0 for x e (0,/31/2].
Proof. First of all, f E Co,1 is a clear fact by (4.6). From Lemmas 3 and 4, for

x e [0, #/21,

f (z) > Ax,
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II’, ()1 < Bx

for l_> 2. Then by (4.6), for x E [0, f71/2],

,(x) >_ (x) ,-;o/,’(x)n >_ Ax-
j--2

oo A-}x
j=l

that is, I’(x) > 0 for x e (0,1/2]. It is also clear that

gn (If ()) (- 1)J, j 1, 2,...,

Due to (4.6), for all >_ 2,

e < ni- < <

so for all m e {n}. and x e [1/2, 1],

(4.7) f() -,
or

Consequently, from (4.6) again,.

., (x)

In view of that lY()I > for every j 1, 2,..., r,

sgn (f’(-yj))= (-1)j, j 1,2,...,r,

which implies that f’(x) has r- 1 zeros in (71, 1). We also note that f’(f71/2) > 0,
that is, f’(x) has one zero in (fll/2,71). Write

then

g’(x) f (x) n-else,

g’(O) n-lse, < O.
j-’2

By considering (4.7), we see that f(x) g(x) for x e [71/2, 1]. Now that g’(0) < 0
and g’(f71/2) f’(f71/2) > 0 indicate that g’(x) has one zero in (0, fill/2). Altogether,
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g’(x) has r + 1 zeros in [0, 1]. Since g(x) is a polynomial of degree r + 2, all r + 1
zeros of g’(x) must be single. Therefore, f’(x) has exactly r single zeros in (0,1), and
we have proved that f E Al(r). 71

LEMMA 7 (Nikol’skii inequality). Let P(x) IIM; then for 1 <_ p <_ q <_ c,

C M2+2/p_2/allpllz.,l

LEMMA 8. Under all conditions of Lemma 6, for any s(x) S(m + 1, nz) with
s’(O) >_ 0 we have for large enough l,

IIFl SilLy k Ce-nn2+7o/s-o/(4p) Cn[-3+3o/s-o/(4p) Cn3+/s+/4.

Proof. Applying Lemma 5, we get

Since Q(0) < 0, s(x) e S(m+l, nt) satisfies s’(0) >_ 0, and Qt(x)-s(x) is a polynomial
of degree mt (since m < mt by (4.6)) on the interval [0, 1/nz]. Applying Lemmas 5
and 7, together with (4.6), we obtain that

1+l/p +2/pIQi(O)I < IQi(O)- s’(o)I < tn m IIQ- SIILI’o,,/.,

?+l/p+e/(4p)(IIQ- FIIL, + IIF llz,)

Altogether,

II QII f_l+llP l+1/p+O/(4p)
t.t:n, n (IIQ- FIIL, + IIF -sllL,).

Because

l+l/p+O/(4p) --(O/2)(l+l/p)+/(4p) --/2--/(4p)
nl ’l nl nl

we then get, for large enough l,

IIF, llz > Ce-I-1/pnI-1/P-/(4P)IIFI Q, IIL
k Cn,n-1-1/p-O/s-e/(4p) Cn3+aO/8.O/(4p) Cna+e/8+O/4

which is the required result. 71

Proof of Theorem 3. Select a sequence of natural numbers by induction. Set
n 1:
(4.8)
n,+l [2s/ (max{I,
for > 1. Define

f(x)
j--1
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Lemma 6 yields that f e C0,1 ’1 Al(r) and f’(x) > 0 for x e (0, fll/2]. Write

From Lemma 4, it follows that

(4.9)
I2 n-/sw2(f, hn,, n-[-1)Lp < 4n-i-/SllY’,
< celn+l/Pn-/8 Cn-2+3/s-/C2p).

Meanwhile, by (4.8),

(4.10) I1 <_ Cn-[2+/8,
and obviously (4.8) also implies that

(4.11) I3 <_ Cn+/s <_ Cn[-3.

On the other hand, for any s E (m + 1, nt) with s’(0) >_ 0, by Lemma 8 and (4.11) we
have for large enough l,
(4.12)

E,m(f)Lp min Ilf(x) 8(x)llLp min [I/ 811Lp CEjC=l_t_l n-O/S[Ifnl_
Cn3+30/8-0/(4p) Cn-3 > Cn-3+/8+02/4.

All of the estimates (4.9)-(4.12) give

n-lw2(f’,n;1)Lp
02/4>_ C min nt } { 02/4 nol/(4p)}(ntnl)-1/pn[-O/(4p) Cmin n

or

E,m(f)Ln
lira sup
no n-lco2(ft, n-1)Lp

and Theorem 3 is thus proved.

5. Remarks.
Remark 1. From the proof of Theorem 3, we can see that 0 1 1/p 0 when

p 1, so that it does not help us to achieve the same result as Theorem 3. This is
the reason why wa(f’,n-1)L appears in Theorem 4 instead of w2(f’,n-1)L,. Since
the technique is similar, we leave the proof of Theorem 4 to readers.

Remark 2. If 0 1, ml [n/16]+1, k 99, en n-9/s, with other modifications,
we can construct a function f E C0,1 N Al(r), by an argument similar to that of
Theorem 3, such that

E, (f) > CTt-[-9/4Tr

and

w3(f n/-1) 0(n[19/8).
This completes the proof of Theorem 5. We omit the details here.
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THE INFLUENCE OF DOMAIN AND DIFFUSIVITY
PERTURBATIONS ON THE DECAY OF
END EFFECTS IN HEAT CONDUCTION*

CHANGHAO LINt AND L. E. PAYNE$

Abstract. For a standard heat conduction problem in a semi-infinite cylinder the authors
investigate the influence of domain perturbation and of the variation of the diffusivity coefficient on
the decay of Saint Venant end effects. The particular problem investigated is one in which the lateral
surface of the cylinder is maintained at zero temperature and a nonzero temperature is prescribed on
the near end. Energy methods are used to assess the influence of the perturbations. A Phragmn-
LindelSf type alternative and explicit decay bounds are derived.

Key words, domain and diffusivity perturbations, continuous dependence, Saint Venant prin-
ciple, Phragmn-LindelSf theorem, heat conduction equation
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1. Introduction. It was shown by Knowles [8] that the temperature in a semi-
infinite cylinder which is at zero temperature initially and exposed to some time
varying temperature distribution on the finite end (the lateral surface being maintained
at zero temperature) decays exponentially with distance from the finite end. Whereas
Knowles derived an energy decay estimate, pointwise decay was established by Horgan,
Payne, and Wheeler [7]. A natural question is the following: Suppose we wish to
compare the solution of one temperature problem with that of another problem whose
diffusivity coefficient is close to that of the first problem. If the data in the two
problems are identical, is it possible to derive an explicit decay estimate which not
only exhibits the known exponential decay of some appropriate norm of the difference
of the two solutions, but also contains an amplitude term which for fixed time tends to
zero as the difference between the diffusivity coefficients tends to zero? Knowles’ result
of course implies the exponential decay, but it does not imply that the two solutions
remain near to one another. An analogous question for a related static problem of
finite anti-plane shear deformation was considered by Horgan and Payne [5].

Alternatively we may wish to compare the solution of one heat conduction prob-
lem with that of a related problem for a semi-infinite cylinder whose cross section
is a perturbation of that of the first cylinder. Then if the perturbation is small we
would like to determine an explicit decay bound for some norm of the difference of
the solutions which again not only exhibits the exponential decay but also contains
an amplitude term which for fixed t tends to zero as the perturbation tends to zero.

A related question for the elliptic system of linear isotropic elasticity was investigated
by Horgan and Payne [4].

Specifically, we are concerned in this present paper with the heat equation defined
on a semi-infinite cylinder in I3 with zero temperature on the lateral surface and
prescribed temperature on the near end. In 2 we show that if the solution is bounded
in an energy norm then it must decay exponentially in energy norm as the distance
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from the near end tends to infinity. In 3 we compare the solutions of two heat
equations with different diffusivity coefficients and establish an explicit inequality
which displays continuous dependence on this coefficient. In 4 we compare solutions of
heat equations defined in two cylinders with different cross sections (one cross section
may be regarded as a perturbation of the other) and derive estimates which show the
influence of the perturbation of cross-sectional domain on the decay of solution.

Let R denote the cylindrical region given by

(1.1) R {(xl,x2, x3) l(Xl,X2) e D, x3 > 0},

where D is a bounded simply-connected domain in ]R2 with smooth boundary OD.
Both perturbation problems involve a basic problem whose solution u(x, t) satisfies
the equation

(1.2) Au u,t

in the space-time region R (0, c). In addition, u(x, t) is required to satisfy the initial
and boundary conditions

(1.3) Zt(Xl,X2, X3,0 ---O, (Xl,X2, X3) e R,

(1.4) u(xl x2, x3, t) O, (Xl,X2) E OD, x3 >_ O, t > O,

(1.5) u(x,x2,0, t) g(x,x2, t), (x,x2) e D, t >_ 0,

{fOr JR 1/R u2dx} bounded.sup u,i u,i dxdT + -In (1.2), A is the Laplace operator, is the reciprocal of the diffusivity coefficient, and
a comma has been used to denote differentiation. The function g(xl, x2, t) in (1.5) is
assumed to be differentiable in t and to vanish on OD. For the diffusivity perturbation
problem it would have been possible to treat the case of nonzero initial data, since
the difference of the two solutions would satisfy homogeneous initial data. However,
in this case it would have been somewhat more difficult to make the decay estimate
explicit.

In what follows we adopt the convention of summing over repeated indices, Latin
indices running from 1 to 3 and Greek indices from 1 to 2. A subscript preceded by a
comma denotes partial differentiation with respect to the corresponding coordinate.

For the temperature field satisfying (1.2)-(1.6) Knowles [8] has shown that if
E(z, t) is defined as

(1.7) E(z, t) u,i u,i dxdT, z >_ O, t >_ O,

then

(1.8) E(z, t) <_ E(O, t)e-2z.

(1.9) k 1,

In (1.7), Rz denotes the portion of the cylindrical domain R for which X3 > Z. We
will subsequently use the symbol Dz to designate the intersection of R with the plane
x3 z. The constant k in (1.8) is defined as



THE INFLUENCE OF DOMAIN AND DIFFUSIVITY PERTURBATIONS 1243

where A1 is the first eigenvalue in the (fixed membrane) problem

(1.10)
A+A=O inD,

0 on OD,

the constant A1 depends only on the geometry of D and numerous lower bounds for
A1 can be found in the literature. (See, e.g., [1].)

In 2 we establish (1.8) without the decay assumptions imposed by Knowles. In
fact, we derive a Phragm6n-Lindelhf type alternative which shows that for each t
either

or

1<- [oo llU,iu,idxdT + - /lU2dxl e-2kz,

where M is a positive function of t, and k is given by (1.9).
We shall say that our solution has bounded energy if sup [f ft u,i u,i dxdT +

5 fR u2dx] is less than some positive constant. We show in 2 that if for all t 0

(1.13) lim u,i u,i dAdT + u2dA e-2k 0

then the solution has bounded energy. Here dA is the element of area in Dz. In
this paper we shall sume that the solution of various heat conduction problems
in question satisfy (1.13) and thus possess bounded energy. This will eliminate the
necessity of prescribing the uniform decay of solution z .

We observe that if we are interested only in the range 0 t T for some constant
T, then in our definition of bounded ener, instead of sup we need only maxe[0,T],
and (1.13) need hold only for t e [0,T].

We would like to derive continuous dependence inequalities, in the form of upper
bounds for the square of the L2 norm of the difference of solutions over a space-time
region, which not only exhibit the desired continuous dependence but also decay at
let ft the rate predicted by the work of Knowles. Our results fall slightly short
of this goal in that the decay rates we obtain contain Knowles’ decaying exponential
e-2kz multiplied by polynomial functions of z.

2. A Phragmn-Lindelf type alternative. In this section we show that
a solution of (1.2)-(1.5) must either grow exponentially in some meure or decay
exponentially. To see this we set (following Horgan and Payne [6]; see also Flavin,
Knops, and Payne [3])

where, mengioned earlier, the nogation D is used go indicate thag the integragion

[j0/R 1/ ](1.11) lim u,i u,i dxdT / 5 u2dx e-2kz >- M(t)
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is to be taken over D in the plane X3 Z. Note that F(z, t) may also be written as

L’i.(2.2) F(z, t) F(O, t) u,i u,i dxdT
1 u2dx"

Thus if we differentiate (2.2) with respect to z we find

io’io ’Io
L’SDzuu,3 dAdT

(:.a)

This leads to the inequality

l{i.’io i.’io )’<
k

u, u, dAdT. u 2
,3 dAdT

<- 2--- ,i ,i dAdr.

IFI s -F’(z, t),

io’i. ’S.(2.11) F(O, t) u, u,i dxdT + - udx.

It follows then that for fixed t, either

s. 1i. ,,.x} e-,,.](2.12) lim u,i u,i dxdT + - IR:

and

or the two inequalities

(2.6) F’ (z, t) + 2kF(z, t) <_ 0

and

(.) F’ (z, t) kF(z, t) < O.

We remark first that if F ever becomes negative for fixed t and some value of z,
say z z0, then for that value of t, since F’ is nonpositive, F must remain negative
for all z _> z0. Then from (2.7) we have

(2.8) -F(z, t) >_ -F(zo, t)e2k(z-=).

Thus for that value of t, either -F(z, t) eventually grows exponentially or F(z, t) >_ 0
for all values of z. But if F(z, t) >_ 0 for all z, then it follows from (2.6) that

(2.9) F(z, t) <_ F(O, t)e-2kz.

Assuming F(O, t) -f fDo uu,3 dAdT is bounded we conclude that F(z, t) decays
(for fixed t) exponentially in z. Then from (2.2) we have

/o’S. ’i, -’(2.10) F(z, t) u, u,{ dxdT + - dx
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or

(2.13)
1 u2 1 U2 --2kz

u,i u,i dxdT + - dx < u, u, dxd" + -g dx e
0

Clearly any finite energy solution will violate (2.12) and hence for finite energy solu-
tions (2.13) holds. Of course (2.13) will hold under a much weaker hypothesis than
that of finite energy. In fact, if

(2.14) zlirno u,, u,i dAdT + - 0

it follows from an application of L’Hopital’s theorem that, since

1
zlirn [(J0 /R/Rz u,iu,idxdT+-/1/t u2dx}e-2kz)

1

(2.12) is violated and inequality (2.13) holds. Thus instead of imposing the hypothesis
of finite energy to conclude (2.13) it would actually be sufficient to impose hypothesis
(2.14).

3. Continuous dependence on the diffusivity coefficient. We denote by
v(x, t) the solution of (1.2)-(1.5) with u replaced by the constant . We could, in fact,
treat the case in which v differs from u on the end x3 0, but since the problems are
linear we could decompose the problems and investigate separately the perturbation
in u and the perturbation in g. Since the influence of the perturbation in g follows
directly from the results of Knowles [8], we restrict attention in this paper to the case
in which u and v satisfy the same boundary and initial conditions.

If we now set

(3.1) w=u-v,

we note that w satisfies

(3.2) Aw uw,t +(u $’)v,t in R (0, oc),

(3.3) w(xl, x2, x3, 0) 0 in R,

(3.4) w(xl, x2, x3, t) 0 on OD [0,

(3.5) W(Xl, x2,0, t) 0, (x, x2) e D, t > 0.

We now define for z _> 0, t >_ 0,

(3.6) O(z,t) w2dAdT.



1246 CHANGHAO LIN AND L. E. PAYNE

Differentiating (I) we obtain

(z, t) 2 WW,3 dAdv

-2 [wAw + vo,i w,i ]dzdr
(3.) -f w2dx- 2(- ) f wv,,dxdT

2 w,i w,i ddr.

Dropping the first term on the right of (a.7) and making use of Schwar’s inequality
we conclude thag

’(z, t) 2] ] w2dxdT v, dzd
(a.s)

2 w,i w,i ddr.

Since w vanishes on OD we make use of the inequality

(3.9) w2dA N w, w, dA

and the arithmetic-geometric mean inequality to obtain

dxdr- 2-
a(z)(3.10) ’(z, t) (Z) ( )2 v, k2

w,, w,, dxdr

for some positive function a(z). Actually, we could allow a to also depend on t, but
there is no advantage to doing so.

To express the lt integral in (3.10) in terms of (z, t), we note that

fD WdA=-2f ww,dx

(a.11) < 2 wdz w d

1 w, w, dz.

In the lt step we have used (a.9) and the arithmetic-geometric mean inequality.
Integrating (a.11) with respect to t and inserting into (a.10) we obtain the differential
inequality (provided (z) 2)

a(z)](z,t)< 1 (u-) v,,(3.2) ’(z, t)+ 2-
]

To derive an explicit bound for the right-hand side of (3.12), we apply the same
arguments those used on (z, t) to conclude that

2 dAd 2k 2 dAd(3.13) d v’r v,



THE INFLUENCE OF DOMAIN AND DIFFUSIVITY PERTURBATIONS 1247

which integrates to give

where

(3.15)

Lt /D 2 dAdT <_ Qo(t)e-2kz,V r

2 dAdT g,2r dAdT.Qo( )
o

An integration of (3.14) with respect to z leads to

Lt f_ Q(t)-2kz2 dxdT < e(.l) ’ 2

Thus inserting (3.16) into (3.12) we are led to

(3.17) ’(z, t) + k 2-
k2 j

(z, t) < (-) Qo(t)e-2k=.

We now make the choice

k
(3.18) c(z) z+
But (3.17) may then be rewritten as

(3.19) [(z,t)e2k=(2kz + 1)_1] < (v- )2 Qo(t).
4k3

An integration then leads to

(3.20) O(z t) < (v )2Qo(t)z(2kz + 1)e-2kz
4k3

This is the desired continuous dependence inequality.
We remark again that the decay rate is not quite as fast as we would like since

we know by Knowles’ result (1.8) that O(z, t) should decay at least of order e-2.
However the factor (- )2 in the amplitude term gives a measure of the closeness of
u and v in energy measure even for small value of z.

We may of course integrate (3.20) to find a bound for f fa, w2dxdT, i.e.,

L fst (- )2Qo(t)[nk2z2 + 6kz + 3]e-2k=(3.21) w2dxdT
_

16k-----g--

We have thus established the following theorem.
THEOREM 1. Let u be the solution ofproblem (1.2)-(1.5) and let v be the solution

of the same problem with replaced by . Then for arbitrary z >_ O, t >_ O, the quantity
u- v satisfies the following inequalities:

(3.22) (u- v)2dsdT <_

and

(3.23)

Qo(t)z(2kz + 1)e-2kz,

Lt /1: (u v)2dxdT <_ (v- )2
16k5

Qo(t)[4k2z2 + 6kz + 3]e-2k=,
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where k is given by (1.9), (1.10) and Qo(t) by (3.15).
The choice of a(z) in (3.18) was made with two ideas in mind, i.e., easy compu-

tation and a resulting decay rate which is close to that found by Knowles. Choosing
a to be a constant would make the computations simpler at the expense of a resulting
decay bound in which the decay rate is not as sharp. On the other hand the decay
rate could be improved slightly by a somewhat more complicated choice for a(z)--a
choice which would lead to more involved computations.

4. The influence of geometric perturbation. In this section we wish to
compare the solution u(x, t) of (1.2)-(1.5) defined on / (0, cx) with the solution
v(x, t) of the analogous problem defined on/ (0, c), where

e b,x > 0},
e > 0}.

Here we regard as a perturbation of and assume that / and /) have smooth
boundaries 0 and 0 respectively. For simplicity we assume further that and
are both star-shaped with respect to a point P E g which we take as the origin
in the plane. Specifically u is a solution of (1.2)-(1.5) with g , D -/ and R--/
respectively and v(x, t) is a solution of

(4.1) Av v,t in/ x (0, ec)
subject to the conditions

(4.2) V(Xl, x2, x3, O) O,

(4.3) v(xl, x2, x3, t) 0, (xl,x2) EOD, x3 >_ O, t >_ O,

(4.4) v(x, x2, 0, t) .(Xl, X2, t), (Xl, X2) e D, t >_ 0.

In this section we assume that t)(x, x2, t) is piecewise C1,2( [0, oc)) and vanishes on
0 while (x,x2,t) is piecewise C,2( [0, oc)) and vanishes on 0/). We compare
solution u(x,t) of (1.2)-(1.5) with v(x,t) of (4.1)-(4.4) over x (0, ). To this
end we employ in this section the notation

(4.5)
D’ b U .

If we now set

(4.6) w-u-v

in R (0, oc), where R-- ((x,x2,x3) l(Xl,X2) e D, x3 >_ 0}, then w satisfies

(4.7) Aw w,t in R x (0, ec)
with

(4.8) w(xl, X2, X3, 0) 0, (Xl, X2, X3) e R,

(4.9) w(x, x2, x3, t) u v on OD x [0, c),

(4.10) W(Xl, X2, O, t) , (xl, x2) D, t >_ 0.
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Again this problem may be decomposed into one with zero boundary conditions on
the lateral surface and one with zero conditions on the end x3 0. The first problem
has already been considered by Knowles [8] so we consider only the problem in which- . 0 in D [0, oc). Also the constant v may be scaled out by redefining the time
variable. Thus we assume in this section that v 1.

Since it is difficult to deal with the inhomogeneous data on the lateral surface we
introduce an auxiliary function H(x, t) which is a solution, for each t, of

(4.11) AH 0 in R,

(4.12) H=w-v on0D, x3>_O,

(4.13) H=0 inD, x3=0,

(4.14) H --. 0 (uniformly in xi,x2) as x3 --*

From the triangle inequality we then have

(4.15) IIw[[ _< I[w-
where the norm is the L2 norm over R x (0, t), i.e.,

(4.16) [[ll 2 2dxdz.

To find a decay bound for [[w[] we will then derive decay bounds for [[w- HI[ and for

We first investigate the term lIH]l in (4.15), since the results of this computation
will be needed in deriving the decay estimate for [[w- H[I. We write

H=Hl +H2(4.17)
where for each

(4.18)

(4.19)

AHI=0 inRz,

HI=0 on0Dx[z, oc),

(4.20) Hi H on Dz,

(4.21)
and

Hi -- 0 (uniformly in xi, x2) as x3 --
(4.22) AH2 0 in Rz,

(4.23) H2=u-v on0D[z, oc),

(4.25) H2 --+ 0 (uniformly in xl, x2) as x3 x.

From the triangle inequality we then have

(4.24) H2 0 on Dz,
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We now derive a bound for IIHIlI. It is well known (see, e.g., Payne [9]) that

(4.27) /R H2dx <_1/D H2dA’

where p is the first eigenvMue in the problem

(4.28) A2B 0 in

(4.29) B, AB- 0 on OD (z,

OB
(4.30) B, AS + P--x3 0 on Dz,

(4.31) B -- 0 (uniformly in xl,x2) as x3 cx.

For the cylindrical domain, Rz, the first eigenfunction B1 is easily seen to be

(4.32) B const(x3 z)e-V(x-z)(x,x2),
where qb and A1 are given by (1.10). An easy computation leads to

(4.33) p 2 2k.

Thus we find from (4.27) with an integration in t

(4.34) ’]H1’12 -< foot/Dz H2dAdr"

To bound IIH2]] we introduce the auxiliary function qa which, for each t, is a
solution of

(4.35) Aqa -H2 in Rz,

(4.36) q 0 on ORz,

(4.37)

Then

(uniformly in xl,x2) as x3

fR Hdx ] H2Aqadx

[u v]q, ndsd(4.38) D,,

< [9, n]2dsdrlfz Dn

[u-v]2dsdrl fz Dn

where na (a 1, 2) denotes the component of outward unit normal vector on OD.
To compute a bound for the integral of (,a na)2 over the lateral surface we use

a Rellich identity (see, e.g., [10]) obtained by an integration of the idemity

(4.39) f_ x, [A + H2]dx O.
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An integration by parts yields

(4.40) (, na)2xndsdrl + p, dx x, H2dx,
D

which leads to

(4.41) (,a na)2dsd ,,dx Hax
Dn

where

(4.42) ho maxxan; 7M rnx[xx]1/2.OD

But

/R ’’dx < /R P’i ’i dx /R pH2dx

1

Thus from (4.43) and (4.41) we have

Inserting (4.44) into (4.aa), integrating with respec to t, and using Schwar’s inequal-
ity, we find

( v)dsddr.

Thus substituting (4.a4) and (4.4g)into (4.26), we find

We next derive a bound for the second integrl on the right of (4.46) using argu-
ments similr to those used in [2]. We introduce, for fixed x3 and t, the notation

and set

u,={u in/,
0 in R2/,

v*={v inf),
0 in 2/b,

(4.47) w* u* v*.

Now if (ro, Oo) is a point on OD, and (rl,Oo) is the point on OD’ intersected by the
ray through (to, o), then we have

(4.48) Iw*(ro, Oo)l -w:-_ dp < 6(8) d
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Using (4.48) we may then write

(u v)2ds [w*12ds [w*]2PdO
D D np

* dA,
’/D

where np is the radial component of the unit normal vector on OD and

(4.50)
max (0),

0<0<2"

nx[;].
Clearly 5 is the maximum distance along a ray between 0/ and 0/.

Thus we have

(4.51)

v,i V,i dxdT]
where

(4.52) , (z, t) u,i u,i dxdr,

(4.53) (z, t) v,i v,i dxdT.

From the results of Knowles [8] we know that

(4.54) / (z, t) <_/ (0, t)e-2z,

(4.55)

where

& (z, t) <_ (o, t)-z,

Let k be defined by

(4.57) k min[k, k].

(4.56)
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Then (4.46) becomes

(4.58)

where

4/MC [/ (0, t) + / (0, t)](4.59) S
hok

Using the arithmetic-geometric mean inequality for an arbitrary positive (z), we have

(4.60) IIHII /(z) S + 2k
H:dAdT"

Choosing

1
(4.61) /(z)

2kz

and setting

(4.62) X(z, t) IIHll 2,

we find

(4.63)

or

(4.64)

x’(z,t) + (ek- )z + 1/(2k) X(z, t) <_ 4k2zSSe-2-z

X(z, t)e2k z + <
z + 1/(2k)

<_ 4k2S562(k-k)z.

Since D c / and D C we know from the monotonicity of A that k _> with
equality iff and are identical. Inequality (4.64) integrates to give

(4.65)
iiHll2 < kS6(2kz_+ )[-2 e-2k]

k-k

<_ 2kS5(2kz + 1)ze-2k.

In the last step of (4.65), we have used the fact that for arbitrary constants x and x0

(4.66) ex _> ex + (x- x0)e,
or

(4.67) e-2k >_ e-2k 2(k -)ze-2kz.
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Since H,t satisfies the same equation as H we also have the inequality

kS.5(2kz + 1)[e_g. e_U,]

<_ 2kS25(2kz + 1)ze-2k",
where

(4.69)

and

(4.70)

$2=
hok

2(0, t) u,ir u,i dxdT

(4.71) /2(0, t) v,i v,i, dxdT.

We require (4.68) in computing the bound for [[w- H[[. Bounds for a(0, t) and
Ea(0, t) (a 1, 2) are given in the Appendix.

We turn now to the derivation of the bound for [[w- H[[. Setting

(4.72) G(z, t) [w HI2dAdT
we have

a’(z,t) 2 [w- Hl[w- H],3dAd"

(4.73) 2 (w H),i (w H),i dxdT

2 (w H),i (w H),i dxdr.

Dropping the first term on the right and making use of Schwarz’s inequality we have
for arbitrary 71(z)

G’(z, t) 2 (w g)2dxdr g, dxd

u ( H), ( H),
(4.74)

<-[2 7()] I’k (w H),, (w g),i dxd

2S2(2kz + 1)z -2T e
n(z)
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We have made use of the arithmetic-geometric mean inequality and (4.68) in the last
step. Choosing

1
(.7) 7() + 1/(k)’

we find (using (3.11) with w replaced by w- h)

(4.76) G’(z,t) + (2k- l ) G(z,t) < S25(2kz + l)2ze-2-z
z+l/(2k)

Now (4.76) may be rewritten as

(4.7) [Ve2kz (z- )-1]
and (4.77) integrates to give

(.S)

g 2S2(2kz + 1)ze2(k-k)z

foot/Dz(W-H)2dAdT<_2Sl5 (z + -) Iz

r/(2k + 1)e2(k-)ndr/] e-2kz

< $2(5(2kz + 1)2z e-2kz- e-2kz

k 2(k- )

< S.5(2kz + 1)z
_

Here, for convenience, we have factored out a maximum of r/(2k + 1) in the second
step, and used the inequality (4.67) in the last step.

To obtain the desired bound for IIw- Ull we must integrate (4.78) with respect
to x3 from z to infinity. This leads to an inequality of the form

(4.79)
1IIw Hii _< &Q(z)e-,

where Q1 (z) is an easily computable quartic function of z.
We list here the inequalities derived in the Appendix,

(4.80) /1 (0, t) <_ 4:02 + g,a, + 16:3 g,r dAdT B1 (t),

(4.81) tfb [ 1 1 2]dAdr B2(t),E1 (0,.t) _< 42 + -,a ,a + 163.0,r

(4.82) /2(0, t) < 4[1,2 +-g, r[,ar +i6ag, dAdT B3(t),

(4.83) 2(0, t) _< 4,2r +g,, ,ar + 163
g,rr dAdT B4(t).

We have thus established the following theorem.
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THEOIEM 2. Let u be a solution of (1.2)-(1.5) in (0, cx) and v be a solution

of (4.1)-(4.4) in/ (0, oc). Then if in J V D it follows that for arbitrary
z >_ O, t >_ 0 and k given by (4.57),

(4.84)
Ilu vii <_ 51/2 {Al[(2kz + 1)z]1/2[Bl(t) + B2(t)]1/2

+ A2[QI(z)]1/2 [B3(t) + Ba(t)]1/2 }e-z,
where A1, A2 are constants defined as

8MC 4MC(4.85) A1 , A2h0 h0k2’

the Bi’s are given by (4.80)-(4.83), 5 and c by (4.50), ho and "M by (4.42), and Q1 (z)
is a computable quartic function of z.

The decay rate indicated by (4.84) is essentially the decay rate from the results of
Knowles [8]. However the factor 51/2 in (4.84) displays the continuous dependence on
the geometry. With increased smoothness assumptions on t and , we could bound
higher norm of the solution and thus obtain a bound of type (4.76) which contains a
larger exponent on the 5. Likewise, we clearly can relax the smoothness assumptions
on 0 and 0/. However, we do not pursue these questions in this paper.

Appendix. We derive here the inequalities (4.80)-(4.83). In fact it suffices to
derive (4.80). The other three inequalities follow from a similar argument. Now

(A.1)

/1 (0, t) u,i u,i dxdT

uu,a dAdT uu,r dxdT
o

1_.

But

(A.2)

From (A.2) we have for arbitrary positive constant

(A.3)
u 2 dAdT < t,, dAdT3

o o

+ a-1 u dxdT + a u,.3
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But

2 dxdT AudxdTr r

(h.4) < 2
U

2g,r dAdT ,3 dAdT
0 o

iio’/.< 2 ffl
U

2 dAdrg,r dAdr + ,32ffl o o

for some positive constant a. Inserting (a.4) into (A.a) we have

i- o
,adAd

,, dAdr
0(A.S)

,3 dxd +
o
g,r dAdT

J j,, j,, dAdr + a-’, (0, t) + j, dAdr.
o o

Choosing
"--(2]g) -1, O"

we find

^2(A.6) u 2 dAdr < 2 [,, dAdr + 4c1(0, t) +,3 g, dAdr.
o 0

On inserting (A.6) back into (A.1), after using the arithmetic-geometric mean in-
equality on the right of (A.1), inequality (4.80) follows. Inequalities (4.81)-(4.83) are
obtained analogously.

Acknowledgment. The authors would like to thank the referee for suggestions
for improving the manuscript.
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ELLIPTIC EQUATIONS IN DIVERGENCE FORM, GEOMETRIC
CRITICAL POINTS OF SOLUTIONS, AND STEKLOFF

EIGENFUNCTIONS *

G. ALESSANDRINI AND R. MAGNANINI:

Abstract. The Stekloff eigenvalue problem (1.1) has a’ countable number of eigenvalues
(Pn}n= 1,2 ..... each of finite multiplicity. In this paper the authors give an upper estimate, in terms
of the integer n, of the multiplicity of Pn, and the number of critical points and of nodal domains of
the eigenfunctions corresponding to Pn.

In view of a possible application to inverse conductivity problems, the result for the general
case of elliptic equations with discontinuous coefficients in divergence form is proven by replacing the
classical concept of critical point with the more suitable notion of geometric critical point.

Key words, eigenvalue problems, geometric properties of elliptic equations, critical points,
inverse conductivity problems

AMS subject classifications. 35J25, 35P99, 35C62, 30C15

1. Introduction. In this paper we are concerned with weak solutions of the
elliptic equation in divergence form:

(1.1a) div(AVu) 0 in,

and especially with Stekloff eigenfunctions, that is, those nontrivial solutions that,
for some constant p, the Stekloff eigenvalue, satisfy in the weak sense the boundary
condition

(1.1b) AVu v pu on.

Here is a simply connected bounded domain in the plane, with Lipschitz boundary
0, v is the exterior unit normal to 0, and A (aij) is a 2 2 symmetric matrix of
L() coefficients satisfying, for some constant , 0 < A <_ 1, the uniform ellipticity
condition

(1.2)
2

i,j=l

for every z E , E /i2.

Here and in what follows, we use the complex coordinate z x + iy in the plane.
The study of this eigenvalue problem was started by Stekloff [St] in 1902. In 3,

we recall the definitions of Stekloff eigenvalues and eigenfunctions; a review of their
known properties can be found in Bandle [B]. Research on this subject has been mainly
devoted to estimates on eigenvalues (see, for instance, In-P-S] and also [B] for further
references). Let us mention in passing that, in connection with applied problems in
fluid mechanics, mixed type problems also have been considered (see [F-K]). Typically,
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in such problems, we assume that (1.1b) holds only on one portion of 0t, whereas on
the rest of OFt, AVu. u 0 is assumed.

Our main results, which are summarized in Theorem 3.2, consist of estimates on
the multiplicities of Stekloff eigenvalues and the numbers of nodal domains and of
critical points of Stekloff eigenfunctions.

One up-to-date motivation of our study of the Stekloff eigenvalue problem comes
from the so-called inverse conductivity problem: suppose that the coefficient matrix A
(the conductivity) is unknown; we wish to determine it, or, more generally, to recover
partial information about it from the knowledge of the so-called Dirichlet to Neumann
map AA. Here, AA H1/2(0t) H-1/2(O) is defined as the operator that maps
the Dirichlet data ulo for (1.1a) into the corresponding Neumann data
(see, for instance, [Sy-V], [Sy]). Then it is evident that the Stekloff eigenvalues and
the boundary traces of the Stekloff eigenfunctions are exactly the eigenvalues and
eigenfunctions of AA. Such traces and eigenvalues can be approximately measured
by experiments and could be effectively used as the data of the inversion procedure.
For a discussion of a related spectral approach to the inverse conductivity problem,
see Gisser, Isaacson, and Newell [G-I-N]. A deeper understanding of the geometrical
features of Stekloff eigenfunctions would then be helpful in assessing uniqueness and
continuous dependence questions for the inverse conductivity problem and perhaps
also in the design of reconstruction algorithms.

In addition to the possible applications to inverse problems, the authors have been
inspired by the work of Payne and Philippin [P-P] on questions of symmetry related
to the Stekloff eigenvalue problem (see also [A-M2]). In this respect, we mention that
some of our results, when restricted to Laplace’s equation and to the second Stekloff
eigenvalue, have already been presented in [P-P].

The flavor of our results is similar to those of Cheng [C] for the eigenfunctions of
the Laplacian on surfaces; however, the methods in the proofs and the specific results
are different because of the intrinsic differences between the two eigenvalue problems.

To mention the most apparent peculiarity of Stekloff eigenfunctions, observe that,
by the maximum principle, every solution of (1.1a), and thus every Stekloff eigenfunc-
tion, can have neither interior maxima nor minima, and each of its level sets must
reach the boundary. Due to this observation, the geometric-topologic properties of
level lines and level sets of Stekloff eigenfunctions are quite different from those of the
vibrating membrane problems. In fact, in some respects, the study of such properties
is perhaps easier for equations like (1.1a), for which we have theorems that permit us
to estimate the number of interior critical points in terms of the boundary data [A],
[A-M1]. Theorems like this will be our basic tool, along with simple variations of the
fundamental Courant’s nodal domain theorem.

Still, in view of the application to the inverse conductivity problem, we have
chosen to treat the Stekloff eigenvalue proble.l when no moothness assumptio is
imposed on. the coefficients in (1.1a). In fact, there are practical cases when the con-
ductivity coefficients are discontinuous and we are especially interested in determining
the discontinuities (see, for instance, [B-F-I], [P], [Su-U]). This generMity causes ad-
ditional technical diificultes: solutions of (1.1a) need not to be differentiable i the
classical sense and thus the notion of critical point .mst be adapted to this nonsmooth
setting. For this reason, we introduce the concept of geometric critical point (see Def-
inition 2.3). Roughly speaking a point will be called a geometric critica| point ,r
a olution u of (1.13) if it is a critical point with repect to an. appropriate (possi-
bly nonsmooth) cha.nge of variables that makes u become smooth. We alamo give the
definition of geometric index, which generMizcs the notion of multipli.city of a critical
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point (see Definition 2.4).
These definitions are based on the crucial remark that the unique continuation

property and a representation theorem also hold for solutions of (1.1a). We have not
been able to find in the literature theorems of such a kind for equations like (1.1a),
whereas they are well known for equations with smoother coefficients (see [Sch]) and
for equations not in divergence form (see [B-N]). Although the method of proof of such
results may sound familiar to the experts in quasi-conformal mappings and complex
analytic methods, we include our own proofs of the unique continuation property and
of representation formulas for solutions of (1.1a) (Theorem 2.1 and Corollary 2.2). We
trust that these results might be of some independent interest and that they can find
useful applications, especially in the field of inverse problems.

We conclude this introduction by pointing out the following consequence of such
results. In [A], [A-M1], when the coefficients in (1.1a) are smooth, an estimate on
the maximum number of interior critical points of a solution u E CI(Ft) C? C2(f) of
(1.1a) was given in terms of the number of times some boundary data of u changes
its sign on Oft (see [A, Thm. 1.1], [A-M1, Thms. 2.1, 2.2], for details). Theorems 2.7
and 2.8 in this paper generalize the above results to equation (1.1a) with nonsmooth
coefficients.

2. Geometric critical points. Throughout this section, BR(O) will denote the
disk with radius R centered at z 0.

THEOREM 2.1 (representation formula). Let u W1,2(ft) be a nonconstant so-
lution of (1.1a).

There exists a quasi-conformal mapping X f ---+ BI (O) and a real-valued har-
monic function h on BI (O) such that

(2.1) u=hox in Ft.

The dilatation coefficient Xe/Xz of X is bounded by the constant (1
Proof. By (1.1a), the 1-form co -(a12ux + a22uy)dx + (allux + a12uy)dy is

closed in f. Therefore, we can find v W1,2(ft) such that dv co. The function v
will be called the stream function associated with u, in analogy with the theory of gas
dynamics (see, for instance, [B-S]).

In other words, u and v satisfy the following elliptic system:

(2.2) Vv ( O1 -1)
almost everywhere in ]. Note that (2.2) is just a special case of the elliptic systems
studied by Bers and Nirenberg in [B-N].

By setting f u + iv and using the standard notation for complex derivatives,
(2.2) takes the forn

where

a22 a.t 2ia2
# 1 -t- a + a22 + alia22 a212’ "

1 all a22 -t- a2
1 + a- + a22 zr-all.a22 a122

and the following estima,te can be ea,sily deduced from (1.2)

1-A
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Consequently, since f E W1,2(’, C), then it is a quasi-regular mapping with dilatation
bounded by (1- A)/(1 + A). Since f is nonconstant, it can be factored as

(2.3) f Fo X ingt,

where F is a holomorphic function on the disk B1 (0) and X 12 -+ BI(0) is a quasi-
conformal homeomorphism (see [L-V]). Finally,

1-A
-I+A"

COROLLARY 2.2 (Unique continuation principle). If there exists zo ft and pos-
itive constants C1, C2,..., CN, such that

f
(2.4) ] [Vu[2 dxdy

_
CNRN VR > O, VN 1, 2,...,

B zo

then u is constant in .
Proof. Let us suppose by contradiction that u is nonconstant. Without loss of

generality, we may set z0 0 and u(0) v(0) 0.
Note that, by (2.2), the stream function v associated with u satisfies the following

equation:

(2.5) div (deltA AVv)=0 in,t,

in the weak sense. Such an equation satisfies the ellipticity condition (1.2) as well.
The local boundedness estimate [G-T, Thm. 8.17] is applicable to both (1.1a)

and (2.5). Thus, by this estimate, the Poincar inequality, and (2.4), we have

max [u-- uR[2 < KCNRN
BR/.(O)
max Iv vRI 2 < KCNRN

BR/2(0)

/N=1,2,.-. and VR, 0<R<R0.

Here R0 dist(0, OFt), K is a positive constant depending on A only, and ltR, VR denote
the mean values on the disk Ba(0) of u, v, respectively. Since u(0) v(0) 0, we
also have U2R, v2R <_ KCNRN, and hence

max (u2+v2) _8KCNRN VR, O < R < Ro, N l, 2,
Bn/2(O)

Now, we claim that there exist p, 0 < p < R0, a quasi-conformal homeomorphism
) of Bp(0) in itself, and a positive integer M such that the quasi-regular mapping
f -u + iv can be factored as

(2.7) f (z)= (z)]M Izl < p,

where has dilatation bounded by (1 )/(1 + A) and )(0) 0. This factorization
is readily obtained from (2.3), first, by choosing M as the order of the first nontrivial
term in the Taylor series for F- F(x(O)) at X(0), and, second, by noticing the local
invertibility of the branches of the multivalued function IF- F(x(O))]I/M.
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Since : is quasi-conformal, we have that --1 is H61der continuous at zero with
some exponent 0 < a _< 1. From (2.6), (2.7), we have that

Q Izl <- KCN Vz, Izl < p, VN 1 2,

for some positive constant Q, and this is impossible.
DEFINITION 2.3. We say that zo E is a geometric critical point for u, if we

have Vh(x(zo)) O, where h and X are, respectively, the harmonic function and the
quasi-con.formal mapping appearing in (2.1).

Remark. It is an obvious, but essential, consequence of this definition that geo-
metric critical points of nonconstant solutions of (1.1a) are isolated.

We now recall a classical definition of the index of a smooth function (see [Mi]).
For a C function h with isolated critical points in the disk B1 (0) and a subdomain
DcC B1 (0) such that OD is smooth and contains no critical point of h, the index of
h in D is

I (D, h) 2rl 0D d arg (Vh).

With such a choice of the sign, if h is harmonic, I(D, h) gives the number of critical
points of h in D, when counted according to their multiplicities. Moreover, I(D, h)
is constant under perturbations of D that contain the same critical points, and its
definition can be extended to the case when OD is nonsmooth.

We generalize this notion to nonconstant solutions of (1.1a).
DEFINITION 2.4. Let D CC be an open set. If u has no geometric critical

points on OD, we define the geometric index of u in D as

I (D, u) I (X (D), h),

where h and X are as in Theorem 2.1.
Moreover, we define the geometric index of u at zo as

I (z0, u) lim I (Br (z0) u).

Such a limit exists, since the geometric critical points of a solution of (1.1a) are iso-
lated.

The next lemma gives a sort of justification for the term "geometric" in the
previous definitions and shows that these do not depend on the particular choice of
the representation (2.1).

LEMMA 2.5. Let u be a nonconstant solution of (1.1a). If zo is a geometric
critical point for u with geometric index I I(zo, u), then there exists a neighborhood
U c of zo such that the level line {z e U: u(z) u(z0)} is made of I + 1 simple
arcs, whose pairwise intersection consists of {z0} only.

Proof. By the representation (2.1), since X is a quasi-conformal homeomorphism,
it is enough to look at the level line { e BI(0): h h(x(zo))} near X(zo).

Since I(x(zo), h) I(zo, u) I, then h-h(x(zo)) is asymptotic to a homogeneous
harmonic polynomial of degree I + 1 near X(zo).

Remark. Observe that, if u is C in a neighborhood of z0 (which happens, for
instance, when A is Hhlder continuous; see [Sch]), then z0 is a geometric critical point
with geometric index I if and only if Vu(z0) 0 with standard index I. This is a

consequence of Lemma 2.5 above and Lemma 3.1 in [A-M1]. Note that in [A-M1] the
opposite sign is chosen in the definition of the index.
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PROPOSITION 2.6 (Continuity of the geometric index). Let {Am}m=1,2,... be a se-
quence of symmetric matrices with L(t) entries satisfying (1.2). Let Um
be weak solutions of

div (AmVum) 0 in

which converge to u in Wlo’2
If D Cc is such that u has no geometric critical point on OD, then we have

(2.8) lim I (.D, u,) I (D, u).
m---,c

Pvof. By the proof of Theoreln 2.1, for each Um we may construct a stream
function Vm such that fm Um + iVm are quasi-regular mappings with dilatation
coefficients uniformly bounded by (1 A) / (1 + A). By (2.1), we also have Um hm o

and the dilatation coefficients of the quasi-conformal mappings Xm are also uniformly
bounded. Since Um -- U in Wllo’c2(), by using the uniform interior bounds for fm and

Xm in Ca (see [G-T, Thm. 8.24]), we have that, possibly passing to subsequences, hm
and Xm converge, respectively, in Clo(Bl(0)) and Coc(t)N Wllo’c2 (Ft), to the functions
h and X corresponding to u in the representation (2.1).

By definition, I(D, u) I(x(D), h) and I(D, urn) I(Xm(D), hm). Furthermore,
by our hypothesis, Vh does not vanish on Ox(D), so that IVhml is uniformly bounded
away from zero on Ox(D), for m large enough. Thus,

I (X (D), h) lim I (X (D), hm),

and hence, by the Cloc(f) convergence of Xm, we arrive at (2.8). Observe now that,
since the very beginning of our argmnent, we could have replaced the sequence {urn}
with any of its subsequences. Therefore, the limit in (2.8) exists and the stated equality
holds.

THEOREM 2.7. Let g H1/2(O) be of bounded variation onO and such that Ogt

can be split into 2M arcs on which altenatively g is a nondecreasing and nonincreasing

function of the arclength parameter.
Let u W1,2(gt) be the unique solution of (1.1a) satisfying the Dirichlet condition

u g on 0.
Then the geometric critical points of u in , when counted according to their

indices, are at most .M- 1.

.Proof. In view of Lemma 2.5 above, this is just a rephrasing of Theorem 1.1 in

[.A1]. We omit the details.
THEOREM 2.8. Let g H-1/2(O) be such that Ot can be split into 2M closed

arcs F1,...,F2M such that (-1)Jg 0 on Fy,j- 1,...,2M, in the sense of distribu-
tions.

.Let u W,2(t) be a solution of (1.1a) satisfying the Neumann condition AVu.
v =g on Ogt.

Then, the geometric critical points of u in , when counted according to their
indices, are at most M- 1.

Proof. We may suppose that c9 is Ca. If it were not so, we could construct a
Lipschitz napping that transibrms Ft into a disk. Such a mapping does not alter the
nature of the eq.uaion nor the sign conditions on the Neumann data g.

Let us choose a sequence {Am} of C() symnetric matrices satisfying (1.2)
and such that .A --. A in LP(t), for some 1. _< p < . It is a straightforward exercise
now to construct a sequence (gin} C C(O) converging to g in H-1/2(Ot) and such
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that fon g’ ds 0 and (--1)Jgm > 0 in the interior of each Fj, j 1,..., 2M, for all
m= 1,2,

For any integer m, let Um E C() be the unique solution of the following
problem:

div (AmVum) 0 in, AmVum. =gm on0/,

such that f u, dx dy fa u dx dy. Since Um is smooth on OFt, we can apply
Theorem 2.2 in [A-M1] and obtain I(D, urn) _< M- 1 for every integer m.

Moreover, we can easily see that, by possibly passing to subsequences, Um u
in Wllo’2(t), and hence Proposition 2.6 is applicable. Therefore, for any D CC Ft
such that OD does not contain any geometric critical point of u, we have I(D, u)
limm-+ I(D, u,), and hence I(D, u) <_ M- 1. By the arbitrariness of D in Ft, we
obtain our thesis.

3. Multiplicity of Stekloff eigenvalues and geometric critical points of
Stekloff eigenfunctions. As is well known, by observing that the trace imbedding
W1,2() L2(0) is compact, the Stekloff eigenfunctions and eigenvalues in W1,2(gt)
are characterized as the critical points and critical values of the Rayleigh quotient

(3.1) R(u) f AVu Vudxdy.
u2 d8

here ds denotes the arclength element on 0fl (see [St]). The nth Stekloff eigenvalue
Pn can be recursively defined as the minimum of the quotient (3.1) over all functions
of class W1,2(gt) that are orthogonal in L2(0Ft) to the subspaces Vk, k 1,..., n- 1,
where

(3.2) Vk {u Wi,2 (t) u is a weak solution of (1.1) with p Pk}.

In this way, we can form a divergent sequence 0 pl < p2 < < Pn < Of
eigenvalues, each of them of finite multiplicity.

DEFINITION 3.1. Let Pn be the nth Stekloff eigenvalue; we denote by # its mul-
tiplicity, that is,

(3.3) #n dim V.

For n > 2, we will also set

(3.4) n, max @- {
geometric critical points of u in
counted according to their index

A nodal domain of u V., is a connected component of the set
{z u(z) 0}, while a connected component of a set Ok 0 will be rc.rred to
as a boundary nodal domain of u.

We then define

(3.5) A,,, max
v,, ’\ 0

[nodal domains of

rr { boundary nodal domains of u }.
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THEOREM 3.2. The following inequalities hold"

n

(3.7) in+l _< 1 + #}, n---- 1, 2,
k--1

(3.8) gn _< An- 2, n- 2, 3,...,

(3.9) n _< 2 (an -t- 1), n- 2, 3,

COROLLARY 3.3. For every integer n >_ 2, we have

(3.10) #n _< 2.3n-2,
(3.11) an _< 3n-2 1,

(3.12) A. < 3n-. + 1.

Proof. By applying (3.7)-(3.9) we obtain the recurrence relation #n+l

_
2 x

nk=l #k,n- 1,2, Since # I, we obtain (3.10); (3.11) and (3.12) then easily
follow from (3.8)and (3.7).

Remark. When n 2, (3.11) gives a2 0. This provides a different proof of
Lemma 3 in [P-P].

The proof of Theorem 3.2 requires the following lemma, which will be proved at
the end of this section.

LEMMA 3.4. Let An and n be defined as in Definition 3.1. Then

(3.13) 5n _< 2 (A 1), n- 2, 3,

Proof of Theorem 3.2. Step 1. We prove (3.7) by contradiction. This argument
has been used already in [K-S] for the case of the Laplace operator. Suppose there
exists a nontrivial eigenfunction u E Vn+l with A nodal domains

nand A > 2 + k=l #k Let us denote by uk) (k)
,...,k a basis of the vector space

Vk, l <_k<_n.
Now consider the function v --J-=aj(ulnj); here lj denotes the character-

istic function of the set j. The real numbers a,..., aA_ can be chosen not all zero
and such that

fo k) for allg=l, ..,#k, k=1,2, n;(3.14) vu ds O,

in fact (3.14) provides E=I k _< A- 2 linear homogeneous conditions on A- 1
parameters.

In view of (3.14), the function v is admissible for the variational characterization
(3.1) of Pn+I. From the definition of v, we have

f
AVv Vv dx dy ] (AVv ) v ds

Jo

2/ (AVu. ) uds,Oj
JO2

Hence, (1.1b) implies

AVv Vv dx dy pn+laj
fJ

j=I,...,A-1.

u2 ds, j 1, A 1
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and, by adding the above A 1 relations, we obtain

AVv Vv dx dy Pn+l o v2 ds.

Therefore, v is a nontrivial Stekloff eigenfunction corresponding to the eigenvalue pn+1.

Now, since v 0 on /x, by the unique continuation property, we have v 0 on
which is a contradiction.

Step 2. Let Un E V; by (1.1b) and by Lemma 3.4, AVUn’p satisfies the hypotheses
of Theorem 2.7 with M _< An 1; thus, (3.8) follows easily.

Step 3. By contradiction, suppose n 2(an q- 1) + 1.
Let u(J),j 1,..., tin, be a basis of V and fix an + 1 distinct points zl,..., Zn+

in t. As we did in the proof of Theorem 2.8, we approximate A by a sequence of ma-
trices {A,},=l,2,... with C()-coefficients satisfying (1.2). For each j, 1 <_ j <_
the weak solutions U(mj) of the Drichlet problem

div (AmVu)) -0 in’t, e

are C(a)-functions and form a sequence U(mj) that converges to u(J) in Wlo’c2(a). By
our hypothesis on ttn, for each j, 1 _< j _< #n, we can find real numbers a(mj) such that

"nEj--1 1, m 1, 2,... and, also

(3.15) E a(mY)VU(mJ)(ze)= 0, for all t? 1, an q- 1, m 1, 2,
j=l

For each j 1,..., #n, the sequence C(mj) can be chosen to converge to some number
c(J) so that we have

E (c(J))2- 1.
j=l

Now, let D be an open set with D c ,zl,... ,Ztn+l D, and such that OD
does not contain any geometric critical point of the function v -jn__=l o(J)u(J). The

m c)u)sequence of functions Vm y=l is such that I(Vm, D) + 1, by (3.15).
Moreover, by possibly passing to a subsequence, Vm v in Wo’(), as m , so
that Proposition 2.6 implies that I(v, D) gn + 1, that is, v is a nontrivial eigen-
function in Vn with at least gn + 1 geometric critical points in D C . This is a
contradiction.

We conclude by giving a sketch of the proof of Lemma 3.4. To this end, we
introduce the following definitions.

DEFINITION 3.5. We say that a simply connected open subset A of is a cp, if
O OA is connected and nonempty.

Let ,... ,K be open subsets of ; we say that {k}k=l K is an admissible
K

covering of , if ,...,K are pairwise disjoint, C =k, and Ok O 0,
for every k- 1,...,K.

Proof of Lemma 3.4 (Sketch). Let u Vn, u nontriviM, and let ,...,g be the
nodal domains of u in ; these sets form an admissible covering of .

Now, let N be the number of boundary nodM domains of u in 0. Then (3.13)
is implied by N 2(K- 1). This inequality is readily proved by induction on the
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number K of nodal domains and by using the following facts, the proofs of which are
straightforward:

(i) Every nodal domain fk is simply connected.
(ii) The covering {ftk}=l K contains at least one cap.
(iii) If ft/( is a cap, then f \ fK is a simply connected open set and

{ftk}k=l K-1 is an admissible covering of Ft. Moreover, Na <_ Nfi + 2.
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APPROXIMATION OF ATTRACTORS BY ALGEBRAIC OR
ANALYTIC SETS*

C. FOIAS AND R. TEMAM]$

Abstract. In this work the authors introduce a method for approximating the global attractor
of dissipative differential equations (including the two-dimensional Navier-Stokes equations) based on
the time analyticity (in a fixed infinite band) of all solutions lying on the attractor. In particular, three
families of polynomial maps are constructed with the property that, under some suitable conditions,
their zeros approximate the attractor.

Key words, attractor, absorbing sets, hypergeometric function, polynomial map

AMS subject classifications. 34D45, 35Q30, 47H99, 41A05, 33C05

Introduction. The long-term behavior of the solutions of dissipative evolution
equations is described by a compact attractor that attracts all bounded sets. At our
present level of understanding of dynamical systems, little is known about the geome-
try of these attractors which may be fractal sets [10], [16], [21]-[23]. We know, thanks
to general theorems which apply to diverse dissipative systems, that the attractor
has a finite dimension in the sense of the Hausdorff dimension or of capacity (fractal
dimension); see, for instance, [15], [17], [7], [2], [25].

Our object in this article is to present a general theory for the approximation of
these possibly fractal attractors by smooth sets, more precisely by algebraic or analytic
sets. Furthermore, the approximating sets that we construct can be defined by simple
explicit relations using the equation itself. Other approximations of attractors by
finite-dimensional algebraic or analytic sets were constructed elsewhere [26], but the
corresponding sets were graphs above a finite-dimensional space. This restriction is
removed here allowing, we believe, for more flexibility and more structure. Besides
the intrinsic independent interest of the results presented here we hope that this new
tool can help us understand the geometry of attractors. Our methods apply to both
ordinary differential equations (i.e., finite-dimensional case) and partial differential
equations (i.e., infinite-dimensional case). However, they are better suited for the
latter, because of the existence of large eigenvalues of the linear part of the equations.
Our approach is as follows. Each point on the attractor belongs to a complete orbit
defined for all real times. Also due to the time analyticity of solutions these orbits are
defined for complex time in a strip around the real line. By utilizing the Taylor series
expansion of the solution around the origin and the relations obtained by repeated
differentiations of the equation, we derive the equations of the approximate manifolds.
Three different methods of approximations are proposed. They yield algebraic or
analytic sets that can approximate the attractor at an a,rbitrarily high level of accuracy.
The first method is not the most efficient, but it is a simple one for which it is easy
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to introduce certain notation and concepts. The second method is an oversimplified
version of the first one in the infinite-dimensional case. The third one is more involved:
it is based on a conformal mapping of the strip of analyticity on the unit circle and
the utilization of various interpolation formulas and of hypergeometric functions. This
method is the best suited for both finite- and infinite-dimensional cases.

For each type of approximation the results that we prove are the following: we
derive the equations of the manifold, and show how an appropriate neighborhood
(semi-algebraic or semi-analytic set) of the manifold contains the attractor; we show
also that this neighborhood attracts all orbits in finite time at an (explicitly given)
exponential rate.

This article is organized as follows. In 1 and 2 we present the equations and
the standing hypotheses and recall a few known results on global attractors, and
on the time analyticity of solutions. In 3 we present the first two approximation
methods, the J and /-manifolds. Section 4 contains an interpolation formula used
in 5 to derive the third approximation method corresponding to the K-manifolds.
Section 6 contains an extension of the previous results to more regular spaces. Finally
in 7, using in particular the results of 6, we show the analytic structure of the
approximating manifolds.

Most of the results presented here were announced and summarized in [8] and [6];
the finite-dimensional case was already considered in [9].

1. Preliminaries on the equations. We are given a Hilbert space H (scalar
product (., .), norm [. [) a linear unbounded self-adjoint operator A with domain
T)(A) C H; we assume that A is closed, strictly positive, and has a compact inverse.
It is then possible to define all the powers of A, As, s E which operate in the domain
T)(As) of As. It is also well known that there exists an orthonormal basis of H
consisting of the eigenvectors of A:

(1.1)
Awj Ajw.i Vj N,

0<A<__<..., ),oc as j--.c.

We consider here an evolution equation of the form

du
(1.2) d--- + Au + R(u) O,

where u is a function defined on R (or on some interval of I) with values in :D(A) and
R is a nonlinear operator from/)(A) into H. More precisely we assume that

R(u)
j=O

with Ry(u) of the form

Ri(.,..., .) being a j-multilinear continuous operator from both :D(A)J into H and
from 7)(A1/2) into :D(A-1/2) and satisfying further appropriate hypotheses. In par-
ticular we assume that

(1.5) Roe :D(A)
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and, for j 1,..., u and for some /, 0 < /< 1:

(1.6) Rj is j-multilinear continuous from T)(A)J into T)(A1-7).

Consequently there exist constants c,..., c such that

(1.7) IA1-7Rj(u)I <_ clAulJ j- 1,... ,.
appearing in the sequel denote various constants.like all the ci and other ciHere the ci,

It follows from (1.6) that R is compact from :D(A) into H and bounded from T)(A)
into 7)(A1-7).

(1.8)
j=l

At the price of some slight technical complications we can consider more general
operators R, analytic from D(A) into H. However, the class of equations above already
contains many equations arising in mathematical physics.

We are interested in the initial value problem consisting of (1.2) and

(1.9) u(0) so,

where u0 is given in H. The above hypotheses do not ensure that (1.2) is a dissipative
equation nor that the initial value problem (1.2), (1.9) is well posed. We assume that
for every u0 in H, the problem (1.2), (1.9) possesses a unique solution u that belongs
both to the space Cb(I+; ]HI) of continuous and bounded functions from I+ into H
and to L2(0, T; T)(A1/2)), for every T > 0:

(1.10) u E Cb(+; H) f L2(0,T; T)(A1/2)) VT > 0;

furthermore, if u0 E )(A1/2) then

(i.ii) u e Cb(R;/)(A1/2)) f L2(0, T; T)(A)) VT > 0.

We denote by S(t) the corresponding operator,

S(t) uo e H --+ u(t) e H;

the operators S(t), t _> 0, constitute a semigroup of operators satisfying the usual
relations

s(o) ,, s(t + s(t) vt, > o.
The analysis that we develop below hinges upon the complexification of equation

(1.2), i.e., the passage to complex time t , and the use of the time analyticity of
the solutions of (1.2) (see [14], [20], and [7]); hereafter we follow [7].

We assume that the solution u of (1.2), (1.9), (1.10) is analytic from (0, oc) into

T)(A) and that, if IA1/2uo[ <_ 1", the domain of analyticity of u comprises the region

v
Al(r)={feC, Re(>50,1Iml<_ti0},
A2(r) {( e C, Im (I-< Re (, 0 < Re f _< i0},
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where 50 50(r) > 0 is a number depending on r and on (1.2). Furthermore u is
bounded as a :D(A1/2)-valued function in the region A(r), and u is bounded as a :D(A)-
valued function in A1 (r). If uo e :D(A), u is bounded as a T(A)-valued function in
A(r). In all cases we denote by/to(r), #1 (r), #2(r) the following least upper bounds:

(1.13) lu()l <_ #o(r), IA/2u()l <_ #(r) for in A(r),
and IAu()l <_/t2(r) for

When needed we shall write the series expansion of u u() and f f()
R(u()); for instance if u is analytic around - 0, then

(1.14) u() E .u(n)(O)’
n--0

ca n

(1.15). f(ff) R(u()) E . f(n)(O)"
n=O

For the sake of simplicity we shall write

(1.16) Un u(n)(0), fn f(n)(O).

By successive differentiations of (1.2) and by using the chain differentiation rule, we
can express all the Un’S, n >_ 1, and all the fn’s, n >_ 0, as functions of u0"

(1.17) ltl -Auo fo,

Ro +
j=l

U2 -Aul fl,

fl Rl(ul) + R2(u,uo) + R2(uo,ul) +’".

If, for instance, we can consider the case where the number in (1.3) is equal to 2,

(1.18) Ro + + R (u,

then we find

(1.19)

f0 Ro + R1 (uo) + R2 (uo, uo),
fl Rl(ltl) + R2(lto, Ul) + R2(ul,ito),

The u,’s are themselves expressed in terms of u0 by successive differentiation of (1.2)"

ul Auo Ro R(uo) R2(uo, uo),
U2 -Aul -/1 (’ttl) R2(lto, ltl) R2(Ul, lto),
u3 -Au2 Rl(u2)- R2(uo,u2)- 2R2(u, u)- R2(u2,uo),

’ttn+l =-Au,- Rl(Un) E
j=O
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Remark 1.1. There are many relevant equations in mathematical physics, of type
(1.2)-(1.4), that satisfy the above hypotheses, namely (1.5), (1.6), and (1.10)-(1.12).

For example, for u 2, it suffices that R1 and R2 satisfy

(1.21) IRlu <_ clA1/2u tu e :D(A1/2),

(1.22) IR.(u, v)l <
clul/lAul/lA/vl’
c.lul/lA/ul/lA/vllAvl/ Vu, v E

(1.23)

(1.24) (R2(u, u), u) 0 Vu e :D(A).

Conditions (1.21)-(1.24) are fulfilled by the Navier-Stokes equations in space dimen-
sion two, and related equations. Other equations satisfying the hypotheses of 1 can
be found in [25]. Specific equations will not be considered in this article. The reader is
referred to subsequent articles for the study of the Navier-Stokes equations and other
specific equations. However, in all these cases one can consider (1.2) in the spaces
(Ak) (= domain of Ak normed by IAkul) for k >_ 1.

Higher regularity. Concerning the mapping R in (1.2), we can assume that for
every k >_ 1,

(1.25)
Rj is j-multilinear continuous from T)(Ak)J,
into T)(Ak-) for j 1,... ,u,

and Ro T(A). Consequently, there exist constants c,a such that

(1.26) IA-R(u)I < IAulJc,k j l u Vk > l

We extend to :D(Ak) all the hypotheses made concerning (1.2). We assume that,
for every u0 T)(Ak), or uo T)(Ak+I/2), the initial value problem possesses a unique
solution,

(1.27) u Cb(I; :D(Ak)) N L2(0, T; T)(A}+I/2)) VT > 0,

or

(1.28) u e Cb(ll; T)(Ak+I/2)) C L2(0, T; :D(Ak+I/2)) VT > O.

We assune that S(t)uo is continuous from (0, oc) x H into :D(A}) for every k; moreover
that, for uo e T)(A1/2) with IA1/2uol _<_ r, u is analytic in A(r) as a D(Ak+l)-valu.ed
function, bounded as a T)(Ak+l/2)-valued function in A(r) and bounded as a T)(A}+1)-
valued function in Al(r).

As mentioned above, the Navier-Stokes equations in space dimension two, or
more generally, all dissipative equations considered in [25] satisfy these conditions.
Our first interest in these more regular spaces resides in the following.
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PROPOSITION 1.2. The vector-valued coejficients u, and fn defined in (1.14),
(1.15), and (1.16) are, as functions of no, analytic polynomial maps from I:)(An) and
19(An+1), respectively, into H.

We recall that an analytic polynomial map from X into Y, with X, Y some
Banach spaces, is a finite sum of functions u 9(u) of the form 9(u) (u, u,..., u)
where is a continuous multilinear map from X into Y. (See [12, Ch. 26].) With this
definition, from the computations of the type (1.17), (1.20) and from the continuity
conditions (1.25), we readily infer by induction (in n), from that each Un is an analytic
map from )(An+k) into/)(Ak) for all k 0, 1,... and n 0, 1, 2, Using now the
relations of the type (1.17), (1.19) as well as (1.25), we obtain that fn is an analytic
polynomial map from T)(An+l+k) into l)(Ak+l-) for all k 0, 1,... and n 0, 1,
This concludes the proof of Proposition 1.2.

Remark 1.3. Since, as shown above, fn is a continuous map from 1)(An+l+k) into

1)(Ak+l-’) and the identity map from T)(Ak+l-) into I:)(Ak) is compact, it follows
that fn is a compact map from :D(An+l+a) into I:)(Ak) for all k 0, 1,2,... and
n 0, 1, 2,

2. Attractors and their integral representation. We shall work with equa-
tions of the form (1.2) that are dissipative. One characterization of dissipativity is the
existence of an absorbing set (see [1], [25])" This is a bounded set B0 C T)(A) such
that

For every bounded set B C :D(A), there exists to to(B)
such that S(t)B c 13o Vt >_ to.

The existence of an absorbing set implies that the orbits do not wander in the whole
space as it happens with hamiltonian systems but rather concentrate in the region B0
or even in part of it.

A common aspect of dissipative systems is the existence of a global attractor
,4, that is, the maximal compact connected set j[ in /:)(A) enjoying the following
properties

(2.2) S(t)A A, t >_ O,

attracts the bounded sets of H,

i.e., for every bounded set B C H

dist (S(t)B, A) sup inf IS(t)x Yl - 0 as t -. c.

Like (1.10)-(1.13), properties (2.1)-(2.3) do not follow from previous hypotheses and
are assumed here. Note that JI c B0 and, since B0 is bounded in T)(A) we have

(2.4) In01
_

r0, IA1/2uol <_ rl, IAuol
_

r2 Vuo E Jo

where r0, rl, r2 are adequate constants depending only on the equation. We refer
the reader to [11], [25] for numerous classes of equations for which (1.10)-(1.13) and
(2.1)-(2.4) are fulfilled.

A transcendental equation for A is easily derived; indeed u0 belongs to .A if and
only if u0 belongs to a complete orbit {u(t), t E } bounded in H. In this case we may
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assume without loss of generality that u(0) u0 and by integration of (1.2) between
t < 0 and 0 we find

u(O) etAu(t) erAR(u(T))dT.

Upon letting t -x and remembering that u(.) is bounded, we find

erAR(u(T))dT;

alternatively with a slight change of notation we find an equation for ,4:

(2.5) u0 eAR(S(T)uo)dT.

Here S(T) (S(--T)) -1 for < 0, this operator being defined on S(-T)H; note that
S(-) is injective due to the analyticity in time of the solutions.

If u0 is a point on the attractor then as observed above we may asume that
u0 u(0), where {U(T) T e } is a complete orbit. Due to (1.12) and since Jt
is bounded in D(A1/2), u is a :D(A)-valued analytic function in a region of C which
comprises the strip

(2.6) A {, IIml <_ o}.

The width 250 of this strip can be chosen the same for all points u0 of A, namely
50(rl) (see (1.13)). Furthermore u is bounded in D(A) in the region (2.6) and we shall
write as in (1.13) (with ttj j(ri) j 0, 1,2)

(.7) I()1 <_ o, IAlu()l < #1, IAu()l _< w V e A.

It is useful to remark now that if u0 E B0 but not necessarily in 4, then the analytic
extension u() of u(t)= S(t)uo satisfies

(2.8) I()1 <- ,o, IA/u()I 5 1 in A(rl) and IAu()l < in A(r).

We will make considerable use of a conformal mapping of the strip A in (2.6)
onto the unit disk of C,

(2.9) {z c c, Il < 1}.

This is given by

eel6’- 1
(2.10) z o() e/6, + 1

where 5’ 25olrr. We observe that

((-, 0]) (-, 0], (0) o,

and the inverse mapping is

(2.11) (z)= 5’log
Z3 Z5 )l+z =26, z+ + +..-

1-z -- --
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Using (2.5), (2.10) and the notation f()= R(u()) (see (1.14)), we rewrite (2.5) in
the form

uo=- e()A___a__d_a_f(())

1

or

5A/(ll/a) d.
(2.12) uo -25’ g(a)

r i--2

where

(2.13) g(a) f((a)).

3. Approximation of attractors by analytic sets (I). Our aim in this sec-
tion and in 5 is to define some (simple) analytic manifolds that approximate the
attractor ,4 in the sense that Jt lies in a (thin) neighborhood of this manifold. The
construction of this approximating manifold A/[ follows a general methodology that
we shall now describe; of course the dimension and complexity of JP[ depend on e and
on the equation.

Our procedure depends on the choice of a cut-off value Am in the spectrum of A.
We set A A,+ and denote by Q Q, the orthogonal projection onto the space
spanned by the eigenvectors corresponding to the eigenvalues larger than or equal to
Am+l. To avoid unnecessary technicalities, we choose m such that Am < Am+l. Of
course P Pm I- Qm is the projector onto the space spanned by the first m
eigenvectors of A, wl,..., Wm (see (1.1)).

We set Pm Pmu, qm Qmu or dropping the indices m for the sake of simplicity

p Pu, q Qu.

By projecting equation (1.2) onto the spaces PH and QH we obtain a system of
equations satisfied by p and q that is equivalent to (1.2). We recall that P and Q
commute with A and hence the projected equations read

dp
dt + Ap + PR(p + q) O,

(3.2)
dq
d- + Aq + QR(p + q) O.

By applying Q to (2.5) we obtain

(3.3) q(0) etAQR(u(T))dT.

The approximation procedures that we develop here hinge on (3.3). They consist
in showing that the right-hand side of (3.3) is the sum of an analytic function of u(0)
and of a term which can be made as small as desired; furthermore this analytic function
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of u(0) is of polynomial type, i.e., a finite sum of multilinear continuous functions of
u(0). In this section we derive two polynomial approximations of the right-hand side
of (3.3), that we denote --IN(u(O)) and --JN(u(O)). In 5 we derive a third more
involved approximation denoted -KN(u(O));N is an integer which appears in the
course of the construction.

Truncated series. Let u0 be a point on the attractor fl,. As mentioned in 2,
u0 necessarily belongs to a complete orbit {u(t), t E I} bounded in H and, without
loss of generality we can assume that u0 u(0). The function t --+ u(t) is in fact
D(A)-analytic in a neighborhood of the region A given in (2.6).

We consider the series expansion of u U(T)

cx
Tn

(3.4) t(T) E Un’-. n (n) (0),
n--0

and for a fixed integer N, we consider

N
Tn

(3.5) ?N(T) E tn Tt’--.
n--0

As is well known UN is a uniform approximation of u in a ball centered at T 0
of radius smaller than 50 25, say 25. More precisely, due to Cauchy’s formula and
(2.),

(3.6) #0n!lu, l- _<
(25)n

where #o #o(rl); thus for

[U(T)--UN(7")I--
n=N+l

#o #o< 2--g 2-,
n=N+l

that is,

(3.7) /-tolu(T)- UN(T)I < for ITI < 6.

Consider similarly the function T --. f(T) R(U(T)). This function is analytic in
a neighborhood of A; owing to (2.7) and the hypotheses on R, f is bounded as follows
on A

IR(u(T))I IRol + IRy(u(T))I
j=l

{ }<_ A-llAI_.R(u(T))I <_ ,,.-1 IAI_Rol + EC(t2)j
j--1
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where we used (2.7). Thus

(3.8) { If(’)l <- Po, T A, with
Po )(-{IA-’Rol + Ej--1

The series expansion of f is written as (3.4)"
cx

Tn

with

We set

then as for UN, we have

(3.9)

fn f(n)(O),

pon!IAI I()(0)1 _<
(es).

N

f(-)=f.;
n--O

POIf(T)- fN(T)I

_ - for I1
_

6.

The approximation JN. For 5 60/2, we decompose the integral in the right-
hand side of (3.3) as

he first integral is easily majorized:

e’,nQR(u(,r))d,r PO -6A<_ Po e’rAdT

_
-e

For the second integral we write

-a((-))a- -f(-)a-

O__. PO /) erAdT < po5
(3.11) e’AQ(f(T)- fN(T))dT <_ -2N.5

Finally, by virtue of Proposition 1.2, the last integral as function of u(0) u0 is an
analytic polynomial map from D(AN+I) into H; we denote it QJN(0), where

(3.12) JN(uo) e’rAfg(T)d’r
5

N
Tn

5 n--O

N

--0

Due to (3.9),



APPROXIMATION OF ATTRACTORS 1279

with

(3.13) i; e’ATndT

(after integrating by parts n times)
5n_j

(-1)A-- + (-1)+e-A (n
j=O

We recall that the fn’s are expressed in term of u0,..., us, through formulas like
(1.17) and (1.19), and ul,...,Un are expressed in terms of u0 through formula like
(1.17), (1.20). Therefore the notation JN(uo) is justified as JN is indeed a function
of u0. Actually, referring again to Proposition 1.2, JN is a analytic polonomial map
from :D(AN+I) into H; moreover, by virtue of Remark 1.3, this map is also compact.

From the preceding, we infer that for any u0 E ,4,

(3.14) Po e_SA P05IQ(uo / JN(uO))l <_ X -and we conclude with the following.
THEOREM 3.1. We consider the dissipative equation (1.2) and its compact attrac-

tor .4, the hypotheses on A and R of 1 being satisfied. We are also given a spectral
projector Q Qm on H as indicated above. Also let JN be the function defined in
(3.12) and (3.13). Then JN it is a compact analytic polynomial map from T)(AN+)
into H and for every e > O, we have

IQ. ( o + < Wo e A,

where I" is the norm in H, provided

2 2p___o N > 1
log

poSo
(3.16) Am+ A _> log Ae’ log2 e

Remark 3.2. Theorem 3.1 expresses in particular the fact that the attractor lies
in a neighborhood of the set JAj consisting of the roots of the equation

(3.17) + o,

more precisely in the set

(3.18) {no e H, IQm(uo + Jg(uo))] <_ e}.

For Theorem 3.1 to be of interest, it is desirable that m and N are not too large and
that the set (3.19) is not too thick. We already observed that N and 5Am+ should
be of order of log(l/e) (see (3.16)). The question of the thickness of (3.18) will be
addressed in 7, where it will also be shown that jg is an analytic set in H.

Absorbing property. Since (3.18) is a neighborhood of the attractor J[, any
orbit starting from a point u(0) u0 in the space, eventually enters the set (3.18).
Our aim is now to estimate the time of absorption into this set. In fact we shall show
that orbits enter into (3.18) in a finite time which, provided m and iV are large enough,
depends only on [u0[, the norm of u0 in H.



1280 C. FOIAS AND R. TEMAM

Let j4 A/[ be the set (3.17), where m and N will be chosen essentially as
in Theorem 3.1, precisely satisfying (3.16) with e replaced by e/2. Consider an orbit
u(t) S(t)uo (for t >_ 0) that may or may not lie on the attractor. By virtue of
the dissipativity of the equation (1.2), we can assume, without loss of generality, that
S(t)uo belongs to the absorbing set Bo (see (2.1)) for all t _> 0. Let to 5 and let
t > to we can write, as in 2,

u(t) e-tAuo et-rAR(u(T))dT.

By translation in time we can assume that u is defined on (-t, 0) and replace t by 0.
Hence

u(O) e-tAu(--t) eAR(u(T))dT

(where now u(-t) uo), and after projecting on QH:

(3.19) q(O) e-tAq(--t) eAQR(u(T))dT.

The integral in the right-hand side of (3.19) is treated as before:

5

-eAQR(u())d POe_6A<_ Po eAdT <_ --0

erAf(Y)dT erAfN(T)dT q- erA(f(T)- fN(T))dT,
6 6 6

while

Since

erAfN(T)d’r JN(u(O))
6

e’A(f(T)- fN(T))dT
po6<
2N"

le-tAq(--t)l < roe-th

(see (2.4)), we conclude that

IQ( (o) +
< poe-eA po5 e_A

A + - +r0

Shifting back to forward time we obtain

(3.20) POe_5oA/2 po6o
Q(S(t)uo + JN(S(t)uo)) < -- + 2N+1

q- roe-tA Vuo E B, Vt>O.
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It follows that for m, N satisfying the conditions (3.16) with e replaced by el2, we
have

(3.21) IQ(S(t)uo + JN(S(t)uo))l < - + roe-t’+’ Vuo E 13, Vt > O.

Therefore we can now conclude with the following.
THEOREM 3.3. The hypotheses are those of Theorem 3.1, and m and N are

chosen as indicated above. Then there exist a time to depending only on luol (and of
course on the equation (1.2)) such that

IQ.(u(t) + JN(u(t)))l < Vt >_ to.

Remark 3.4. The results of Theorems 3.1 and 3.3 can be related to the concepts
of Approximate Inertial Manifolds (AIMs) introduced in [5]. We recall that an AIM
is a smooth finite-dimensional manifold which attracts all orbits in one of its neigh-
borhoods. In that sense the set Adj defined by (3.17) is an AIM. However a major
difference with the AIMs in [5] and with other AIMs subsequently constructed is that
all these AIMs are graphs above PH, while A//is a graph above PH only if ,m+l is
very large (see 7 below). For more complete information about AIMs the reader is
referred to [5], [3], [18], [19], and [27].

The approximation IN. We give now a simplified form of the approximation.
Starting as in the previous case (approximation JN) we consider the expression (3.a)
of Sn that we write

(3.22) Sn S I- . AJ e-SA

j=0

with

(3.23) S (-1)HA-n-1

Then, for every fixed n 0, 1,...,

(3.24) IS-1Sn IIop < sup e-E)>A
j--0

j"

En (SA)J f e-aane-’i
j! J, n!

da <_ e-’i/2(n + 1)2n+;
j=0 A

here, as well as throughout, I" lop denotes the operator norm on the appropriate space,
namely H in the present case. Therefore we can expect that for large values.of A, the
function IN of u0 defined by

N

S’nYn,
n--0

will have the same approximation properties as Jg. It is clear that IN is a compact
analytic polynomial map from (AN+I) into H. We note that

N

+ +
n=0
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On the other hand, (1.2) yields by successive differentiation

(3.26) un+l + Ann + fn 0, n >_ 0.

Hence
(-1)A-n-lun+l + (-1)nA-un + (-1)A-n-lf 0

and by summing for n 0,..., N, there remains

(--1)NA-N-luN+I A- UO A- IN(nO) O.

Thus

(3.27)
no + I(uo) (_I)N+IA-N-luN+I

dN+l(--1)N+IA-N-ld,N+I (S(t)uo)[t=o.

Now, by using the estimated (3.6), we obtain

1
(3.28) [Q.(uo + IN(uo))l <_ AN

dN+l
d---S t uo

1 #o(N + 1)!
h+lu+l _<

(5o)+ Vuo E ,4

t=0

and (by using the fact that the disk of radius 25 with center t is contained in A1 (rl)
for t >_ 250)

1
(3.29) IQm(S(t)uo + IN(S(t)uo))[ <_ AN4I < #o(N + i)’ Vuo E

(5oA)N+I

provided that t >_ 250.
We can now state the following.
THEOREM 3.5. The hypotheses are those of Theorem 3.1. Let IN be the function

defined by (3.25). Then, N is a compact analytic polynomial map from T)(AN+) into
H and for every in (0, #o/2),

(3.30) IQ(uo + .ZN(uo))I

_
e VuoeA

provided

1
(N + 2), N > 2 log #_o(3.31) Am+l A >_

e

Proof. By virtue of of (3.29) we need only to verify that if ,m+l and N satisfy
(a.3) then

(3.32) #o(N + 1)! < e.
(5oA)N+

In order to check when (3.32) is valid, we could use Stirling’s formula, but for our
purpose it suffices to use the trivial estimate

(N + 1)! <_ (N + 2)N+2e-N-1.
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Therefore, if A satisfies the first relation in (3.31), we obtain

#0(N + 1)! Ill
N+I

(50h)g+l
<_ #0(N + 2) -e

Obviously the right-hand side above is less than e if N satisfies the second relation in

(.1).
Theorem 3.5 expresses the fact that, for the indicated values of m and N, j( lies

in a neighborhood of the set A/[I of equation

+ 0,

more precisely in the set

IQ ( o + <_

From the estimate (3.29) we readily infer the following analogue of Theorem 3.5.
THEOREM 3.6. The hypotheses are those of Theorem 3.5 and m and N are chosen

to satisfy (3.31) with replaced by /2. Then there exists a time to depending only on

luol such that

(3.35) ]Q.(S(t)uo + Lv(S(t)uo))l < Vt >_ to.

Remark 3.7. Remarks analogous to Remarks 3.2 and 3.4 are valid here too; in
particular, the set A/[I is an Approximate Inertial Manifold in the sense of [5]. However
there is an important difference between the estimates (3.15) and (3.30). Namely the
former is valid for all large enough A,+I and N while the latter is certainly valid only
if morevoer 50Am+l is at least of the same size as N.

4. An interpolation formula. In view of the study of the third type of ap-
proximation of attractors considered in 5 we study here an interpolation problem in a
context independent of (2.12) but we have in view, of course, its application to (2.12).

Let / be a separable (complex) Hilbert space and let A be a strictly positive
self-adjoint operator in 7-/. We set inf{(Ah, h): h e T)(A) Ihl--- 1} > 0, where
we denote by (., .) the scalar product in 7-/and I" I-- (’, .)1/2. Also the norm of
a bounded linear operator T on 7-/will be denoted by ITIop. Let H(7-/) denote the
space of all bounded and analytic functions g :]I) {z e C :lzl < 1} -- 7-/. The
norm in Ha(?-/) is defined by

IIgll sup{Ig(z)l, z e I[}}.

Since

(ll+)AI_, 1--o"2d _< ;(1--{--o’)11--o"
op

da < (1 + a)X-lda < oc
1 a2

the integral

(4.1) fT(g) g(a)
--0" l--a2
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where g 6 H(7-/), is absolutely convergent and defines an operator T on H(7-/).
We will consider the following interpolation problem:
Find operators To T1 such that

(4.2) sup{ N

T(g)- E .T’g()(O)
n--O op

g e H(7-/), Ilgllo -< 1}
goes to O, for N oe, as fast as possible.

We will give an answer to this problem, which although not optimal, will never-
theless be sufficient for our purpose.

We start by defining

/) (1"’0")
A o’ndo"

(n---0,1 2 .),(4.3) Tn
\ i" 1 o.2

and by noticing that for any g
0 < 2r) exists almost everywhere, [g(ei)[ _< [[g[[oo almost everywhere and

2 g(eiO)d1
(4.4) g(z)

(see [22, Ch. III]). With the choice (4.3) we define

N

(4.5) TN(g) T(g)- E .Tng(n)(O) (N 1,2,...).
n-’-O

LEMMA 4.1. For all g H(7-l) and n 0, 1, 2,..., we have

( )1 + a 1 dO laiN+idaITN(g)[ <-- IIg[[o iL a e al i a2

Proof. We note that by (4.1) and (4.4)

)f + a 1 g(e)dO da
T(g) J_--i a -r 1 e-ia 1 a2

N ; (l+a)A(l f02 ) da-E
n=O

i a
g(e)e--nadO

1- a2

+ ki La 1 e-iOa
dO

and that, by (4.3) and (4.5),

IT (a)l
o 1+ a 1 g(eiO)e-(N+l

1La 1-e-ia
da

dO
l_a2
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This establishes (4.6). [3

LEMMA 4.2. For all N 0, 1, 2,..., we have

Proof. Since

dO dO

le O- 1 <- 4
leie -a]

(-1 < o" _< 0),

the left-hand side of (4.7) is bounded from above by

(1 "t" 0") ’h-1
le" o’1 (1 0")TM7r"

< (1 +
7r /2 eiO -a{

da

and so it remains to check that

(4.8) ffr dO

/2 [i0_ O.
< 4 log

l+a

Indeed,

and this last function is bounded from above by 4 log[(3/2)(1 +a)--1 __< 4 log[2(1-4-o’) -1
if-1 < a _< -1/4 and by 8v/-/3 _< 41og8/3 < 41og[2(l+a)-1] if-l/4 _< a
<0. [3

We can now pass to the main result of this section. To this aim we define the
N T,9(’)(O) (where Tn are given inNth error of our interpolation of T(g) by =0 .

(4.3)) by

(4.9) eN sup {ITN(g)I g e H(TI) Ilgll < 1}.

Then we have the following
PROPOSITION 4.3. For the error N, defined in (4.9), the following estimate holds

(4.10)

eN<
8 (+lg(1+-7r

N+I ) A(N + 2)N+2+ 2
(A + N + 1)A+N+2 for all N 0, 1, 2,
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Proof. By virtue of Lemmas 4.1 and 4.2, we must only estimate from above the
integral

oo (2) aN+da.IN(A) (1 a)-1 log
1 a

For that purpose we integrate by parts and using the Bernouilli’s beta function B

B(x,y)-- sx-l(1-s)u-ds, x,y > -1

we write

da() $ ( a) + log
1 -N

A
+ 1

IN- (A + 1) + (1 )-aN+lda

N+ 1IIN_(A + 1)+ B(A N + 2)
1 N+I
-B(A,N + 2) + B(A+ 1, N + 1) +

(by reiterating)

-1 B(A, N + 2)

(N + 1)N
A(A + 1) A(A + 1)

(N + 1) B(A + 1, N + 1)(+)
(N + 1)N

B(A + 2, N)+ A(A + 1)(A + 2)
(N+ 1)...3+... + B(A + N- 1,3)

A(A+ 1)... (A+ N- 1)
(N + 1)... 2+ A(A + 1)... (A + N- 1)I(A + N)

(N + 1)! (N + 1)!+A2(A + 1)-.-(A + N + 1) A(A + 1)2... (A + N + 1)
(N + 1)!+ A(A -t- 1)(A -t- 2)2... (A + N + 1)

(N + 1)!+...+
A(A + 1)... (A + N- 1)2(A + N)(A + N + 1)
(N + 1)! Io(A + N).( + 1)... (A + N- 1)

ru_( + )

Then
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Thus

1 [1 2
#(# + 1) . log

1 -a(-(1- a).+l)’da

Xfo1+ (1

(after integrating by parts the first integral
and integrating the second integral)

log 2 1 1
+#(# + 1) #(# + 1) #"

A+N+I + log 2 + 1).
The sum

is bounded by the integral

1 1
+ +A+I A+N+I

),+N+ldx
=log 1+

x A

and hence

(4.11) IN(A) _<
A(A +.:. (A + N) + log 1 +, ) ) ] 1

+2 A+N+ 1

The logarithm of the term in (4.11) in front of the square bracket is

E log 1 +
.=: 3

The sum is bounded from below by the integral

fN+2 (A_I) fN+2 fN+2log 1 + dx log(x + A- 1)dx- log xdx
J1 x ,/1 J1

=(A+N+I) log(A+N+I)-A log A-(N+2) log(N+2)
(A + N + 1)+N+

log
A,x(N + 2)N+2

Introducing the last estimate in (4.11) we obtain (4.10).



1288 C. FOIAS AND R. TEMAM

5. Approximation of attractors by analytic sets (II). We now return to
the approximation of attractors by analytic sets. The third and last approximation
that we construct here utilizes the conformal mapping described in 2 of the band of
analyticity A (see (2.6)) onto the unit disk D (see (2.9)).

As before we denote by h Am+i an eigenvalue of A and by Q Q, the projector
in H onto the space spanned by the eigenvectors corresponding to the eigenvalues
larger than or equal to Am+l P Pm"= I- Qm is the orthogonal projector onto
the space spanned by wl wm (see (1.1)).

We set pm PmU qm QmU or dropping the indices rn p Pu q Qu.
By projecting (1.2) onto the spaces PH and QH we obtain the system of equations

satisfied by p and q written in (3.1) and (3.2). We recall also formula (3.3)

q(O) eAQR(u(T))d7,
which is valid at any point u0 u(0) on the attractor. With the change of variable
(2.10) we find the relations similar to (2.11) and (2.12):

/ (l +a)
5A do"

q(O) Q (o)
1-a 1-a2’

where, as well as in the sequel, we denote by 5 the quantity 25o/ denoted 5’ in 2,
and

g(a) f((a))= R(u((a))).

Our aim now is to show that the right-hand side of (5.2) is the sum of an analytic
function of u(0) and a small term; furthermore, this analytic function of u(0) is a

polynomial map of the domain of a large enough power of A into H. For that purpose
we use the results in 4 with g as in (5.3) and A and A replaced by 5QA and 6Am+l
6A. Then the right-hand side of (5.2) is -26QT(g) and, for N arbitrary we set

KN(uo) 25Tg(g)
N

1
2E -. Tng(n)(O)’

n"-O

where

(5.5) Tn do’, n O, 1, 2,
a 1 -o.2

We note that

Q(uo + KN(uO)) 25Q(T(g) TN(g)) 25(T(Qg) TN(Qg))

and that, by applying Proposition 4.3 to T(Qg) and TN(Qg), the role of the played
now by QH, we obtain the estimate

(5.6),T(Qg)_TN(Qg),<_8(1 (N+I) )-+log 1+ 5A
+2

(SA)A(N + 2)N+2
(SA + N + 1)5A+N+2

][g[[’
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where

is simply majorized by p0 (see (3.8)).
Now we make KN(uo) explicit:

(5.8) Tn n(SA),

where for r > 0
o l+a

E.n(r)= i-a 1 a2da,
or setting s (1 + a)/(1- a):

(5.9) 8r-
S

ds.
2 +s

Using the beta function B and the hypergeometric function F,

F(a,b;c;z) E a(a+ 1)... (a+n- 1)b(b+ 1)... (b+n- 1)
,,,=o n!c(c + 1)... (c + n 1) z’

we see that (see [13, Ch. 4, 3, eq. (4)])

.n(r) "-l)’B(r,n+ 1)F(r,n;r +n+ 1;-1)
2

which is the same, thanks to Kummer’s relation (see [13, Ch. 4, 10, eq. (9)]), as

.n(r) (-1)"
2n+1 ( 1)B(r,n + l)F n,n+l;r+n+l;

or expressing B in terms of the gamma function (see [13, Ch. 3, 4])

(5.10) &(r) r(r)r(n + ( 1)2n+l P(r + n + 1)
F n, n + 1; r + n + 1;

(--1)n n! ( _)2n+l r(r q- 1)... (r + n)
F n, n + 1; r + n + 1;

Alternatively we can write

-.n(r)=(-1)nEZ.n,j(r

(n + j)!
n,j (r) r(r + 1)’’’ (r + n + j)

n(n + 1)... (n + j 1) 1

j! 2n+J+1"

Hence

(5.11)
1 ) n!(AQ)_n(AQ) (-1)nF n, n + 1; AQ + (n + 1)I;

2n+l
(SAQ + I)-1... (SAQ + hi) -1
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or

(5.12) ,(SAQ) (-1)n ,,j(SAQ),
j=O

where

(5.13) n,j(SAQ) (n + j)!. n(n + 1)... (n + j 1) (6AQ)_
2n+J+ j!
(SAQ + I)-... (SAQ + (n + j)I)-.

Although is expressed in (5.12) as the sum of a series, we can observe that this
series is rapidly convergent as

(n +j)! n(n + 1)... (n +j- 1) 1
n,j AQ IP <- -n-j’-" jt + + n + j)

and this bound converges rapidly to 0 if n is fixed < N and j c. Therefore the
formulas (5.12) and (5.13) turn out to be better suited for the numerical computation
of QT Cn(AQ) than (5.5).

Due to (1.16), (2.10), and (2.12) we express g(z) as

(5.14)

where Coo 1 and Cnh 0 if n- h is odd or if n < h; otherwise if n- h _> 0 and
n- h is even,

1 1
(5.15) C,h E (2i + 1) (2ik + 1)’

il ik>_o

il.q-...+ik------2---

-E(- h )1Cl,.. aj lao

1 -t- E OZl Cj

The last two sums are extended to the j >_ 0, c,..., c >_ 0 such that

1 1
3, (2j + 1)
1 1

+

(5.16) { ao +... + oj h,
a + 2a2 +... +jaj ,-h

2

in the first case, while in the second case

l<_a:+...+aj<_h,
-h

al + 2a2 +... +jaj < 2

It is clear that

gn g(n)(0) E -. (26)hCnhfh
h=O
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Finally

(5.19)
N n

KN(UO) EE (2()h+l
h----. Chn(bAQ)fh

n--0 h--0

(2)h+
h-----. N,h(bAQ)fh,

h--O

where

N

n--h

Reintroducing the index m we arrive to the conclusion of this section.
THEOREM 5.1. The hypotheses are those of1 and 2, in particular (1.3)-(1.6),

(1.10)-(1.13), (1.25), (2.1)-(2.4), and (2.6). Let ICN be the function of uo defined
in (5.4) (or more precisely KN(uo) being given by (5.4), (5.5), (5.13), (5.18), (5.19),
(5.20), and (1.17)-(1.19)).

Then ICN is a compact polynomial map from 7)(AN+I) into H and for every > O,
we have

IQ.(uo + KN(uo))l <_ e Vuo 6 A,

whenever either

5A > 1 19250p0
and

5A
>1(5.22a) N+I io21g r2 e N+I

or

(())1/aN+l
(5.22b)

N+I > _2 l+log+-1 31og(e) and
5A a a 5A

>1,

where

128 Pobo e2+c(5.22c) A A+I, a A --,2A+
r

and log+ max{0, log}.
Proof. Using (5.6) and the relation prior to (5.6), we bound the H-norm of

2Q,[TN(g) T(g)] by

165(1 (N+I) ) (bA)6A(N+2)g+2
(5.23) po--r - + log 1 + 5A:: + 2

(bA + N + 1)5h+g+2

(where A Am+l). In order to estimate suitable values of m and N we note that the
expression (5.23) is bounded by

165(1 (N+I))()N+I 96 (1)(5.24) P0-- - + log 1 + 5A + 2 <_ -po5 - N+I
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if 5A/(N + 1) >_ 1, and by

(5.25) p0--
r -+log 1+,,

A +2 A+N+I

if 5A/(N + 1) _< 1. If the relations in (5.22a) are satisfied, then (5.21) readily follows
from the fact that the right-hand side of (5.24) is bounded by e. If (N+ 1)/tA >_ 1,
then (5.25) is bounded by (with the notation of (5.22c))

+  o,gnpo oe + 
+  )]eA

where r/- e2+a(1 + ).

The fact that (5.21) holds if 5A/(N + 1) satisfies the two relations in (5.22b), now
follows from the following elementary lemma.

LEMMA 5.2. Let a > 0, 3 >_ e and (/) =/3r/-a log for 1 >- 1. Then

(5.26) r>_r]= l+log+- Zlog(Ze) :=007)_<1.

Indeed it is easy to check that the function /a(1- 0(r/)) is positive for /= /1 and
its derivative is positive for r/>_ /1. E]

Remark 5.3. It will be subsequently shown that the set defined by the equation

+ 0,

is analytic in H. Theorem 5.1 expresses the fact that the attractor lies in its neigh-
borhood

{u0 e M, IQ.(u0 + KN(uo))[ <

For Theorem 5.1 to be of interest it is desirable that m and N are not too large and
that the set (5.21) is not too thick. The question of the thickness of (5.28) will also
be addressed below.

We emphasize the major difference between Theorems 3.1 and 3.5 on one side and
Theorem 5.1 on the other side. Namely the first two theorems are relevant only if 5A
is large enough, while in the latter one, this restriction is not necessary. Unlike the IN
and JN-approximations, the KN-approximations can be improved by just increasing
N. We shall return to this point at the end of this work.

Exponential attraction. We will now estinate the time of absorbtion into the
set (5.27) of the orbits that do not lay on the attractor

THEOREM 5.4. The hypotheses are those of Theorem 5.1 and m and N are chosen
as in the proof of Theorem 5.1 with e replaced by /2.

There exists a constant n such that

(5.29) IQm(u(t) + KN(U(t)))[ <_ - + nexp(--t,k,+) Yt ..>_ to,

where u(t) S(t)uo, the constants n and to depending on the equation and boundedly
on [u01 In particular all orbits enter the set (5.21) at a time depending logarithmically
on and boundedly on iuol
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Proof. As in the proof of Theorems 3.3 and 3.6, we can assume that uo belongs
to the absorbing set Bo. Let to be fixed, to 5o(rl). We recall that u(t) S(t)uo is
analytic in t in the region Al(r) defined by Re >_ to, IIml <_ to (see (1.12) and (2.4)).
Proceeding as for (2.5), we obtain by integration of (3.2) between to and t >_ 2to:

q(t) e-(tl-to)Aq(to) eAQR(u(T))dT.

Using a transformation similar to (2.10)

o
e(t-tl)/ + 1’

(5.30) yields (compare to (2.12) and (3.19)):

jf ( )A dao 1 + a
g(a)(5.31) q(tl) e-(t’-t)Aq(to) 25 i g 1 a2

where al (t0 t) and g(a) R(u(t + (a))) as in (2.11). We proceed as in

4 and in the proof of Theorem 5.1, and write

T(1)(g + a

--0"

do"
a2’

and

(5.32) q(tl) -- QKN(u(t)) e(to-t’)Aq(to) + 25Q(TN(g) T( (g))

+ 25Q(T( (g) T(1) (g)).

The H-norm of the term 25Q(TN(g)- T( (g))is bounded as follows:

N

251Q(TN(g)- T()(g))l <- E 25
1-a

n--O

(returning to the T variable)

N

E e(t-tl)A

A

The fimction g is analytic in the inage of the region A1 (rl) by the conformal mapping
o in (2.9), and it is bounded there by the constant po defined in (3.8). As is easily
shown the image of A(r.) by o contains the circle centered at 0 of radius iali
-o(to- tl). Hence by Cauchy’s formula

1
Ig(n)(O)l Po(5.33) U Ioa,["
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and we obtain

(5.34)

where

e(to-tl)A 1251Q(T( (g) TN(g))I <_Po lalln’-O

< (N + 1)POe(to_t,)n
_

tle_tt5A

(N + 1)p0 5A(5.35) Al(_t0)leto
We then estimate the term 25Q(T( (g)-T()(g)). For this term, the analog of Lemma
4.1 holds and yields

(5.36) 251Q(T) (g) T()(g))l

<_25 sup [g(z)lf(ll+a)
Izl_<lo’l -a ,,I i 2 da,

where suPlzl<lal Ig(z)l _< p0. The integral in the right-hand side of (5.36) can be
bounded by the integral from -1 to 0; then the estimates in Lemma 4.2 and Proposi-
tion 4.3 are valid without further change and so, under the assumptions of Theorem
5.1 the right-hand side of (5.36) is <_ e/2. Finally

(5.37) Ile-(t,-to)Aq(to)ll <_ #0e-(t-to)A.

Introducing the estimates (5.34), (5.36), and (5.37) into (5.32) we obtain

where

IQ.(S(t)uo + KN(S(t)uo))l <_ - + ae-’ Vt >_ 2to,

t g -" #0etA.
This concludes the proof of Theorem 5.4. El

Remark 5.5. We shall show in 7 that for Am+ large enough, the set defined by
(5.27) is a graph above PmH. However the KN-approximation can be improved just
by keeping h fixed and by increasing N (see (5.22b)). Therefore the neighborhood
(5.28) of that set will have the exponential attraction property, although A is not large
enough to guarantee that the set is a graph.

Remark 5.6. It is interesting to observe that the sets defined by

(5.39) uo -t- IN(nO) 0 and uo -t- KN(UO) 0, respectively,

contain all the stationary solutions of (1.2), i.e., the points u, such that

Au, + R(u, O.

For IN this follows readily from (3.28) with u0 u,. For KN we observe that if u0 is
a stationary point, then un O, fn --O, gn --O, for all n >_ 1, and

Auo+ fo =0.
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Then, by (5.4) and (5.5),

gN(uo 26T0g0 -25ToAuo

f-26A
a 1 ’a2 uo

--(Letadt) Auo=-uo,

i.e., uo + KN(no) O.
A weaker assertion is valid for JN:

uo + Ju(uo uo +  ofo, So (I e-6A) A-1,

so that

(5.40) uo + Jg(uo) uo + (I- e-6A) Io(uo) e-6Auo

for all N 0, 1, 2,

6. Utilization of more regular spaces. In the previous sections we have
shown how to approximate the attractor 4 by smooth sets in the topology of H.
In this section we want to extend the methodology to more regular topologies, and
we shall study the same approximation problems in the spaces T)(Ak), k _> 1. We
shall establish also some properties of the functions IN, JN, KN in spaces T)(Ak). Be-
sides their intrinsic interest these results will be needed in 7 for proving the analytic
structure of the approximating sets.

First we should recall that (1.2) in the spaces :D(Ak) is assumed to satisfy all the
regularity conditions introduced in the last part of 1.

Then we have the following easy fact.
PROPOSITION 6.1. The hypotheses on the equation (1.2) are those in 1. Then

for all r > 0 and 0, 1, 2,... there exists #k(r) < oo such that

IA u()l < u (r) V e ZX (r), VlA / u(O)I < r.

Proof. If there is no finite # ttk(r) satisfying (6.1), we must have a sequence
uj E /)(A1/2) IA/2uj[ <_ r, and tj _> 5o 5o(r) such that the solution uj(t)
with initial data uj(O) uy will satisfy IAku(tj)l --. oc. Since the sequence {u} is
relatively compact in H, we can assume without loss of generality that uj is convergent
in H to some u0; obviously u0 E D(A/2) and IA/2uol <_ r. If {tj} contains a
convergent subsequence, say tj, --. to >_ 50, then S(tj,)uj, --, S(to)uo in T)(Ak) and
therefore IAkS(tj,)uj, - IAkS(to)uol < oc; a contradiction. So tj --. oc. But then
for j large enough, we will have vi S(tj -5o)uj Bo and therefore IA1/2vjl

_
r

(see (2.4)) for all j large enough. Then by replacing uy and tj for all j large enough,
with vy and 5o we are in the first case considered above which, as we already noticed,
leads to a contradiction.

COROLLARY 6.2. Equation (1.2) has an absorbing ball Bk in each T)(Ak), k
1,2,

COROLLARY 6.3. The global attractor jt attracts all bounded sets in H in the
D(Ak)-norm, k-- 1, 2,
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Proof. Corollary 6.2 readily follows by noticing that if Bk denotes the ball in
T)(Ak) centered at the origin and of radius #k #k(rl), then by (6.1),

(6.2) IAkS(t)uol #k #k(rl) Vt 60 60(r), Vu0 e B.

Corollary 6.3 now results easily from the interpolation relation

inf dk(S(t)uo v) < j A+(S(t)uo v) ]S(t)uo v]
vA

k

There is no difficulty in extending Theorems 3.1, 3.3, 3.5, 3.6, 5.1, and 5.4 to
(Ak); i.e., these theorems remain valid with H replaced by (Ak) and the norm in
g [. [, replaced by the norm in D(Ak) IA. . The expressions of IN and JN are
the same, although the appropriate values of m and N may now be different and may
depend on k. In the course of the proof we replace the bound 2 2(r) in O(A)
with the bound Pk+l k+l(rl); also we replace the corresponding bound p0 by

(6.3) Pk - IA+I-Rol + c’
j=l

(see (3.8) and (1.26)).
Similarly the results of 4 and 5 extend to the spaces (Ak). The interpolation

results of 4 are used with Q’D(A) and 5 proceeds in essentially the same way
with

[IQg sup(IQAg(z)l, z e } pe

and TN(Qg) replaced by AkTN(Qg)]. Of course, the expression of KN is the
sme.

Properties of IN, JN, Kw. Our aim is now to establish some properties of the
functions IN, JN, KN considered as mappings in the spaces D(Ak). More precisely,
see the following.

PROPOSITION 6.4. The functions IN, Jg, KN are analytic polynomial maps from
D(A) into D(A+-), for all k N + 1.

Proof. First we recall that fn(n 0 1,...) are analytic polynomial maps from
(An++) into (Ak+-) for all k 0, 1,2,..., n 0, 1,2,... (see Remark 1.3).
We also recall

N

n:O

n=O =0 j=O

(see (a.12) and (a.la)),

h=O
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(see (5.19) and (5.20)), where the operators in the square brackets are continuous on
any of the spaces Z)(A") (with norm IA". I) for all a _> 0. The statement for the
operator in (6.5) is obvious, while for that in (6.6) it readily follows from (see (5.10))

N

An+IKN,h(SA CnhAn+l.n(A)
n--h

Cnh(-1)n2n.+iF n,n+l;A+(n-+-l)I; (I-t-A-)-l...(I-t-nA-)-1
n-h

Since A-n- is a continuous map from (A) into :D(A+n+) for all/2 >_ 0, then n
0,1,2,...,A-n-fn+l is an analytic polynomial map from Z)(An++k) into
T)(A’+2-+k) for all n,k 0, 1, 2, The conclusion follows now from (6.4), (6.5),
and (6.6).

Remark 6.5. Since IN, JN, KN are continuous polynomial maps from Z)(AN++k)
into Z)(AN+2-+k) these functions are bounded on bounded sets in the corresponding
spaces. In particular these functions are bounded in :D(AN+2-+k) on the absorbing
set BN/I+k in (AN+l+k) (and thus on the attractor A too), for all k 0, 1, 2,...,
namely

(6.7) IAN+2-’FN(U)] <_ b’N-t-1 VU e ]N.-i-lTk

(6.8) IAN+2_,
d
d---FN(u)I <_ l]iV+l Vu E lNZt-l-i-k

where FN is either IN, JN or KN. Of course on the attractor ,4 we have

(6.9) ]AN+Q.(u + FN(u))] <_ eN+,. Vu A,

where N+l,m can be made as small as we need for appropriate m and N, particularly
for m large enough. Clearly we can assume that the absorbing set BN++k is the ball
in :D(AN++k) centered at the origin and of radius 2#N++k (see (6.2)).

7. Analyticity. Our aim in this section is to show that the approximating sets,
defined by

u + FN(U) 0, u T)(AN+I+k), k 0, 1, 2,...,

are analytic sets and that the neighborhoods

IAQ,(u + FN(U))I <_ e,

are not thick in general. Here FN stands for either IN, .IN or KN.
We fix m, N and FN (---- either IN, JN or KN). For the simplification of notation

we write in this section

x !1" II- AN/+" [, F FN,
u y + z, y Pu, z Qu,

(N-I-I /]NWJ. 1,’ 12N.ael l/t N,’rn
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where/IN+l,/]g-kl and N/l,m are the bounds appearing in-Remark 6.5 ((6.7)-(6.9)).
For example (6.7)-(6.9)imply

(7.3) IIz + QF(y + z)ll u y + z e B(0, 2#),

(7.4) IIQF(y / z)ll _<
A_,

u y + z E B(0, 2#).

We note that with the present notation we have

(7.5) ,4 c B(0, ),

where we use the notation B(u, r) for the ball in X centered at u of radius r. We shall
study the set

(7.6) X ’’N+I,A {Y q- Z e B(0, 2#), z q- QF(y + z) 0}.

Our first result is the following
LEMMA 7.1. If A > Ao, where A0 is specified below, there exists a function

such that

(7.7)

Proof. Fix y e PX, Ilyll and define

Gu(z -QF(y + z), z e QX, Ilzll .
Then

Ilay(zl) a,(z2)ll _< sup Q-zF(y / z) ,y / z e g(0,2.) IIz z211
(by (7.4))

_<
AI_ Ilzl z211 Vz, z2 e B(O, ).

Moreover,
IIC,,(z)ll _<

AI_
Vz e B(O,#),

hence if m is sufficiently large so that A )m+l satisfies

u < # u’ 1
AI-’ 2’ AI-’ 2’

(7.8) )m+ a >_ ao max { (-) 1/(1-’)
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then Gy is a Lipschitz mapping, with Lipschitz constant <: 1/2, that applies B(0, #)
into itself. Thus Gy has a unique fixed point denoted (I)(y) in the ball B(0, #). By
the Picard successive approximation procedure, (I) is (even after the complexification
of X) a uniform limit of polynomials; hence (I) is an analytic function of y. The proof
of (7.7) is also easy:

y + z e X N {y e B(O, it) PX, z e B(O, it) QX}
{z Gy(z) for some y e B(0, #)N PX}
{z (I)(y), for some y e B(0, #) N PX}
graph (I).

Finally, by the fact that (I) is analytic, from

we deduce that

Hence

(7.9)

O(y) + QF(y + O(y)) O,

O’(y) + QzF(y + Z)lz=(y) (y)

0
-QyF(y + z)l=(u).
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LEMMA 7.4. Let m and N be fixed, m sufficiently large so that (7.8) is satisfied.
Then for every A’ Am,+1 < A Am+, the set

(7.11) X’ {u y + z,y e P,,X,z e Q,,X, Qm,(U + F(u)) 0, Ilyll, I111 _< }

is an analytic subset of XN,A.
Proof. Let us denote A’ ,N,A and let (I) be the map given in Lemma 7.1, that

is a’ graph (I). If u E a’, then

(7.12) Qm,(U + F(u)) 0

and since Q, Q,Q,,

(7.13) Qm(u + F(u)) O,

i.e., u E A’. Thus,

(7.14) X C X XN,A for A’ _< A.

Moreover.

(7.15) (Qm, Qm)u
+ (Q., Qm)F(Pm,u + (Q., Q.)u + O(Pm,u + (Q.v Qm)u)) 0

and (7.13) is equivalent to (7.12). Butthe left-hand side of (7.15)is in the arguments

pl PA’, q’ (QA’ QA)U

an analytic map of a ball in PmX into (Qm, -Qm)X and both spaces PmX and
(Qm’ Qm)X are of finite dimension. Hence A’ is an analytic set in X. [3

We can now sum up all the discussion on this section with the following.
THEOREM 7.5. If the hypotheses of 1, 2, and 6, and (7.8) are valid, then
(i) XN,A is an analytic set (which is algebraic if U is of finite dimension);
(ii) XN,A, C XN,A for A <_ A;
(iii) XN,A graph (I), where p’B(O,#)fqPX --+ B(O,#)AQX is C-analytic and

II’II _< 1;
(iv) IIQAu- O(u)ll < 2/(A1-’) supveA IIQn(v + F(v))ll for aZZ u e A
Remark 7.6. In the last statement of the preceding theorem, in the case F KN

we can make
e sup IIQ(v + F(v))ll

very small just by increasing N (see Theorem 5.1). Therefore once A >_ A0 we can
force the set {u y + z" IIz + QF(y + z)l <_ e} to be a very thin neighborhood of
graph (I) (and also of the attractor 4) just by increasing N. Moreover, for this case
we can infer a local approximating property even if A < A0. Indeed, it can happen
that in a ball B(zo, r) in QX centered at z0 Quo for some u0 ,4, the following
two conditions (7.16) and (7.17) hold. Namely,

(7.16) + 8;F(
"-0
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where the norm is the operator norm on QX and I denotes the identity operator on
QX, and

( )(
-1 O-Qg(yo -- zo)

O
QF(yo+z) I+ oz+ < r Vz e B(zo, r),

where yo Puo. Then if

< r( r)llQ(uo + F(uo))ll,

there exists zl E B(z0, r) such that zl + QF(yo + z) 0. In other words, in this case
near the point u0 on the attractor 4 we find a point Ul Puo + z in our set A’.

The above statement easily follows by considering the strictly contractive map

Z-- Z0 H Z-- Z0 I + zQF(u) =oQ(I + F(yo + z))

of B(z0, r) into itself.

8. Concluding remarks. We have shown in this paper that the global attrac-
tor of a dissipative evolution equation can be approximated, under some favorable
conditions, by the zero set of some explicitly constructed polynomial maps. We
have presented three types of polynomial maps, namely the polynomials Qm(uo +
IN (u0)) Qm(so + JN (u0)), and Qm(so + KN (u0)). For the first type our estimates
improved with the increase of m and worsened with the increase of N. For the second
type, our estimates improved with the increase of both m and N, while for the third
type, the estimates improved with the increase of either m or N. The unlimited in-
crease in m is possible only for partial differential equations; therefore we can expect
that in the numerical application of our methods to ordinary differential equations,
the third type of approximation will turn out to be more effective. Such numerical
experiments, which confirm this expectation, will be presented in [4]. Indeed, in con-
sidering the classical Lorenz equation in I3, our numerical computations show that the
/N-approximations are not aberrant only for very small values of N, say N 0, 1, 2,
and rapidly deteriorate with the increase of N. The JN-approximations first improve
with the increase of N, then around N 10 they start deteriorating. However, the
KN-approximations, slowly improve with the increase of N, at least up to values of
N 1000. It is worth mentioning that the Lorenz system with the usual parameters
a 10, b 8/3, r 28 does not satisfy the assumptions we made in 3 or 7 because
5A is in this case of the order of unity.
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INVESTIGATIONS OF SOLUTIONS OF NONLINEAR HYPERBOLIC
EQUATIONS WITH A SMALL NONLINEARITY AND

APPLICATIONS *

A. LADA

Abstract. The Cauchy problem for the nonlinear hyperbolic equation Leu + PNe(t, x, Dan,
[a[

_
q) fe(t,x) of order m _> 2,0

_
q

_
m- 1, is studied; E (0,1] is a small parameter.

The problem possesses a solution on any given finite interval of time provided is sufficiently small.
Estimations for Sobolev and L norms of solutions are derived. Applications to the stability problem
for hyperbolic equations, and to justification of the nonlinear geometric optics method for spin glass
models, are given.

Key words, hyperbolic equation, nonlinear geometric optics method, stability of solutions,
asymptotic solutions, spin glass model

AMS subject classifications. 35L75, 35L70, 82D40

Introduction. In the first part of the paper we investigate the following problem"

(0)
Lzu + PNz (t, x, D"u, q) fe (t, x);

O[ult=o 0, --O,...,m-- 1,

(t, x) [o, T]

where Le is the hyperbolic operator of order m, E (0, 1] is a small parameter, T > 0
is given.

We investigate the case when coefficients of Le, Ne and fe depend singularly on, which is important for applications to the nonlinear geometric optics method.
DEFINITION 0. Let g E C(t), (0, 1]. We say that the dependence of g on

is nonsingular when for each multiindex and compact K c ,sup(lOg(x)l:
(0, 1], x e K} is finite. In the opposite case we say that g depends on in a singular
way.

The case of nonsingular dependence on is an easier one, so the methods devel-
oped in this paper will work in this case as well.

We derive estimations for Sobolev and L norms of solutions of (0), which will
be important for the remaining parts of the paper.

In 2 we study the stability of solutions of nonlinear hyperbolic equations with
respect to small perturbations of initial data and the right-hand side of the equation.

In 3 we prove justification of the nonlinear geometric optics method applied to
the spin glass model with a rapidly oscillating external magnetic field.

A problem similar to (0) was studied in [2] as an admissible problem for justifying
the nonlinear geometric optics method applied to second-order nonlinear hyperbolic
equations on Rd+l, d 2, 3, with quadratic form nonlinearity compatible to a linear
part. However there is interest in studying the problem in its general setting. The
nonlinearity in the spin glass model is not purely a quadratic form. In contrast with

* Received by the editors January 11, 1993; accepted for publication (in revised form) July 7,
1993.

Institute of Mathematics and Physics, Agricultural and Technikal Academy, 85-790 Bydgoszcz,
al. Kaliskiego 7 Poland.
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[2], in our considerations the interval of time [0, T] is not necessary small, but e should
be sufficiently small.

We use the following notation.

Dt [0, t] Rd, Lk Lk(Rd),Hk Hk(Rd) denotes the Sobolev space, 0
01"’" 0d, D 0 0’, a (a0, a’),

=o Il<k
m-1

x., (t) C ([0, t], Hm+-),
/=0

2m,k (t, g0) { {Ue" e e (0, e0]}" Ue e Xm,k (t), for each e e (0, e0),

{{Ur’k (t,)’ (0, e0]} is bounded}.
and

1. Problem (0). On Le, Ne, fe, m, p, q, d, we impose the following hypotheses.
HYPOTHESIS H1. The operator

E at,"(t’x)OO+
t+ll
l<m--1 l<m--1

bt, (t, x, e) 0"0

is regularly hyperbolic on DT [8] in the direction of t, m > 2, the coefficients are
smooth, and DZat,, {elZlDZbt,(., e) e E (0, 1]} are bounded on DT for each 0 <_ <
m- l, lal <_ m andS.

HYPOTHESIS H2. 0 _< q < m- 1, 1 <_ d _< min{2m, 4(m- q)}, when Le, Ne, fe
depend singularly on then p > d/2, and p- 1 in the opposite case.

HYPOTHESIS H3. Ne Cc(DT R(d+l)), We(t, x, O) O, for each t, x, e, and
moreover

(H3a) for lal < q,

(t, X, 7, e) DT Rq(d+l) (0, 1], where M R+ R+ is continuous and nondecreas-
ing.

(H3b) For any {re " (0, 1]} f(m,,(T, 1),

11 s I’ 0"Dve L ([0,t] ,L4)

X IlelblObDCvellLoo([O,tl,L4) }
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where M0 :R+ -- R+ is continuous and nondecreasing.
(H3c) suppNe(t,-, ) C Bp =_ {Ixl <_ p}, for (t, ,) E [0, T] Rq(d+l) (0, 1].
HYPOTHESIS H4. {IIfIIL([O,T],HF) : E (0, 1]} is bounded, and
(H4a) supp fe(t, .) c Bp, (t,) e [0, T] (0, 1].
The fundamental result of this paper is the following theorem.
THEOREM 1. Under Hypotheses H1-H4, there exists 0 (0, 1], that is, for

(0, 0], the problem (0) possesses a unique solution u e Xm,m(T), and moreover

(1.1) {ue" e (0, 01} e Xm,m (T, 0),

(1.2) limP E IlDuellL(Dr) O.
e--*0

Il_<m-1

Proof. The solution u will be looked for as a limit of the sequence u, n >_ 0,
where u 0, and

(1.3) LeuY+1 + PN fe on Dt and t. n+l

0_<l _< m- 1; for n >_ 0.
We have denoted N N(t, x, Du’, I1 <_ q).
In particular Leu fe; hence from [4, Thm. 23.2.2] there exists a unique

solution ul e Xm,m(T), e (0, 1], solving (1.3) for n 0. Moreover, from [8, Whm.
6.10], supp u(t,.) C Bp+bt,(t,e) e [0, T] (0,1] where b sup{lAt(t,x,)l 1 _< _<
m, I1-- 1, (t, x) DT}, At are characteristic roots for the principal symbol of L.

Now, Lu2 f- epN. After using (n3b) together with estimations (A1), (A2)
(see Appendix), we claim that fe -epN e L([0, T],Hm), e (0, 1]. Hence arguing
again in the same way as for u we obtain existence of u2 Xm,m(t), such that
supp u2(t, .) c Bp+bt, (t, ) e [0, T] (0, 1]. The process can be continued step by step,
so for each n _> 0 we obtain the existence of the unique solution u’+1 Xm,m(T) for
(1.3), and moreover

(1.4) supp lt-l-1 (t, ") C gp+bT, (t,) e [0, T] (0, 1].

To proceed with our considerations we need the energy estimate.
Energy estimate. Let v Xm,k(T),Ovlt=o 0,0 <_ <_ m- 1, and Lev

LI([0, T], Hk); e (0, 1]. Then

(1.5) Vm,k (t, ) <_ co o IILv(r,.)llH2dr,(t,) [0, T] (0, 1],

where co > 0 is a universal constant.
This estimation follows from [4, Lem. 23.2.1]. Returning to the proof, we apply

(1.5), with k m, to u+. Because of (1.3) this gives

{ /0(1.6) (U+)m’m (t,) <_ co tK(t) + p IIgn (r,.)llHF dr

for (t, ) [0, T] (0, 1], where, for brevity, we have denoted

K (t) sup {llfllL([O,t],HF)" (0, 1]}.
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Of course (U)(t,e) <_ cotK(t), because N --0.
Our goal now is to show the existence of 1 E (0, 1] such that

(1.7) (UP)m’m (t, e) _< 2cotK (t), [0,T]

n _> 1. To show this, let us note first that from (H3b) together with (A1), (A2),

(1.8)

for (t, x) e [0, T] (0, 1], n _> 1.
Arguing by induction, let us suppose that (1.7) holds for n no (for n 1 this

was already found). Because of (1.8) this yields

(1.9) P [INno (r, ")IIHF dr <_ 2cotK (t) cp-(d/2)A (t),

where A(t) Mo(2cotK(t))(1 + 2cotK(t)).
Because of (1.6) this gives

(U+l)m’m (t,) <_ cotK (t) (1 + 2cp-(a/2)A (t)) (t, [0, T] (0,

So when we choose el (0, 1] such that 1 + 2c-(d/2)A(T) <_ 2 then (1.7) will
hold.

Now it remains to investigate the convergence of un when n --+ c.
Because A tY+1- t satisfies LAn + P(N- N-1) 0 at DT, and

0Anlt=o 0, 0 _< _< m 1, we obtain from (1.5) (with k 0) that

(1.10) (A)m’ (t,) <_ coP IINn (r, .) N:-1 (r,.)llL dr.

Combining the expression

(Nn N-1) (t,x) E N (t,x, rDZu + (1 r)DZun-, Il <- q)

X (Datn-Dat-l)}
with (H3a), (A1), and (1.7) we show that the right-hand side of (1.10) is bounded by
ccoPM(ctK(t))t(Ay)m,(t,), (t,) [0, T] (0,1].

Therefore, whenever 0 (0,1] is such that ccoM(cTK(T))T < 1, then this
yields that

(1.11) {u" n >_ 1}

is a Catchy sequence in Xm,o(T) for each (0, z0].
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From now on c E (0, c0] everywhere in theproof.
We denote by u the limit of u in Xm,o(T). Because of (1.4) we infer that also

Du2 converges almost everywhere on DT to Du when I( <_ q. Therefore, NP
converges almost everywhere on DT to N N(t, x, Du, I(1 < q).

From (1.9) we have

(1.12) f0
T

]]Np (r, ")]]HF dr <_ 2coc-pTK (T).

Because of (1.11) this gives N --+ N in L2(DT),n -- cx, (see [6, Lem. 1.3]).
We see from (1.11) and (1.7) that for 0 < _< m- 1, t E [0,T], Otuln(t, ") -- Ou(t, ")
in H2(m-1)-l when n c.

We write (1.3) in the form PuY+1 f-cpN-SLuY+, where P is the principal
part of L, SL L P. From the above, the right-hand side tends in L2 (DT) to the
limit f cpN SLu, when n -- c. This gives that PuY converges in L2(DT) to
Pu, when n c, because it does in the distribution sense.

By (1.12), N LI([O,T],Hm). By [4, Thm. 23.2.2] this yields that u, as a
solution of Lu f cpN, belongs to Xm,m(T). The assertion (1.1) follows from
(1.7). Since p > d/2, from (1.1) and (A1) we have (1.2). This finishes the proof.

By suitable modifications of the scheme of proof we can obtain the following
results.

PROPOSITION 2. Under Hypotheses H1-H4 there exists To (0, T], that is, for
each c (0, 1], problem (0) possesses a unique solution u Xm,m(To), and moreover

{u: c E (0, 1]} e fim,m (To, 1), lim cp E--+o ][DuI]L(DTo) O.

PROPOSITION 3. We admit Hypotheses H1-H4 with the following modifications:
(i) in Hypothesis H1 the dependence of all bl,a on c is nonsingular,
(ii) in Hypothesis H2, p 1;
(iii) in Hypothesis H3 instead of (H3D) we impose the inequality for v e Xm,m(T)

where on the left-hand side we have Hm instead of Hn and on the right-hand side
instead of Ym’m (t, c) we have

m--1

/=0

and c 1;
(iv) in Hypothesis H4, {]]f]]L([O,T],H.: C e (0, 1)} is bounded.
Then there exists co e (0, 1], such that for each c e (0, col, problem (0) possesses

a unique solution u Xm,,(T), and

is bounded,

(1.14) lim IID"uIIL(DT) O"
--0
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Remark 4. Each solution u obtained in Theorem 1, Propositions 2 and 3 satisfies
supp ue(t, .) C Bp+bT, t E [0, T], for those under consideration.

Comments. Proposition 2 is an analogy of [2, Prop. 3.1]. We can also formulate
the time-local version of Proposition 3, similar to Proposition 2. Whenever we impose
Hypotheses H1-H4 without (H3c), (H4a), then Theorem 1 and Propositions 2 and
3, reformulated in local space, remain valid; see [2]. Condition (H3b) is not a most
general condition, for the scheme of proof of Theorem 1 can be proved. Such a type of
inequality as in (H3b) is observed in the spin glass model. However, on the right-hand
side of (H3b) we can consider Lp norms, p 4, p > 2, as well.

2. The stability problem. Let u C(DT) be a solution of

(2.1)
Lu + F (Du, lal <_ q) f (t, x); (t, x) e DT,

Ou[t=o =ut, 0<_l<_m--1,

and Du is bounded on DT for each
Consider the perturbed problem

Lu + F (Dau, Ial <_ q) f (t, x) + pge (t, x); (t, x) e DT,

0</<m-1.

Assumptions about L,F,g,vt,O <_ <_ m- 1,p,q,d,m, will be given later.
We seek the solution of (2.2) in the form

(2.3) u u0 + zv (v + w),

where v En___ tlVl
We find that we should satisfy

Lw + pNe (t, x, Daw, lal <_ q) fe (t, x); (t, x) DT,

Ow[t=o =0, O<l<m-1,

where

We assume that (i) L satisfies Hypothesis HI, but coefficients do not de-
pend on ;

(ii) F C(Rq(d+I)) is such that the condition (n3b) for N holds. For example,
if the dependence of F on Du, 1 _< lal _< q, is quadratic, then the latter takes place;
see 3.3. Moreover we assume 0 <_ q <_ m- 1;
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(iii) vz E C(Rd),supp vz c Bp, 0 <_ <_ rn- 1;
(iv) if g depends singularly on we suppose that this satisfies Hypothesis H4.

In the opposite case this satisfies condition (iv) in Proposition 3 and (H4a);
(v) p, d satisfy Hypothesis H2.
Whenever we apply Theorem 1 or Proposition 3 to the problem (2.4) we imme-

diately infer the following result.
COROLLARY 5. Under the above assumptions, there exists 0 E (0, 1], that is, for

e (0,0], problem (2.2) possesses a unique solution u e Xm,m(T), and

m-1

(2.5) lim EIIO (u uO)IIL([O,T],H, O,
--0

l-1

/=0

(2.6) lim Ee--0 [ID(u-u)llL(D) --0.

Example 6. We consider the problem having its origin in the spin glass model;
see [1], [7] and 3 of this paper. We have

(2.7)
[:]u

l + u
IOtu]:

Oltu--ut+hvt; 1-0,1, fort-0,

(t, x) DT C R R3

where K] 0t2 (012 + 0 + 0), g L([0, T], H2), supp g(t, .) c Bp for t E [0, T], 5
[0, 1]. For ut, vt, we impose the same assumptions as in Corollary 5.

When 5 0, the solution u0 of (2.7) has the following form [7]"

( /0u (t, x) tan arctan u0 (x) + (r, x) dr(e.s)

where is the solution of

3

[-]=0, t=0- (l+u)’ Ottt=o E Oz
l + u/=0

When u0, Ul 0 then u 0. It is possible to choose assumptions on u0, ul [7]
so that u given by (2.8) is nontrivial and exists globally on R R3. Therefore we can
make the assumption that u0, Ul admit the existence of u on DT. From Corollary 5
we have that there exists 50 (0, 1] such that for each 5 (0, 50], the problem (2.7)
possesses a unique solution u5 X2,2(T), and

(2.9) lim E IIO (u5 uO)IILo([O,T],H_) 0
8---0

/=0

(2.10) lim E liDs (u, uO)IIL(DT) O.
5---0

3. Model of the spin glass.

3.1. Description of the model. We consider the model of Andreev and
Marhenko [1]. Let the orientation of spins of a spin glass material in an equilibrium
state be described by the field Mo R3 -- ,2; $2 is the two-dimensional sphere.
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We assume the following situation: At the noment t 0 the material is in an
equilibrium state, and then an external magnetic field is switched on. The influence
of the magnetic field on the orientation of the fields is described by the law

2v

II’v’2 (v x Mo + v x (v x Mo)),
1 +

where M =_ M(t, x) E S2 describes the orientation of spins for t > 0, x denotes the
vector product in R3, and v R R3 --+ R3 satisfies the system

(3.1)

i_iv (1_,Vl2)_1 ( 3

12 )Otlvl2otv-EOklv OkV +OtU
k--1

-J,- Ot (H x v)+ (1 + Iv,2)
-1

(2 <Otv, H -- H x v>- )t Iv’ 2 (H -- H x v)) -O;

here H denotes the external magnetic field, (.,-> denotes the euclidean scalar product.
The appropriate initial conditions for v will be

(3.2) Ov I=o o, O, 1.

In this paper we reduce to the case H (HI, 0, 0), Hi(t, .) -f f(r, .) dr; f
is a rapidly oscillating function and will be described later, E (0, 1]. The uniqueness
theorem [5, p. 48] allows us to seek the solution v of (3.1), (3.2) in the form v
(u, 0, 0), where u satisfies

(3.3)
Oult=o =0, /=0,1.

Here we have denoted a(u) 2u(1 + tt2) -1.
Below we consider the problem (3.3) on DT C R R3; T > 0 is given.
The function f will be considered in the form

f (t,x) f (t, x,-’ (t,x),),
kEK

where K is a finite set of indices, for each k K, fk(t, x, O, ) is periodic with respect
to 0 with period 2.

HYPOTHESIS H5. (i) fk
(t,O,) e [0, T] [0,2r] [0, l],k e K.

(ii) Whenever

f (t, x, o, ) f2 (t, x, o) +f (t, x, ) + :f (t, x, o, ),

then we impose f (0, x, 0) 0(x, 0) e R3 [0, 27r1,1 0, 1, k K.
(iii) Let

2r

k K, hf’ E hf’ /-0,1,2
kEK
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then we impose hf 0, k E K, and hfo is so small that the problem (2.7) in Example
6, with the right-hand side hf instead of 5g, has a solution on DT satisfying Oult=o
O, --0,1.

HYPOTHESIS H6. (i) Ck E C(DT) and IOtCkl2 --IVxCkl2 0 on DT, k K.
(ii) dpk 0 on DT, k e g.
(iii) For each k 1, IB(dCk,dl)l >_ c > 0 on DT, where we denote B(df, dg)

3OtfOtg = OfOg.
This hypothesis immediately yields the following results.
Remark 7. We have

(3.4) OtCk # O, Vxk#0 onDT, k K,

for each k 1, d (C1k -- C21) 0, and ClCk -- C2Idoes not satisfy the eikonal equation on DT.
Here cl, c2 =/- 0 are constants.

3.2. Construction of the asymptotic solution.
The asymptotic solution e of (3.3) will be constructed by the nonlinear geometric

optics method [2]. So e will be looked for in the form

(3.6)

e (t, X)--t0 (t, X)--S {V0 (t, X)-- E ulk (t, X,-lCk)}
kEK

we have denoted k- (1, k2, 3), and
PROPOSITION 8. There exist u, v

K, u, v C(DT x [0, 2r12), e K2, u e C(DT x [0, 27r]3), e K3, such that

[5]te a (te) (lOttel 2 -]Vel2) fe e2Re, Orate It=o 0,

where {IID"Re: e (0, 1]} is bounded in L(DT) for each multiindex a. Moreover
(i) all the functions quoted above (without Re) and their first derivatives with

respect to t vanish at t O.
(ii) There exists a ball B, Bp c B, such that supports with respect to x of all the

functions quoted above, together with Re, are contained in B.
(iii) uk, v, k e K, are periodic with respect to with period 27r and their mean

values with respect to over [0, 2] equal O. The same property with respect to , 2
2 K2 and also foru, K3 with respect to 0,2,03[0,

Proof. We insert into (3.3) the function e in the form (3.6) and collect the terms
of e and e. This leads to equations describing the functions quoted in Proposition 8.

Step 1 Determination of u u k K, u2 k(k,l)
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The expression, which stands at o, is a sum of left-hand sides of the following
equations:

(a.s) E {2XkOouk 2a (u) B (du, dCk) Oouk + hf f} 0,
kEK

(3.9)
(k,l)GK

where we have denoted Xk OtkOt 3El-----10lCkOl, ]g E K.
Equation (3.7). Under the assumption on hf we can infer from the considerations

proved for Example 6 that there exists a solution of (3.7) having the initial datum
zero and having the desired properties. The smoothness follows from the smoothness
of hf, and the assertion concerning support follows from compactness of the support
of hf and Remark 4.

Equation (3.8). We seek the solution of (3.8) satisfying u(O,x,O) 0, k E K.
First, let us consider the following admissible problems:

OtWk--(OtCk) -1 OlCkOlWk + a(u) B (du,dCk)wk + f (t,x,O) hf (t,x) 0,

Wk(0, X, 0) 0, for k K.
There exists a good theory [4], [8] for such linear problems. Therefore there

exist smooth solutions wk such that supp wk(t, .) C B,t [0, T],k K. Moreover
it is not difficult to observe that wk are periodic with respect to 0 with period 2.
After integration of the equation for wk with respect to 0 over [0, 27] we claim that

f: wk dO solves a homogeneous problem, so equals 0. Therefore,

satisfies

ulk (t, X, O) Wk (t, X, S) ds (27) -1 Wk (t, x, r) dr ds

2XkOoul 2a (u) B (du, dOk) Ooul + hf f 0,

and has the desired properties.
Equation (3.9). For k l we put uk,l)(t,x, Oi,02) a(uO)uk(t,x, O1)u(t,x, 02).

The terms with k are not important in (3.9) because B(dCk, dCk) O.
Determination of v v, u2 k K, 2 K2 K3

The expression standing at is a sum of the left-hand sides of the following
equations:

(3.10) K]v 2a u B (du dv a’ u B (du, du v hf 0,

(3.11)

E {2 [XkOov a (u) B (du, ddpk) Oov]
kK

2a(u) (B (du,du) + B (du,da)Oeulk) a’ (u) (B (du,du)ul
+ 2B (dU, rick)vOoul) + hf f } 0,
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(3.12)
kEK

(a.la)
kl

22 B (dkl, ddpk,.) [0, Oe,.uk a (,.0) (0110o2’’(kl’,k2)
EK

k2 ul 00110021a (uO)

(3.a) + B (d: d)[00 k2

+ 0031k302kl k2))_ {a (0) 021k2003113
+ B (dCk, dCka)[0010eau a (u) (Oe, u, OeaUk=,ka)

where we have denoted

(,) (Oel + &=),) (o) {IS (&o, d) &,

%Oe=v +
[B (d, d1) Oeli + B (de,, di) Oe=] } a’ (o) {B (d, de,) o

X00oo=, + [B (o )Oo,i + B (o, ,)IOo=1] }.
Equation (3.10). We consider the solutions subject to initial conditions Ov,=o

0,1 0, 1. The problem is linear, so it can be solved by known methods.
Equation (3.11). We consider the solutions subject to initial conditions

v(0, x, ) 0, (x, ) e R3 x [0, 2u], k e g. The problem is solved by the same ar-
gument as used for (3.8).

Equation (3.12). The structure of the equation and of G(k,k),k K, suggests
that we seek uk,k (t, x, , ) as a solution of

(k a (u) B (duo dCk))u2

{ (0) d -at }( + B (d, )) (o) B (&o, d) ()= -0,

u,) ]t=o 0, for k e K.

This problem can be solved by the same argument as for (3.8).
Equation (3 13) We put v2(,) -(2B(d,d))-{O()+2X(&,, +0e=)=(,)}

when k l, and v2 0.(k,k)
Equation (3.14). For k ke ka weput u 0, for k # k= # ka, u

a,(o))(a2(u) + g ,= u,. In the latter formula we have taken into account the
form of u, for 1 2.

Now we fix our attention on (k, l, 1), k 1. The remaining cases for can be
a satisfyinginvestigated by analogy. So, we musg find u(k,Z,z
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Taking into account the identity

001tl,1 [01--02 O03tl,1 [01--02,

and the form of u2 k : we ensure the functions(k,l)

?-tk,l,l (’, 01,02, 03) a (U0) (-, 01) l,l) (’, 02, 03)
a2 (u0) + a 01)+( ()) 4 (.,

[ i
( (., 0 ( (., 0 e0

enjoy the conditions of the Proposition.
The properties of R can be followed from its exact formula, but we omit this

because of the tedious notation. More information about Rs will be given in a.4.
3.3. Existence of the solution and validity of the asymptotic develop-

ment.
PROPOSITION 9. There exists o (0, 1], such that for each (0, o] the problem

(3.3) has a unique solution u e X2,2(T) C(DT), and

(3.15) lim 0 (ue )L([O,T],H_) 0
e0
0

(3.16) lim IID (u )IIL(D) 0
0

I11

(3.17) {1 }IIIIO"OIIL(IO,TI,H_) (0,03
1-o 11<2

is bounded; here re -2(ue
Proof. For re we derive

(3.18) [:]re + 2a (Se) B (de, dre) + here + e2Ne (t, x, Dare, I1 1) Re

at DT, and Orelt=o- O, 1- O, 1.
We have denoted he a(fe)B(dfe, dfe),

where

Ne a (re) B (dre, dre) + 2a’ (re)reB (dfe, dre) + 2a’ (f) reB(dre, dre)
+ 1F (t, x, re, ) [B (dfe,dfe) + 2926 (dfe, dre) + 46 (dre,

P

F (., re, ) (2e2) -1/_ a" (s) (fie + e2re s) ds.

The sum of the first three terms in Ne we denote by Nle and by N2e the remaining
terms. Our idea of proving the proposition is to apply Theorem i to the problem (3.18).
Therefore it remains to verify Hypotheses H1-H4. It is obvious that the operator Le
defined by Lev =- [:Iv + 2a()B(d, dv) + hv satisfies the conditions of Hypothesis
H1. Because m 2, p 2, q 1, d 3, Hypothesis H2 is satisfied. om the exact



SMALL NONLINEARITY 1315

formula for Re it can be concluded that this satisfies H4. It only remains to verify
the condition (H3b) for Ne. Therefore, let {v’e E (0, 1]} E X2,2(T, 1). We can derive
that

In N2 we examine only F, because the remaining terms are the same as in NI.
We begin from the following observations:

(i) I1 _<, bcus la"l _< 10.
(ii) For lal- 1,

whence
After differentiation of the formula for OF given above we derive
(iii) for lal 2,

+ 2
( {(,-r):

+ +

These allow us to derive

q- V2’2 (t,g) (,1<_ IIDv[[L(D)

which finishes the verification of (H3b).
Hence, we are in a position to apply Theorem 1 to the problem (3.18). The

smoothness of the solution re follows from the theory of propagation of the regularity.
Let us remark from (3.17) that {IIrIIHI(DT): (0,0]} is bounded. Hence,

there exists in H (DT) the weak limit r0 of re, when --+ 0.
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3.4. Investigation of to. After detailed examination we can distinguish in Re
the following parts"

Re a(u) (B (dvo, dvo) -t-
(t:,l)eK

B (dulk, du)

+ IeKE (kKE U (d’, rick) Oov + gKE IS (d’, rick1 0Ol

/=1 K

where the functions R(t, x, ), R (t, x, ),R(t, x,) have, respectively, the proper-
ties of u, u, u} described in assertions (ii) and (iii) of Proposition 8.

We divide the expression contained in brackets {..-} into the following parts"

(3.19)
3

{...} R0 (t, x) + (t, x,
/--1 eK

where/,/,/- have the same properties as R, R-, R, respectively.
HYPOTHESIS HT. For any integers nl,n2, n3 0, and any kl k2 k3,
3d(El= nld/)kl) 0 on DT.
PROPOSITION 10. Under Hypotheses H5-H7, there are

f

e--+01im /R (t, x, -) (t,x) dtdx 0,

lim R (t,z,e-)p(t,z) dtdz 0, fork e/1
---0

1, 2, 3,

and for any E C(DT).
Proof. It will be enough to make the proof for R, E K3. Therefore, let us

consider the Fourier expansion

(3)R(t,x,t?): E an(t,x) exp iEnOt
Z /--1

The properties of R lead to the following conclusions"
(a) a(o,o,o) 0;

3(b) if k (1, l,/), K, then aa 0 for each such that t= nt 0;
(c) if k (k,l,1),k 1, k, K, then aa 0 for each such that np

O, nq + nr 0, where p q r,p,q,r {1,2,3}.
Let us consider In(c) fan(t,x)(t,x)exp(is_ 3E/=I rtlk,) d where an = 0.

Because of dCk =/= 0, k K, of Remark 7, (3.5), and Hypothesis H7, in any case, there
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will be d( 3E/=I nlCk) 0 on DT. Hence, from the localization principle [4, Thm.
7.7.1], lime-,0 I(e) 0. This gives the result.

PROPOSITION 11. Let Hypotheses H5-H7 hold. Then ro is a distributional solu-
tion of the problem

(3.20) [:]ro a (u) B (duo dr) a’ (u) B (du, du) ro a (u) R,
at DT, ro 0 for t < O.

Outline of proof. From (3.18) and the boundedness of re in HI(DT) we infer the
following fact.

Fact 1. {llOrllL(D) e e (0, e0]} is bounded.
Now, it will be useful to rewrite (3.18) in the form

(3.21)

[:]re a (u) B (du, dre) a’ (u) B (du, du) re Re + R2e
+a(u) E Oou (t,x,e-k)B(dCk,dre)

kEK

+ a’ (u)re EOoul (t,x,e-lCk)OOU (t,x,e-ldpl)B (dCk, dl).
kl

From Proposition 10 we ensure the following facts.
Fact 2. We have that

lim /(Re + R2e)99dtdx -/a(u)R99dtdx,e---O
v e cF (Dr).

Fact 3. We have that

Proof. The use of Fourier series expansions for Oou, j k, l, with respect to 0,
changes the problem into

lim /exp (i-1 (roCk -[- net))B (dCk, dCt)rea’ (u) 99 dt dx 0, rn, nO.

Because of the strong convergence of re to r0 in L2(DT), when - O, it will be
enough to check that

lim / exp (i- md/)k -[- net)) n dt dx O, n_>l,

where Xn e C(DT) and n converges in L2(DT) to B(dk,ddpl)roa’(u)99 when

But the latter follows from the localization principle because d(mCk + nl) 7 0
(se (3.)).

Fact 4. We have that

lim/a(u)99 E Oul (" -lCk)B(dCk’ dre) dtdx= O,
e---+O

kEK

for any 99 E C (DT).
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The proof of this fact is given in [2] (see Lemma 3.2). We only inform the reader
that the proof is based on one version of the compensated compactness theorem [3]
and that Fact 1 is needed for this. Now, we multiply (3.21) by E C(DT), integrate
over DT, and pass to the limit --. 0. Because of Facts 2-4 this yields the assertion
of Proposition 11.

Appendix.
PROPOSITION A1. Let 1 <_ d < 2k, k integer, then

c is a universal constant.
Proof. We have that

When d < 2k, the first multiplier is finite and equals C-d/2

COROLLARY A2. Let d < 2m, {v" e E (0, o]} Xm,m(T, o), m >_ 2. Then

(A1) E
m--1

=o I,1<_-

for each (t, e) [0, TI x (o, eo].
PROPOSITION A3. Let 1 _< d < 4k, k integer, v Hk(Rd). Then

Iol<k
c is a universal constant.
Proof. We have that

/

I1

3/4

(/(1+ ll, 14/3 (1 --t--I, 2) 2k/313/4,L:,."
When d < 4k, the first multiplier is finite and equals C-d/4.
COROLLARY A4. Let d < 4(m- q), 0 < q < m- 1, m >_ 2. Then for any {v"

(0, o]} f,,m(T, o),

(A2)

[[__q

m--1

IIinidnD<vll,=(io,,l,s_,4)-< c--d/4 2 IIi<i@0lvliL=(Io,,l,---’-’)
=o I,1<
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for each (t, x)E [0, T] (0, o].
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NONLINEAR PERTURBATION OF BOUNDARY
VALUES FOR REACTION-DIFFUSION SYSTEMS:

INERTIAL MANIFOLDS AND THEIR APPLICATIONS*

YOSHIHISA MORITAt, HIROKAZU NINOMIYA$, AND EIJI YANAGIDA

Abstract. The asymptotic behavior of solutions to a reaction-diffusion system with nonlinear
boundary conditions is discussed. It is assumed that the boundary values are controlled by a positive
parameter e and that the boundary conditions reduce to the homogeneous Neumann boundary ones
if e tends to 0. Under appropriate conditions it is shown that for each small e there exists an inertial
manifold j/Ie, that is, a finite-dimensional Lipschitz (or C1) manifold which is invariant and attracts
every solution exponentially. Moreover, it is proved that as e 0 the manifold Ade converges to
which is the one for the homogeneous Neumann boundary conditions. The dynamics on the manifold
are investigated through the reduced ordinary differential equation on it, called the inertial form, for
specific cases; for instance, a specific example shows that the boundary values induce a relaxation-
oscillating periodic motion in the manifold while every solution converges to a steady state in the
case e 0.

Key words, nonlinear boundary condition, inertial manifold, inertial form, cone property,
relaxation oscillation

AMS subject classifications. 35K57, 35K60, 35B40, 35B10

1. Introduction. Inertial manifold theory for evolution equations has been an
extensive subject since the pioneering work by [9] was published. Here the inertial
manifold is defined by a finite-dimensional Lipschitz (or C1) manifold which is pos-
itively invariant and attracts every solution exponentially ([5], [6], and [7]). When
such a manifold exists, the asymptotic behavior of solutions can be described by a
finite-dimensional system (ordinary differential equation (ODE) system) on the mani-
fold. Therefore, this theory plays a crucial role in the understanding of some dynamical
properties of the equation. In particular, for reaction-diffusion equations in a bounded
domain, the inertial manifold theory was developed by the work [18] under the Neuo
mann, Dirichlet, or periodic boundary conditions. In a general situation, however, it
is difficult to verify whether the evolution equations possess their inertial manifolds
or not [17]. Moreover, there are not many examples for which the dynamics on the
manifold are exhibited concretely (cf. [19] and [20]).

In this paper we will discuss the existence of the inertial manifold and its applica-
tions for a system of reaction-diffusion equations in a bounded domain supplemented
with a nonlinear boundary condition. Let c In (1 _< n _< 3) be a bounded domain
with a smooth boundary OFt, and consider the equation

(1.1)
0u
Ot

DAn + F(u), (t, x) E + gt,
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1993.
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Japan.

Department of Applied Physics, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku,
Tokyo 152, Japan.

Department of Information Science, Tokyo Institute of Technology, Oh-Okayama Meguro-ku
Tokyo 152, Japan.
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subject to the nonlinear boundary condition

(1.2)
Ou
o---;

Here + (0, oc), D =diag(dl,... din)

(t, x) E IR+ x Ogt.

(di > 0),

and

D(A) u E H2; - =0on0gt

Ay Ayy,

(j, Ck) fa Ck(x)" Cj(x)dx 5jk,

where u. v (u, v Rm) denotes the inner product of It(m and 5jk is the Kronecker
delta. Let us define the projection operators in L2 as follows:

N

(1.4) P’u E(u, Cj)j, Q I- P.
j--1

We smoothly modify the functions F and G outside the region

so that

(C.1) F(u)=-u, G(u)=O foru, lul>2R,

that is,

a + + + e

and e is a nonnegative parameter. The functions F and G are assumed to be so
smooth that (1.1) with (1.2) may have a unique local solution provided that initial
data are chosen in an appropriate function space (for the existence theory, see [10]).
If the equation is dissipative, that is, there exists a bounded set B (absorbing set)
such that every solution enters B at a finite time t to(B) and remains for t >_ to(B),
then we can assert the existence of the maximal compact invariant set attracting every
solution, called a "global attractor" (for the condition of the existence of the global
attractor, see [12] and [24]).

Our main purpose in the study of the system (1.1) with (1.2)e is to show that, for
each small e, there exists a C-inertial manifold A/[ containing the global attractor
under a certain condition. We also show that the manifold A4e converges to A/J0 as
e 0, where A/t0 is the manifold for the Neumann zero boundary condition. Remark
that although our interest is mainly in the dissipative equations, our result is also
applicable to studying some dynamical property of nondissipative equations (see 4).

Before stating our main results, we introduce some notations. We denote by
Hk(2, Rm), k 1,2,..., the subspace of L2(gt, m), whose derivatives of order up to
k belong to L2(, ]m). We will often abbreviate L2(, ]m) and Hk (t, Im) as L2 and
Hk, respectively. Let {Aj }j=,2,.. and {j }=,2,.. be eigenvalues and the corresponding
normalized eigenvectors of A -DA + I with the domain
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where R > 0 is taken so large that {u E m; lu < R} contains all the bounded
solutions in our interest. One may think that the condition (C.1) seems to be too
restrictive. However, as far as a bounded solution is concerned, this modification
does not cause any change by taking R sufficiently large; see Corollary B. Under the
condition (C.1) the equation has a unique global solution u(t, x; no) C([0, oc); L2) CI
C((0, cx); H2) for any initial data uo H2. Moreover, it is shown in 2 (Proposition
2.2) that there is an bsorbing set B in H2. We define a solution map Se(t) H2

H2 (t 0) by S(t)uo u(t,. ;no). Note that the mappings

define smooth functions of H2 into itself and H(0;m) into itself, respectively.
Now we re ready to state our main result.
THEOREM A. I addition to the condition (C.1), assume that there exists a pos-

itive integer N such that

(C.2) N+I N > CF,

where CF is some positive constant which is determined by the function F (see 3.1
for the definition of CF). Let B1 be an H2-bounded absorbing set. Then there is a
positive o such that for each [0, e0] there exists a C-ineial manifold C B
satisfying the following:

(i) e is positively invariant, that is, Se(t) c (t O) and there exists a
C function " PH2 (I P)H2 such that graph(O) B.

(ii) For any solution u(t, .) in B of (1.1) with (1.2) there is a po e PH2 such
that

I]u(t, .) ,(t)(po + O,(Po))IIH c-ll(o, ) po O,(Po)IIH (t 0),

where and C are some positive constants independent of the initial value u(O, .).
(iii) As O,

’(P)
H

Oo(P)
OO,(p) OOo(P) H2

uniformly in p PH2.
(iv) The inertial form (the reduced ODE) on the manifold is wtten as

N

j=l JO /

Because of the nonlinear boundary condition we encounter some technical difficul-
ties for the proof of this theorem. First, the equation (1.1) with (1.2), does not admit
the variation-of-constants formula or the abstract ODE in any state space. There-
fore, it seems to be difficult to apply the inertial manifold theorem [9], bed on the
Lyapunov-Perron method, to our case. To overcome such a difficulty, we will use the
graph transformation method due to Hadamard. Such an approach has been taken by
Mallet-Paret and Sell [18] for solving some delicate and important problems regarding
the existence of an inertial manifold for a scalar reaction-diffusion equation with the
conventional boundary condition (see also Bates and Jones [3]). The graph transfor-
mation method is based on some geometric property of the semiflow, called the cone
property, and it does not require the variation-of-constants formula for proving the
existence of the manifold (cf. [22]). Second, we have to discuss the existence problem
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of the inertial manifold not in the L2-framework but in the H2-framework in order to
investigate the dynamics on the manifold through the inertial form. Indeed, as seen
in (iv) of Theorem A, the inertial form has the integrated terms over the boundary.
This implies that if one constructs the manifold in the L2-framework as [18] does, even
the Lipschitz continuity of the inertial form cannot be guaranteed. However, such a
difficulty can be overcome provided that one constructs the manifold in a more regu-
lar space. In this paper, as mentioned above, we will discuss it in the H2-framework
because it seems to be appropriate for (1.1) and (1.2).

We will give some corollaries of Theorem A which are more convenient for appli-
cations. The next corollary holds even if the condition (C.1) is not satisfied.

COROLLARY B. Let u(t) be any solution of (1.1) with (1.2) satisfying IlUellLO
_

R (-oc < t < oc, 0

_ _
o). Then this solution is in .h/I,, constructed in Theorem

A.
If we can take N m in Theorem A, we have

I
and we can show that ,(p) converges to a ero function. In other words, the manifold
converges to the m-dimensional subspace which consists of constant functions in x-
variables. More precisely, the next result holds.

COROLLARY C. Let a2 be the second eigenvalue of-A with the homogeneous
Neumann boundary condition. Assume the same conditions in Theorem A under
N=m, namely, C. 1) and

(C.2’) Am+l min{dl,..., din}a2 > CF.
Then the function can be expanded by e as

+
where ,(e,p) and its first derivative in p are bounded in p. Moreover, the inertial

form is written as

I01DG(p) + eR(D e, p)+

OR(D,e,p) O(eSd. (uniformly in p),IR(D, e,p)l O(ed.), Op

where is some positive constant and d. min(dl,... din) > O.
We see from this corollary that with e 0 the ODE on the manifold is given by

(.) p F(p).

This implies that in the case of the homogeneous Neumann boundary condition, the
asymptotic behavior of the solutions is completely determined by the ODE of (1.9).
This observation is consistent with the work by Conway, Hoff, and Smoller [8] and
Hale [11]. One may think that the dynamical structure of the ODE of (1.8) with
e > 0 is the same as that of (1.9). We can, however, present specific examples for
which their dynamics are drastically changed through the presence of the boundary
condition (1.2), (see 4).
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Finally, -we note that our method is applicable to the case where the diffusion
constants depend on the parameter e. For example, the following corollary holds.

COROLLARY D. Assume that the diffusion constants are given by

d
di =--, 1,2,... ,m.

If (C.1) holds and e is sufficiently small, then the same conclusion as in Theorem A
holds with N -m, and the inertial form is given by

(1.10) Pt F(p) + aDG(p) + O(e),
where

(1.11) diag (l, (2,..., m), O

In relation to Corollary D we remark on the study by Hale and Rocha [13].
They considered the case where the boundary condition is linearly perturbed and
obtained some results similar to Corollary D. We can derive some of their results from
a direct application of Corollary D. Their approach is based on studying the behavior
of eigenvalues of -DA with their linear boundary condition as e --. 0. So we cannot
apply their technique to the case of nonlinear boundary conditions. Moreover, in order
to prove Corollary D (not to speak of Theorem A) we have to evaluate the boundary
values with much more attention, which will be seen in the successive sections.

2. Preliminary.

2.1. Notation and auxiliary inequalities. We introduce function spaces and
their norms which will appear often in this paper.

Lp(; ]m) the set of pth power integrable functions from 12 into Rm,

]]UlILp u dz u e nP(n;Rm),

Wk’p(;m) the set of functions whose derivatives up to k

in the distribution sense belong to LP(;m),

Oxi .Ox jT"’Tjnk LP

We simply write

Lp LP(gl;

and in the case p-- 2,

Hk Hk(2;iRm) Wk,2(; ]Rm).

In addition to the above notation we will abbreviate the L2-norm, i.e.,

I1 11 II IIL - e L2).
Similarly, we define the function spaces LP(Ot2; ’), wk’P(O; ’), and H(Ot2; m)
and write

LP(OQ) LP(OQ;IRm), Wk’P(OQ) Wk’P(OQ;m), Hk(OQ) Hk(OQ;IRm).
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Their norms are denoted by

respectively. Define the operator A by

-DA + I,

with the domain

D() H2.

Let the operator A be as in the Introduction. Then

Au Au, u E D(A).

Note that

PAu-- APu,

We define the fractional power A8 (s >_ 0) of A as usual, that is,

ASu E A(u, cj)j, u D(A).
j=l

Denote

(u, V)l (D1/2 Vu, D1/2 Vv) + (u, v), U, v HI,

This norm I1" II1 gives equivalent topology to that of Hi-space. By the assumption
1 < n < 3 we have

D(A H2 3
--4’

in particular, D(A1/2) H and

u e D(A1/2).
We place some inequalities coming from Sobolev embeddings, trace theory, and [1]"

w.-,(oa)) -> o).
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From the above inequalities we have

[[u[[ 2 .fo DAu + ul2dx

=[[DAuI[ 2 + [[u[[ 2 2 ./ u. DAudx

>_[[DAu[[ 2 + [[D1/2Vu[[ 2 + [[u[[ 2 2 ON

>Cllull- c’llll- c’ 11H(0a)

The next lemma immediately follows from the above inequalities and the definitions
of A and A.

LEMMA 2 1 For u, v H2

OuOu
C’IlUlIH + C(i) C-IlUlIH IIul + CluII + C N H<Oa)

(Au, v) + v DdS,(ii) (u, Av) + u DNeS (,)

 11HI(O)
n n )+ <30<3

Especially if II o-5-511HI(On) <-- CellUllH(On), then the boundary data appearing in the
inequalities (i), (v), and (vii) can be removed.

For simplicity of notation we will, hereafter, denote most of the constants in the
computation by CN if they depend on ,g; otherwise we will denote them by C. We
also abbreviate the inner product u. v of ]m a uv. To avoid troublesome expressions,
we write

IFI- sup IF(u)[, IFI sup
OF

e =( e Ou
+...+k

for any function F(.) from Nm into Nr.

2.2. Existence of an absorbing set. We set F(u) F(u)+ u.
co.ndition (C. 1)

(C.I’) /(u) 0, a(u)= 0 for ]u > 2R.

By the

Then the equation (1.1) is written as

(1.1’) Ot
DAu + u (u).
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Taking the inner product between u and (1.1’) and integrating by parts yield

ld
2 dt Ilul12 -(u, u) / (F(u), u)

1 2 1<--I + R2

where Ro C(]{ + ]eG]). Hence

o {u e H; u} R0}
is an absorbing set.

Next we discuss the existence of an H2-bounded absorbing set. By (C.I’), we
may consider the solution with ]U]L R. In a manner similar to the L2 ce above,

ld
2 dtu2 (2u’ u) + ((u), u)

+ f +
Jo

-IIull + AuDN (- u + (u))dS

Prepare the inequalities which follow from Lemma 2.1 (v):

By these inequalities, we have

+ +e).
The term integrated on the boundary of (2.1) is

o(- + F()) -a’() + P()Ou
by which

0

n fiuD-u(-ut + (u))dS

_< c(1 /

Substituting the above inequalities into (2.1), we get

1 d
iiull 2 < 1 1

2 dt -- Ilftull + -R,
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where

R1 C(I/[2 + I/12 + e1/2).

Hence we have the following proposition.
PROPOSITION 2.2. There exists a positive constant o such that

is an absorbing set for each e <_ co, where RI is a constant that depends only on o.
Considering this proposition, we make a modification of the equation outside B.

Let R’ be a number satisfying

B C {u p+ q e H2; p Pu, q Qu, I[Ap]l 2 + [[q[[ _< n’2}.

From now on we consider the following modified equation instead of (1.1) and (1.2):

Pt + Ap f (p + q),

qt + Aq f2(p + q),
Oq

+

where

f (P + q) X(IIAplI2 + Ilql12) P(P + q) + E e DG(p + q)jdSCj

f2(p / q) X(IIApll 2 / Ilqll2)(p + q) fl (p + q),

+ x(lld ll + Ilqll l)a( + q),

and X is a smooth function satisfying

1 (0 <_ r <_ R’2),
x(r)

0 (r >_ 4R’2).

We simply say that u(t) p(t) + q(t) is a solution to (2.2) for p(t), q(t) satisfying
(2.2). This modification also guarantees the existence of an absorbing set for (2.2).
Furthermore, we see that there is an H4-bounded absorbing set.

PPOPOSITION 2.3. There exists an absorbing set B2 (D B1 for (2.2),

Moreover, there exists a number R3 > 0 such that

is an H4-absorbing set for (2.2), where R3 is chosen independently of N.
Proof. The estimates of Ilull, IIAull are obtained similarly. Now we prove the



NONLINEAR BOUNDARY VALUES AND INERTIAL MANIFOLDS 1329

existence of a bound of IIqll. By taking the scalar product, we have

ld
2 dt

112q112 =(2q’2qt)

=(ft2q,iqt) + t2qD-utqtdS
ll]2qll + fo 2t2qD 0

a -u (-qtt / f2 (P / q)t)dS

+ (2,q, 2f(p + q))l.

We use the following lemma.
LEMMA 2.4. For a solution p + q of (2.2) with Ilfiqll <_ 2R1,
(i) IIif(p + q)ll _< {c( + I1)( + n) + C}( + @ + IIiqll),
(ii) IIDo-(-qtt + f2(P + q)t)lli2(Oa) <_ eCN(1 + 112q111).
The proof of this lemma is given in the Appendix.
Set

C1 C(1 + I/’11)(1 + R1)3 + eC.

By virtue of Lemma 2.4 we have the following inequalities:

ld
2 dt

11"2q112 <- --11t2q112 + CN(llfI2qlll 2_ R1)(1 ._ 112q111)

-F Cll]2q[ll(1 -F AN + R} ]l2q[[})
1 4 2< i2qIl / cx Rx / CN,2

where we used Lemma 2.1 (v) and Schwarz’s inequality to obtain the second inequality.
Hence the set

{p + q; IIqll 2R, ll2qll Ra} > + )AN+
is a positively invariant absorbing set.

3. Proof of the main theorem. In this section we will give the proof of the
main theorem. We first introduce the cone property in 3.1. Then using the cone
property, we show the existence of an inertial manifold with the Lipschitz continuity
in 3.2. C-smoothness of the manifold will be discussed in 3.3. In 3.4 we prove
Theorem A (iii). The proofs of Corollaries C and D are also given in 3.4.

3.1. Cone property. Let ui(t) (i 1, 2) be any two solutions of (2.2):

It (t) Pl (t) - ql (t), uu(t) p(t) + qu(t).

Define the sets

(3.1)
C ={p + q e H2; IIqll >_ IIAplI},
/ ={p + q e H4; 11_2qll < 2R3}.

The next property is called the cone property.
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PROPOSITION 3.1. Assume that two solutions ul(t),u2(t) of (2.2) remain in B
for tl <_ t <_ t2. Set p(t) p (t) p2(t), q(t) q (t) q2(t). Then the following
property holds:

(i) /fp(t2)+ q(t2) E C, then p(t) + q(t) C for t <_ t <_ t2 and

IIq(t)ll < IIq(s)ile-’(t-) for t <_ s <_ t <_ t2,

where / is a constant independent of u(t), u(t), t, and t.
(ii) if p(t) + q(tl) C, then

p(t) + q(t) c for t < t < t.

Proof. By (2.2), p(t) and q(t) satisfy

pt + Ap f (p + q f (p2 + q2),

(.2) q* + iq f(p, + q) f.(p + q.),
Oq

a(pl + q) (p + q).

Operate A on the above equations. Taking an inner product between them and Ap, Aq,
respectively, we get

ld
(3.3)

2 dt
]]Ap]]2 -]]Ap]2 -]A(f(p + q) f(p2 + q2))]] ]]Ap]],

ld- d_llftqll2 <_ _(2q, q) + ii(f2(p + ql) f2(P2 + q2))ll Ilfiqll

Using Lemma 2.1 (iii), we have

2 dt
Ilftqll2 <- Ilftqll21 + flqD qdS + Ilfi.(f2(p + ql) f2(p2 -t- q2))ll

-< -IIAqll + f qD(-q, + f(p, + q,)- f(p + q))dS

+ II(f:( + ) f(: + :))11 IIAqll.
To estimate the right-hand side, we have to prepare the next lemma.

LEMMA 3.2. Suppose that

u p + q e conv u e H4; 0 eg(u) on 0a, IlA2qll 2R3

{ o o },p+a,+ p+aH4; 0=e(v)(P+a) onOaforsomevH2

and define
h() 0 ()(_ + Ii() + I())N

Then
(i) IIAfl(u)(p,+ )11 (Kl + CN)(IAPll +
(ii) IIf2(u)(P + )11 (K2 + CN)(IIAPI +
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where

K1 K2 CI/13(1 + R1)4.

We give the proof in the Appendix.
We arrange (3.3) and (3.5) by using Lemma 3.2(i)-(iv) and get

(3.6)

where we put

we have

71 N + 2(K1 + e-CN), ")’2 ,’N+I 2(K2 -{- eCN(1 + ,V+l)2).
If we take the constant CF in (C.2) satisfying

CF > 2K1 + 2K2,

then the difference "/2 --")’1 is strictly positive for sufficiently small e and

ld
(3.8)

2 dt
(112q112 ]IAplI2) <- -(72 71)llqll 2 _< 0,

that is, C is negatively invariant under the semiflow (see Fig. 1). By considering this
fact and (3.7), we can verify that the statement of the proposition is true. ]

3.2. Construction of an inertial manifold. We construct an inertial manifold
by the graph transformation method due to Hadamard, which has been used by Mallet-
Paret and Sell [18] for the case of the homogeneous boundary conditions (see also [22]).
First we introduce the following set:

A/[t, S(t)PH2.

Since/3 is invariant under the semiflow and

I(V)=0, A(V)=0 f IIAII>R,

A/lt, C U {p + q e H2; ]]Ap]] >_ 2R, q 0} C .
This implies that Ul (t), u2(t) E jL4,, satisfy the assumption of Proposition 3.1, hence,
that the difference of the above solutions satisfies the cone property. We investigate

note that
0
ouqt e(h(Ul)- h(u2)).

It follows from (3.6) that for sufficiently small e and (p, q), p + q E C,

ld
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c

[[Ap

FIG. 1. The negative invariance of C.

relation between I1 and the H2-norm. By using the mean value theorem, for
U (t) U2(t we have

By this we can apply the theory of the inertial manifold by Mallet-Paret and Sell to
our case under the space H2. Hence we have the following proposition.

PROPOSITION 3.3. There exists a continuous mapping t, from PH2 into QH2

satisfying
(i) JMt, graph t,.,
(ii) {Ot,}t>_o is a Cauchy sequence in H2, and the limit of t,, denoted by

is Lipschitz,
(iii) 2vl graph is an invariant manifold,
(iv) for any solutions u(t) of (2.2), there exists po E PH2 such that

ilu(t) v(t)llt <_ c-ilt(o) v(O)llH- (t _> 0),
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where v(t) p(t; Po) + q(t; Po) is a solution of
pt + Ap f (p + b (p)),

(3.9) qt + Aq f2(p + (p)),
Oq
(+ ()),

with the initial data v(O) -po.
Remark. By this proposition, A/le is a Lipschitz inertial manifold in our sense.

We note that q(t; po) is expressed as

q(t; Po) O(p(t; Po)).
Then

q(0; po) (po),

if we put t 0. This implies that the inertial manifold is characterized by set of
initial dta for which the solution cn be extended for all negative time and bounded
in t (-x, 0].

3.3. C-smoothness of an inertial manifold. We consider the variation of
(2.2) around the solution (p(t;po),q(t;po))satisfying p(0;po) Po nd q(0;po)
(po)

0
pt + Ap -u fl (p(t; po) + q(t; po))(p +

0(3.10) at + fta -u f2(p(t; Po) + q(t; po))(P + a),

-u e 9(p(t; Po) + q(t; Po))(P + a).

The solution of the equation (a.lO) with the initial conditions

p(O)=, (s)=O (s<_t<_O)

is denoted by
pS (t; Po, .) + as (t; Po,

We will prove that there exist limits of pS, as as s -cx and that the limit

lim as (0; P0, )

coincides with
0
(po).

First we present the cone property for the solution of (3.10).
LEMMA 3.4. Let C and 1 be the sets d]ed by (3..). zy p(t, po) + q(t, po) 1

for. t <_ t .<_ t2, the following holds:
(i) if p(t2) + or(t2)

_
C, then p(t) -- a(t) E C ]br tl <_ t t2 and

(liAp(t)ll _<)ll.(t)ll _< II](s)lle-(-) for ta. <_ 8 < t _<_ t2,

(ii) if p(t) + cr(t) C, then a(t) + a(t) C for tl t t and

(ll(t)ll ..<._)llAp(t)ll IIAp(s)ll e-’(t-’) for" tx <_ t <_ 8 _<. t2.
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This lemma can be proved in the same manner as that of Proposition 3.1 except
for the last inequality. The last one is shown by using a similar inequality to (3.6).
We omit the detail to avoid repeating the same computation.

Applying this lemma to the solution pS / as yields

(3.11) IIcrS(t;po,)ll <_ IIApS(t;po,)ll <_ IIAlle-lt (s <_ t <_ 0).
Using Lemma 3.4 and (3.11), we can show that pS,as make Cauchy sequences as
s --, -x. Indeed, for s <_ T <_ t < 0, put

ps (t; Po, ) pr (t; Po, ), ?r as (t; Po, ) ar (t; Po, ),
which also satisfy (3.10). From Lemma 3.4 (i) and the inequalities (3.11), we have

as 8 T

Hence there exist limits of pS(t; Po, ), as(t;po, ) as s -, -x. We denote the limits
by p(t; P0, ), a(t; Po, ), respectively.

PPOPOSITION 3.5. H2-valued functions p(t; Po) and q(t; Po) are continuously dif-
ferentiable with respect to po E PH2 and

o
Po) p(t; Po, q(t; Po,), ).

op

In particular, when t O,
0

Proof. Put
(t) p(t, po + ) p(t, po).- p(t; po, ),

(t) q(t, Po + ) q(t, Po) a(t; Po, ).
We simply write

p=p(t;po+), q=q(t;po+), P=P(t;po), q=q(t;po), u=p+q,

as long as there is no confusion. We prove that

IIA(t)ll CNIIAII/ae-2t,
IIA(t)ll CNIIAlll/ae-2t,

where 5 is some constant specified later. If the above inequalities are shown, this
proposition immediately follows from the definitions of/5 and . We divide the proof
into three parts. In the first step, we introduce auxiliary functions X(t), Y(t) and
derive the differential inequalities for them. Next we investigate the behaviors of
X(t), Y(t) as t --. -c and finally the desired estimates of IIA/51I, IIA{II will be shown
through such behaviors of X(t), Y(t).

Step 1. The above/5, satisfy

t + A= w,
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where

(3.13)

0
Wl fl (P + q) fl (P + q) ufl (P + q)(P + a),

0
w2 f2 (P + q) f2 (P + q) f2 (P + q)(P + a),

w3 g(p + q) g(p + q) g(p + q)(o + a)

Take the inner product between (3.12) and AiS, A. Then we see

ld

the term (2,) follows:First estimate

0

2(oa)

For the desired estimates of IIA/511, IIA011, we prepare the next lemma.
LEMMA 3.6. There exist positive functions a(t; ), b(t; ) and a constant 9/ (9/1

9/< "1+2") such that

IIAwlll <_ (gl + eCN)(]IAII + IIAqll) + a(t; ),

IIAw211 <_ (K2 + eCg)(llAll + IIA(tlI) + a(t; ),
(3.16) IIw3tllL.(On) <_ eCN(IIAII + I1t(t111 + b(t; )),

0
-ffw2 <_ eCN(IIAII + IIAqll + a(t; ))

L2 (0gt)

and

(3.17) / a(;;)
_

CNIIAII2(I+5)e-(1+),

b(s; )2e2VSds <_ CNllAll2(I+e)e2(/-(l+e)w)t (t <_ o),

where 6 2
We will give the proof of this lemma in the last part of this subsection. Applying

eemma 3.6 to (3.14) and (3.15), we obtain
(3.18)
d,IIall 2 >_ NIIAII2 -(K / CN)(IIAII / IIqll)llall- a(; 01IAII,
ldllqll -IIAqll + (g2 + C)(IIAPll + IIAqll)llAqll

+ 2C(IIAPll + IIAII)IIAII, + ((; 5) + (; 5))(IIAII + 2cIIAII).
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Because of the presence of the term that includes b(t; ), it is difficult to handle (3.18)
in this form. We introduce the following functions and rewrite (3.18) with the new
functions:

X(t)2 ,e2llA(s)ll2ds

y(t)

s (t)

We first prove the boundedness of X(t), Y(t) for t _< 0:

g(t) <_ e’e(ll(q()- q())ll +

2 e(-r--r)t < 2

the boundedness of X(t) is also verified in a similar manner. Multiplying e2"rt by
(3.18) and integrating over (-oo, t] yields

-x > ( ,)x (K + c)(x + z)x2 dt

a(s; ()e’ds X,

< ? + + ( + c)(x +)+c(x + g)l
2 dt

Using (a.17), we have

(3.19)

Define the set

(3.20) $(K) {(X, Y) I; Y >_ X >_ 0, Y _> K},

where
2CNIIAII/

O/--YI

We prove that ;(K) is a negatively invariant region of the XY space and that every
bounded solution in t, -c < t <_ 0, is squeezed from $(K). We call it the squeezing
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property. If (X(t), Y(t)) e $(K), by the second inequality of (3.19) we get

l d y2 < _y?+,y2+(K2+eCN)(X+y)y+2eCN(X+y)yl+ /1K(Y+2eCNY)
2 dt 2

Since Yl(t) k Av+lY(t) k Av+lX(t), we have

1 d y2 < (,N+I --7)Y2 + (K2 + eCN)(X -- Y)Y2 dt(3.21)
/ 2eCNAv+ (X + Y)Y / /- / K(I + 2eCAv+)Y.2

We prove that
(X, Y) S(K) for all t _< 0.

Indeed, if (X, Y) e S(K), then one has

d _2

__
y2 + eC,Ny2 + 7(y2 X2)

(3.22) - (y2 X2)
1 dy2 < -(2 )y2 + 7

2
y2 + eCy2.

Considering the direction of the flow on the boundary OS(K), one can say that S(K)
is negatively invariant under the flow (see Fig. 2). If there exists a t such that (X (t) <
Y(t)) S(K), then the second inequality of (3.22) implies that

(3.23) Y(t)2 Y(s)2e-(t-s) for s E t t0

(recall the definition of , 1, and 72, see 3.1). Because of the boundedness of Y(s),
letting s - yields Y(t) 0 for all t 0. This is a contradiction. Thus we get

(X(t), Y(t)) s(g) for all t O.

K

S(K

FIG. 2. The negative invariance of q(K).
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Step 2. We prove that

(3.24) O <_ X(t) <_ K, O <_ Y(t) <_ K

If X(0) > K, then we have

for all t < 0.

(3.25)
2 t----O t--0

> 9/ 9/1 K2 > 0.
2

On the other hand,
d
X

dt
(t) llA(t)

which implies

dx(t)
dt

t--0

IIA(0)II 2 0.

This contradicts (3.25). Hence we have X(0) <_ K. From this and

d
X(t)2 > 0

dt

we see that the former inequalities of (3.24) hold. The latter inequalities follow from
the former ones and (X(t), Y(t)) S(K) (t <_ 0).

Step 3. By (3.19) and (3.24), we have

--e2tIlftOll2 < Y12 + 9/Y2 + (K2 + eCg)(X + Y)(Y + eCNY1)
2

+ 2CN(X + Y)Y1 d- 9/-9/1K(Y + CNY1)
2

<_CNK2.

From this,

(3.26) na(t)2 <_ CNK2e-2t <_ 2Cv IlAll2(l+)e-2t
9/-9/1

We turn to the estimate of IIAiSll. Recall that

ld

Multiplying e2t and integrating over It, 0], we obtain

letllAp(t)ll >-9/1X(0)2

2
(K1 -]- eCN)(X(O) -t- Y(0))X(0)

2

Use (3.24) again. Then we have

IIA(t)ll < CNIIAII2(I+a)e-2.

This inequality and (3.26) are the desired ones.
Next we give the proof of Lemma 3.6.
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Proof of Lemma 3.6. By the mean value theorem, (3.13) can be written as

where

We define

w -uCgfl (uO)( + P + 4 + a)dO --u (U)(p + or),

w (u)( + P + 4 + o’)dO Of2
-0- (u)(p + o),

W3-- Og (UO)( + P + (t + a)dO e-ffu (U)(p + a),

u p + q, u Ou + (1 O)u.

FI() --u (Uo) -u (U) (p + a)dO,

(3.27) r2() (u) (u) (p + a)dO,

r() N() N(I ( + lao.

Lemma a.2 tells us that

IIAwlll (g + eCg)(llAll + I1011) + IIArll,

w2 eCN(IIAII + I1011)+ oL(Oa) n(oa)

To obtain our desired estimates of (3.16), we need a little technical consideration.
First prepare two different types of inequalities for F (i 1, 2, 3). Applying Lemma
3.2 to (3.27) yields

IlArll 2(K + CN)(IIApll + IIAall) 4(g + eCy)llAlle-,

rll e(g + ,C)(IIApll + I111) 4( + ,C)IIAII-’’,
(3.eS) r,llo. e,C(l[d, + 11) e,C(llAll-’ + IIll),

0r e,c(lldpll + I111) 4,cllAll-’.

Next we estimate F,F2, F3t, and OF2/O by higher-order terms of . To show it, we
introduce the following lemmm

LEMMA 3.7. Under the assumption of Lemma 3.2,
(i) IIA( o ) ) (C + (lldpll + II)( + I1),) f(u)(p+ (+ eCN) a A
(ii) ii(oafe (u)(p + )( + ) (C + eCN)([[APll + IIII)(IIAPll +
(i) ll()A()(p + )(P +)o. ,C(llAplI + IIll)(IIAPll + I1),
(iv) II(&)h()(p + )( +

C{(IIApll + IIIi)(IIAPll + I111) + I1111111}.
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The proof of this lemma will be carried out in the Appendix.
Apply Lemma 3.7(i) to (3.27). Then

IIArll < (C + eCN)(]]A(p P)II + ]]fl(q q)]])(]]APll + IIiall)
Similarly, we can get the estimates of II.F211, II b-F211L2(On), and F3, L2(On) by using
Lemma 3.7 (ii), (iii), nd (iv) respectively. Hence we obtain the following:

iiArl] (C + eC)(iiA(p -p)ll + ll(q -q)ll)(]]Apll +
IIArll (c + eCN)(llA(p p)ll + IIA(q q)])(llApl] +
II IIL(O) CN(IIA(p -P)ll + II(q -q)ll)(llApll + IIll)

+ CNll(q

NF2 eCN(IIA(P --P)II + II(q --q)ll)(llApll + I111).

uig the etimte of IIAplI, IIAII, IIA(p-P)II, d IIA(q- q)ll iLe 3.4, we
have
(3.)

IIAr, II 4(C + CN)IIAII=-’’,
IIAr=ll 4(C + CN)IIAII=-’’,
lira, I1=(o) 2CNIIASII=-’’ + CNIIAII-"(211A(q q)ll + IIAII,),

II ou L(Oa)

Next we prove

The rgument used in getting (3.6) leads us to

ld

hence
l d

_< 2K=IIII(IIA;II / I1o11) / CN(IIAPll / I1’11)
4(K= + CN)IIAII=-’’.

Since 7 < (1 -CN)72 for sufficiently small e, we have

ld
2 t(’) + (1 c)+ ’< 4(c + C)iAe,,(-’AN+

Integrate this inequality over (-, t]. Then we obtain (3.30). Similarly, we get

(3.31) I(q q)lle2Sds CN[[A]I2e2(-)t.
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We note that (3.30) and (3.31) hold for an arbitrary constant - satisfying 3’1- CN <_
< +/2 CN.2

Putting

(3.32)

al(t; ) IIA[[e-’lt,

a(t; ) (C + eCN)al (t; ),
b(t; ) min(2al (t; ) + 2bl (t; ), 2al (t; )2 + 2al (t; )bl (t; )),

and substituting (3.32)into (3.28) and (3.29)we obtain

IIAFlll -< a(t; ),

IIAFII _< a(t; ),
IIr3 lice(on) < b(t; ),

r2 < a(t; ).
L2 (0t)

Finally we prove (3.17). A simple calculation yields

b(t; )2 <_{2(al(t;) + bl(t;))}2-25{2al(t;)(al(t;) + bl(t; ))}25

<_C{al (t; )2+25 + al (t; )25bl (t; )2}.

Hence we obtain

where we used (3.30) and (3.31), but replaced -y by 7- 715 to get the last one. This
concludes the proof of Lemma 3.6. [

3.4. Convergence. We estimate the difference between O(p) and O0(p) (for
the case of e 0). Let p(t), q(t) (e > 0) be the solution of

Pt + Ap f (p + q),

at + Aq f2 (p + q),
0
--q eg(p + q),

p(O) Po, q is H-bounded.

We set

(t) (t) (t), c(t) q (t) qO (t).
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It is easily shown that

from which it follows that

(3.33)

Set

ld
llAll -NIIAII -(K1 + CN)(IIAII + IIOII)llAll,
ld
  l[ i0112 <_ -}IA(tII + eCNIIft(t[[I + (K2 + eCN)(llAII + II Oll)llA ll,

x(t)- IIAzS(t)ll Y(t)-- II 0(t)lle  .
Apply the argument of Step 1 in the proof of Proposition 3.5 to this case. We easily
obtain for all i E [0, 1] that

(3.34) { IIA(t)ll <- min(eCNe-t’ 4R2) _< eaCNe-at (t 0),
II0(t)ll min(eCNe-t, 4R2) eCNe-et (t 0).

In particular, if we take t 0,

Next we investigate the chet derivative of the difference. Put

5(t; po, ) pe(t; Po, ) P(t; Po, (),

and simply write

u" ,’(t; Po) + q(t; Po),

where p’ + or’ is the solution of

(3.35)

Then 5, 5 satisfy

(3.36)

O(t;p0,) a’(t;po,() a(t;po,(),

p(t; Po, ) ae(t; Po, ),

0
Pt + Ap -u fl (pe(t; po) + q(t; po))(p + a),

at + Aa -ffuf2(p’(t; po) + (t; po))(p + a),
0
-ua eg(p’(t; po) + q’(t; Po))(P + a).

0 r_ 0
tSt + At5 uf(u) uuf (u)r/’

0 0
6"t + A uf2(u)r/ -uf2(u)r’
0-gr eg(ue)rle.

The same computation for (3.30) can apply to (3.35) and yield

f/ e2"s e2(/-’)t(3.37) Ilfia’ll ds < CNIIAII2
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By an argument similar to that in 3.3 and (3.34), (3.36) leads to

from which
(3.38)
ld

IIAPll _> ANIIA,5112 e(C + eCN)IIAIle--IIAPll
-(K + C)(IIAPll + IIAll)ll,all,

d IIAall _< -IIAall + (K2 + CN)(IIAPII + IIAell)llall
+ d(c + CN)llAlle-t-etllAell + CN(IIAIlet + IIAo-lll)llAa-II.

We define

By the squeezing property

o <_ () < R, o <_ ?(t) _< R (t < o),

where

2(e(C + eCg) + eCN) IIAII <_ CNIIAII.

Then we have

IIAPll < dCN IIAlle-,
II-a,ll < dCNIIAIle-,

whereby

,(po)- o(po) <_ dCNIIAII.

The proof of Theorem A (iii) is now complete. [-]

Proof of Corollary C. It is enough to show the derivation of the inertial form



1344 Y. MORITA, H. NINOMIYA, AND E. YANAGIDA

(1.8). By (1.6) and the Taylor expansion of F and G, we have

m-t-1

PF(p + ’(p)) + E CJ ] DG(p + ((p))jdSPt
j--1 JO

p__O "+
PF(p) + ouF(P)((p) + e E CJ DV(p)jdS + O(e2).

j=l

Since the mean value of DF(p)O(p) over f vanishes, we have

-IOa[Da(p + 0()Pt PF(p) + e-
Next we estimate the remaining term given by

m+l

(J fJOR(D, e,p) PF(p-t-(e(p))-PE(p)-t-e E DG(p+(p))jdS-e nG(p).
j=l

The mean value theorem implies that

eR(D,e,p)

( m-I-1

[Jo PF’(p + O(e(p))(e(p) + E Da’(p + O’(p))’(p)dS dO
j=l

PF"(p + O0’(p))O(p)dO

m+l

J f+e
o

Da’(p + O(p)),(p)dS dO.
j=l

Then we obtain

fo (1 jolpF,,(p+ O0,(e(p))Oe(p)2dO,dOR(D,e,p)

by which

11 O(eed,).

Proof of Corollary D. Changing the variable t es, we have

that is,

(3.39)

Set

1
-u DAu + F(u),

us DAu + eF(u).

fI -DA + cI, () F() +,
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where c is sufficiently small. In (3.39) the gap condition holds because K1 and K2
are close to 0 for sufficiently small e and c. Hence Theorem A is applicable in this
cameo

4. Application. (a) First consider the case n 1 and m 1 in (1.1) and (1.2),
that is,

Ou .Ou
(4.1) 0-[ b- + F(),

x=0

x=l

-ao((t, o)),

Cl ((t, o)),

where F and Gi (i 0, 1) are sufficiently smooth functions and d is a positive constant.
It is known that if e 0 and if F satisfies

lim
F(u)

then the equation has a global attractor. Moreover, under the assumption that every
equilibrium solution is hyperbolic, the flow on the global attractor is Morse-Smale
(see [2], [12], and [15]). Here we assume for lul > R,

F() < 0,
(4.3) u

C(u)
<0 (i 0,).

u

Then (4.1) with (4.2) possesses a family of global attractors jte (e > 0) and for
u E .A, Ilulli <_ R. Indeed, if there is an x such that

In(0, x)l > R,

consider solutions +(t) satisfying

d
(4.4) F(+),

max u(0, x) < +(0), min u(0, x) >
_

(0)
O<x<l O<x<l

and apply the comparison theorem to u(t, x) and +(t). Then we see that there is a

to > 0 such that
up I(,x)l <_ R or >_ o.

Recall the fact that
Aj:O(j2) asj

By this and Corollary C we have an inertial manifold A/[ for any d. Then the inertial
form (e > 0) of Theorem A is Cl-perturbed from the one of e 0. Assume that any
equilibrium solution for e 0 is hyperbolic. Considering the Morse-Smale property
of the flow for the case e 0, we can assert that the structure of the dynamics on
the manifold A/[ is equivalent to that on A/[0. (Note that the flow of Morse-Smale is
structurally stable; see [12].)
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v

I G(u,v)=O

FIG. 3. The graph of F(u) and nullcline of G(u, v). The arrows indicate schematic directions

of the dynamics given by u’ F(u) clv, v’= ec2G(u, v).

(b) We consider the case of Corollary D. Let i0 be the hyperbolic equilibrium
solution of

(4.5) Pt F(p) +
Then for small e there is a hyperbolic equilibrium solution/e of (1.10) satisfying p, p
as e --* 0. If, in addition, p is asymptotically stable for (4.5), then p, is also for (1.10).

(c) Let us consider the following system of reaction-diffusion equations:

(4.6) { ut dlAu + F(u)
vt d.Av

in f,

and the boundary conditions

0

(4.7), -u eG (u, v)
0

on Oft,
G(u, )

where F" I --, I and G I2 --+ (i 1, 2) are smooth functions. Suppose that F
satisfies

(4.8)

F’(u) > 0 in (u_, u+) (u_ < 0 < u+),
F’(u) < 0 in (-cx3, u_) t2 (u+,
"(_) > 0, F"(+) < 0,

F(a_) F(O) F(a+) O, a_ < u_, u+ < a+

(see Fig. 3). The functions Gi(u, v) (i 1, 2) will be specified later. The system (4.6)
with the homogeneous Neumann boundary condition (i.e., e 0 in (4.7),) is a gradient
system and every solution converges to an equilibrium solution (u, v) (fi, c), where
fi is a solution of
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dl Au + F(u) O in,t,
(4.9) Ou

-=0 on 0gt,

and c is a constant. Nevertheless we can show that (4.6) and (4.7) have a (relaxation-
oscillating) periodic solution for each small e > 0, if we choose the functions G(u, v)
and d appropriately. Let us observe it below. First modify F outside

{u ; Il < R}

as satisfying

(4.10) F(u) -u,

Let Gi (i 1, 2) be functions such that

C (u, v) v,
(4.11)

G2(u, v) =u h(v)

where

(4.12)

(R > 31a+l),

Igtl F’ (0)h’ (0) < 1(0)=0, ’()>0, -Ih(v)[ < [F-l(v)] if v e (F(u_), O)U (0, F(u+));
moreover,

(4.13) C(u, v) 0 (lul_>R, i=1,2).

PROPOSITION 4.1. Under the conditions (4.8) and (4.10)-(4.13), consider the
equation (4.6) with (4.7)e. For any sufficiently large d and d2, there is e such that

for each e E (0, e) there exists a two-dimensional inertial manifold. In addition to the
above conditions, assume that

1
(4.14) d

Then the equation has an asymptotically stable periodic solution.

Proof. The first part of the theorem immediately follows from a direct application
of Corollary C of 1. To show the latter part we have to investigate the inertial form

(4.15)

where we put

(4.16)

Yt F(y)- ClZ --rl(,y,z) U(,y,z),
zt ec2(y h(z)) + er2(e, y, z) eV(, y, z),

(y, z) -l udx, vdx

c Ioal
igtl c2 d2cl.

Applying the implicit function theorem to the equation

(4.17) U(e, y, z) O, V(e, y, z) O,
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z

a

_
y

FIc. 4. The bold line indicates the relaxed periodic solution to the reduced equation (4.15).

and considering the conditions (4.8) and (4.11), there exist Cl-functions

z
F(y;e), y h(z;

el

which solve (4.17)and satisfy

F(y; e) -. F(y), h(z; e) --. h(z) as e --. 0.

Then condition (4.8) is also satisfied for F(.; e) by replacing u_, u+, a_, a+ by suitable
ones, say u, u_, a_, a, respectively. Note that

u u, a a.
The condition (4.12) implies that the Jacobian mtrix of the right-hand side of (4.15)
around (y, z) (0, 0) h two eigenvalues with negative real part. With the phe
plane analysis we easily show the existence of a periodic solution (y, z) (y(t), z(t))
(see Fig. 4).

The asymptotic stability of the periodic solution can be proved by the sign of

T(e)

{F’(()) + O()}d,

where T(e) denotes the period. If this value is negative, the periodic solution is
asymptoticMly stable and only one periodic orbit exists in a neighborhood of it. This
will be shown by the facts that the period T(e) h a uniform bound in e nd that the
periodic orbit (y(t), z(t)), t e [0, T(e)] converges to a set

{(y,z);z F(y),ao y u_,u+ y a3},

{(y, ); a0 u+, z F(+)} {(, z);
_

5 5 a, z F(_)},
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where a0 and a3 are such that

aoe F-I(F(u+)),
a3 e F-I(F(u_)),

For a detailed discussion, see [4] and [23].
(d) In the fields of population biology, physiology, and biochemical reaction (e.g.,

[16] and [21]), one can find a compartment model of ODEs which describes a spa-
tial model between species (respectively, chemical substances) distributed in several
habitats (respectively, cells). Here we will introduce the compartment model from a
system of reaction-diffusion equations (1.1) with (1.2) by an application of Corollary
C.

Let us consider the equations

(4.18)
OvJ Dj Ovj Fj (Lj-1,Ot

/ (vj) in Lj), j-- 1, l,

OvY
(t, Lj eGJ-l(vJ-l(t, Lj_l),vJ(t, Lj_l)),

(4.9) -b--x-x - j 1,...,1,OvJ
(t, Ly) eGj (v (t,-x Ly )’ vJ+ (t’ Lj )’

where
vy--(v,...,v)T, L0-0,

Dj-- diag (d,... ,d),
Fj s ]s,

Lj < Lj+I,

and it is assumed that

G 0.GO 0,

Put
x (Lj-Ly_))vj t, Lj_ -- -1(t,x)

( x-LI(Lyvj t, Lj_I

(j" odd),

(j" even).

Then (4.1S) and (4.19) are equivalent to

(4.20)
OuJ cDj cOuY
Ot + Fy (uy) in (0, L1), j 1,...,1,

where

Ouj f -ecjGJ-l(uJ-l(t, 0), uJ(t, 0))
-x (t, O) , -C(u (t, 0),+(t, 0))

ecjG(u(t,L),uJ+(t, L1))OuJ(t,L )= ecGJ-l(uJ-l(t, L1),u(t, L1))-x

Lj Lj_
L1

(j: odd),
(j: even),
(j: odd),
(j: even),
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Hence this system of equations is in the class of (1.1) and (1.2). Under the conditions
(C.1) and (C.2’), we have an inertial manifold, and its inertial form is written as

dj Fj (j) -t- Dj Gj- Gj (j j+
dt

{ (tJ-’ tj) + )} + O(e2)"

Appendix: Proofs of Lemmas 2.4, 3.2, and 3.7. First recall the definitions
of f, f2, and g:

N

j--1 f

f2(P + q) x(llApll 2 + I[qll)/(p + q) fl(P + q),

g(P + q) X(]IAp]I 2 + Ilqll2lG(p + q).

DG(p + q)dS} Cj,

Let us introduce the following lemmas.
LEMMA A.1. For I]APull <_ 2R, IIIQull <_ 2R, and Ul, u2, u3 E H2,

0
)(IIAPull / IIQull)u Ka(llPull-4-

-ffuX(llAPull / IlQull)uu < K3([IAPuII / IIQuII)(IIAPuII / IIQuell),

O
--(IIAPull + IIull)ua _< K(IIAPII / IIull)

(IIAPuII / IIQu.II)(IIAPuII /

where K3 C(1 + R1)3.
Proof. Differentiate X, and we have

Taking the moduli, we can obtain the desired inequalities.
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LEMMA A.2. Suppose the assumption of Lemma A.1. Then

L2(0a)
K4(11APul II + [I Qul II1)(11APu2 II + II Qu2 I1)

(IIAPuII + [IQull)+ K411ull IIAull IIAull,

where ul, u2, and u3 belong to H2 with IIO/o11.(o) <_ CllullH(O) (i , 2, 3)
and K4 GIG[3(1 + R1)3.

First differentiate the mapping g XG"
Og
() c’(.) + c(.)(.),Ou

0u () (.) + N(.IG’(.)I + (.)C+ N(.)G’(.),
Og OX C"() xv"’(’) + (’) (’)Ou3

02X G’ OX G"+ (.) (.)u + (.)= (.) + (.)’(.)
03 02X OX G"+ (.laa+ (.)a’(.) + N(.) (.).

By Lemma 2.1,
Iluu211L(Oa) C]]ul}ll lieu211,

IIullLO> CIIII IIAull IIAull.
om these inequalities and Lemma A.1, we see the result of the lemma.

Before the proof8 of Lemmas 2.4, 3.2, and 3.8, we prepare the next lemma.
LEMMA A.3. Under IIAPII 2R, IIAQull 2R, nd IIO/OIIH<O)

(i) IIAII CII( + R),
(ii) IIAAII C11(1 + R) + CNiaI( +
0ii) IIAAII C[[( + R) + CIGI( +
(iv) IIVll c11(1 + R)3(1 + A +

Proof. We can easily get (i) by Leibniz’s formula. The inequality (iii) is shown
by (i) and (ii). Here we consider (ii) and (iv). From the definition of f,

2
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By

we have

Hence

(/, ACj) =(AF, Cj) + D-udS
=( Cj) + 9f CjD

OF
a -ueXGdS’

))I]Af (p + q)l] 2 <_ 3 Ixl E(P, j)2 + eCA2N(1 + N)2IGI2(1 + 1111

Next we obtain

(A.1)
03 03U Ou

+ al"l x1
Ou

L6

by Leibniz’s formula. From Sobolev embeddings in 2.1,

H (Of))
).

Applying these three inequalities to (A.1), we have

03

<_ CI/>la(1 + R1)3(1 -t- v -t-IIqlll).

By this we can easily obtain (iv). [
We now prove Lemma 2.4.
Proof of Lemma 2.4. We first prove (i). We see that

(A.2)
IIf(p + q)lll II-P(p + q)llx + IlmY (p + q)lll

<_cIIxD- VzxPII / CllxzXPll / A IIAf (p --t- q)

The inequality (i) immediately follows from Lemma A.3.
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Now we prove (ii) of the lemma. Since

0 0 0
o--;(Y(p + q)) =(xP Y)

=o (+’(.1

OX Oq Xtt Oq Oqt-Ou()’P’ + ()(P + q) + o,’

we have

-u (f(p + q)t)
L2 (0)

< K(IIAII + I111)1’11111(o) + lXllk"lllxDll(o)llr, +

<_ ,CIFI2IaI2(IIAptll +
<_ eCN(1 / IIqll),

where we used (i) of this lemma. Next consider

0 (Og .)ut)
099 Og

-6-Ju (.),u + (.),,.

Applying Lemma A.2 to the above equation yields

0
IlD--qttll <_eK4(llAptll + Ilqtll) 2 + eK4(lldPttll +

<,CNIl2qllx + ,C(1 + R)2.

Let us set

v=p+a, =+,

throughout the rest of this paper.
Proof of Lemma 3.2. We first consider (i). By the definition of f, we have

0 OX (p fo DGCjdS)
+ X(.) (P-’(.)rl + eE Cj fon DG’(.)riCjdS)

Lemma A.1 implies

By Lemma A.3 we have

IIAP(u)ll < C(1 + elGl)l/12(1 + R)4 for Ilmpll < 2R1, IIqll 2Rx.
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Similarly, we obtain

by using the integration by parts. Substituting these inequalities into (A.3) yield8

-uf(u)l _<C(1 + lal)l12(1 + R)e(IIApll / I111)
(A.4)

-I- C(I13R2 -F elOll)(llnpll + lift-all).
Then we obtain

A-uf(u)(p + ) <_ {Cll(1 / R1)4 + CN}(IIAPll + IIAII).

The inequality (ii) immediately follow8 from the fact that

0 0 0
O--f(.)n u(X(.)/(.)n uf(.ln.

We turn to (iii). It is easily obtained that

0 " OX Oq Oq Og
0

(x$)(P + ) P’ +x$" + Cx’ ()’

where we used
Op Oa Og
0--- O, 0-- e-u (V)Zl for some v e H2

By Lemmas A.1 and A.2, we can easily obtain

(o)

Now we calculate the Fr6chet derivative of h(u). Since

(A.5) h(u)
Og

(u)k(u), k(u) -flu + fl + f2,

we have

0 Og Og Ok
oh()n =b-().k()+ ()()n(A.6) O2g

(u)rlk(u) +
Og ( Of od

Ou () -An + -u()n + -u ()n

By using (A.6), Lemmas A.2 and A.3, and the condition IIAqll _< 2R3, we have

<_Ka(IIApll / IIll)(llAPk(u)ll / llQk(u)ll)

+ K4 -A2p + A-u(.) + -Aa + --u(.)rl
which immediately implies (iv).

Next we prove Lemma 3.7.
Proof of Lemma 3.7. All the inequalities (i)-(iv) can be shown in the same manner

as obtained above. To avoid repeating a lengthy computation, we only give a remark
on the case of (iv). It is apparently difficult to handle (iv) because it includes the
higher-order derivatives.
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(A.7)

Differentiating (A.6) yields

02h 03g 02g ( Ore Of2)=-5-ju + + +

+

O ( 02f 02f2 .)+ + ]
We can apply Lemma A.2 to this case and use the inequalities (i) and (ii) of Lemma
3.2 and (i) and (ii) of Lemma 3.7 to obtain the desired one. Since it is an easy exercise,
we omit the details. [
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A FREE BOUNDARY PROBLEM MODELING THERMAL
INSTABILITIES: WELL-POSEDNESS*

MICHAEL L. FRANKELt AND VICTOR ROYTBURD$

Abstract. In this paper, the authors analyze a simple free boundary model associated with solid
combustion and some phase transition processes. There is strong evidence that this "one-phase"
model captures many salient features of dynamical behavior of more realistic (and complicated)
combustion and phase transition models. The main result is a global existence and uniqueness
theorem whose proof is based on a uniform a priori estimate on the growth of solutions. The
techniques employed are quite elementary and involve some maximum principle type estimates as
well as parabolic potential estimates for the equivalent integral equation.

Key words, free boundary problems, gasless combustion
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1. Introduction. In the present paper we study a simple free boundary model
problem associated with solid combustion and some phase transition processes.

The model has been introduced by one of the authors in [1] as an ad hoc math-
ematical construction in an attempt to delineate the salient mechanism of thermal
instability in solid state combustion. In the case of one space dimension (only one-
dimensional problems are considered in this paper), the free boundary problem is
posed for the heat equation in the semi-infinite domain

(1.1) ut--uxx, -c<x<

with the Stefan type conditions at the free boundary which in the simplest setup read

where s(t) is the position of the free boundary and (t) is its velocity. We should
point out right away a very important distinction from classical Stefan problems
(see [2]). For an equilibrium Stefan problem the temperature at the free boundary
is given as a constant, usually 0, or as a prescribed function of s(t). In our opinion,
this represents a serious deficiency of the Stefan problem model as applied to unstable
phenomena. In many cases the simple boundary condition in (1.2) is more appropriate
than the classical Stefan condition. In the context of solid combustion, the first
boundary condition in (1.2) expresses the dependence of the propagation velocity
on the temperature of the flame front due to the implicit presence of the second
so-called deficient chemical reactant. In the context of solidification of overcooled
liquids (see, e.g., [10]) or the amorphous-,crystalline transition [8], the condition
corresponds to the interface attachment kinetics that are due to various microscopic
mechanisms responsible for the incorporation of the product at the interface into
the crystalline lattice. In both cases the correct choice of the kinetic fraction gl

provides the necessary feedback mechanism that enables the model to sustain global
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in time and, it seems, even uniformly bounded evolution, no matter how complex
the dynamical evolution may be. It turns out that the boundary condition in (1.2)
is more natural for the rigorous mathematical analysis as well and leads to an easier
integral equation than the classical Stefan condition (cf. 4).

We believe that, in spite of its simplicity, the model captures essential features
of dynamical behavior pertinent to more complicated and presumably more realistic
mathematical models. Abundant computational evidence in support of this belief is
presented in [3]. It appears that the free boundary problem (1.1)-(1.2) is archetypical
for the whole class of models with thermal instabilities. This motivates the thorough
analytical investigation of the problem we undertake in this paper and its sequel [4].
We also note parenthetically that while introducing in [1] the model (1.1)-(1.2) as a
pure mathematical "truncation" of a two-phase solid combustion model, the author
was quite unaware that a similar free boundary problem had been introduced earlier
to describe a real physical phenomenonulaser induced evaporation of solid materiMs

A few remarks are in order to put the model in (1.1)-(1.2) in the context of stan-
dard models of mathematical combustion. It is well known that for certain ranges
of parameters, uniformly traveling modes of flame propagations are unstable and un-
dergo transition to self-oscillatory regimes. These transitions have been observed in
experiments for both condensed phase and premixed gaseous fuels [6], [7]. A similar
and physically closely related transition has been observed in the processes of solidi-
fication of thin film where a rapid solidification wave is initiated by a laser beam and
in the laser-induced evaporation of solid materials (see [8], [5]). Auto-oscillatory and
more complex (including chaotic) modes of propagation have also been demonstrated
in numerical simulations on mathematical models of different degrees of complexity.

Probably the simplest example of a physical system of the kind just discussed is
provided by gasless condensed phase combustion. For this type of combustion the solid
fuel mixture is transformed directly into a solid product. In addition to its theoretical
interest, gasless solid phase combustion currently finds technologicM applications as
a method of synthesizing certain ceramics and metallic alloys [9].

The most primitive model of gasless combustion involves a system of differential
equations for the temperature T and the limiting concentration of the fuel C (see [6]).
In the one-dimensional formulation it takes the form

(1.3) +

(1.4) Ct -W(C,T),

where is the thermal diffusivity, W is the chemical reaction rate, and q is the heat
release.

For physically relevant values of parameters, the system is characterized by the
strong temperature sensitivity of the rate and by rather sharply defined regions of
dramatic change in the state variables that are usually associated with propagating
fronts. It should be noted that as with the famous definition of pornography, although
the fronts can be easily identified in the results of numerical simulations, their for-
mal definition is rather vague. Numerical simulations on the models with distributed
chemical kinetics require a sharp resolution of very thin reaction zones.

An attractive alternative to the models with distributed kinetics is provided by
those with concentrated kinetics (so-called flame sheet approximation). The dis-
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tributed reaction rate in (1.3)-(1.4) is replaced by the 5-function,

W w(T)5(x- s(t))

supported on the interface x s(t) between the fresh (C 1) and burnt (C 0)
material (see, for example, [11]). The strength of the 5-function w(T) is determined
through an asymptotic analysis by matching relevant outer solutions. Of course, all
the intricacies of the behavior in the reaction zone are lost in this approximation.

The system (1.3)-(1.4) with the 5-function source is easily transformed to the
system of two heat equations coupled at the interface

T:
T-l=,(t) T+l=,(t), (aT: aTZ)x=s(t) -w(T)x=s(t),

ds
d

where

T-(x, t) T(x, t)
T+ (x, t) T(x, t)

for x < s(t),
for x > s(t).

This is the free interface two-phase problem of gasless combustion. The heat con-
ductivity coefficient is usually considered to be a constant. But, in principle, the
heat conductivities of the fuel and of the product may be drastically different. For
example, if the product is a foamlike material [12], then tproduc tfuel. By setting
tproduct 0 in the equation and the boundary condition for T+ in (1.6) we arrive at
the model problem (1.1)-(1.2).

The principal result of the present paper is the global in time well-posedness of the
free boundary problem (1.1)-(1.2). There is substantial literature treating, in partic-
ular, questions of well-posedness for combustion models with distributed kinetics (see,
for example, [13] and [14]). It should be noted that corresponding problems for con-
centrated kinetics are in general harder. Indeed, while distributed kinetics problems
contain nonlinearities of the type f(u), the corresponding free boundary problems
formulated in the front attached coordinate frame demonstrate nonlinearities of the
type uxf(u(O, t)). The two-phase solid combustion model has been considered by one
of the authors [15]. More recently, Brauner et al. [16] have investigated a one-phase
model of the classical Stefan type that arises from the consideration of very special
perturbations in the equidiffusional model of gaseous combustion. Chow and Shen
[17] have treated the relevant free boundary problem in a very general setting. All the
aforementioned papers [15]-[17] employ similar techniques. First it is proved that the
linearization about a traveling wave solution defines an analytic semigroup in an ap-
propriate weighted Banach space. Then it is demonstrated that the nonlinear system
defines a local nonlinear semigroup in an appropriate scale of interpolation spaces.

The single most important element allowing us to obtain global results of the
paper is a physically correct choice of conditions applied to the kinetic functions.
With this choice, the global well-posedness becomes physically feasible and therefore
amenable to mathematical treatment. In view of relative simplicity of our problem we
are able to establish the global well-posedness by rather elementary, classical methods.
The rest of the paper is organized as follows. In 2 we collect the assumptions on
kinetic functions and formulate the main result. In 3, by using an energy estimate
for u and maximum principle type estimates for u and ux we establish the crucial
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a priori estimate. In 4 we derive an integral equation for the free boundary which,
because of the nature of the boundary condition for u in (1.2), is much simpler than
the analogous equation for the classical Stefan problem [18]. In 5 we prove that
the integral operator is a contraction for small times and thus we establish the local
existence and uniqueness for solutions of the integral equation. Again, the estimates
are easier than for the classical case [18]. It is a simple matter to derive the global
existence and uniqueness results from the a priori estimates and the local existence
and uniqueness (5.4). In 6 we conclude the proof of well-posedness by showing that
solutions depend continuously on initial data.

2. Statement of the problem. We will be concerned with the following free
boundary problem: Find s(t) and u(x, t) such that

uxx ut for x < 8(t), 8(0):0,

(2.2) u(x, O) u(x) for x _< 0, where u(x) >_ O,

(2.3) u(s(t), t) g(V(t)) for t > 0,

(2.4) t) t > 0,

where

d8
(2.5) v(t) gi

is the propagation velocity of the free boundary. In the context of solid fuel combus-
tion, s(t) represents the boundary between the unburnt and burnt material, and u is
the nondimensionalized temperature. The temperature at the free boundary controls
its velocity, Y(t) gl(u(s(t),t)). The model in (2.1)-(2.5) describes a one-phase
system since we neglect the heat transfer in the burnt material. The heat exchange
between the unburnt (x < s(t)) and. burnt material is modeled by the boundary
condition in (2.4) which, in principle, may be nonlinear.

We now introduce a set of rather general requirements on kinetic functions gl and
g2. We assume that

(A1) g-(u) is a continuously differentiable, monotone decreasing, nonpositive
function on (0, cx3) with g-l(0) v0 for some velocity v0 <_ 0;

(A2) g2(V) > 0 for V <_ vo, g2 is a continuously differentiable function on

(A3) there exists a limiting propagation, velocity, V0 < 0, such that

g{- (u) > V0 for any u > O.

The properties of the kinetic function g listed in (A1), (A3) mirnic those of the
Arrhenius kinetics. The latter is usually written in the form V A exp(-R/T).
The assumption in (A2) is merely a generalization of the appropriate linear boundary
condition that occurs in phase transition problems.

The main result of the paper is the following global existence and uniqueness
theorern.
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THEOREM 2.1. Consider the problem in (2.1)-(2.5). Suppose that the kinetic
functions gl and g2 satisfy the assumptions in (A1)-(A3), and that the following
conditions hold for the initial data u(x):

(1) u(x) has a continuous bounded derivative;

(3) u approaches 0 at-oc and is consistent with boundary conditions at x O,

Then there exists one and only one classical solution of the free boundary problem
(2.1)-(2.5) for all t > O.

(We say that u(x, t), s(t) form a classical solution of (2.1)-(2.5) if (i) ux and ut
are continuous for x < s(t), t > 0; (ii) u and u are continuous for x _< s(t), t > 0; (iii)
u is continuous also for t _> 0; (iv) s(t) is continuously differentiable; (v) the equations
in (2.1)-(2.5)are satisfied.)

The proof of Theorem 2.1 contains two major ingredients: a local existence the-
orem, and a priori estimated based mainly on the boundedness assumption (A3).

Remark. If the boundedness assumption in (A3) is dropped, one can obtain a
local existence result with the existence interval determined by a norm of initial data.

3. A priori estimates. Results of this section are based on the maximum prin-
ciple for the heat equation. We will always assume that (A1)-(A3) hold.

THEOREM 3.1. Let u(x,t),s(t) be a classical solution of the system (2.1)-(2.5)
on the time interval 0 < t < To. Then u(x, t) >_ 0 and Y(t) < vo for 0 < t < To.

Remark. The theorem claims that the behavior of u(x, t) is consistent with its
interpretation as the temperature.

Proof. We will prove the theorem under an additional technical assumption that
probably can be lifted. In the combustion context, it relates to the "cold boundary
difficulty." We assume that

(s.i) > 0.

Since u(x,t) is a classical solution, it is continuous for t >_ 0. By continuity,
u(s(t), t) > 0 for 0 _< t < T, and in this interval V(t) < vo (see (A1)). In a standard
fashion define

T* sup {TIV(t < v0 for0 < t < T}.

In the domain DT. {(x, t)lx < s(t), 0 < t <. T*) u(x, t) is a solution ofthe initial
value problem with the Dirichlet boundary conditions which is obtained from (2.1)-
(2.5) by dropping the extra boundary condition (2.4). Both the initial conditions,
u(x), and the boundary conditions u(s(t),t) are nonnegative. By the maximum
principle,

(3.3) u(x,t)>_O inDT..

We want to prove that T* To. Let T* < To; then V(T*) v0, and therefore
u(s(T*),T*) 0. On the other hand, ux(s(T*),T*) g2(v0) > 0 (see (A2)). This
yields that u(x, T*) < u(s(T*), T*) 0 for some x < s(T*) which contradicts (3.3).

Remark. The proof of Theorem 3.1 does not make use of the assumption in (A3).
This boundedness assumption will be crucial for our next result.
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THEOREM 3.2. Let u(x, t), s(t) be a classical solution of (2.1)-(2.5). Assume that
the initial data are integrable,

(3.4) u(x)dx Io <

and that ux approaches 0 at-o and is consistent with the boundary conditions,

o(3.5) ux(0 g2glu(O).

Then the following estimates hold:

(3.6) V0 < Y(t) < vo,

(3.7) UI <_ ux(x, t) <_ U2,

(3.8)

where

(3.9) U min ( inf 0

\x<_O
ux’

0 <_ u(x, t) < v/2U2(I0 + U2t),

) (o )min g2(Y) U2=max sup u, max g2(V)
Vo<_V<_vo \x<_o Vo<_V<_vo

Proof. The proof is based on the maximum principle and an energy type estimate.
The right inequality in (3.6) and the left one in (3.8) have been proved in Theorem

3.1, and in view of the inequality g- > V0, the left inequality in (3.6) is a direct
consequence of the boundary condition (2.3), which can be transformed to the form
Y g(u(s(t),t)). We turn now to the proof of the rest of the estimates.

It will be demonstrated later on that if u, s is a classical solution, then u may be
represented in the form

u(z, t) a(t r, x s(r)) {u(s(), r) + u(s(), r)V(r)}

OG
(t T, X S(V))U(S(T), T)] dT(3.10) + x

+ G(x , t)u({)d{,

where G is the fundamental solution of the heat equation. It is clear from (3.10) that
w(x, t) ux(x, t) solves the heat equation for t > 0, x < s(t). Also it is easy to check

0that w(x, t) ux(x as t 0 for x < 0 (just from the integral representation (3.10)
via integration by parts in the last term) and for x 0 because of the consistency
condition (3.2). Thus ux is a solution of the problem

Wt Wxx

w(s(t), t) g2(V(t)),

(x),w(x, o) u
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and the maximum principle for w yields the inequalities in (3.7).
Now consider the rate of change of the energy integral

dI= d/S:dt - u(x, t)dx

utdx + V(t)u(s(t), t)

uxxdx + V(t)u(s(t), t)

g2(V(t))+ V(t)gl(V(t)) <_ g2(V(t)) <_ U2,

since V <_ 0 and gl

_
0. It follows that

(3.11) I(t) <_ Io + U2t.

On the other hand, I(t) is estimated below as follows. Let u* (t) supx<8(t u(x, t)
and Xl such that u(xl, t) > u* -. Since ux < U2,

(, t) > (x, t) + V(x x)

for

xo<_x<x,

where

Therefore,

I(t) > u(x, t)dx >_ [t(Xl, t) 2t- V2(x Xl)] dx
o o

(u* e)2/2U2.

sup u(x,t) <_ (2I(t)U2)/2 <_ v/2U2(Io + U2t).
<_8(t)

4. The integral equation. Let G be the fundamental solution of the heat equa-
tion

(4.1) G(x, t, , T) exp {-- (x )2 } [4r(tT)

If u(x, t), s(t) is a classical solution of (2.1)-(2.5), then by integrating Green’s identity

(4.2) o( o 0) o
o- aN N N(an) o



1364 MICHAEL L. FRANKEL AND VICTOR ROYTBURD

over the domain < S(T), 0 < T < t and using the Stokes formula we obtain

u(x, t) G u dT -I- Gud + Gud(
=(.) o o =(.) =o

a [92(V) + gl (V)V] dT --gl (Y)dT(4.3)
=s(.) =s(.) 0

+ =o Gud("

We note that in the limit z s(t)- the first integral in (4.a) (with kernel G) is
continuous while the second integral experiences a jump equal to 91 (this is a well-
known jump property of the normal derivative of the heat potential; see iedman
[18]). Taking into account the boundary condition for (2.a) we obtain in the limit
the following integral equation for g(t):

1 t
oa

(4.4)

+ t,

where

(4.5) s(t) V(T)dT.

Thus, if u, s is a solution of the free boundary problem (2.1)-(2.5), then V(t) solves
the integral equation in (4.4) with s(t) given by (4.5).

Conversely, let V be a continuous solution of (4.4). Then the integral representa-
tion in (4.3) defines a solution of the heat equation. It is easily seen from (4.3) that
u(x, t) -+ u(x) as t 0. Also u(x, t) --, gl (Y(t)) as x --, s(t) since V is a solution of
the integral equation (4.4), which is defined by this limit. If we show that

(4.6) lim ux(x, t) g2(V(t)),

then the proof of equivalence between the free boundary problem (2.1)-(2.5) and the
integral equation in (4.4) will be complete.

By applying to u Green’s formula we obtain the representation

(4.7) u(x, t) G gl + GglV dT H- Gud,
=(,) 0 0 =0

which differs from (4.3) only in the first integral. We subtract (4.3) from (4.7) to
obtain

=s(r) - g2(V) dT O.
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We differentiate (4.8) with respect to x and use the above-mentioned jump prop-
erty of the single-layer heat potential to get the integral equation for the difference
((t), ) (Y()):

(4.9)
1
[(s(t), t) .(v(t))]

+ G(s(t), t, s(T), T)[ux g2(V(T))] dT O.

Since

Ic(s(t), t, s(), r)l < C/(t T) 1/2

we see that the integral operator in (4.9) is a contraction (for small t) and the only
solution is

(x(), ) (v()) 0.

Remark. If the method of this section is applied to the classical Stefan problem,
then one arrives at a Fredholm integral equation of the first kind. In order to get a
decent integral equation one should differentiate the analogue of (4.3) with respect to
x and pass to the limit x --, S(T), taking into account the jump property of parabolic
potentials (cf. [18]). The resulting integral equation has integral kernels that are more
singular than the kernels in (4.4). Consequently, some of the estimates in the next
section are less involved than their counterparts for the classical Stefan problem.

5. Existence and uniqueness. In this section we show that a version of the
integral equation (4.4) defines a contraction mapping for 0 < t < a if a is sufficiently
small. The proof is based on rather coarse estimates. It follows very closely the
argument of Friedman [18, pp. 506-511] but is less involved since our integral equation
is simpler than the one in [18]. Then we use a priori estimates of 2 to establish global
existence.

5.1. Modified integral equation. It is convenient to rewrite (4.4) in terms of
the temperature at the front (t) gl(Y(t)):

(t) a(s(t), t, S(T), T)g2g-l((T))d

(5.1)

+ G(s(t), t, 8(T), T)(T)gI(T)dT

OG
-(s(t), t, s(), ’)(T)dT

+ a((t), t, , O)u()d,
where

s(t) gl((T))dT.
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Let K denote the nonlinear integral operator on the right-hand side of (5.1). We
will show that the transformation

w 2Kv

is a contraction of an appropriate subset of C[0, a] for some a and therefore has a
unique fixed point - 2K.

Remark. Based on their physical interpretation, the kinetic functions gl and
g2 in (5.1)-(5.2) are defined for V0 < V < v0. It is not clear a priori why the
integral operator K preserves the "physical" cone of positive temperatures. To avoid
complications caused by using an iteration scheme in the cone { _> 0}, we extend
functions gl and g2 in (5.1)-(5.2) to the interval (Vo,-Vo) (recall that V0 < 0).
We require the extension of g to be monotone decreasing, the extension of g2 to be
positive, and both g- and g2 to be twice differentiable with bounded first derivatives.
We abuse the notation slightly and keep the same notation for the extensions.

The following simple proposition demonstrates that any solution with nonnegative
initial data u of the integral equation (5.1) with extended kinetic functions is positive.
Therefore, for u >_ 0 the fixed point of K is positive and is not affected by the choice
of particular extensions of g and g2.

PROPOSITION 5.1. Let g and g2 in the integral equation (5.1) be extensions of
the original kinetic functions and let the initial data be nonnegative with u(0) > 0.
Then any solution of (5.1) is positive.

Proof. Let be a solution of (5.1). As was demonstrated in 4 it corresponds to
a solution of the free boundary problem (with extended kinetic functions). We note
that specific monotonicity properties of gl and g2 have not been used in 4.

To demonstrate that V(t) < vo and therefore that (t) g(Y(t)) > 0, we
observe that the proof of Theorem 3.1 is valid for the extended kinetic functions as
well. Indeed, the only properties of kinetic functions used in the proof are:

g(V) > 0 for V < v0 and g2(v0) > 0.

They obviously hold for the extended kinetic functions and therefore Theorem 2 yields
the desired result.

5.2. A ball mapped into itself. In the Banach space Ca C[0, a] with uni-
form norm we consider the closed ball BM, {wC, Ilvll sup Ivl _< M} with M to
be specified later on. We will estimate separate terms in (5.1). The least trivial term
is estimated as follows:

(5.3)
OG

(s(t), t, S(T)

_--1_2 fOt s(t)t s(’) G(T)dT <- C3]Vo]MV

since

t--T

by (5.2) and since lal _< CIt- Other terms in (5.1) are estimated even easier.
We note only that

Ig2g-((t))l <_ V2 max g2.
[yo,-Yo]
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As the final estimate we obtain

1
(5.4) {{w[[

_
C1V2v/’ --]-- C2]Vo]Mx/Z + C3{Vo{Mv/’ + ]]uo[[,

where the constants C1, C2, C3 are simple combinations of powers of 2 and r.
If M is now taken to be

(5.5) M 4sup
x<0

then for

(5.6) <_ [C1V2 + (C2 + C3)IVolM]-1M/4
the ball BM,a is mapped by 2M into itself.

5.3. K is a contraction on BM,a. Let, w- K, w K/; then

w w’ Gg2gf ()dT GB2B (’)dT
o

OG
dr

tOG, ?

Wl + W + Wa + W.
The estimations are quite elementary and are based on the mean value theorem. irst
we note that

Ial la(s(t),t,s(r), r) a(s’(t),t,s’(r), )1

la((t) s(r), t r, o, o) a(’(t) s’(r), t r, o, o)1

OG( t-r,O,O)Is(t)- s(r)- (s’(t)- s’(r))l N
s(t) s’(t) (s(r) s’(r))

(t ) Ia(, t , O, 0)1

1 ds dg

where r N t and is between s’(t)- s’(r) and s(t)- s(r). om (S.2

ds dg

Ll11-
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where L1 is the Lipschitz constant for g-l. Also

Igl _< max {Is’(t) s’(7-)l, Is(t) S(T)I } _< Vo(t- T).

Since IGI <_ Co(t- T)-/2 we get the estimate

(5.9) [AGI <_ CoVoL[[ ’l](t T) 1/2 A[[ ’[[(t T) 1/2.

In a similar fashion we obtain that

OG OG OG s(.o) /-5 -((t), t, (), ) -5 (’(t), t, (), )

<_ A.II ’ll(t )-/.
Now we are able to estimate the first three terms in (5.7):

IWll AGg2gl(dl)dT- + a(s’(t),t,s’(T),7-)[g2gfl(’)

g2g’ ()]d7-

(5.11) <_ AII ’llt/V + cLll ’[It/

(A3t3/2 + A4t/2)l]-
where L is the Lipschitz constant for gg. Similarly,

(5.12) IWl _< AI O’llta/21golg + CLll ’ II tl/2

(Ast3/2 + A6tl/2)l-

(5.13)

since

OG
-(s’(t), t, S’(T), T)

1 ’ (t) ’() atT

1 1< -[VoI ]GI < go(t- 7") -1/2

The estimation for the last term in (5.7) is a little different. Suppose s(t) <
st(t) < 0 and split the integral for W4 into three integrals:

(5.14)
8 8 0
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where

5a a((t), t, , o) a(’ (t), t, , o).

By the mean value theorem,

oa
( , t, o o) ( ’) a( , t, o, o),5a -g

where

(t, ), (t) < _< ’(t).

If < s < < sp, then

(- )G( , t, O, O) Co( )t-1/2e-(-()2/4t

(5.15) co(St) 1/2 -(s-)/st21/2(2t)-l/26-(-)2/st(St)l26

<_ 4tl/clG( , 2t, O, O) <_ 4ct/(;;(s , t, o, o),

where cl max(xe-X). Thus

The second integral in (5.14) is simpler"

8

5Gud <_ (s’ s)2supG.

(’-

_< 2co11
The integral over (s’, 0) is estimated similarly to (5.16). Finally, by combining the
preceding estimates we get

Iw41 A8tl/llO- ’b’[I I111.
The same estimate holds if s < 0 < s or 0 < s < s (recall that we do not assume a
priori that s(t) < 0).

The results in (5.11)-(5.13) and (5.17) yield the following contraction estimate:

+ Allcrl/ll -’11M + Al.Cr/l[O ’!!
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where all the constants Ag, A10, etc. (as well as all the A constants introduced pre-
viously) depend only on bounds and Lipschitz constants of g-i and g2g1. If a < 1
and such that

(5.19) a/2 [A9 + Ao + M(A + A2)] < 1/2,

then 2K is a contraction on BM,a. Therefore, it has a fixed point (t) in BMa, which
is unique. It is easy to show (see Friedman [18]) that any solution of the integral
equation in (5.1), regardless of whether it is bounded by M or not, must coincide
with in their common interval of existence.

5.4. Global existence. We have proved the existence and uniqueness of a solu-
tion (t) of (5.1) for 0 _< t < a. If t < a, then by repeating the argument of 5.2-5.3
with the initial data u() u(,tl) (where u is computed according to (4.3) with
V g-()) we can construct a solution of the integral equation for t <_ t <_ t2.
Note that the equation should be modified in the obvious way: the spatial integration
must be taken from -cx to s(t).

Both solutions for 0 <_ t <_ t and for t <_ t <_ t2 generate solutions of the free
boundary problem (2.1)-(2.5) on these intervals. The solution on [0,t] is actually
extendable to [0, t + el, t +e < a, and because of uniqueness the solutions on [0, t +e]
and [tl,t2] coincide in the overlapping interval. Therefore, the extended solution is
differentiable with respect to t across the line t t. Thus, we obtain a unique
solution defined for 0 _< t _< t2. This process can be repeated indefinitely.

To establish the global existence stated in Theorem 2.1, we need to show that
if u(x,t), Y(t) is a classical solution of (2.1)-(2.5)., which exists and is unique for
0 _< t < to, then it exists and is unique for 0 <_ t < to + e for some e > 0.

From Theorem 3.2, (3.8) it follows that

0 <_ u(, to) <_ v/2U2(I + U2t0).

We select M in (5.5) to be

M 1 + v/2U2(I + U2t0);

then if a satisfies the inequalities in (5.6) and (5.19), the solution of the integral
equation (5.1) exists and is unique for to < t < to / a. The previous argument shows
that solutions for 0 < t < t to- 5 and for tl _< t _< t2 tl d-or, with 5 < a/2,
agree and form solution for 0 <_ t < to + e, e a 5. This concludes the proof of
Theorem 2.1.

6. Continuous dependence on initial conditions. By employing estimates
similar to those in 5, it is not hard to prove that solutions of the free boundary prob-
lem (2.1)-(2.5) depend continuously on initial data. The proof is relatively routine,
and we include it only for completeness.

THEOREM 6.1. Let S be the class of initial data satisfying conditions (1)-(3)
of the existence and uniqueness theorem (Theorem 2.1). For any u E S, there ex-
ists a > 0 (which depends only on the uniform norm Ilull) so that solutions of the
problem (2.1)-(2.5) depend on initial conditions continuously at u. More precisely, if
{u(x,t),s(t)}, {t(x,t),(t)}, 0 < t < a are solutions of the problem (2.1)-(2.5) with
initial data u, t S, then for x < O, 0 < t < a

Iv(t)- ;/(t)l < -



(6.2) lu(x s(t), t) (x (t), t)l < cllu 11.
Remark. We state and prove continuous dependence on initial conditions only

locally in time. The argument extending this result to any fixed time follows closely
the proof of global existence in 5.4.

Proof. We will establish first the estimate in (6.1) and then use it to derive (6.2).
Let and be solutions of the_integral_ equation in (5.1) with initial dta u and 2,
respectively. Since 2K, 2K where K is the integral operator, we have

( ) a()dr al()dr

+ [t Gg{()dT- t
(6.3) + [-tOG tOG-

dT+ I dT]
+ {a(,t,,o)- a(, t,, 0)}()a

+ a(,t,(,o){(()- (()}a(.

This expression differs from (.7) by the lt integral only. By literally repeating
estimates in g.a we obtain the following analogue of (g.18)"

1

+ 111/11 @IIM + 11/11 @111111 + I1
where A, Ao, etc. depend only on bounds and Lipschit constants of9 and9.
The constant M may be taken larger than he a priori bounds for and g in (a.8)
with t . By now taking so small that the coeNcient of II-ll in (.4) is smaller
than , we get

(6.5) I1 11 < 411u 11,

Since V g{(), (6.5) yields (6.1)"

liE-11 < Cllu- 11
for 0 < t < a, where C depends only on the Lipschitz constant of g{.

To obtain the estimate in (6.2) we note that u(x, t) and (x, t) solve the heat
equation in the domains {x < s(t), 0 < t < a} and {x < g(t), 0 < t < a} with initial
nd boundary conditions

(.) (, o) u(), u(t, (t)) (t);

(6.7) (, o) o(z), (t, (t)) (t).
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Let @(x, t) be a solution of the auxiliary problem

(.s) - 0, 0 < t < o, < (t),

(, 0) (x), ((t), t) (t).

Then, by the maximum principle,

(6.9) I,(x, t) (x, t)l _< mx(llu 11, I1 11)
< Cllu 011.

Now, through the change of variables w(x, t) u(x (s(t) (t)), t) the domain
{x < s(t), 0 < t < a} is transformed into the domain {x < (t), 0 < t, < a} where w
solves the problem

Iv(t)- Wx

(, 0) (x), ((t), t) (t).

Thus, the difference W w @ solves the equation

(6.11) Wx

with zero initial and boundary conditions. If F is the Green’s function of the heat
operator in the domain {x < <(t), 0 < t < a} with zero boundary conditions, then

(6.12) W(x, t) F(x, , t, T)(V )wxddT.

By the maximum principle,

Is;:(6.13) F(x, , t, T) [V (T)] W(, T)d

< IIV vii sup I(, w)l.

And since wx ux, we can use the a priori estimate (3.8), luxl <_ U, to continue the
estimate (6.13) as follows:

_< IIY- fllV.
Upon integration of (6.13) with respect to T we obtain the estimate

(6.14) IW(x, t)l _< <,ILK 711 a,
0with Uj determined by

We combine the estimates in (6.9), (6.14)"

I(x, t) (x [(t) (t)],

Ie(x, t) (x, t)l <_ le(x, t) @(x, t)l + IO(x, t) w(x, t)!

--! 1 + IwI .<_ ell- il + llY fliU
<_ Cilu Oll

which becones the estimate in (6.2) via a change of variables x --+ x g(t).
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7. Concluding remarks. This paper is a part of a broader project aimed at
analytical and numerical investigation of the free boundary model of thermal insta-
bilities. We are convinced that this one-phase model is generic in the sense that
it captures the principal nonlinearity responsible for the rich dynamical behavior of
many systems with thermal instabilities.

Mathematically the model is so transparent and simple that it lends itself to a
pure elementary treatment: a substantial part of the technical apparatus developed
for two-phase models [15], [17] proves to be unnecessary. We have derived a simple
uniform estimate on the growth of solution ( v/) and proved the existence and
uniqueness of classical solutions globally in time for any physically meaningful initial
data. These results provide a firm theoretical ground for numerical simulations on
the model.

It should be noted, however, that some conditions in (A1)-(A3) imposed on the
kinetic functions may be too strong. Our numerical experiments with various kinetics
indicate that the global existence, perhaps in a more restricted sense, should be valid
for a broader class of kinetic functions. It is unclear whether the very direct method
of the present paper works for this broader class of kinetics.

Another remark concerns two-phase problems. We believe that the global in time
existence of classical solutions can be established in this case as well. However, there
is a difficulty here related to the fact that the "latent heat" of the transition diffuses
into both phases. Apparently, for solutions of the resulting system of two partial
differential equations there is no a priori estimate based on the maximum principle.
The problem requires a more subtle treatment which, at the moment, we are unable
to carry out.

The sequel of this paper [4] is devoted to the dynamic study of the model. We
investigate traveling wave solutions, their stability and bifurcations.
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ON A NONLINEAR INTEGRODIFFERENTIAL
DRIFT-DIFFUSION SEMICONDUCTOR MODEL*

JIN LIANGt
Abstract. The author considers a drift-diffusion semiconductor system coming from a model

of n-GaAs related to the Gunn effect, which can be transformed into a nonlinear integrodifferential
equation with integral boundary condition. The global existence, uniqueness, and regularity of the
solution are obtained.

Key words, drift-diffusion, semiconductor, nonlinear integrodifferential equations, integral
boundary condition, global existence, regularity
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1. Introduction. In 1963, Gunn reported the discovery of current oscillation
at low microwave frequencies which were produced when the semiconductor n-GaAs
was subjected to an electric field of a few kV/cm [7]. This "Gunn effect" could be
tracked to the fact that the velocity of electrons in n-GaAs, V(E), had a maximum as
a function of the local electric field. The subsequent region of negative slope (negative
differential mobility) of V(E) causes the Gunn instability [12], [13]. V(E) is described
in Remark#. As indicated in [2], [3], and [4] (see also [9], [11]-[13]), the two equations
governing charge transport in n-GaAs are the following:

Poisson’s law for the electric field, E(, T),

(1.1) E e(N- No)/e;

the continuity equation for the electron concentration, N(, T),

N + [V(E)N- DN] O.

Here -e is electron charge, e is the permittivity of the semiconductor, D is the dif-
fusion constant, and No is the concentration of donor impurities that we assume to
be uniform. These equations are a reduced form of the well-known drift-diffusion
equations [9], where transport by the holes is neglected.

We eliminate N by substituting (1.1) to (1.2) and then integrate the result with
respect to ,

eE + (eNo + eE)V(E) DeE Jtot(T).

This is Ampre’s law, the sum of the displacement current and the electron current
at a point of the semiconductor is equal to the total current, Jtot(T) (the integration
constant). The bias determines Jtot(T). For a purely resistive external circuit, we
have

(1.4) E(, T)d + Jtot(T)R ,
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where is the voltage and the constant R is proportional to the resistance. For
voltage bias, R 0 in (1.4).

In ideal contacts, the resistivity is zero and Ohm’s law implies Dirichlet boundary
condition as follows:

(1.5) E(0, T) 0, E(L, T) O.

But more realistically, on the boundary, the displacement current plus Joe(E) equals
the total current where JoG(,) -1PoeE for a purely Ohmic contact with resistivity
P0c. That is, we have the boundary condition (see also [2]-[4] and [13])

(1.6) eEr + Joc(E) Jtot(T).

By changing to dimensionless variables, we can transform problems (1.3), (1.4),
and (1.6)into the following form (see also [2]-[4]):

Et + V(E)(1 + E)- 6E J(t),

E(x, t) + RJ(t) ,(t), in [0, T],dx

Z(x, O) Eo(x), on [0,1],
E(O,t)Et(O, t) + J(t), on [0, T],

P0
t)Zt(1, t) + J(t), on [0, T],

Pt

in QT (0, l) (0, T),

where E and J are unknowns related to electrical field and total current, respectively,
V(.) is a smooth function with linear growth, is a given function related to the
voltage, and R >_ 0, 5, l, T, P0, Pt > 0 are given constants.

Remark#. In semiconductor theory, V(E) is related to the drift velocity of
electrons in n-GaAs versus electric field E. It satisfies V(0) 0, V’(O) > 0, and
V(E) has at most one maximum when E > 0, and when E , V(E) grows at
most linearly. Two examples of V(E) are V(E) #0E((1 + BE4)/(1 + E4)) and
V(E) #0E((1 + BEd)l(1 + Ea)), where #0 and B < 1 are positive constants, (see
[2]-[4]). In this paper, we consider a more general class of functions V (see assumption
(A7) below).

Problem (1.7) is a nonlinear parabolic differential equation coupled to an integral
equation with nonstandard differential boundary conditions. This problem can be
written as an integrodifferential problem (see 2). In this way, we can change the
system into an integrodifferential equation so that we can get help from the linear
integrodifferential theory for the Dirichlet problem. We also can write the boundary
conditions in the form of integral equation (see 3). It is then possible for us to
use the results for the Dirichlet problem (in 2) and a suitable map to discuss the
original problem (1.7). That is, the problem is equivalent to a nonlinear problem
consisting of integrodifferential equation with an integral boundary condition, which
will be discussed in the following.

In this paper, we consider global existence, uniqueness, regularity, and continuous
dependence with respect to given data of the solution for problem (1.7). To the best
of our knowledge, we obtain the first such results for this model, which was already
known as early as the 1960s (see [7] and [13]).
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In order to discuss problem (1.7), we will first consider an integrodifferentiM prob-
lem with a Dirichlet boundary condition, which is also of interest because of (1.5) and
physical relevance. The main difficulty is to obtain estimates for IIEIIco or IIEIILp.
In [5], the authors have discussed a class of semilinear integrodifferential problems
whose integral term also grows linearly. They have obtained a priori estimates in

L([0, T]; W2()) by using a Green’s representation, but their method is not well
fitted to our nonlinear case. We therefore have to find a new way of obtaining esti-
mates. The cases of R > 0 and R 0 will be treated separately. For R > 0, we
can directly use maximum principle techniques, but unfortunately all estimates will
depend on R. It is not clear how to pass the limit as R 0 and to get the results for
the case of R 0 from R > 0, so we consider the case of R 0 by a different method.
This case is technically more difficult, since after the transformation, the integral term
contains nonlinear high-order differential terms and the maximum principle cannot
be used. To overcome the difficulties, we use some special test functions to get the
necessary estimates. Then, with the results for the Dirichlet problem, we can define a
map to consider the original problem (1.7). We also discuss it in both cases of R > 0
and R 0. For the case of R 0, we overcome the difficulties of obtaining an a priori
estimate and the compactness of the map by making a suitable transformation.

The outline of this paper is as follows. In 2, as a preliminary step in investigat-
ing the original problem (1.7), we discuss (1.7) with Dirichlet boundary conditions.
Existence, uniqueness, and regularity of the solution are obtained, as well as contin-
uous dependence of the solution on the given data, (I), E0, and boundary conditions.
The main results of the existence, uniqueness, and regularity of the solution for the
original problem (1.7) are obtained in 3 from the results onJthe preliminary problems
considered in 2.

Throughout, the standard space notations, such as Ck(I), Ck+a(I), ck’I(QT),
Ck+a’(QT) Wpk’l(QT) and Lp(O,T;B(I)) are used (see [8]), and C(t) {u"
u E Ck(t), for all k >_ 0}.

2. Dirichlet integrodifferential problem. In preparation for investigating
problem (1.7), in this section, we consider existence, uniqueness, regularity, and con-
tinuous dependence with respect to given data of the solution for the following two
systems with Dirichlet boundary conditions:

Et + V(E)(1 + E)- 5E J(t),

IIE(x, t)dx + RJ(t) (t),

E(x, 0) Eo(x), E(O, t) E1 (t), E(l, t) E2(t),

Et + V + -[ (t)- E(x, t)d (1 + E)- 5Exx 0,

E(x, 0) Eo(x), E(0, t) E1 (t), E(l, t) E2(t).

Incidentally, problem (2.1) also comes from semiconductor theory (see 1 or [2]-[4]
and [13] for more details).

In these two problems, the given functions (t), Ei(t), (i 1,2), and Eo(x) are
assumed to satisfy one of (A1)-(A3) in the following:

(A1) Ei(t) e CI([0, T]), Eo(x) e C:([0,/]), (I)(t) e C([0, T]); or

(A2) Ei(t) e C+ ([O, T]), Eo(x) e C2+([0,/]), (I)(t) e C+ ([0, T]); or
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(A3) E(t) e C([0, T]), Eo(x) e C([0,/]), (t) e C([0,T]).
We also assume they satisfy the following compatibility assumptions:

Eo(x)dx (0),(A4)
and

(A5) El(0) Eo(0), E2(0) Eo(1).
And for problem (2.2) and problem (2.1) when R > 0,

f E (0) + V (E0(0)) (1 + Eox(0)) 5Eox(0) 0,
(A6)

E(O) -t- Y (Eo(l)) (1 + Eo(1)) 6Eo(1) 0;

or for problem (2.1) when R 0,

E(0) + V(Eo(0))(1 -t- Eox(0))- 6Eo(0)

’(0)+
( a’l E;(O) -t- V(Eo(1))(1 + Eox(1))- eEoxx(1)

’(0) + +

The function V(E), which is related to the nonlinear term, is assumed to satisfy

V(.) is a smooth function satisfying <- where C is a positive(AT) constant.

Problem (2.1) can be changed into an integrodifferential problem according to
the different cases R > 0 or R 0. In these two cases, we obtain nonlinear integro-
differential equations in different forms. We will consider them and obtain existence
of the solutions in the following two sections. For problem (2.2), we use a similar argu-
ment, which is discussed in 2.a. The further properties of uniqueness and continuous
dependence on the given data of the solutions are considered in the last section.

2.1. Problem (.1): The existence for R > 0. In this case, we can simply
replace J(t) by the second equation in (2.1) and get the following equivalent form of
problem (2.1) when R > 0,

(2.3)
Et + V(E)(1 + E) 5Exx - (t) Ed

E(x, O) Eo(x), E(0, t) El (t), E(1, t) E2(t).

In order to obtain the existence of the solution, we first obtain a priori estimates.
We suppose b(t), Ei(t), (i 1, 2), and Eo(x) satisfy (A5) and one of the assumptions
(A1)-(A3).

Let F Ee-Mr, where M will be determined later; then F satisfies

(2.4)
Ft + MF + e-MtV(FeMt)(1 -}- FxeMt) 5Yxx - ((t) Fd

Y(x, 0)= Eo(x), F(0, t)= Ee-Mr, F(1, t) E2e-Mr.
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If F takes the positive maximum value Fmax and the negative minimum value
Fmin in the interior of the domain, then

(2.5) MFma.-t- e-MtV(FmaxeMt)
1

< - ((t)] + IFId -(l(I)l +/IF]max),

and

MFmin + e-Mty(FmineMt)
(2.6)

> -- O(t)l + ]F]d _> -(](I)]-t-/IF]max).
If Fmax IF]max, from (2.5) and (AT) we have

1MIFImax CvlFImx <_ -(1] +
Now choose M (2l/R)+ Cv, and we obtain that

[Flmax

_
C((I)).

If-Fmin IFImax, from (2.6), we can use the same argument to obtain the same
result.

In the other eases, if F takes the maximum or minimum on the boundary or at
the initial time, the argument is similar. Therefore, from the relationship of E and F
we obtain that

where C depends only on 5, R, T, and l.
Now for a E [0, 1], consider a map T B --. B, where B is the Banach space

C(-T). For any H E B, define T(H) as the solution E of the following problem:

(e.s)
Et + V(E)(1 + Ex)- tiEx (t)- Hdx

E(x, O) aEo(x), E(O, t) hE1 (t), E(1, t) aE2(t).

It is well known that the solution of problem (2.8) exists and belongs toW (QT),
which then belongs to Cl+X’- (QT) for any e [0, 1) (see [10]), and so the mapping
is well defined and is compact. With the estimate (2.7), we know T(H) 0, when
a 0. Again with the estimate (2.7), we can easily verify that the map is continuous
and each fixed point of the map is uniformly bounded with respect to a. For any
bounded set of B, the map is uniformly continuous with respect to a. Thus, we
know that T has at least one fixed point when a 1 in C(-T) by the Leray-
Schauder fixed point theorem. By regularity, the fixed point is in WI(QT) and so

in C+’ (QT); moreover, the solution can be continued up to the boundary and
the corners. Its first derivatives can be continued up to the boundary, too, but not
on the corners.

Therefore, we have the following.
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THEOREM 2.1. If assumptions (A1), (Ab), and (A7) are satisfied, problem (2.3)
admits at least one weak solution in WI(QT), then in C(-T)Cl cl+’+@ (-T\Pc)
for any A E [0, 1). It satisfies the estimates (2.7) and

where C also depends on e, i, T, and R; and Pc {x 0, t 0} U {x l, t 0}.
Suppose (A4) and (A6) are satisfied, if we incree the regularity of the solution

of the problem in the standard method (see [6]) we can obtain the following regularity
result, which also holds on the corners.

THEOREM 2.2. g assumptions (A2) and (A4)-(A7) are satisfied, problem (2.3)
admits at least one classical solution in C2+a’+ (T), and it satiCes the estimates
(2.7) and

i=1,2 C+

where C also depends on , l, T, and R.
THEOaEM 2.3. g assumptions (A3)-(A7) are satisfied and V is suciently

smooth, problem (2.3) h ttoisolution in C+’+T)CTP),
where P is defined in Theorem 2.1.

Remark. For Dirichlet problems (2.3) and (2.2), (A4)is not necessarily essen-
tial. Indeed, we can obtain the same regularity result with a weaker assumption by
modifying (A6). For convenience to the latter, however, we do not consider the more
general problem.

2.2. Problem (2.1) The existence for R 0. In this case, differentiating
the second equation of (2.1) with respect to t, we have

(.) E(x, t) dx ’(t),

then integrating the first equation of (2.1) with respect to x from 0 to l, we obtain

[

Substituting (2.10) into the first equation in (2.1), we have

E + V(Z)( + E)-

’+ V(E)(+E)dz-e Ed(’) =7
Z(x, O) Eo(x), (0, t) E (t), (, t) E(t).

If (A4) is satisfied, problem (2.11) is equivalent to problem (2.1) when R 0,
and so we can consider problem (2.11) instead of problem (2.1).

Remark. (A4) insures the equivalence of (2.11) and (2.1) when R 0, which is
not difficult to verify. If is a constant, it will not appear in (2.11), but the solution
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of problem (2.11), which is the same as the one of problem (2.1), still depends on
via E0 by (A4). However, (A4) is not necessary for the existence of the solution of
problem (2.11).

Suppose E0, Ei, i 1,2 and satisfy (A5) and one of (A1)-(A3), V satisfies
(AT). We first obtain a priori estimates.

Set F(x,t) E(x,t) (1/l)(E(t)(l- x) + E2(t)x), then F satisfies

(2.12)

Take a test function gl F- (6/13)x(1- x)fFdx, then g satisfies

(2.13) glx=o,x=t O, g dx O.

Note

(2.14) x)6
x(l x) Fd dx OJ(t) -and the second equation in (2.12), then multiply both sides of the first equation in

(2.12) by g and integrate it by parts from 0 to to get

(2.15)

Using (A7), the nonlinear term of (2.15) can be estimated as follows:
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V(E)Ex (E -[

oo
V(E)EExdx

V(E)EdE

+ C(Cv, E1,E2) (1 + ]EI2)dx + e IExl2dx

+ C(Cv,E1,E2) (1 + IFI2)dx + - IFxl2dx

C(E1, E2) + C (1 + IFI2)dx + - IFxl2dx,

where C depends only on the given data and Cv is defined in (AT). By (A7), we have
that

Thus, from (2.15), we have

x)(2.16)
2 dt IFl2dx + - IFledx <- C + IFI2d

where C depends only on l, T, 5, , , Ei, E, i 1, 2. Integrating (2.16) from 0 to
t and using Gronwall’s inequality, we have

0<t<T

Now, ake 92 F3 (fi/13)x(1- x) F3dx, which also satisfies (2.13), as a tes
function. Multiply both sides of he first equation in (2.12) by 92 and integrate i by
pars on [0,1] x [0, tl, then use he same argument as above o obtain

(2.18) max ]FI4dx + IFI21Fx2dxdt
0<t<T

Now, take g3 Ft (6/13)x(1- x) f Ft dx, which also satisfies (2.13), as a test
function. Multiply both sides of the equation in (2.12) by g3 and integrate it by parts
on [0, ] x [0, t]. Noting that

FFFtdxdt e lFtl2dxdt + C IFlelFldxdt,

and using a similar argument as above with (2.18), we obtain

0<t<T

om (2.19), by the Sobolev imbedding theorem (see [1]), we have

(2.20) IIFIIL<O,T;C
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where C depends only on the given data.

On the other hand, as we pointed out before, problem (2.12) can be rewritten as
follows:

(2.21)

Thus from (2.21), we have, by Green’s representation, that F(x, t) can be written
as follows:

where the Green function G(x, y; t, T) satisfies the estimates (see [51, [8], and [141 for
details),

(2.23)
o
Gx (x, y; t, T)dy

Gxx(x, y; t, T)dy

< c(t -)-1/2,

<_ c(t- )-,

for t > T >_ 0, where E (0, 1) is some constant and C depends only on the given
data.

From (2.22) along with the estimate (2.20), we can control the nonlinear term
and obtain the estimate
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(2.24)

where b(t T) 1 + (t ’)-1/2 + (t T)- and C depends only on the given data.
We will use the following lemma (see [5]).
LEMMA 2.4. Let f(t) be a nondecreasing function and C > 0, 7 e (0, 1). /f

()y(t) < f(t) + c it TI.
then

y(t) <_ Cf(t),

where C depends only on and the upper bound of T.
Now, after differentiating (2.22), we use Lemma 2.4, formula (2.24), estimates

(2.23), and the first equation in (2.21) to obtain the estimate

(2.25) IIFIIL<O,T;W<[O,]))+ IIFtI}L<T) < C(llllC, IlEollc=, IIElllc,, IIE211c),

where C depends only on the given data.
Hence, E satisfies the estimate

(2.26)

By the Sobolev imbedding theorem (see [1]), we have

(2.27) IIEIIL<O,T;C/<IO,I)> < C(lllIC1, IIEolIc, IIExlIc, IIE211C),

where e (0, 1).
Now, let a 6 [0, 1]. In a Banach space B L(0, T; C1[0,/]) consider the map

T defined as follows: For H 6 B, let T(H) be the WI(QT) solution E of the
problem

(2.28)
Et + V(E)(1 + Ex) 5Exz 7 + V(H)(1 + H)dx 5H

o

E(x, O) aEo(x), E(O, t) hE1, E(1, t) hE2.

With estimates (2.27), we can easily verify the hypotheses of the Leray-Schauder
fixed point theorem without difficulty and conclude that the map has a fixed point
in B. That is, there exists at least one solution of the problem in L(0,T; C([0,/])),
which is then in W2.. c(QT) and hence in C+’-- (QT) for any A e [0, 1). The conti-
nuity on the boundary can be discussed as we did in. the last section.

THEOrtEM 2.5. If assumptions (A1), (Ab), and (AT) are satisfied, problem (2.11)
admits at least one solution in WI(QT) and so in C(-OT)3 C+’ (-OT\Pc) for
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any E [0, 1), where Pc is defined in Theorem 2.1. It satisfies an estimate that is
similar to the one in Theorem 2.1 with C independent of R.

Increasing the regularity of the solution in the typical way, if (A6’) is assumed,
we can obtain the following theorems.

THEOREM 2.6. If assumptions (A2), (Ab), (A6’), and (AT) are satisfied, problem
(2.11) admits at least one classical solution in C2+a’l+ (T)" It satisfies an estimate
that is similar to the one in Theorem 2.2 with C independent of R.

THEOREM 2.7. If assumptions (A3), (Ab), (A6’), and (A7) are satisfied and V is
sufficiently smooth, problem (2.11) has at least one classical solution in C2+’I+(T)C

in

Combining the results for the cases of R > 0 and R 0, we have the following.
THEOREM 2.8. Under the assumptions (A4), (Ab), (A6)(or (A6’)), (A7) and

one of (A1)-(A3), problem (2.1).admits at least one solution in WI(QT), and the
solution is smoother if the given functions are smoother.

2.3. Problem (2.2). Arguing as we did in 2.1, we can investigate problem (2.2)
and obtain the following theorems.

THEOREM 2.9. If assumptions (A1), (Ab), and (A7) are satisfied, problem (2.2)
admits at least one solution in w2.. oI(QT), which is then in C(-T)NC+’ (-T\Pc)
for any A E [0, 1), where Pc is defined in Theorem 2.1. The solution satisfies an
estimate which is similar to the one in Theorem 2.1 with C independent of R.

THEOPEM 2.10. If assumptions (A2), (A4)-(A7) are satisfied, problem (2.2)
admits at least one classical solution in C2+a’+ (T)" It satisfies an estimate which
is similar to the one in Theorem 2.2 with C independent of R.

THEOREM 2.11. If assumptions (A3)-(A7) are satisfied and V is sufficiently
smooth, problem (2.2) has at least one classical solution in C2+a’l+T)NCT\Pc),
where Pc is as in Theorem 2.1.

2.4. Further properties of the solution to the Dirichlet problem. For
the solution of problems (2.1) and (2.2) we have the following continuous dependence
result.

THEOREM 2.12. Let E(x, t) and E(x, t) be the solutions of problem (2.1) or prob-
lem (2.2) corresponding to the boundary and initial conditions Ei(t), E0(x), (t) and
Ei(t), E0(x), (I)(t), respectively, where i= 1,2. Then the following continuous depen-
dence estimates hold. If (A1), (Ab), and (A7) are assumed for the given functions,
then

(2.29) lie EIIwI(QT)

i=1,2

or if (A2), (A4)-(A6) (or (A6’)), and (A7) are assumed for the given functions, then

(2.30)
lIE EIIc=+o, +e

i=1,2
)
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or if (A3) and (A7) are assumed for the given functions and V is sujficiently smooth,
then for any 0 < k < o,

The constants C in (2.29)-(2.31) depend only on the given data. In (2.31) C also
depends on k.

Proof. We only prove the results for problem (2.1) as the results for problem (2.2)
can be obtained by a similar argument.

We already have the estimates that depend on the given data in Theorems 2.1-2.3
and 2.5-2.7. Let F E- E; then F will satisfy for R > 0

Ft + V(E)Fx + V’(TE + (1 T)-)dT(1 + -x)F 5F

R

F(x, O) Eo Eo, F(O, t) E1 El, F(1, t) E2 E2;

or for R 0,

(2.33)

Ft + V(E)Fx + V’ (TE + (1 T)-)dTF(1 + -) 5Fx

1 ’ -’) + V(E)Fxdz 5 Fdx=7

+ v’ + (1 +

F(x,O) Eo Eo, F(O,t) E1- EI, F(1, t) E2 E2.

Now using Green’s representation, the estimates (2.7), (2.26), (2.27), and regular-
ity results, then differentiating the first equation in (2.3) or (2.11).or (2.2), we obtain
the following estimates for R >_ 0" For any integers m >_ 2 and h >_ 1,

where b(t- ’) is defined in (2.24), and C depends only on the given data and m, h.
Applying Lemma 2.4 and the imbedding theorem to (2.34) yields (2.29)-(2.31). D

The uniqueness of the solution is a direct consequence of Theorem 2.12.
COROLLARY 2.13. The solutions of problem (2.1) and (2.2) are unique.
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3. The integral boundary condition for the integrodifferential problem.
In this section, we will discuss the existence, uniqueness, regularity, and continuous
dependence on given data of the solution for problem (1.7) by using the results of 2.
We transform the differential boundary conditions into integral ones. We then define
a map on the unknown J in the boundary data. In this way, the boundary conditions
become Dirichlet boundary conditions, which we have already considered in 2. We
prove that the map has a fixed point. In 3.1, we consider the case R > 0. For the
case R 0, which is discussed in 3.2, we encounter the difficulties of the compactness
of the map as well as obtaining an estimate when T is large. We will make a suitable
transformation to overcome the difficulties.

In order to discuss the regularity, an additional compatibility assumption is re-
quired on the initial function E0(x),

(A8)

Eo(0) + + 6E0  (0)
P0
_Eo(l___) + V(Eo(1))(1 + Eox(1)) 5Eox(1) O.

Pt

3.1. The case of R > 0. First of all, we point out that the boundary condition
in problem (1.7) can be changed into an integral boundary condition. We are going
to discuss the following equivalent form of problem (1.7):

Et + V(E)(1 + E)- tiEx J(t),

ootE(x,
t)dx + RJ(t) (I)(t),

E(x, 0) E0(x),

00 e--E(0, t) W0(0) e- + g(s) ds,

j0 -t

S(1, t) Eo(1) e -4- J(s) e--Zi- ds.

Suppose E0 and (I) satisfy (A4) and one of (A1)-(A3) and V satisfies (A7). We
start to obtain an a priori estimate in Lot(J0, T]) for J(t) in problem (3.1). From the
second equation in (3.1) and estimate (2.7), we have for any t e [0, T),

(3.2)

1 foIJ(t)l (t) E(x, t)dx

(1/0 <_ C 0 + IIElIco([o,tlx[O,t])) <- c + ]g(T)id

where C depends on Eo, q), R, l, and
By Gronwall’s inequality, we have

(3.3) liJ(t)IIL([O,T)) <-- C,
where C depends only on E0, , R, l, T, and Cv.

Consider the Banach space B C([0, T)), and a closed subset A/[ {I E
B; I(0) 0}. For a e [0, 1], consider the map W defined as follows: For any I A/I,
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let T(I) be the solution J of the following problem:

(3.4)

E,+V(E)(I+Ex)-6Ex=- a- Ed

E(x, O) aEo(x),

E(O, t) aEo(O) e o + a I(s)
8-,

e--- dE,

[,t s--t

E(1, t) aEo(1) e + a Jo I(s) e-- ds,

J(tl=- - Ee

Observe that the first four equations in (3.4) give rise to the same problem as
problem (2.3) with the boundary conditions

z E0(0) 20 + () --d,

0E Eo(t) + o () -d.

It is obvious that Ei E C ([0, T]), 1, 2, for any I E C([0, T)). It is also easy to ver-

ify (Ab). So by the result of Theorem 2.1, E exists and E C(-T)nCI+’- (T\Pc)
for any A (0, 1). Thus, from the last equation in problem (3.4), J(t) exists and be-

longs to C1-- ([0, T]) C B as well as to the set A//since J(0) 0 by (A4); therefore,
the map is well defined and compact. Continuity of the map follows from Theorem
2.12. Using estimate (2.7), it is easy to verify that when a 0, T(I) 0. For each
fixed point we have estimate (3.3) and so by the Leray-Schauder fixed point theorem,
the map has at least one fixed point in B, that is, the following.

THEOREM 3.1. For the case of R > O, if Eo C2([0,/]), CI([0, T]) and
(A4), (A7) are satisfied, then problem (1.7) admits at least one solution belonging to
W,(Q)

Moreover, we have the following.
THEOREM 3.2. For the case of R > O, the solution of problem (1.7) is unique.
Proof. If there are two solutions E and E, corresponding to J and J, respectively,

then the function F E- E satisfies

(3.6)
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By estimate (2.7), we easily observe that IFI can not attain its maximum value
in the domain, but only on the boundary. So, from (3.2), we have

IJ(t)- J(t)l <_ - IF(x, t)ldx <_ C IJ(T) J(v)ld-.

By Gronwall’s inequality, we have

[J(t)- J(t)l <_ O.

That is,

J(t) =- J(t).

By the uniqueness theorem of Corollary 2.13, we obtain that

E(x, t) =-- E(x, t).

Therefore, when R > 0, the solution of problem (1.7) is unique.
If (AS) is satisfied, we can verify (A6) and use Theorems 2.2 and 2.3 to increase

the regularity of the solution by a standard argument to obtain the following.
THEOREM 3.3. For the case of R > O, if Eo E C2+a([0,/]), E C1+- ([0, T])

and (A4), (AT), and (A8), are satisfied, then the solution E of problem (1.7) belongs
to the space C2+a’1+ (T)"

Proof. We can easily verify (A6) if (A4) and (AS) are satisfied when a 1.

For the fixed point J(t), we already have the estimate J(t) e C- ([0,T]), which

implies the boundary data belongs to C1+-- ([0, T]). Therefore, since C+,
the solution E will belong to C2+’+ (T) by Theorem 2.2. Hence, J will be in
C+ ([0, T]). Repeating this argument yields the desired regularity. [:]

Using Theorem 2.3, and arguing as in 2 and in the proof of Theorem 3.3 where
k 1 up to cx, we obtain the following.

THEOREM 3.4. For the case of R > O, if Eo e C([0,/]), e C([0,T]),
Y e C(), and (A4), (A7), and (A8) are satisfied, then the solution E of problem
(1.7) belongs to C2+a,1+ (T)N C(-T\Pc), where Pc is defined in Theorem 2.1.

Arguing as in 2, and using estimate (3.2), we obtain the following continuous
dependence result.

THEOPEM 3.5. For the case of R > O, if (A4), (A7), and (A8) are satisfied, then
the solution of the problem (1.7) depends continuously on the initial function Eo(x)
and the given function (t).

3.2. The case of/ 0. In this section, we consider the case R 0 in problem
(1.7). We still suppose E0 and satisfy (A4) and one of the (A1)-(A3).

The method for the case of R > 0 in the last section cannot be used for the case
of R 0 directly because we cannot get the image J(t) from the second equation
in (1.7) but only (2.10) with R 0. Therefore, for the case R-- 0, we cannot prove
compactness of a map similar to (3.4) by using the corresponding result in 2.2.
Another difficulty is to obtain an a priori estimate when T is large. To overcome
these difficulties, we introduce the following transformation from (1.7) when R 0:

(3.7) J(s)ds L(t),

(3.8) F E- L(t).
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Then F satisfies

(3.9)

Ft + V(F + L(t))(1 + Fx) 5Fxx 0,

oIF(x,
t)dx O(t) ln(t),

F(x, O) Eo(x),
1
(F(O, t) + L(t)) O,F(O, t)+

1
Ft(1, t) + --(F(1, t) + L(t)) O.

Pl

Remark. We cannot use this transformation to discuss the Dirichlet problem
(2.1) in 2 because after transforming, the problem no longer has Dirichlet boundary
conditions.

From the second equation in problem (3.9) we have

(3.o) L(t) -[ F(x, t)d

Substituting (3.10) into the first equation of problem (3.9), and change the bound-
ary conditions into the form of integral equation, we obtain the following integrodif-
ferential problem

(3.11)

(F 1((I) fotFt + V + 7 F(x, t)d (1 + Fx)- 5Fz O,

(x, o) Eo(x),

F(0, t) E0(0) 2o

Fq, t) Eo(Z) ;,

Po
L(s) e-Zh- ds,

1 jo -t

L(s) e--;V ds.
Pt

Now, consider the Banach space B C([0, T]) and the closed subset J4 {I E
B; I(0) 0} on which we define the map W(I) n for a e [0, 1] such that for any
I(t) J/[, L(t) is the solution of the problem

(3.12)
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Now, this is the problem (2.2) discussed in 2.3 with

E1 aEo(O) e o 1 fa-- I(s) e-- ds,
Po Jo
1 ft

_
E2 aEo(1) e- -a-- Jo I(s) e-i ds.

Pt

We can easily verify (A1) and (Ah), when I e B nd (3.7), (3.8) hold. Then by the
result of Theorem 2.9, we know that problem (3.12) admits a solution E e W (QT),
which is then in C(T)Cl+,(TP) for any A e (0, 1). om the last equation
in problem (3.12), we have that the image of the map L(t) exists and is in B; also,
L(0) 0, so L ; that is, the map is well defined. Moreover, since L(t) e
C ([0, T]), the map is compact. The continuity of the map can be verified by using
the results in 2.4. It is easy to verify that T(I) 0 when a 0.

We want to prove that each fixed point has a uniform estimate with respect to a
so that we can say the map has a fixed point in B when a 1 by the Leray-Schauder
fixed point theorem. In fact, as we discussed in the last section, for any t [0, T),
if IF] ttains its maximum value in the interior of the domain or at the initial time,
then F] C(O, E0). Therefore from the second equation of (3.9), we have that

ILl C(O, E0). For any t e [0, T), if IF] attains its maximum value in the domain
QT on the boundary, from the second equation of (3.9), we have

n(t) y F(x,t)d C(1 + lIFln([o,t]x[o,t])) C + IL(s)d

By Gronwall’s inequality, we have

C

for any t [0, T), where C depends only on the given data.
That is, the mapping has at least one fixed point when a 1. Therefore, we have

the following theorem.
THEOREM 3.6. For the case of R O, ff Eo C2([0,/]), @ CI([0, T]), and

(A4) and (A7) are satiCed, problem (1.7) admits at least one solution belonging to

The uniqueness of the solution can be obtained by using an argument similar to
the uniqueness argument done in the last section.

THEOREM 3.7. For the case of R 0, the solution of problem (1.7) is unique.
If (A8) is satisfied, we can easily verify (A6). The regularity and continuous de-

pendence of the solution can be proven s we have done in the last section. Beginning
with (3.11), and using Theorems 2.10 and 2.11, we can increase the regularity step
by step as we did in the last section to obtain the following results.

THEOREM 3.8. For the case R O, ff Eo e C2+a([O, 1]), C1+ ([0,T]) and
(A4), (AT), and (AS) are satiCed, then the solution E of problem (1.7) exists and
belongs to C2+a’+ (T).

THEOREM 3.9. For the case of R 0, ff E0 e C([0,/]), e C([0, T]),
Y e C(), and (A4), (A7), and (A8) are satiCed, then the solution E of problem
(1.7) belongs to C2+’1+ (T) C(TP), where P is dCned in Theorem 2.3.

THEOREM 3.10. For the case of R 0, ff E0 e C2([0,/]), @ e CI([0,T]),
and (A4), (AT), and (A8) are satisfied, then the solution of problem (1.7) depends
continuously on the initial function Eo(x) and the given function O(t).
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In summary, combining all the results together, we have the following main the-
orem.

MAIN THEOREM. If Eo e C2([0,/]), (I) e CI([O,T]), and (A4), (AT), and (AS)
are satisfied, then problem (1.7) admits a unique solution and the solution is regular
if the given functions are su]ficiently smooth. Moreover, the solution of the problem
depends continuously on the initial condition Eo(x) and the given function O(t).
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THE STABILITY OF THE EQUILIBRIUM OF A NONLINEAR
HILL’S EQUATION*

RAFAEL ORTEGA

Abstract. Sufficient conditions for the stability of the trivial solution of a nonlinear Hill’s
equation are obtained. As a consequence, the classical Lyapunov’s criterion for stability is extended
to certain nonlinear differential equations.

The proofs are based on the computation of the corresponding Birkhoff normal forms together
with an application of the twist theorem.
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1. Introduction. The differential equation

yt! -t- a () y nt- c () y2n-1 nt_ O,

with n > 2, a(t), and c(t) T-periodic functions, can be seen as a nonlinear version of
the classical Hill’s equation. (Here it is understood that the remaining terms in the
equation are also T-periodic in time and dominated by the power y2n in a neighbor-
hood of y 0.) The purpose of this paper is the study of the stability in the Lyapunov
sense of the trivial solution y 0.

The linearization of (.) around the origin leads to the classical Hill’s equation

(**) u,, + a (t) u 0.

It is well known that the stability of this linear equation is closely related to the
position in the plane of the Floquet multipliers A1, A2. The elliptic case (11 1, ,
+1) corresponds to the strong stability of (**) in the sense of Krein (also called
parametric stability), and the hyperbolic case (11 : 1) leads to instability and in the
parabolic case (, +1) both stability or instability can occur. For the equation (**)
many criterions for stability have been obtained since Lyapunov’s times (see [4], [6],
and [12]). However, one can construct examples where the linear equation is stable
or even strongly stable but y 0 is not a stable solution of (.). The main result
of this paper will show that if the coefficient c(t) is either positive or negative then
the stability of (**) implies the stability of y 0 in the nonlinear equation. As a
consequence the classical stability criterions for the Hill’s equation, such as Lyapunov
criterion, can be extended to (.) if one assumes that c(t) does not change sign.

The original motivation for the present work was the study of the stability of the
equilibrium position of the pendulum of variable length, sometimes called the swing.
The corresponding equation can be written in the form

y" + c (t) sin y 0,

where c(t) is a positive and T-periodic function depending on the length. This equa-
tion can be included in the class (,) with n 2, a(t) c(t),c(t) -a(t)/3! _< 0,

* Received by the editors October 21, 1992; accepted for publication June 18, 1993.

Departamento de Matemti.ca Aplicada, Facultad de Ciencias, Universidad de Granada, 18071
Granada, Spain.
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and the stability of y 0 is implied by the stability of the linearized equation. This
result for the swing only leaves open the non-semisimple parabolic case and extends
previous results in [2], where a was a small perturbation of a certain constant, and in
[9], where a had to satisfy an additional inequality.

The proof of the main theorem of this paper consists in a careful computation of
certain Birkhoff normal forms together with an application of the twist theorem. This
method of proof of the stability of a periodic solution gives additional information on
the existence of subharmonic and quasi-periodic solutions (see [10, 24 and 36]), but
this fact will not be mentioned in the rest of the paper. The previous paper [9] used
similar ideas but was based on the results on stability given in [10, 34]. This new
paper uses some consequences of the twist theorem obtained more recently in [11] and
[1], and improves the results in [9] on equation (.).

The rest of the paper is organized in the following way. Section 2 is devoted to
state the main result and to discuss some of its consequences. Section 3 deals with
the proof of the main result. Before this proof, some useful facts on the stability of
fixed points of area-preserving maps are collected. Finally, in 4 there are examples
of equations in the class (.) showing that the equilibrium may become unstable when
the assumption of the main theorem is not satisfied.

In what follows, to say that a solution of a differential equation or a fixed point
of a homeomorphism is stable will mean that it is Lyapunov stable in the future and
also in the past. If it is not stable it will be called unstable.

2. Stability criteria. The equation under consideration is

(2.1) y" -- a (t) y -- C (t) y2n--1
__
d (t, y) 0, n _> 2,

and the following general hypotheses are always assumed:
a, c" R -- R are continuous and T-periodic functions and f[ Ic(t)l dt O.
d" R (-s, e) R, ( > 0), is a continuous function with continuous derivatives

of all orders with respect to y, T-periodic with respect to t and such that

d(t,y) --O(lyl2n) y - 0, uniformly with respect to t E 1.

The solution y 0 has the variational equation

+ a (t) 0,

and the corresponding Floquet multipliers will be denoted by Ai Ai[a], 1,2. If
these multipliers do not lie on S1, the unit circle in C, then y 0 is not stable for
(2.1).

THEOREM. Assume the following.
(i) The equation (2.2) is stable;
(ii) c>_O orc<_O.

Then y 0 is a stable solution of (2.1).
(The proof will be given in 3.)
Remark. This result extends Theorem 2 in [9]. In addition to (i) and (ii), the

result in [9] assumes that n 2, a < (r/2T)2 and (2.2) is elliptic.
Following [12], a criterion of stability for the Hill’s equation (2.2) is expressed as

a finite number of inequalities of the form

F (a) < 0, i= 1,...,N,
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such that (2.2) is stable when they hold. Here F F(a) are functionals that are
continuous with respect to the uniform topology. Examples of stability criteria for
(2.2) ,are

T

(Lyapunov) F1 (a) min a (t) F2 (a) -4 + T a (t) dr,

(Zukovskii)

F1 (a) mtax [(pTr/T)2 -a(t)] ,F2 (a)- mtax [a(t)- ((p+ 1) r/T)2] (pE N).

(See [41, [6], and [121 for many other criteria.)
Every stability criterion for the Hill’s equation together with the assumption (ii)

produces a stability criterion for (2.1). An example is the following nonlinear version
of Lyapunov’s criterion.

COROLLARY. Assume that
(i’) a > O, T f[a(t) dr<4;
(ii) c>O orc<_O.
Then y 0 is stable for (2.1).
3. Remarks on the stability of fixed points and proof of the main re-

sult. In this section we shall obtain a proof of the theorem of 2. This proof will
be based on the theory of stability of fixed points of area-preserving maps in the
plane. The basic result in this field is Moser’s twist theorem and we shall present a
consequence of it following the ideas and results in [10], [11], and [1].

3.1. Stability of fixed points of area-preserving maps. Let F f C C --, C
be an area-preserving map defined in an open neighborhood of the origin and such
that z 0 is a fixed point. It is assumed that F is smooth (C in the real sense)
and, for convenience, the complex notation F F(z, 2) is used.

The following lemma gives an expression for the first nonlinear jet of F.
LEMMA 3.1. Assume that for some m >_ 3,

F (z,,) ,,z .-.t- O (Iz[m-1) z- 0 e sx).

Then there exists H H(z, 2), a real valued homogeneous polynomial of degree m
such that

(3.1) F (z, 2) [z + 2iOeH (z, 2) + 0 (Izlm)], z --* 0.

Proof. Consider the expansion ;kF(z, 2) z + h(z, 2) + O(Izlm), where h is a
homogeneous polynomial of degree m- 1. Since F is area-preserving,

1 IOzFI 2 -IOeFI 2 1 + Ozh + Ozh + 0 (IZlm-l) implying Oh + Oh O.

The Euler’s theorem for homogeneous functions implies that zOh + 2Oeh (m-
1)h. Define H(z, 2) Im[2h(z,2)/m]. The previous identities show that 2iOeH h,
concluding the proof.

Remark. The same argument appears in the proof of Theorem 1 in [1].
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Assume now that F is in the conditions of Lemma 3.1 with rn 2n, n _> 2. The
polynomial H given by the lemma can be expressed in the form

n-1

(3.2) H  lzl + {o kzk22n-k --Olk2kz2n-k},
k--0

where/ E IR; co,..., On-1 E C.
PROPOSITION 3.2. Assume that ) S1,F satisfies (3.1) with rn- 2n for some

n _> 2, H is given by (3.2) and one of the following conditions hold:
(C1)

where

A2p 1 for each p- 1,...,n and 0;
A2p 1 for some p 1,...,n and H#(z, 2) 0, for each z C- {0},

2p--

H# (z, 2) (1/2p) E H
r--0

Then z 0 is stable with respect to F.
Proof. Assume first that (C1) holds. Then it follows from the theory of normal

fbrms for symplectic maps (see [10, 23]) that there exists a symplectic diffeomorphism
defined in a neighborhood of the origin, with (0) 0 and such that the conjugate

map G )-1 o F o ) has the expansion

G (z,2)--- [z -- i’lzl2n-2z - 0 (Izl2n)] Z--+ 0,

where / 2n/. In consequence / - 0 and the conclusion follows from [10, 34].
It must be remarked that [10] assumes that F is real analytic, however the same
arguments are valid for F sufficiently smooth applying the corresponding version of
the twist theorem in [8].

If (C2) holds we compute the Taylor expansion of the iterated F2p and obtain

2p--1

F2p (z, 2)- z 2ff 2i E r (O2H)(rz,-r2)- 0 (Izl2n), Z O.
r--O

In consequence,
F2p (z, 2) z + 4piOeH# (z, 2) +...

and we think of z 0 as a parabolic fixed point of FU to apply Theorem 1 in [1].
The assumptions (b) and (c) of that theorem are verified since F2p is area-preserving
while (a) is equivalent in our setting to H#(z, 2) 0, Vz C- {0}. In consequence
z 0 is surrounded by TUp-invariant curves and is therefore stable. As remarked in
[] t onc.io so oows rom t,. re,t i. [].

3.2. Proof of the nain result. It will proceed in two steps. First, it is assumed
theft the linearized equation satisfies an additional condition and later it is shown that
it can be removed. The condition is a:s follows: Let ff(t)be the solution of (2.2) with
initial conditions (0)= 1, ’(0)= i, then

(3.3) (t+T)=Aff(t) Vt. (A=Ai[a],i-lor2).

Step 1. It is assumed that (3.3) holds.
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Let y(t;z,) denote the solution of (2.1) satisfying y(O;z,2)= Re z, y’ (O; z, 2)
Im z, and consider the Poincar( map

P (z, ) (T; z, ) + i’ (T; z, ).

This map is defined and smooth in a neighborhood of the origin and is area-preserving.
The stability of the trivial solution of (2.1) is equivalent to the stability of z 0 as a
fixed point of P. We shall apply Proposition 3.2 with F P and for this purpose we
need to compute the corresponding polynomial H. First we shall compute an expansion
of P using the following fact: "Let y y(t) be the solution of

y" + a (t) y + f (t) 0, y (0) Re z, y’ (0) Im z (z e C, f e C [0, T]).

Then y(T) + iy’(T) A{z f[ f(t)(t) dr}." (It is a consequence of the formula of
variation of constants together with (3.3).) Applying the previous statement to (2.1)
one obtains

P(z, 2) A z-i c(t)y(t;z, 2)2n--1 + d(t,y(t;z, 2))] (t) dt}.
On the other hand, the theorem of differentiability with respect to the initial conditions
implies that, uniformly in t E [0, T],

(t; z,) [,(t)z +,I,(t)]/2 + O(Izl:), y’(t;z, 2) [’(t)z+’(t)2]/2+O

A combination of both formulas produces the expansion

(a.a)

{ /oP (z, 2) z (i/22n-1) c(t) [ (t)z - (t) ,]2n-1 (t)dt} + 0 (Iz12).
Then P satisfies (3.1) with H given by

(3.5)

H(z, 2)= -(1/22n) c(t)[(t)z + q(t)2]2n/2ndt

c(t)[Re((t)z)]2/2ndt.

The coefficient is given in this case by

(1/22n+ln)(2n)oT c (8)lI (8)12n ds.
n

For each z 0, the flmction t --. Re((t)z) is a nontrivial real-valued solution of (2.2)
and it can only vanish on a discrete set. In particular, Re P. (t), Im (t) are linearly
independent solutions, implying I(t)l 0 Yt E R. Assume for instance that c 0.
Then < 0 and H(z, 2) < 0 /z C {0}. When /2p

_
I for each. p 1,..., n, (C1)
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holds. If A2p 1 for some p 1,..., n the definition of H# and the negativity of H
imply that H#(z, 2) < 0 Vz E C- {0}, so that (C2) holds.

Step. 2 (the general case). For each to E ]R let (I)(t, to) denote the matrix solution
of Y’ A(t)Y, Y(to) I, where

(0 1)A(t)- -a(t) 0

The matrix q)(t0 + T, to) is a monodromy matrix of (2.2) and the condition (3.3) is
equivalent to O(T, 0) R[0], where/ ei and R[0] is the rotation of angle 0 given
by

(cos0 -sin0)R[0]= sin0 cos0

If A +1, (3.3) always holds. In fact, since (2.2) is stable, the monodromy matrix
must be +I. If A +1 it follows from Proposition 7 in [9] that there exists to and
a > 0 such that

(to + T, to) bar [0] D1,

where D diag(a, ct-1) and eio is one of the Floquet multipliers of (2.2). The change
of the independent variable 7 (t t0)/c2 reduces equations (2.2) and (2.1) to the
corresponding equations

(d21d72) y + a* (7) y 0 and (d21d72) y + a* (7) y + c* (7) y2,- + d* (T, y) O,

with a*(T) o4a(ct27 -t- to), c*(7) oz4c(oz27 -- to), d* (-, y) o4d(ct27 -t- to, y). These
equations are periodic with period T* T/a2 and (3.6) implies that the monodromy
matrix corresponding to the transformed equation satisfies O*(T*, 0) RIO], so that
(3.3) holds for the transformed equation and Step 1 can now be applied.

4. Examples of instability. In this section we present an example showing
that the equilibrium can be unstable if the hypothesis (ii) of the main theorem in 2
does not hold. The construction of this example will follow after stating a result on
unstable fixed points of area-preserving maps.

4.1. Roots of the unity and unstable fixed points. As in 3.1, we denote
by F gt C C --, C a smooth area-preserving map such that z 0 is a fixed point. It
is assumed that F has an expansion of the kind

F (z, 2) A [z + 2iOeH (z, 2) + 0 (Izlm)], Z --+ 0

where H is a real-valued homogeneous polynomial of degree m, rn >_ 3, and is a root
of the unity; An 1 for some n >_ 1.

PROPOSITION 4.1. In the previous setting define the polynomial

n

H# (z, 2) (l/n) EH (Arz,r2)
r=l

and assume that H# changes the sign; i.e., there exist Zl,Z2 C such that
H#(zl,21) < O,H#(z2,22) > O. Then z 0 is not Lyapunov stable.
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Remark 1. The application of this result to the case n m 3 leads to the
classical criterion of instability of Levi-Civita at the third root of the unity (see [10,
31]).

Remark 2. It is enough to prove the result in the parabolic case (A 1). The
general case is reduced to it using the iterated Fn. This reduction repeats some of
the arguments in the proof of Proposition 3.2. In the parabolic case there are several
results on instability in [5], [7], and [11]. It is not difficult to verify that Proposition
4.1 follows from the result in [11] in the analytic case. However the proof of instability
in [11] has not many details and we shall give an independent proof valid also for the
nonanalytic case.

The proof will use the following result.
LEMMA 4.2. Let F ft C --+ F(ft) C. be an area-preserving homeomorphism

with F(O) O. Assume that there exist positive constants a, 5 with c < 7r such that

(4.1) F (/s N Ds) C Ks,

not stable.
Proof. By a contradiction argument assume that z 0 is stable. It follows from

[10, 25] that there exists an invariant open set G with 0 G, G c Ds. The Poincard’s
recurrence theorem (see, for instance, [10, 37]) implies that almost every point in G
is recurrent. The assumption (4.1) and the invariance of G imply that F(K G) c
Ka . It is now easy to deduce that the set A [(K {0}) G] F(, ) is
open and nonempty, in particular it has positive measure. In consequence the points
in A cannot be recurrent, a contradiction with the recurrence theorem.

Proof of the Proposition 4.1. It will be assumed that A 1. The function (0)
H(e, e-) is real analytic, 2-periodic and changes the sign. In consequence there
exist 0* [0,2] and a > 0 such that (0") 0 and ’(0) < 0 if 0 < 0-0* a.

In what follows it will be assumed that 0* 0 (otherwise F can be replaced by the
conjugate map Fl(Z) e-i* F(ei*z)).

We now consider the hamiltonian system z’ 2iOeH(z, 2) and denote by Zt (z, 2)
the solution satisfying Z0(z, 2) z. It is well known that the corresponding 1-time
map approximates well the map F (see for instance [3, p. 314]). Actually,

(4.2) IF (z, ;) Zl (z, 2)1- O (Izlm), Z --+ 0.

The canonical change of variables z (2p)1/2ei transforms the hamiltonian system
into

0’ (Tn/2) (2p)m/2-1 p,- v, (0), (0, (0,

It follows from these equations that Ks is positively invariant with respect to the
hamiltonian flow. To be more precise, consider the metric of the group R/27Z given
by

II011-inf{l+27rpl ;pEZ}, 0-+27rZ, ,
and denote by Arg: C- {0} - /27rZ the argument function. Then

(4.3)

I[Arg Z (2,2)! < max[c/2, IIArg zll- (mk/2)Izlm-2] ,z sufficiently small.
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Here k min[l(0)l; a/2 _< 101 _< a]. We remark that there exist L > 0 such that

IlArg (z) Arg (z.)ll _< Llzl-lZl zel VZl, Z2 E C- {0}.

Combining this inequality with (4.2) and (4.3) we obtain

IlArg F (z,  )11 < I]Arg Z1 (z, e)ll + IlArg F (z,) Arg Z (z, )11

< max In/2, IIArg zll- (mk/2)IZlm-2]
0 (Izlm--l < a if z E / sufficiently small.+

\ /

This estimate shows that (4.1) holds for some small 5 and the proof finishes with the
application of Lemma 4.2.

4.2. An example of unstable equilibrium. Consider the equation

(4.4) y" + y + cn (t) y2n-1 O, n >_ 2

and assume that cn is continuous and periodic with period T r/n. In addition

r/n

(4.5) Cn (t) eiP dt 0, p 0, 1,..., 2n 1,
J0

r/n
an (t) ei2nt dt O.

We shall prove that y 0 is unstable. Remark that the condition (i) of the theorem
holds, but cn has to change the sign, so that (ii) fails.

The linearized equation is y" + y 0 and, for the period /n, the Floquet
multipliers are e+ir/n. Following the notation of 3 we have that (t) eit and (3.3)
holds with A e-it/. The Poincar map has an expansion of the type (3.1) with
rn 2n and, according to (3.5) and (4.5),

H (z, 2) (1/22nn) Re [Fz2n] with F Cn (t) e-i2nt dt.
JO

Since/k is a root of the unity of order 2n, H# H and Proposition 4.1 can be applied.

Acknowledgment. i thank Professor Martnez-Amores for several conversations
on the presentation of this paper.
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MATCHED EXPANSION SOLUTIONS OF THE FIRST-ORDER
TURNING POINT PROBLEM *

L. A. SKINNERf

Abstract. Uniformly valid asymptotic solutions for second-order linear differential equations
with first-order turning points are obtained by the method of matched asymptotic expansions. A key
feature of the analysis is that the high frequency and strong exponential behavior of these solutions is
factored out of the matching processes. This produces a set of essentially elementary boundary layer
problems. A variation of the Langer expansion theorem for first-order turning points is independently
established and used in verifying the formal calculations. The results emphasize the basic WKB
structure of turning point asymptotics. A new property of Airy functions is also involved.

Key words, matched asymptotic expansions, turning points

AMS subject classification. 34E20

1. Introduction. This paper is concerned with uniformly valid asymptotic ex-
pansions as : -- 0+ of solutions to the differential equation

(I.i) :2y,, + [xa (x) + b (x) + 2c (x, s)] y 0,

where a(x),b(x) e C[-1,1],c(x,) e C([-1,1] [0,1]) and a(x) > 0. Without
loss of generality we also assume a(0) 1. This is the same differential equation that
Langer treated, in his 1949 paper [2], which was the culmination of his fundamental
work on first-order turning point theory. It is more general than the differential
equation subsequently taken up by Olver [4], who had b(x) 0 and c(x, ) depending
only on x, for his extension of Langer’s results to the complex plane. Olver has since
suggested an extension of his work to deal with the full equation (1.1), [5, pp. 426-429],
but the theory for this has not been completely worked out.

The purpose of the present paper is to establish some new results for (1.1) based
on the method of matched asymptotic expansions. Part of the motivation for this
work is that the results of Langer and Olver tend to obscure the basic WKB structure
of asymptotic solutions to (1.1), and also their basic boundary layer structure. A
more fundamental point is that we should expect a wider range of applicability to the
uniform solution of turning point problems in general from the method of matched
asymptotic expansions. Although much has been done on matching methods for turn-
ing point problems in recent years, and much of it is summarized in the monograph
by Wasow [7], no theory of uniformly valid composite expansions for these problems
has been developed.

In the case of (1.1), we know from WKB theory [5], [7] that for x > 0 there is an
oscillatory solution of the form

(x, :) =, (:) + o (:)]

where u e-: and, from substituting into (1.1),
X

(x) [1 1 a (t)] 1/2 dr.

* Received by the editors November 9, 1992; accepted for publication July 7, 1993.
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Substitution also yields p(x) h(x)exp[ir(x)] where h(x) [Ixla(x)]-l/4 and

(1.4) lf0Xr (x) b (t) h2 (t) dt.

The reason for absolute value signs will be seen later. In addition to (1.2), upon
introducing X v2/3x in (1.1) it is apparent (formally) that y(2/3X, e) P(X)+
O(el/3), where P(-X) satisfies Airy’s equation. The solution that matches with (1.2)
is

P (X) 71/2ei/4 [Ai (-X) i Bi (-X)],

: then both p(v2/3x) andprovided #() 1/6 Indeed, if x ek and < k < 5,

I/6p(x)ei’s(x) e/6x-/det [1 + 0(1)]

as e - 0+, where t (2/3)x3/2. Thus, as indicated in [1, pp. 163-168], the composite
function

(1.7) q (x, ) 1/6p (x)eArs(x) z_ p (v:/ax) s/6x-/ae,t

should be a uniform approximation to y(x, ). A reasonable conjecture is

(1.8) y (x, ) q (x, ) + 0 (E1/3)

for 0

_
x

_
1; however, this has never been proved.

Rather than pursue (1.8), the idea for dealing with (1.1) in this paper is to set

(1.9) (x,

and solve instead for z(x, ). It turns out that z(x, ), unlike y(x, ), is an essentially
elementary, although complex valued, boundary layer function. The differential equa-
tion for z(x, ) is

(1.10) z" + 2is’ (x) z’ + [b (x) + is" (x) + c (x, )] z O.

Several terms of a formal matched asymptotic expansion solution for z(x, ) are derived
in the next section. In 3 we prove that the resulting formal composite expansion is
a uniformly valid solution of (1.10) for 0

_
x

_
1. A second solution of (1.1) for

0

_
x

_
1 and analogous exponential solutions for-1

_
x

_
0 are given in 4,

together with connection formulas.

2. Formal solution. It is appropriate, in view of our preliminary calculations,
to write the N-term outer expansion for z(x, ) as

N-1

(2.1) ONZ (X,g) 1/6 E n/3Zn (X).
n---0

That is, we assume (temporarily) a solution of (1.10) with an asymptotic expansion
of the form (2.1) for x > 0. From (1.2), zo(x)= p(x). Also, (1.10)indicates zn(x)- 0
unless n/3 is an integer. Thus Zi (X) Z2(Z) 0.
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The inner expansion for z(x, ) is the expansion of z(e2/aX, ) in powers of 1/3.
Denoting the first N terms of this expansion by

N-1

(2.2) INZ (X,) Z n/3Zn (X),
n--o

and, putting X- u2/3x in (1.10), we find

Z + 2iX1/2Z + 1/2iX-J/2Zo O.

If we write this as Zo- O, then in addition

(2.4) Z1 -boZo (X)

.Z2 -iaiX/2 [Zo (X) + XZ (X)] boZ (X)

where b0 b(0), a a’(0).
In terms of 9(X) P(X)exp[-(2i/3)X3/2], where P(X) is given by (1.5), the

general solution of (2.3) is

Zo (X) colg (X) + c020 (X)exp[- (4i/3) X3/]

where 0(X) is the complex conjugate of g(X). Also, from well-known expansions for
the Airy functions,

(2.7) g (X) X1/4 E gmX-3m/2
m--0

as X oc, where go 1 and g -5i/48. Thus for I1z(x, ) Zo(122/3x) to match
with Oz(x,e) el/6p(x), it must be that c02 0. Indeed then,

01ILZ (X,e) II01Z (X,e) 1/6X-1/4,

provided C01 1.
Let CN ON + IN --ONIN. We prove in 3 that z(x, e) CNz(x, e) -- O(eN/3)uniformly for 0 _< x _< 1. Presently, with N 1, this gives us, in place of (1.8), the

two term expansion

(2.9) Z (X, if) g (/22/3X) -t- 1/6 [p (C) x--l/4] -- O (1/3).

To determine higher-order terms of (2.2) it is helpfill to note that

(2.10) Xm,q (X) mXTM [(m- 1)X-2 -- 2iX-1/2] ,q (X) -t- 271,Xm-lg (X)

(2.11)
X’9 (X) i (1 4m) Xm-a/2g (X)

-Xm [i (1 4rn).X-l/2 lrt (rt 1) X-u] 9’ (X).
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Thus we find

(2.12) Z1 (X) c119 (X) 4. c120 (X)exp [- (4i/3) X3/2] + bo [iXl/2g (X) + g’ (X)],

and as with Zo(X), we clearly need C12 0 in order to match with (2.1). It follows
that

(2.13) 0212Z (X, ) 1/6 (X--1/4 4. iboxll4) -4- c11112x-114.

On the other hand,

(2.14) p(x) X-1/4 [1 + iboxl/2 klX 4. 0 (x3/2)]

where kl -(al 4- 2b)/4, and therefore

(2.15) I202Z (X,S) X-1/4 4- ibol/3X1/4.

Hence Cll --0 tOO, and with X 2/3x,

(2.16) C2z(x,) Clz(x,g) 4- b01/3 [iXl/2g(X) 4- g’ (X) --iXl/4].

For Z2(X) we now have

(2.17) Z2 -ia [X1/2g (X) 4- X3/4g (X)] b [iXl/2g (X) 4- g’ (X)].

As above, a particular solution of (2.17) is readily found and matching again eliminates
the homogeneous solution terms. The result is

(2.18) Z2 (X) X2g! 2
-al [-Xg (X) 4- (X)]- -boXg (X)

Thus

(2.19) C3z (x, ) C2z (x, ) 4- 2/3 [Z2 (X) 4- klX3/4]

a. Confirmation. As in [6], we shall write f(x) e c[0,1 if both f(x) and
f(1/x) are in C[O, 1]. Thus, if f(x,X) C([O, 1] [1, oo]), then f(x,X) has an

asynptotic (at least) power series expansion about (x, X) (0, oc). The coefficient of
xmX-n in this expansion is f[m,-n](O, c), where

(3.1)
1 (O)’(_X2 0 ) ’

f[m,-n] (x, X) (m!)(n!) f (x, X).

Our objective in this section is to verify the formal calculations of 1 by proving the
following theorem.

THEOREM 1. Let a(x), b(x) e C[-1, 1], c(x, ) J C([-1, 1] [0, 1]) and assume

a(x) > O. Then (1.1) has a solution of the form (1.9) such that for N >_ 1,

(3.2)
N-1

z (x, + (x)] + o
n:0
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uniformly as -- O+ for 0 <_ x <_ 1, where X1/2Vn(X2) E C[1,] and Yn(X4),
x-1/2Un(x2) e Ccx[0, 1].

It follows from this theorem that z(x,) has an outer expansion of the form
(2.1) and an inner expansion of the form (2.2). It follows also that InOnz(x,)
O,.InZ(X,) for any n 1. Indeed the nth term of (3.2) is C+lZ(X,)-Cz(x,v). om
here (existence) it is a routine matter to justify the computation of these expansions
by substitution into the differential equation (1.10). Thus the first term of (3.2) is
given by (2.9), the second by (2.16) and the third by (2.19).

To prove Theorem 1 we require two other results. The first one, from [6], confirms
the validity of the method of matched asymptotic expansions for functions that have
a certain structure. An elementary example is f (t, T) (1 + t + T)-.

THEOREM 2. Let f(t, T) T-(t, T) where 0 < a 1. If f(t, T) C([0, b]
[0, 1]) and (t, T) e C([0, b] [1, ]), then

N-1

(3.3) f (t, #t) E #-n [Vn (#t) -- #-ltn (t)] -[- O (p-N)
n-0

uniformly for 0 <_ t <_ b as # -+ oc, where

[ ]tn (t) t"-n-1 [0,--n] (t, 00)- [m,--n] (0, 00)tm
m-O

Vm (T) Ta+m- [m,0] (0, T)-

_
[m,--n] (0, (X)) T-n

--o

Note that t-Sun(t) e C[0, b] and T-"vm(T) e C[1, cxz]. The plan is to use
Theorem 2 to show that (3.2) is implied by the following result, which is a variation
of one of the results mentioned earlier due to Langer [2].

THEOREM 3. Under the same hypotheses as in Theorem 1, there exists a solution
to (1.1) of the form (1.9) such that

(3.6)
N-1

z IOn (x)) (x))] + O
n--0

uniformly for 0 <_ x <_ 1, where a(x) [(3/2)s(x)]2/3,Cn(X) An(x)+
i[a(x)]/2Bn(x), and An(x),B(x) e C[0, 1].

Integral formulas for the coefficients in (3.6) can be obtained by substituting
into (1.1). They are given in [3]. Thus, Co(x) [a(x)]l/4p(x), and Bo(x)
[a(x)]-l/4h(x) sin r(x). We do not get explicit formulas for higher order terms, how-
ever, although major simplifications occur if b(x) 0, as in [4]. A simple proof of
Theorem 3 is presented below.

Proof of Theorem 1. We will prove Theorem 1 by showing that the individual
terms of (3.6) have asymptotic expansions of the same form as the one being claimed
for z(x, ) itself. Pick m and let

f (t, T) Cm (t2) g (T2p (t2)),
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where p(t) t-la(t). Note that p(t) > 0 on [0, 1]. We also have C,(t2) e C[0, 1]
and, from (2.7), T1/2g(T2) E C[1, cx]. Hence this f(t, T) satisfies the hypotheses of

It follows thatTheorem 2 with a- 5"

N-1

(3.8) f (X1/2,l)1/3X1/2
n--0

for 0 _< x _< 1, where vn(X), tn(X) are given by (3.4), (3.5). In other words

(3.9)
N-1

(x) (x)) + (x)] + O
n--O

where )n(Z) Vn(Zl/2),tn(X) tn(Xl/2). Consequently )n(Z4),x-1/2n(X2 e
C[0,1] and X/2vn(X2) e C[1, oc]. The same argument is applicable to
Bm(x)g’(u2/3a(x)). This completes the proof of Theorem 1.

Proof of Theorem 3. Following the previously mentioned discussion by Oliver [5,
pp. 426--429], to prove Theorem 3 we note first that the Liouville transformation

(3.10) w (4, s) [a’ (x) + s-’ (x)] 1/2 y (x, s), a (x) + ST (X),

where ’(x) -[a(x)]-/2r(x), converts (1.1) into

(3.11)

where 7(,s) e C([0,0] [0, s0]) for some 0,s0 > 0. Since a’(x) > 0 for 0 _<
x _< 1, we can choose so so that a’(x)+ s-’(x) > 0 on [0,1] [0, s0]. The image
of this rectangle is a trapezoid. Thus we let 0 a(1) if T(1) > 0. Otherwise,
0 a(1) + s0-(1). It is a straightforward matter, following [4] now, but taking into
account that Ai(-Z),Bi(-Z) are bounded for Z _> 0, to show (3.11) has a solution
w(, s) such that for 0 _< <_ @,

(3.12)
N-1

W (, S) E s2n [On () P (2/3) + sa/3n ()p, (2/3)] + O (s2N).
n--0

The coefficients in this expansion, On() and n(), are in C[0, 0]. Therefore

(3.13)
M-1

On ((9" (X) + ST(X)) E sm Tm (X) O[nm] ((9" (X))] + O (SM)
m--O

uniformly for 0 <_ x <_ x0, where x0 > 0 is a lower bound for the inverse image of @,
and the same is true with/n in place of an. Thus if we could expand P(2/3a(x) +
-/3T(X)) in terms of P(t,2/3a(x)), and its derivative, (3.6) would be proved for
0 _< x <_ x0. This possibility is covered, by Theorem 4, which follows. The validity of
(3.6) for x0 _< x _< 1 is trivial, since (3.6) is asymptotically equivalent to the outer
expansion (2.1) for x0 _< x _< 1. Indeed, if (2.1) holds for x0

_
x < o, then (3.6) holds

for 0 _< x < c. This completes our proof of Theorem 3.
THEOREM 4. Let V(z) be any solution of Airy’s equation, V"(z) zY(z). For

’#0,

(3.14) V (5-2 + 5r/) f (5, , r/) V (5-2,) + 5g (5, 5, v/) V’ (5-2),
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where f(5, , ), g(5, , ) are entire functions.
Proof. Any solution of Airy’s equation is an entire function. Hence the Taylor

expansion

(3.15) V (g + W) wnVIn] (z)

converges for all (z, w) E C C. Airy’s equation also implies

(3.16) VIn] (z) pn (z) V (z) -- an (z) V’ (z)

where pn(Z), an(Z) are polynomials. In particular, po(z) 1, qo(z) 0, and by differ-
entiating (3.16) we find

(3.17) (n + 1)p+l (z) p’n (z) + Zqn (Z) (n + 1)qn+l (z) Pn (z) + qn (Z)

Simple induction shows deg p,(z) < n/2, deg an(Z) <_ (n- 1)/2. Thus we can write

(3.18)
K:(n) (n-1)

Pn (Z) E PnkZk’ qn (Z) E qnkZk’
k=0 k=0

where ]C(n) In/2], and Pnk, qnk > 0 for all n, ]. Taking (temporarily) V Bi, we
have

(3.19) Bi (z + w) E wn [Pn (z)Bi (z) + an (z)Bi (z)].
n--0

Also, Bi(z), Bi’(z) > 0 if z e JR+. Therefore,

(3.20) (Z, W) E wnpn (Z) ) (Z, W) E Wnqn (Z)
n=0 n--0

converge for all (z, w) 11+ 11+, and thus they converge (absolutely) for all (z, w)
C C. Furthermore, upon differentiating (3.20) with respect to w, it is clear, in view
of (3.17), that differentiation with respect to z also is legitimate. Thus b(z, w), (z, w)
are entire functions, and

(3.21) v + v (z) + (z, v, (z).

Next we note that

(3.22)
N N x

EP2n,nZn < EP2n (Z) Epn (Z) < Cx3

n=0 n=0 n=0

for all z G R+, and a comparable statement is true with q2n/l,n in place of p2n,n.
Hence

(3.23) :P (Z) EP2n,nZn, (Z) E q2nTl’nZn
n=0 n=0
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are entire functions, too. Finally, it follows that

(3.24)
x3 K:(n)

lim E (5])n E Pnk (5-2)k ’)(2)
di---,0

n=0 k=0

(3.25)
cx3 E(n--1)

lim 5-1 E (57)n E qnk ((-2)k (T]2)
n=0 k=0

Therefore

(3.26) f (5, , r/) (5-2, 5), g ((, , ?) 5--1 ((--2, 57),

with the above limits for f(0, , ), g(0, , /) are entire functions. This completes the
proof of Theorem 4.

4. Other solutions. In addition to the solution of (1.1) given by (1.9), which
we now rename

(4.1) y(1) (X, ) eis(x) Z(1) (X,

there is a companion, linearly independent solution

(4.2) y(3) (X, ) e-is(x) Z(3) (X, ),

where z(3)(x, ) has a uniform expansion of the same form as z(1)(x, ). Thus

(4.3)
N-1

Z(m) (X, )-- E n/3 [gn(m) (/22/3x)
__

l/6Vn(m)(x)] -- O (N/3)
n=0

uniformly for 0 <_ x < 1, where X1/2Vn("O(X2) E C[1,c] and Vn(’)(X2),
x-1/2U(nm)(x2) C[0, 1]. If we let g(1)(X)- g(X),g(3I(X)- {I(X) and put

(4.4) p(m)(x)--h((-1)m+lx)exp[imr((-1)m+lx)]

(4.5)

(4.6) K(") (X) Xg(m) (X) Xg(m) (X) + -54X3/4
then for rn- 1, from 2,

Uo(’) (x) (-) (x), U(om) (x) p(m) (x) X-1/4,

(4.8) gl(m) (X) bo [imG(m) (X) (-1)mg(m) (X)], u") (x) o,

(4.9) V2(m) (X)= (-1) [1 lh2y1/2-alK(m) (X) - -vo. (m) (X)], u(’) (x) o.
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The corresponding terms of (4.3) for m 3 are also given by (4.7)-(4.9). Indeed, if
all the coefficient functions in (1.1) are real, then y(3)(x,) is the complex conjugate
of y(1) (x, ).

For -1 _< x _< 0, the analogous solutions of (1.1) behave exponentially. They
have the form

(4.10) y(m) (x, ) z(") (-x, )exp [im’s (x)], m 2, 4.

In fact, if we let

(4.11) g(2) (X) rl/2Bi (X)exp [- (2/3) X3/2]
(4.12) g(4) (X) 2r1/2Ai (X)exp [(2/3)X3/2]
then (4.3), with the definitions (4.4)-(4.9), also holds for m 2, 4. This can be seen for-
mally by paralleling the calculations of 2 or by substituting -x for x and i for in the
results for m 1, 3. The proof of (4.3) for m 2, 4 is essentially the same as for m 1.
We have, after substituting -x for x in (1.1), to deal with exp[(2u/3)3/2] in place of
the bounded function exp[(2iu/3)3/2]. But exp[(2u/3)3/2] Bi(u2/3)/g(2)(u2/3),
and therefore

(4.13) exp {(2/3)[a (x) + -1’3T (X>] 3,2} --k (x, > eS(x),

where k(x, ) 0(1) for 0 _< x _< 1, by Theorem 4.
Altogether now we have four solutions of (1.1). Any one of them is a linear

combination of any two others. In particular,

(4.14) y(m) (x, ) c,ly() (x, ) + c,3y(3) (x, ), m 2, 4.

To determine the coefficients in (4.14) we can use our inner expansion results. Indeed,
from

(4.15)

(4.16)

y(m) (0, ) g(m)(0) (--1)m bol/3g(m)’ (0) -[- O (4/3)
y(m)’ (0,) (-1)m+l -2/3g(m)’ (0)- h;2g(m) (0) q-O (),

where k2 (2a + b)/10, a short calculation reveals

m

4
exp [-im+r/4] + 0 ().

Hence, for example, taking N 1 in (4.3), in addition to

(4.18) y(2) (x, )e’S(x) g(2) (_u2/3x) + 1/6 [h (x)e-’r() (--X) -1/4] -I- O (81/3)

for --1 _< x _< 0, we also have

(4.19) y(2) (x, ) a (x, ) cos [us (x) + r/4] + fl (x, ) sin [us (x) + r/4]

for 0 _< x _< 1, where

(4.20) O (X, E) n (u2/3x) -[- El/6 In (x)cos r (x) X-1/4] -[- O (gl/3),
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/ (X, ) B (2/3x) + 1/6h (x)sin r (x) + O (1/3).

The leading terms here are

(4.22)
(4.23)

A (X) rl/2 [Bi (-X)cos W + Ai (-X)sin W],
B (X) 71"1/2 [Bi (-X)sin W Ai (-X) cos W],

where W (2/3)X3/2 + /4. It is readily checked that A(X) X-/a[1 + O(X-3)]
and B(X) O(X-7/) as X --, cx. These functions also appear to be monotone.

Acknowledgment. The author is grateful to the referees of this paper for a
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Abstract. The authors consider the problem of approximation by B-spline functions, using a
norm compatible with the discrete sequence-space 12 instead of the usual norm L2. This setting is
natural for digital signal/image processing and for numerical analysis. To this end, sampled B-splines
are used to define a family of approximation spaces SUm C 12. For n odd, Sn is partitioned into sets
of multiresolution and wavelet spaces of 12. It is shown that the least squares approximation in Sn
of a sequence s E 12 is obtained using translation-invariant filters. The authors study the asymptotic
properties of these filters and provide the link with Shannon’s sampling procedure. Two pyramidal
representations of signals are derived and compared: the /2-optimal and the stepwise /2-optimal
pyramids, the advantage of the latter being that it can be computed by the repetitive application of
a single procedure. Finally, a step by step discrete wavelet transform of 12 is derived that is based on
the stepwise optimal representation. As an application, these representations are implemented and
compared with the Gaussian/Laplacian pyramids that are widely used in computer vision.

Key words, multiresolution, wavelets, splines, sampling, ideal filter, pyramid
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1. Introduction. Images, signals, and numerical data are usually available to us
as a sequence of real or complex numbers. The sequence space 12 is therefore natural to
consider. However, for the purpose of deriving numerical algorithms, it is sometimes
desirable to represent an 12 sequence by an analog function. This is often realized
by interpolation techniques [20], [21], [37], [44], [45]. The computations are usually
performed numerically on digital computers, and the results are sequences of numbers.
Image magnification, reduction, signal coding, and reconstruction are examples [8],
[21], [22], [37], [38]. In order to allow for such dual discrete/analog representations, we
develop the theory of polynomial spline approximation for discrete sequences. For this
purpose, we consider the problem of least squares approximation of discrete functions
in the discrete spline spaces:

(1) Sn := {v E12 v(k) iezZC(i)bn(k-mi)’ c E/2},
where bn is the sampled B-spline functions of order n (cf. 2.2). It should be noted
that any sequence v S can be obtained by sampling a polynomial spline function
of order n (for an extensive treatment of polynomial splines, see [9], [15], [32], [34]).
Thus, the approximation of a sequence s(k) in S is equivalent to fitting s(k) with
a uniformly spaced analog polynomial spline function that minimizes the discrete 12-
norm of the error (cf. Remark 1 in 5.1). For nonuniformly spaced knot points, the
latter problem is usually solved by standard matrix techniques [14]. In our case, we
treat the uniformly spaced knot points. We show that in this case, the approximation
in Sn can be obtained by discrete translation-invariant filtering, as illustrated in Fig.
1. Therefore, this theory is particularly well adapted to signal and image processing.
We study the properties of the approximation filters and discuss the theory in light of
Shannon’s sampling procedure. We then use the results to construct multiresolution
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and wavelet spaces for 12 instead of the usual space L2 [10], [26], [29], [43]. Other
approaches to constructing multiresolution and wavelet spaces of 12 can be found in
[33] (cf. Remark 2 in 5.2).

This paper is organized as follows: In 2, we use discretized B-splines of order n
to construct and analyze a family of discrete sequence spaces $n, where n indexes
smoothness constraint and where m is a scale index measuring the coarseness of the
space. In 3, we solve the problem of finding the best 12 approximation to a signal in

Snm and show that it can be obtained by a prefiltering followed by a down-sampling,
an up-sampling, and an interpolation, as shown in Fig. 1. Both the prefiltering and
the interpolation can be carried out by translation-invariant filtering using fast algo-
rithms [41]. In 4, we provide the link between the approximation problem in
and the classical Shannon sampling procedure [3], [4], [22], [39]. More specifically, we

prove that the frequency response of the prefilters Hm(f) tend to the ideal discrete
lowpass filter with periodic support in yez [J- 1/2m, j + 1/2m], and that the dis-
crete spline interpolators H(f) tend to the ideal lowpass filter with periodic support
in yez [J 1/2m, j + 1/2m] and gain m. Related convergence results for the nlog
case can be found in [4], [15], [25], [28], [35]. In 5, we use our results to construct
and discuss two multiresolution representations of signals: the optimal spline pyr-
mid (OP) and the stepwise optimal spline pyramid (SOP). Based on the SOP and
some techniques similar to those developed by Daubechies, Mallet, and Vetterli [13],
[27], [42], we derive a stepwise discrete wavelet transform of 12 (the stepwise opti-
mal wavelet pyramid SWP). FinMly, we use an example to compare the OP and the
SWP representations with the Gaussian/Laplcian pyramids that are widely used in
computer vision [6].

2. Notation and preliminaries.

2.1. Definitions and notation. The signals considered here are discrete func-
tions with "finite energy." The collection of all such signals constitutes the space of
square summable sequences 12.

The symbol "." will be used for three slightly different binary operations that are
defined below: the convolution, the mixed convolution, and the discrete convolution.
The ambiguity should be eily resolved from the context.

For two functions f and g defined on , denotes the usual convolution:

(2) (f g)(x) fffff f()g(x )d, x e

The mixed convolution between a sequence {b(k)}kez and a function f defined on
is the function b. f defined on , given by

x e n.
k=-

The discrete convolution between two sequences a nd b is the sequence a b:

k=+

(4) (a e Z.
k=-

Whenever it exits, the convolution inverse (b)- of a sequence b is defined by

() (()- * )() 50(),
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where 5 is the unit impulse located at i.e., 5(i) 1 and 5(k) 0 for k - i.
We will use the term Fourier transform to describe both the usual Fourier trans-

form for functions defined on 7:

(6) (f) / g(x)e-i2fXdx,

and the usual Fourier transform for sequences,

(7) (f) b(k)e-’.

A continuous filter (f) is the Fourier transform of a function on T (the impulse
response) that defines a bounded convolution operator on L2"

(8) A" g L2 --+ A * g L2.

Since the convolution product A g becomes a multiplication product in Fourier
space, the filter selectively alters the frequency components of

A discrete filter h(f) is the Fourier transform of a function h on Z (the impulse
response) that defines a bounded convolution operator on 12"

(9) h" u E12 -+ h,u E l2.

The reflection of a sequence b is the function bv, given by

(10) bv(k) b(-k) Vk e Z.

The modulation b(k) of a sequence b is obtained by changing the signs of the odd
components of b:

(11) (k) (-1)kb(k).

The operator m of down-sampling by the integer factor m assigns to a sequence b
the sequence , [b], given by

(i2) (m [b])(k) b(mk) Vk e Z.

The operator T. of up-sampling by the integer factor rn takes a discrete signal b and
expands it by adding m- 1 zeros between consecutive samples"

b(’), =,k’,(13) (Tm [b]) (k) 0, elsewhere.

2.2. The discrete spline spaces sn. We begin by defining the discrete B-
spline b(k) of order n and integer coarseness m >_ 1:

(14) b(k) n(k/m) Vk e Z,

where/n(x) are the continuous symmetrical B-splines of order n. These are obtained
by the n-fold convolution of the B-spline of order zero:

(15) flU(x (f0, f0 ,...,/0) (x) (n convolution),
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where/(x) is the characteristic function in the interval [-1/2, 1/2) (i.e., (x) 1 in
[-1/2, 1/2) and (x) 0 elsewhere). The bell-shaped functions n(x) have compact
support. They were introduced by Schoenberg, who used them to construct a simple
basis for the polynomial splines spaces of order n [34].

Using the sequences b in (14), we define the subspaces Sn of 12 to be

vElg’v(k)=c(i)b(k-mi)=(b*Tm[C])(k), c El2,(16)

where n and m are positive integers and where the operator I’m is defined by (13). As
shown in 3, for n odd (which we will assume throughout) the vector spaces Sn are
closed subspaces of/2, and S 12. The discrete functions in Sn are smooth in the
sense that they are samples of polynomial spline functions of class Cn- 1. In this way,
the index n is the description of a smoothness constraint. In 3, it is shown that if
m2 kml (ml, m2, k are positive integers), then Sn. C Sn

ml Thus, in some sense,
the index m is related to the coarseness of the spaces SUm

2.3. Review of some results on the continuous fundamental spline fil-
ters. The fundamental spline function of order n, n(x) (also known as cardinal, or
interpolating spline) has the value 1 at x 0, and is zero at all the other knot points
(the only knot points we consider here are the integers). Thus, it is used to interpolate
between data points producing a continuous spline function of order n [4], [28], [34].
Given a discrete signal s(k), its spline interpolation an is given by

(17) (yn(x) (8 $ ?n)(x) 8(i)T]n(x i).
iEZ

Equation (17) states that the polynomial spline interpolant fin (X) is obtained by filter-
ing the tempered distribution -4ez s(i)5(x- i) with a filter whose impulse response
is n(x). Using Poisson’s formula, the Fourier transform of r/n(x) is given by

(sinc(f))n+l 0, f e Z \ 0,
(18) H(f)

(sinc(f i))n+l
1, f 0,

ez (1 + vn(f))-1 elsewhere,

where sinc(x) sin(Trx)/Trx and where un(f) is given by

i--oo

(ill + 1) -n-1 + (ill 1) -n-l, n odd,
(19) vn(f) i=1

i=x

)i --n--I(--1 ((ill -- 1) (ill 1)--n--l), n even.
i=1

An important feature is that the Fourier transform H(f) of Tn(x) converges to
the ideal lowpass filter; a well-known property [4], [15], [28], [35] stated in the following
theorem.

THEOREM 1. The Fourier transforms of the fundamental spline interpolators
Hn(f) converge to the ideal lowpass filter as n goes to infinity pointwise almost every-
where and in Lp(-oo, +o) for all p e [1, o):

1, Ill < 1/2,
(20) Lp- lim H’(f)= rect(f) 1/2, III= 1/2,

O, Ill > 1/2,
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3. Least squares approximation in the spaces Sn Since one of our goals
is to find least squares approximations in the spaces Sn, we start by studying the
properties of SUm

3.1. Properties of Sn. First, we prove that the spaces Sn in (16) are well-
defined subspaces of 12 by showing that b. Tm [c] E 12, for all c E 12. To see this, we
note that since n has compact support, the sequence b defined by (14) has finitely
many nonzero values. Thus, b is absolutely summable. This implies that b defines
a bounded convolution operator from 12 into itself. om this and the fact that the
up-sampling operator is an isometry, we get

(21) fb
om the last inequality, it immediately follows that S, given by (16), are well-
defined subspaces of 12.

There are embedding relations between the spaces S. These embeddings follow
from the well-known embedding properties of the continuous polynomial splines of
order n [25], [27], [30].

PROPOSITION 2. If n is odd, then

() s? c s w e z+.

Proof. For n odd, the B-spline fln(x/lm) (where/is a positive integer) is also
a polynomial spline with knot points on mZ. Thus, it can be written, in terms of
n(x/m) and a sequence u 12, as

X
(23) n(x/lm) u(i)n ( --i).

iZ

Both this equality and the definition of b given by (14) imply that

(:a) ? * (T []).

We use (24), together with the operator identity

(25) Tmz=T/Tz

and the equality

(6) [vii, [:] = [v, v]

to get

(27) (’t, [c]) b, (Ttm [c]) (Tm [u]) b (Tm [(Tt [c]) u] b, Vc e 12.

The Fourier transform of u,

(28) U(f) lsincn+t(lf)/sincn+t(f),

is continuous and bounded above by a constant. Thus, we have

(29) IIT [1 * ull, Const I111.
The proof of the proposition then follows from (27) and (29) and from the definition
of S, given by (16).
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Since our aim is to find least squares approximations in Sn, we need to show that
S are closed subspaces of/2a result that we state in the following theorem.

THEOREM 3. If n is odd, then S. 12 and Sn are closed subspaces of 12.
The proof of the theorem relies on the following simple lemma.
LEMMA 4. Let Bn(f denote the Fourier transform of bn(k). If n is odd, then

there exist two positive constants 1 and c2 such that

(30) <_ B(f) Vf e [-1/2m, 1/2m],

(31) B(f) <_ a2 V/ T.

Proof. We first note that the Fourier transform of B(x) is the function sinc(f).
From this fact, Poisson’s formula, and the definition of bn (equation (14)),
can be expressed as

(32) Brim(f) mE (--1)(n+)m
m’n(f i)

n+l

Clearly, the function BUm(f) is both symmetrical (B(f) B,,(-y)) and periodic
with period 1. Since the terms of the series in (32) are continuous and of the order
of lil -n-l, it follows that the series in (32) converges uniformly for all n > 0 in
the interval f E [0, 1]. Thus, Br(f is continuous. Since B,(f) is continuous and
periodic, it is bounded above by some constant a2.

For n odd and for f E [0, 1/2m], all the terms of the series (32) are nonnegative,
and the term for 0 is strictly positive. Hence, B(f) is bounded below by a
strictly positive constant c1.

Proof of Theorem 3. To prove that S. are closed, we show that the operator
b,, Tm: c e 12 b* Tm [c] e 12 is coercive (i.e., lib.* Tm [cilium. _>  llcllt for
all c 12 for some > 0). Taking the Fourier transform of b, T, [c] and using
Plancherel’s theorem, we get

m

(33) Tm [c]
0 0

where B(f) is the Fourier transform of b. By integrating over intervals of length
1 and using the fact that (f) and B(f) are periodic with period 1, we rewrite the
term following the last equality in (33) to obtain

o o j=o

>m-1 essinf (,B(f/m-j/m),2) 12/eI=[0,1]
k =0

> m- essinf IN(l/m)l

herefore, the coercivity of the operator b, T follows directly from (aa/, (a4), and
Lemma 4.

(34)
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3.2. Approximations in Sn. Since by Theorem 3 Sn is a closed subspace of
12, the least squares approximation Sa of s is given by the orthogonal projection on

Sn. Hence, the error s- Sa is orthogonal to S. In particular, because of definition
(16), the error is orthogonal to bn and to all of its shifted versions at integer multiples
of m:

(35) ((s Sa)(k), bn(k -lm)) 0 Vle Z.

Using the expression of sa E Sn given by

(36) o() o()( -) (T [o] )(),

we rewrite (35) to get

(7) ((), b(a .)) co(i) ((t: i.),( n)), W e Z.
iEZ

Using the fact that bn is symmetric, we can express (37) as the convolution equation

(38)

This equation can be solved to obtain the unknown sequence Ca. A filtering interpre-
tation of this process is given in [40]. The facts that this procedure is well defined, that
the filters are stable, and that equation (37) can be solved follow from the following
theorem.

THEOREM 5. The Fourier transform Tn(f) of tn(1) :=m [b * bUm](/) is strictly
positive. Moreover, tn 11, and it has a convolution inverse (tn) -1 11 with Fourier

transform (TrY(f)) -1 that is also strictly positive.

Proof. The sequence tn(1 :=[m [bn * bnm](/) has finitely many nonzero values.
Thus, t /1, and it defines a bounded convolution operator from 12 into itself (e.g.,
IItn cllt <_ Constllcllt2). Using the relation between the Fourier transform of a
discrete signal b(k) (cf. (7)) and its down-sampled version Sm [b]

m--1

(39) (’ [bl)(f) m-1 E ,(f/m- j/m),
j=0

we obtain the Fourier transform Tmn (f) of t:

(40)
m--1

TUrn(f) m-1 E IB,(f/m J/m)12"
j=0

The function T(f) is precisely the sum that appears in the right-hand side of the
first inequality in (34). Therefore, Lemma 4 implies that T(f) is strictly positive
and is bounded above by a constant. It follows that (tn)-1 12 exists. In fact, since

tnm has only finitely many nonzero values, T(f) is a strictly positive trigonometric
polynomial. Therefore, (tn) -1 decays exponentially fast as Ill--, c. Hence, (tn)-l(/)
is also absolutely summable.

From Theorem 5, tn and (t)-1 define bounded convolution operators on 12
that are the inverses of each other (cf. (9)). Thus, they are the impulse responses
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of the filters T(f) and (T,(f))-1
approximation Ha"

We use (tn) -1 to solve (38) and obtain the

(41) s]]
bn* Tm [m [Tm [(tn) -1] * bn * s]],

where in the last equality of (41), we have used the functional equality

(42) a* $m [b] =$m [Tm [a] * b] Va, bel2.

3.3. Fundamental discrete spline filters. The space S (n, m fixed) can be
generated by bases other than {b(k- mi)}iez. h complete characterization of all
unconditional bases of a given separable Hilbert space as well as a simple way to
obtain any particular basis from any other can be found in [1]. In particular, all
Riesz bases for S can be characterized in term of {bn(k- mi)}iez by appropriate
"linear combinations." For instance, it is not difficult to show that if we sample the
Battle/Lemari spline scaling function Cn(x/m) on Z, we obtain the sequence l =Tm
[(b21n+1) -1/2] b. The set {l(k rni)}iez is also a basis for Sn. However, it does
not form an orthogonal basis of Sn. The orthogonal basis is given by {on(k rni)}iz
generated by on-Tm [(tn) -1/2] * bn.

A particular basis of interest is the fundamental basis {h(k mi)}ez, in which
the representation of any sequence s(k) E Sn is directly obtained from the sequence
values {s(mi)}iez:

(43)
iZ

The fundamental sequence hn (k) is obtained by sampling the continuous fundamental
spline filter Tn(X), defined at the beginning of 2.3:

(44) h(k) Tn(k/m) Vk e Z.

The sequence h(k) is the linear combination of b(k) given by [38]:

(45) h =’m [(b) -1] * bn.
The existence of (b) -1 follows from Lemma 4. In fact, since b has finitely many
nonzero values, it follows that (b)-1 decays exponentially fast. Thus, both b and
(b)-1 are in 11. The fact that {hn(k mi)}iez is a basis ofS follows immediately
from the definition of Sn Lemma 4, and equations (26) and (45).

Using identity (26), we manipulate (41) so as to exhibit h. We get

(46) 8a hn * Tm m * 8m

where

(47) nhm =Tin [(tn) -1 * b’] * bn.
nFrom (46), it is not difficult to see that h and hm are biorthogonal [11].

[(48) *m h,*h, (k)=50(k) VkeZ.
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s(k) so(k)

FIG. 1. Schematic representation of the least squares approximation in S.
(A) Optimal prefilters (B) Interpolating postfilters
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FIG. 2. Least squares spline filters. (A) Prefilters t(f) (-
(continuous line).

3-), H2(f) ), and H52(f)

nSimilar to Hummel [22], we can interpret h, to be the optimal prefilter needed
before the interpolator hn given by (45). The process that can be used to determine
the best approximation of a signal in S, is illustrated in Fig. 1. In effect, this

0?%procedure is equivalent to prefiltering the data with hm down-sampling by a factor
m, then up-sampling by m and applying a discrete fundamental spline interpolation.
The frequency responses of the filters (n 1, 3, 5 and m 2) used in our procedure
are shown in Fig. 2. The graphs show that the lowpass characteristics of these filters
improve with n. This behavior will be analyzed in more detail in the next section.

4. Asymptotic properties of the filters. We will show that for m fixed, the
n nprefilters Hm(f) and the interpolating filters Hm(f) tend pointwise and in L2(-1/2,

1/2) to an ideal discrete lowpass filter with periodic support in Ujez[J- 1/2m,
j + 1/2m].

These convergence properties are described in the following theorem.
nTHEOREM 6. For n odd, the prefilter Hm(f) converges in L2(-1/2,1/2) and

pointwise almost everywhere to an ideal discrete lowpass filter Prectm (the periodic
rectangular pulse) as n tends to infinity:

(49) lim Hm(f)= 1/2,
n--,oo

07

Ifl < 1/2m,
Ifl- 1/2m,
1/2m < Ifl < 1.

Similarly, for n odd, the interpolating filter H,(f) converges in L2(-1/2, 1/2) and
pointwise almost everywhere to an ideal discrete lowpass filter with gain m as n tends
to infinity:

(5o) nlim Hre(f) m Prectm (f).
n---oo
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Using Plancherel’s Theorem, we immediately obtain the following corollary.
nCOROLLARY 7. For n odd, the impulse responses hm(k converge in 12 to the

ideal discrete interpolator, Dsincm(k) sinc(k/m) with k E Z, as n tends to infinity.
Similarly, for n odd, the interpolators h(k) converge in 12 to the ideal discrete

interpolators with gain m, mDsincm(k), as n tends to infinity.
These results are conceptually interesting because they provide the link with

Shannon’s sampling theory [2], [4], [5], [7], [17], [18], [20], [24], [31], [39], [46]. In
particular, for the case of uniform sampling, Shannon’s sampling paradigm for non-
bandlimited signals states that a signal must first be prefiltered by an ideal filter before
sampling and that the signal "reconstruction" is obtained by an ideM post-filtering.
The approximation in S gives rise to the same structure as illustrated by Fig. 1. It

n,consists of a prefiltering with Hm followed by down-sampling by a factor m. This
first step gives an m fold reduction in the data. The approximation is then obtained
by up-sampling and postfiltering with H,. Moreover, in the limit, all the filters con-
verge to discrete ideal filters. Similar results for the analog polynomiM spline case
can be found in [4], [39]. The general case for analog functions is described in [2].

The above asymptotic results also explain the appearance of Gibbs oscillations
which occur when sequences are approximated by elements in spaces Sn with suffi-
ciently high smoothing order n.

Proof of Theorem 6. Symmetry allows us to restrict our attention to the frequency
interval f E [0, 1/2). The Fourier transform of bn is given by

(51) B,(f) mE sincn+l (m(f i)).

We use (39) and (40) in conjunction with the fact that the Fourier transform of a

discrete signal is periodic with period 1. We also use (Tin [b])f) (mf) to express
the Fourier transform of Tm [(tn) -1] and ’m [b] =m [$m [b]] in terms of B,(f) as

L+m-1

(52) (Tm [b?])f) m- E B(f j/m),
j=L

(53) (Tin [(tn)-ll)f)-- L+m-1
E
j:L

m

IB,(f j/m) 12
where L is an arbitrary integer. Using (51)-(53), we obtain the Fourier transform

nHm(f) of h:

n(54) Hm(f)

L+m-1
BUm(f) E Bm(Y J/m)

j--L

L+m-1
IB(I j/m)l2

j=L

Using (51), (18) and straightforward trigonometric identities, (54) can be written as

(55) -tnm(f) (Hn(f))-1

L+m-1

j=L
(-1)J(1 j/mf)-n-1 (Hn(f j/m))-

L+m-1

j-’L
(1 j/mf)-2n-2 (Hn(f j/m)) -2
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where Hn(f) is the Fourier transform of the continuous fundamental spline function
of order n given by (18). We choose L in (55) to be L -(m- 1)/2 if m is odd, and
L -(m/2 1) if m is even. With this choice, we take limits in (55) to get

L+m-1
E (--1)J(1 j/mf)-n-

n j--L(56) lim Hm(f)= lim 1 Vf e (0, 1/2m)
n---o n--.cx LWm-1

(1--j/mf)-2n-2
j=L

We use Schwarz’s inequality on (55) to get the estimate

(57) Hm(f) <_ IHn(f)l E
j--L

-/

(1 j/mf)-2n-2 (Hn(f j/m))-2

For f e (1/2rn, 1/2), it follows from (57) and Theorem 1 that Hn(f) converges
pointwise to 0 as ,, tends to infinity. Moreover, (57) yields the upper bound

(58) oHm(f)l < ml/2

Because of Lebesgue’s dominated convergence theorem, equations (56)-(58) imply
nthat Hm(f) tends to Prectm(f) in L2(-1/2, 1/2).

To prove the second part of the theorem, we first note that H(f) is given by

(59) H(f) B(f)
(Tm [b])(f)"

From (51) and for n odd, it can be seen that

(60) (sin(mTrf))
n+

B(f) m-nB[(f) \ n(--)

Using the fact that (Tm [b])(f) [(mf), and using expressions (18) and (60), we

simplify (59) to obtain

Br(f) m-n (sin(mTrf))n+l B(f) Hn(mf)
(61) H(f) B(mf) sin(rf) Br(mf)

m
Hn(f.

The last equality in (61) and Theorem 1 together yield the pointwise convergence.
For n odd, a simple estimate derived for Hn(f) (cf. (18) and (19)) yields that for

f e (-1/2, 1/2), 1/2 < Hn(f) < 1. Hence, from (61) we get

(62) IHr(f)l < 2m,

which implies the L2(-1/2,1/2) convergence of H(f) to the ideal discrete filter
Prectm(f) with gain m and periodic support in [.Jjez [J 1/2m, j + 1/2m].
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5. Multiresolution pyramids and step-by-step discrete wavelet trans-
form.

5.1. The optimal and stepwise optimal discrete spline pyramids. A mul-
tiresolution pyramid representation of a discrete signal consists of several versions of
the signal at different resolution levels. The name pyramid derives from the fact that
the low-resolution levels are described by fewer samples than their high-resolution
counterparts. In applied mathematics and image processing, multiscale representa-
tions have been used to find efficient algorithms that start computations at coarse
levels and subsequently refine them at finer levels [19], [36].

A multiresolution representation of a signal is commonly obtained by the repeated
application of a filtering and a down-sampling to produce the pyramid layers. The
Gaussian pyramid for images [6] is an example in which each pyramid level is ob-
tained from the previous one by applying a Gaussian filter and down-sampling each
row and column of the image by a factor of 2. A shortcoming of this method is that
it does not attempt to minimize the loss of information that occurs when one signal
is approximated by another at a coarser resolution. Using (46), we can circumvent
this limitation, and produce a multiscale representation that optimizes the fine-to-
coarse conversion error. For m fixed, we interpret (46) as representing a signal at

na lower resolution: the signal s is prefiltered by hm, and only one sample out of m
is then retained. This sequence is then up-sampled (cf. (13)) and filtered with hn

nto obtain the best approximation Sa in sn. In effect, the signal sr =m [hm * 8]
contains in a compressed form (factor of compression equal to m) all the information
needed to reconstruct the approximation Sa. Hence, by selecting a sequence of inte-
gers {m P}j=I N., we can use equation (46) to obtain a multiresolution pyramid
{Sr(j)}j=l,...,N.:

(63) 8r(j) =$p hpj * s

st(0) s.

j- 1,...,N;

We have used the notation st(j) to represent level j (m pJ) of the pyramid in (63),
which is obtained by filtering the signal s with hp and then decimating with a factor
equal to pJ. More importantly, since S+1 c S (cf. Proposition 2), the filter used to
produce the signal st(j+1) from st(y) at the previous resolution level can be obtained
by using (46) and the fact that for any sequence b, we have that

(64)

The signal sr(/+) is given by the following.
The optimal pyramid (OP):

(65)
s(y+l)=$p h .x(y)

n
Xr(j) kpj * St(j),

nwhere the operators kp is given by

(66) kpn =Tp t+l t
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Remark 1. Given a regular function a(x) E L2 with sufficient decay, it can
be approximated by an analog spline a;n (x) with knot points on pZ. The analog
spline approximation a;n (x) that minimizes the/2-error a(k)- a(k) computed at

nthe integer points g can be obtained from (63) or from algorithm OP: apt(X)
keZar(j)(k)rn(x/pj k), where n(x) is the interpolating spline as in 2.3. Thus,
the approximation problem in Sn. consists of finding a coarse polynomial spline
proximation that minimizes the discrete/2-norm of the error at the integers instead
of the usual minimization of the L2-norm on T.

The error e(j) s- Sa s- hpr. Tp [sr(j)] between the original signal and
its approximation is the smallest error in 12 that can be obtained for approximations
of s in S. However, a drawback of this representation is that the filter kn.p in (65)
depends upon the resolution level j. On the other hand, the first equation of (65)
is independent of the resolution, level, and is precisely the first pyramid level for the
representation of the signal xr(j). This observation suggests an alternative algorithm
for a multiresolution representation of a signal based on the first equation of (65) only.

The stepwise optimal pyramid (SOP):

[(+ h’ (jl

(o s.

If (67) is used instead of (615) for the pyramidal representation of s, then the error

() s- hp, Tp [(.)] is always larger than or equal to the error e(.) s- s.
The question of how the two algorithms (615) and (67) compare is partially answered
by the following theorem.

THEOREM 8. For n odd, the filter Kp(f) corresponding to kp converges in

L2(-1/2, +1/2) and pointwise almost everywhere to a discrete allpass filter as n tends
to infinity:

(68) lim Kp (f) 1 Vf e T.

The proof of this theorem will be omitted, since, except for the use of the identity

(69) Ibm] =$p
it is not very different from the proof of Theorem 6.

Heuristically, the above result states that for sufficiently large n the optimal
multiresolution algorithms (65) can be replaced by the simpler and more practical
algorithm (67), with only minor differences in the outcome. The advantage of the
stepwise optimal algorithm is that the passage from one level to the next always uses
the same algorithm, and can therefore be implemented using a fast recursive filtering
similar to the one described in [41].

5.2. A stepwise discrete wavelet representation. The pyramids discussed
in the previous sections are redundant. For instance, the stepwise optimal pyramid
OP is redundant because it consists of the signal itself (s st(0)), to which N copies
are added that are of increasingly coarser resolution: P {st(0), st(i),..., 8r(N) }.
The redundant information coincides with the data st(i),... ,s,.(g) and, for m 2,
the number of additional samples is approximately equal to the size of s s(0). In
the case rn 2, which is a case of practical interest, we will derive a nonredundant
representation equivalent to the SOP pyramid. The main idea is to find a suitable
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representation of (S)-L the orthogonal complement of S, analogous to (16). To
do this, we use techniques similar to the ones developed by Daubechies, MMlat, and
Vetterli [13], [27], [42]. We start by defining the discrete function w and the corre-
sponding space O associated with it:

(70) + 1).

(71) O:= {vel2"v(k)=c(i)w’(k-2i)=(w*T2[c])(k), c e/2}.
We have the following result.

THEOREM 9. The space 0’ is the orthogonal complement of S in 12" O

Before proving this theorem, we first note that the function w is the discrete
equivalent of a continuous wavelet, as defined in [13], [27]; however, in this case w
is not orthogonal to a shifted version of itself. An important point is that the error
signal da(1) s- sa, resulting from approximating s by Sa E S, can be obtained by
filtering, as in 3.2:

(72)

where the reflection operator " v and the modulation operator are defined
by (10) and (11), respectively, in 2.

Proof. First, we show that w(k- 2i) is orthogonal to b(k) by showing that
2 [(w)v .b] 0 (where (w)V(k) w(-k)). Using (39) and the properties of the
Fourier transform, we obtain

1
b])f)= [B(f/2)W(f/2)+ B(f/2- 1/2)W(f/2- 1/2))

],

-e (B(f/2)B(f/2- 1/2)
2

-B(f/2 1/2)B(f/2- 1))

-e (B(f/2)B(f/2- 1/2)- B(f/2- 1/2)B(f/2))

O

where W(f) denotes the complex conjugate W(f), which is the Fourier transform
of w(k). It only remains to show that any element s E 12 can be written as a sum
of its least squares approximations in S and in O. We sum the Fourier transforms
of da and sa, which are the approximations of s in O and S, respectively; we then
use (39), the second equation in (72), periodicity, and Lemma 4 to obtain

(74)
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from which the proof follows.
Using (72), we derive the difference or detail representation {dr(j)}j=l g."
The stepwise wavelet pyramid (SWP).

(75) Ii ]dr(j+l) --2 * h * St(j)

(j+) = * (j)]
(0) s.

From Theorem 9 and (46), (72), and (75), it can be seen that the SOP representation
is obtained from the SWP pyramid by the iterative algorithm:

The stepwise wavelet decomposition.

j= 1,...,N.

Remark 2.
(i) The algorithms (75) and (76) constitute a biorthogonal, perfect reconstruc-

tion filter bank [33], [43].
(ii) There are two corresponding analog scaling functions h and t’ and

two analog biorthogonal wavelets h and 9, for which the associated L2 analysis
h

of analog functions defined on 7 via nonorthogonal projections is exactly obtained
by (75) and (76) (cf. [11]). Obviously, t and ; are not polynomial splines.

h
(iii) There are infinitely many basis functions for Sn (cf. 3.3). For each basis, it

is possible to obtain a step-by-step wavelet decomposition (or a perfect reconstruction,
biorthogonal filter banks) similar to (75) and (76). However, they will not be a good
approximation to OP in general.

(iv) Two basis functions generating the same space Sn do not correspond to
analog scaling functions that generate the same space; e.g., the scaling functions
and b associated with h and b do not generate the same multiresolution space
V0, even though b and h generate the same space S.

(v) If we choose the biorthogonal filter bank decomposition using the orthogo-
Hal basis o in 3.3 instead of h, then the corresponding stepwise wavelet algorithms
are precisely the Mallat wavelet decomposition and reconstruction algorithms for the
analog scaling function (x) associated with the QMF o [27]. In this case, there
exists an underlying discrete multiresolution E2 s2n, for which these algorithms
give the best 12 approximation of a sequence s(k) in E [33]. These are also the
analysis/synthesis algorithms for the L2 multiresolution wavelet V()/W(), corre-
sponding to the function associated with o. However, is not a spline function.
Moreover, this algorithm does not correspond to the same analog multiresolution

Y(h) (see the previous remark, (iv)). For the interpretation of (75) and (76) we
refer to 3, Remark 1 in 5.1, and Theorem 8.

6. Experiments. Although the filters used in (65), (67), and (75) have an in-
finite impulse response, they can still be implemented exactly using the recursive

algorithm described in [41]. An alternative approach is to use a standard finite im-
pulse response (FIR) implementation with truncated filters. In the latter case, the
computation is approximate, but the error is easily controlled by choosing an appro-
priate number of coefficients. Table 1 gives those filter coefficients for the cases n 1
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TABLE 1
Filters’ coefficients for n 1 and n 3.

k 0 0.707107
I, -I 0.292893
2, -2 -0.12132
3, -3 -0.0502525
4, -4 0.0208153
5, -5 0.00862197
6, -6 -0.00357134
7, -7
8,-8
9, -9

10, --10
11, --11
12, --12
13, -13
14, -14
15, --15
16, -16
17, -17
18, --18

--0.0014793
0.000612745

1 0,596797
0.5 0.313287
0 -0.082769
0
0 0.0540288
0 0.0436996
0 -0.0302508
0 -010225552
0 0.0162251
0 0.0118738
0 -0.00861788
0 -0.00627964
0 0.00456713’
0 0.0033264’
0 ’-0.’00241916
0
0
0 0.000932349
0

0.600481
0

-0:0921993 -0.127405
0

0.034138
0

-0.00914725

0.002451
0

-0.000656743

-0.00176059
0.00128128

-0.000678643

and n 3. In our experiments, we used the first of these approaches. To avoid bor-
der effects and discontinuities, we have used the common practice of extending the
signals/images at the boundaries by taking their mirror images.

We have performed three experiments on a test image, the MRI image. First we
compared different approximations of the image by varying the parameters n and m
in the approximation spaces Sn. To assess the appropriateness of the approximation
we used the signal-to-noise ratio [23] associated with the approximation Sa, as defined
by

(77) SNR 2O log ( sup(s) inf(s)l )
Table 2 gives the measurements of the SNR for values of m 2,..., 8 and n 1, 3.
These measurements show that for fixed value of m, the SNR for n 3 is higher than
for n 1. The improvement seems to saturate quickly, and we anticipate no significant
gain for values of n larger than 5. This conclusion is consistent with the convergence
results given in Theorem 6, which indicate that the approximation process tends to an
ideal filtering process for increasing values of n. As a consequence, higher orders of n
will, in general, improve the SNR for images with a predominance of lower frequency
components.

Our second experiment was a comparison of the two multiresolution representa-
tions OP and SOP. Table 3 gives the values of the SNR for a multiresolution repre-
sentation of the MRI obtained by the optimal algorithm (67) for the case p 2, j
1, 2, 3, and n 1, 3. Obviously, the two algorithms are equivalent for the determina-
tion of level 1. As predicted, the SNR measured for the approximations obtained using
the optimal algorithm OP are higher than those obtained form the stepwise optimal
algorithm SOP. However, as predicted by Theorem 8, the difference between the two
SNRs are small, particularly for the largest value of n 3. Indeed, these differences
(which are of the order of 0.01 dB) are very small if compared to the degradation of
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TABLE 2
Approximation error (in dB) evaluated for m 1, 2 ,8 and n 1, 3 in terms of the signal-

to-noise ratio for the MRI image.

n=l n=3
m 2 32.65 35.39
"m 3 27.84 29.08
m 4 24.95 -25’58
"m 5 23.22 23.73
m 6 22.30 22.68
m 7’ 21.22 21.62
m ’S... 20.54 20.85

TABLE 3
Comparison between the optimal pyramid and the stepwise optimal pyramid representations in

term of the signal-to-noise ratio (in dB) for the MRI image.

evel-
Level-2
Level-3’

n=-I n 3
oP -soP oP soP
32.65 32.65 35.39 35.39
24.95 24.93 25.’58 25.57
20.54 20.50 20.85 20.83

the SNR between two successive levels, which is of the order of 5dB-10 dB. In fact,
the SNR differences in our experiment are negligible, and the results are much better
than we had expected.

We compared our multiresolution representation given by the SOP algorithm (67)
to the Laplacian pyramid LP which was developed for compact image coding [6]. Each
level in the difference-image pyramid consists of the difference between the image at
one level and its interpolated version at the next lower level. In other words, each
layer of such a pyranid represents the loss of information between a level and its
approximation at the coarser level. For this experiment we chose the value n 3,
p 2, and j 1, 2, 3 in the SOP algorithm. Fig. 3 shows the difference images for
the two representations, with the same intensity scaling to facilitate comparison. For
the initial LP, there is significant information at each level, and the initial image is
still easily recognizable. In the case of the SOP, the energy in the difference is reduced
drastically, and only very high-frequency details are visible. This improvement can be
applied advantageously to progressive image transmission. For lossless image coding,
the number of bits per pixel (bit-rate) necessary to transmit the bottom of the pyramid
up to level j is approximately

(78)

where Hi denotes the entropy at the ith level of the Laplacian pyramid, and N is the
depth of the pyramid. The correspo.ding rate-distortion curves for our test image
are given in Fig. 4. The customary measure of distortion that is used for this type
of experiment is tim relative mean square error in percent of the total signal energy,
as measured on the finer scale. Clearly, the SOP achieves the best performance at
all resolution levels. Tlms, for the comparable compression factor, we can gain image
quality when the SOP is used instead of the LP representation.

Finally, Fig. 5 displays an equivalent SWP representation of the same MRI image.
This decom.position was obtained by successive processing along the rows and columns
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FiG. 3. E’rror images between two consecutive levels of the SOP pyramid and the Laplacian
pyramid LP for the MRI image O. (A1-A3) evr//difference images o.f the Laplacian pyramid.
(B1-B3) er’ror/difference images of the SOP pyumid (n 3).
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"MRI" image

BIT RATE (bits/pixel)

FIG. 4, Rate distortion (MSE) as a function of the number of bits per pixel needed for lossless
transmission up to level i: SOP (circle) and LP (triangle).

FIG. 5. The stepwise wavelet representation of the MRI image with a level depth 2 (i.e.,
m 2J, j 1,2) with n 3.
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of the data, following the separable technique first described by Vetterli in [42]. We
note that the three quadrants bl, cl, and dl provide a compressed representation of the
difference at level 1 in the SOP (image A1). Likewise, the difference at level 2 (image
A2) is represented by the wavelet components b2, c2, and d2. The component in a2
is precisely the SOP approximation after two iterations (level 2). The decomposition
is clearly nonredundant; and, as expected, we have experimentally tested that the
original image can be fully recovered from the stepwise pyramid without error. This
wavelet decomposition can be used for both image compression and for coding, as
described in [12], [16], and [42].
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WAVELET ANALYSIS OF REFINEMENT EQUATIONS*

LARS F. VILLEMOESf

Abstract. The Besov regularity of a compactly supported refinement equation solution is de-
termined by the spectral radius of a linear operator acting on IP(Z). The proof of this is obtained by
using a wavelet basis. Exact criteria for Hhlder and Sobolev regularity follow immediately. Continuity,
differentiability, and integrability can also be characterized.

The results are applied to examples from the theory of orthonormal and biorthogonal wavelets
and subdivision schemes for curve design.

Key words, refinement equations, wavelets, Besov spaces
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1. Introduction. The purpose of this paper is to analyze the smoothness of a
compactly supported solution g to the refinement equation

kEZ

where only a finite number of the complex coefficients Ck are different from zero and

k Ck 1.
The dependence of the regularity of g on the choice of coefficients ck has been

studied recently by many authors, both with varying motivations and definitions of
regularity. In the construction of compactly supported orthonormal and biorthogonal
wavelet bases for L2(), the equation (1.1) is satisfied by the scaling function of the
underlying multiresolution analysis [Ma], [M], [D], [C3]. The wavelet is then a finite
linear combination of translates of g. When studying the convergence properties of
subdivision schemes for curve design, (1.1) also arises in a natural way [CDM], [DGL],
[DDD].

Conditions are known for g to be continuous, to have continuous derivatives or to
be in a certain Hhlder class C8 (). The conditions are either sufficient [DL2], [CDM],
or necessary and sufficient, possibly with minor restrictions on the coefficients [CH1],
[CH2], [a], [DDD], [DGL], IMP]. The results are often formulated in terms of joint
spectral properties of two matrices defined from the coefficients ck, and are obtained
by a direct study of (1.1).

By methods based on the Fourier transform, conditions that are either sufficient
or necessary for Hhlder regularity have been found [D], [DL1], [CC]. Optimality holds
only in special situations (positive Fourier transform) [DD2], [R], [CD]. However, in
terms of Sobolev spaces H8 (R), precise results can be obtained [E], IV], [G], [HI.

We show in 2 that an exact condition for g to be in the Besov space B,q(R)
can be obtained by using a wavelet decomposition of g, (Theorem 2.5). The interplay
between the dyadic scaling in (1.1) and the dyadic scalings of the wavelet basis makes
this analysis quite simple. We reformulate the condition in terms of the spectral radius
of a linear operator P(Z) P(Z) in 3.

Received by the editors March 23, 1992; accepted for publication (in revised form) April 17,
1993.
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Estimates of this spectral radius are given for the cases p x, 2, 1 in 4, 5, and
6, respectively. We comment upon the immediate applications to Hblder and Sobolev
regularity, and then describe how to get criteria for continuity, differentiability and
integrability in 7.

The solution g can be obtained as the limit of the iterative scheme gn+l(x)
-k 2ckg,(2x--k) staring from a suitable function go. Convergence results for this iter-
ation are given in 8, where we also briefly discuss the convergence of a corresponding
discrete iterative scheme.

Finally, in 9, we illustrate the obtained results by three examples. An orthonor-
mal scaling function from [D], a symmetric 4-coefficient example studied in both [dR]
and [VH], and a family of coefficients corresponding to a 4-point dyadic interpolating
schene considered in [DD1] and [DLG].

We consider only global regularity. For results about local regularity and the con-
nections with fractals, see, e.g., [DL2] and [W]. When the dilation factor 2 is replaced
by any integer N >_ 3 in (1.1), all results of this paper extend in a straightforward
way. For multidimensional generalizations of (1.1) as considered in [CDM], [DDD],
and [CD], the methods presented here do not apply directly. Nor is this the case if
we allow ck =/- 0 for infinitely many k. However, we believe that the idea of using an
adapted wavelet basis for the study of g could be fruitful in these situations as well.

The compactly supported solution. Let ] denote the Fourier transform of

f. (Using the normalization ]() f f(x)e- dx for integrable f.) If we define the
symbol of (1.1) to be the trigonometric polynomial

(1.2) rn(C) E cke-k’
k

we get the equivalent form of (1.1)"

(1.3) t(2) m()t)().
If g is supposed to be a compactly supported distribution, then can be extended to
an entire function of exponential type. This is the easy part of the the Paley-Wiener
theorem for distributions. The existence and uniqueness of the solution to (1.1) which
we will consider here is guaranteed by the following Theorem 1.1, easily obtained by
combining results from [DL1] and [DDD]. Note that the uniqueness part is easy, and
that the condition -]k ck 1 = m(0) 1 is necessary if t(0) 0. In particular if g
is integrable with nonzero integral.

THEOREM 1.1. Ifk Ck 1 there is a unique compactly supported distribution
g satisfying (1.1) and the normalization (0) 1. This solution is given by

(1.4) 9() H m(2-J)"
j=l

The infinite product converges uniformly on every compact subset of C to an entire

function of exponential type, as well as in the sense of tempered distributions when
restricting to real .

It follows directly from (1.1) that the support of g must be included in the closed
convex hull of the support of c- (ck) regarded as function ]R D Z --. C.

Wavelets and Besov spaces. The main tool for analyzing the regularity of g
will be to decompose g with respect to an orthonormal basis of wavelets. It will be
sufficient to consider the specific basis due to Meyer [M, p. 74]. The Meyer wavelet 42
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and scaling function have both smooth and compactly supported Fourier transforms
and are therefore in the Schwartz class S() of rapidly decaying functions. From their
explicit construction we will retain the features that

(1.5) supp , ]u[,],
and @ 1 in a neighborhood of the origin. Let Ta be the translation operator (T,f(x)
f(x- a)) and define

Cyk(x) 2J/2(2Jx- k).
Then the system {Tk, yk j O, 1, 2,..., k Z} is an orthonormM bis for the
Hilbert space L2() of square integrable functions. Moreover, every tempered distri-
bution f S’() has a unique decomposition

(1.6) f (k)Tk +
kZ j=0 kZ

where
(k) (f, Tk) f(Tk),_
,(k) (1,)= ().

The smoothness of f is meured very precisely by the decay of the coefficients in
(1.6). In terms of Besov spaces B,q(R) we have from [M].

THEOREM 1.2. Let s and 1 p, q . The tempered distribution f given
by (1.6) is in the Besov space

() () ad
(e) {e((/)-(/’)+)"}?:0 e ({0, ,e,... }).

Here [ ]]p denotes the usual norm of gP(Z). The sum of ]lp and the gq-norm of the
sequence in (2) defines an equivalent no of B’q(R).

s,2 HsWe have 2 () () for all s where US() is the Sobolev space
(f S,(R) (1 + 2)s/2] 52()}. When s > 0 is not an integer B() Cs(R)
is the Hhlder space of n [sJ times continuously differentiable functions with nth
derivative having uniform modulus of continuity O(hS-). If wn’p(R) is the Sobolev
space of LP(R)-functions with distributional derivatives up to order n also in LP(),
then the inclusions

(.7) B’() c W’’()c _’()
hold. All this can be found in [P], or even from the wavelet characterization of the
mentioned function spaces given in [M].

Roughly, for f B’q() one can think of s the fractional order of differentia-
bility of f, p as the power to which the corresponding derivative is integrable and q
a subtle refinement parameter. However, the Besov spaces only coincide with Sobolev
or potential spaces in the case p q 2.

2. Characterization of Besov regularity. Our first task will be to compute
the coefficients of g with respect to the wavelet basis. Let the operator Tm acting on
complex sequences and associated to the symbol m of (1.2) be determined by

(e.) T()

We define the discrete dilation Dn by putting Dny(k) y(k/n) for k nZ and zero
elsewhere. Also, we denote by n the Dirac sequence en(k) 1 for k n and zero for
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k n. (In the terminology of [CDM], Tm is a subdivision operator.) By iteration in
(1.1) we get

(2.2) g(2-Jx) Z(TmeO)(1)g(x -1).

This gives formally the wavelet coefficients for j 0, 1, 2,... and k E Z,

(g, k) dx

2-j/2 ./g(2-jx)-(x k)dx

Since g is a compactly supported distribution, the definition of ay has meaning when-
ever S().

LEMMA 2.1. Let e S(), dCne /k(x)= 2Y/2(2Jz-k) and hi(k)
Then for every j 0, 1,...,

j 2-J/20 * Tg0.

As an almost immediate consequence of Theorem 1.2 and Lemma 2.1, we obtain
the following.

COROLLARY 2.2. Let s e and 1 p, q . DCne d(j) ao.Teo2y(s-/p)

with ao as in Lemma 2.1. Consider the two statements:
g e

(2) d e gq({0, 1,2,... }).
If is of class C with compact support disjoint from the ogin, then (1) implies

(2), and ff is the Meyer wavelet (1) and (2) are equivalent.
Proof. We prove the last statement first. Let and be as in Theorem 1.2. Note

that 9 is a C function with compact support and therefore the Fourier transform
of a function f in the Schwartz class S(R). Hence fl(k) (g,) f(k) is a rapidly
decreeing sequence and we do not have to consider the global condition (1) of Theorem
1.2.

The equivalence of (1) and (2) now follows from Lemma 2.1 since

8(2.3) ]]jl]p2j(-+ ]]0 * Teo[lp2j( ).

Assume now that has a smooth Fourier transform with compact support disjoint
from the origin, and that (1) is satisfied. Denote by and the Meyer scaling function
and wavelet respectively. We can decompose g in the wavelet series:

kZ j0 kZ

This series converge in the sense of tempered distributions and the coecients have
the decay properties described by Theorem 1.2. For suciently large j we have
(, i’k’) 0, and there is a positive integer J such that (a, ,a,) 0 for
j j > J and all k, k Z. This follows from the properties of the supports of the
Fourier transforms of , and , (see (1.5)). Hence, aner inserting the wavelet series
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for g we get

for sufficiemly large j. Because of the rapid decay of and , the operator y(k’)
z(k’) k y(k)(jk, j’k’} is continuous P(Z) P(Z) for all p e [1, ] and it is
eily verified that its kernel depends only on j- j. Letting Cp denote the largest
operator norm gP(Z) gP(Z) for Ij- J’l J we obtain therefore the estimate

The statement (2) now follows from Theorem 1.2 and (2.3) with a replaced by 8. S
The next step will be to eliminate the apparent dependence on the choice of in

Corollary 2.2. To formulate this result we need Cohen’s criterion:
DEFINITION 2.3. We sy the symbol m satisfies Cohen’s criterion if there is a

compact neighborhood K of 0 N such that
(1) For almost every ( e [-, ], there is a unique V e K with - e 2rZ.
(2) 0 e e- K.
If g L2(N), the integer translates of g generates a Riesz basis for the closure

of their linear span if and only if m satisfies Cohen’s criterion [C2]. Note that does
not vanish on K exactly when m satisfies (2). The following alternative formula-
tions of Cohen’s criterion will be very useN1 and can essentially be found in [L]. For
convenience, we give a proof in the appendix.

PROPOSITION 2.4. The following four statements are all equivalent with the state-
ment that Cohen’s criterion is not satisfied by m:

(1) There is a ( e [-, ] such that (( + 2rk) 0 for all k e Z.
(2) There is a ( e [-, ] such that ezer O.
(3) Either we have m(() m(( + ) 0 for some ( e [-, ], or there eists

nonempty finite subset of the unit circle in the complex plane such that 2 ,
1 and m(( + ) 0 whenever ei e .

(4) There are trigonometric polynomials Q and mo with Q(0) m0(0) 1 such
that mo stiges ffohen’s criterion nd Q(()m(() Q(2()m0(() for all . Moreover,
Q(() 0 for some ( e [-, ] and g k q(k)Tgo where q(k) are the coecients 4
Q and go has symbol too.

By (4) of Proposition 2.4 we can Mways express g a finite linear combination
of the integer translates of a two-scale difference equation solution g0 whose symbol
satisfies Cohen’s criterion. Then it is an ey exercise to show that g and g0 have
exactly the same regularitN using the fact that g0 h compact support. Therefore, in
the following results about the regularity of g, the sumption that Cohen’s criterion
holds is essentially no restriction. We know how to den with the situations where the
criterion fails.

It is clear from (3) of Proposition 2.4 that if m(() (+- M) N((), then m
satisfies Cohen’s criterion if and only if N does.

THEOaEM 2.5. Assume m(() (l+e2:!g:]
tgonometric polynomial satisfying Cohen’s criterion. Put

r(j) j (-M-)T011p2

for j 0, 1,2,..., where T is defined from in analogy with (2.1). If g is the
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solution to (1.1) described by Theorem 1.1, then

g e B’q(IR) # r e iv({0, 1,2,... })

for all s IR, 1 < p, q <_ oo. If Cn fail to satisfy Cohen’s criterion the implication "="
still holds.

This result is a trivial consequence of Corollary 2.2 and the following lemma.
LEMMA 2.6. If m({) ( !-)M2 () and o is defined from as in Corollary

2.2, where has compact support disjoint from the origin, then

for some constant C and all j 0, 1, 2, If furthermore () 0 and satisfies
Cohen’s criterion, a as above can be chosen such that

]]0 * Te01lp C]]Tso]]pJ 2-jM

for some C > 0 and all j 0, 1,2,
Proof. If is defined from in the sense of Theorem 1.1, the factorization of m

leads to

0()= (l--e-)
M

as it is easily seen from the identity (1 z2) (1 z)(1 + z) with z e-{. Note
that (0) 1 guarantees the existence of this . Multiplying with we obtain

({)({) (1- e-)M({) where h S(R) is defined from ({) (i{)-M({)({).
With (k) h(k) for k Z we have g(Z) and

Here, and in the following, denotes convolution and y,M y, y ,..., y (M factors).
Writing Y() k Y(k)e-ke, the action of T can be described by Y({)

2m({)Y(2). Using this, together with the identity (1 z) t=0J- (1 + z’ (1 z=’)
for z- e-i, one finds:

(e0 el)*M $ Tgo 2-Mj (CO e2, ),M , Teo.
A convolution with yields

(2.4) a0 * Te0 7 (e0 e2, ),M, 2-MJTeo.
The first part of the lemma now follows with C 2M]]7]], since ]]7, ]p

[[[[l[l[p for all p e [1, ].
To show the second part, we proceed in two steps. First, we construct such

that 7 becomes invertible with respect to convolution in g (Z). Next, we use the fact
that is a trigonometric polynomial to find a 5 > 0 such that

Once this is done, C /ll-*ll can be used for the second estimate of the lemma.
Step 1. Since < satisfies Cohen’s criterion, ({) # 0 for { e K, where K is as

in Definition 2.3. Moreover, we cannot have (2(2p + 1)) 0 for every integer p,
if this were true, (2r(2p+ 1)) <()((2p+ 1)) and <() # 0 would imply

that 0 on (2Z + 1), contradicting the assumption by (1) of Proposition 2.4.
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Hence, (2rp0) -- 0 for some integer P0 -: 0. By continuity, will not vanish on

K (K \ ]-, [) (0 + [-, ]),

for sufficiently small e > 0. Fix e small enough to have also K I-r, ] in the
sense of Definition 2.3(1), and choose a compactly supported C with 0 on
I-e/2, e/2[, 1 on K and 0. Define by

() (-)()().
Certainly, this is smooth with compact support disjoint from the origin. Going back
to the definition of 7 we find

r() (k)e- 112( +
kEZ kZ

By construction, F is a smooth strictly positive 2-periodic function. Therefore 7 is
gl-invertible with -l(k) being the Fourier coefficients of 1/F().

Step 2. The following "separating lemma" will be useful also in the sequel.
LEMMA 2.7. LetpE [1,] and n {1,2,...}. If w gP(Z) and the sequence y

is supported by {0, 1,..., n- 1}, then

IID 11 11111,.

Proof of Lemma 2.7. Note that (Dnw * y)(k) Et w(1)y(k nl), where the sum
has only one term different from zero. For p < this gives

ilDn ()( n)l () ( n)l .
k k

The case p is similar.
L-1 -k(Assume, without loss of generality, that () k=0 cke for some L > 0

L-1and put g =0 ek. Then g,(e0-e) CO--eL and the support of Te0 is included
in {0, 1,... ,2JL 1}. (In fact it is also in the smaller set {0, 1,..., (L 1)(2J 1)}.)

),M and Teo then givesAn application of Lemma 2.7 with n 2Y L, w (e0- e y

JII(D)* (0 )* T011 IID() ((0 1)*’) * T011,
(0 )* 011,,

SO

I1*M I1 I1(o .),M T-o I1 >- I1(o )*M I1 I1-O I1"
We an eherefore us - I1(o- )*II,/II*MII in (,.) ad eh proof of Lemma ’2,.t5

is complete. [
The two simplest cases can already be analyzed completely by Theorem 2.5.

Example 2.8. Assume rn() (1+--,) M. Keeping in mind that the results of
this paper are not changed by a translation of the sequence (ck), we will also write
c (1/2, 1/2),M. Then () 1 and Ty 2y. With notation as in Theorem 2.5,
r(j) 2j(I+s-M-(1/p)) and by checking whether this sequence is in gq we get

{ s<M-l+, q<ec,
(2.6) 9 e B;’q(]) s_< M-I+, q x.
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This result is well known because g can be found explicitly. When M 0 the
distribution g is the Dirac mass at x 0. For M _> 1 it is the M-fold convolution of
the characteristic function of the unit interval, g I*M[0,11, which is a B-spline of degree
M-lifM>2:

1_g(z)
(M E(--1)k (z- k)/-1.

Here (x)+ max{O,x}.
Example 2.9. Suppose m() (1+-!2 M(), where

+
If () 0 we are in the situation of the preceding example, so let us sume
(r) 0. That is = (,2) (, ).

Since () has at most one zero in I-r, ], Cohen’s criterion is satisfied with K
equal to either I-e, 2 e] or [-2r + e, e] for some e > 0. Note that with T Tin,

Ti+eo Tyeo * D2 Teo,

and the support of TYeo is included in (0, 1,..., 2J 1}, Lemma 2.7 gives

Here Teo 2, so by induction, ]TJeop 2] and Theorem 2.5 reads

log2 ]2lp q < ,s<M+(2.7) g e B’q()
-og2112lp, qsM+

We have denoted by log2 x the logarithm of base 2.log 2

3. Spectral radii and the critical exponent. om now on we will always
assume the factorization

0,

where is a trigonometric polynomial. In other words, M is just the order of the
ero of m at . Possibly M 0. It will often be convenient to assume that ck 0
for negative k. By simple translations, this assumption implies no loss of generality.

For every p [1, ], T is a bounded linear operator eP(Z) eP(Z). The spectral
radius pp(T) of this operator is the supremum of I1 over all e such tha T-
does not have a bounded inverse. The spectral radius formula states that

/Jlim inf IIr ll 
where Alp denotes the operator norm of A" e(Z) e(Z). Since

the sequence r of Theorem 2.g will be in all fq if pp(T) < 2-M-, by the root test.
We are thus led to the following definition, where it will be convenient to introduce

! [0 1] putting =0and=.the parameter v p
DEfINItION a.1. or V [0, 1], We define the critical exponent so(v) ofT b

so(v) M + v log2 p (T).
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Note that So(V) depends continuously on the coefficients of when (Tr) =/= 0,
since spectral radii depend continuously on operators. The critical exponent deserves
its name because of the following.

8qTHEOREM 3.2. Let v e [0, 1] and q e [1, c]. Then g e B1/v(I) for all s < so(v).
If n satisfies Cohen’s criterion, we have

sup{s g e B’q(I)} so(v).

We have already seen that the supremum in Theorem 3.2 is at least so(v). The
opposite inequality follows from (3.2) and the next lemma.

LEMMA 3.3. Let T T be defined from N coefficients co,..., cg-. Then for
all p E [1, cx],

For p 1, equality holds in (3.3).
Proof. The last statement is a consequence of the first since lITjoll < Ty II1.
To show (3.3), we perform what in the language of signal processing is called a

"polyphase" decomposition of y E gP(Z):
N-1

Y- E TkDNy(k)’
k=0

where Tk denotes translation by k, ’kZ(1) z(1- k), and the discrete dilation DN was
defined in the beginning of 2. Then we find

N-1

TJy TYro * D2Jy E ’2Jk(TJe * D(2N)y(k))"
k=0

The support of TYa0 is included in {0, 1,... ,2iN- 1}. Hence, by Lemma 2.7 and the
triangle inequality we get

N-1

IITYYllp < [[TYolI IlY()llp,
k-----0

and to complete the proof we only have to note that Hhlder’8 inequality in CN furnishes
N-1 Nl_(1/p)Ek=0 I]Y(k)lip <- IlYIIp"
Some elementary properties of the critical exponent s0(v), regarded a8 a function

of v [0, 1], are listed in the next proposition.
PROPOSITION 3.4. S0" [0, 1] --+ I has the following properties:
(1) so is nondecreasing.
(2) So(v + h) < so(v) + h for O < v,h, v + h <_ l.

(3) so((1 t)vo + tVl) >_ (1 t)so(vo) + tsO(Vl) forO <_ vo, vl,t <_ 1.
In other words, so is concave.

(4) so < M.
Proof. Put T T and let the support-of the coefficients of be included in

{0, 1,...,L- 1}.
(1) Let p 1 and Pl with h >_ 0. Since the support of TjeO is included in

{0, 1,... ,2JL- 1}, Hhlder’s inequality in C 2jL has the consequence that IITJeollpx <
(2JL)hllTJeollp. Taking jth roots, using Lemma 3.3 and the spectral radius formula
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(3.2) we get Ppl (T) <_ 2hpp(T), which implies so(v + h) >_ So(V) by the definition of
80.

(2) Since gP-norms decrease with p we have, with notations as above, that lITj 011pl
>-IITje011p, so pp, (T) >_ pp(T) and the result follows.

(3) If A is a bounded linear operator gP(Z) --+ gP(Z) for all p e [1, oe], then
(1 t) t This is a consequence of theIIAI]p < IIAIl-t]]AIItpl provided that - PlP0

Riesz-Thorin interpolation theorem [BL, Thm. 1.1.1]. Apply this result to A TY,
take jth roots and let j oe. It follows that v log2 pl/v(T) is convex, and so is
concave.

(4) Clearly, IITJII1 --IITJolI1 >_ k(TJo)(k)-- 2j ,so s0(1) M and we know
from above that s0 is nondecreasing.

Remark. In view of Theorem 3.2, the properties (1)-(3) of Proposition 3.4 contain
no surprises when Cohen’s criterion is satisfied. (1) holds because of the compactness of

Bs,qthe support of g, (2) is a consequence of the Besov embedding theorem 1/(+h) () C

BS-h’ql/v (), [P, P" 63] and (3) follows from interpolation of Besov spaces as described
in IF, p. 106] or [BL, 6.4].

4. Estimates for So(0). Having seen that the regularity of g is determined by
the spectral radius pp(T) of the operator T T acting on gP(Z), the natural task
is now to find upper and lower bounds on pp(T). In this section we consider the case

0, that is, p oe. Remember that if s > 0 is not an integer _ooV p

is exactly the Hhlder space Cs(I). As a consequence of Theorem 3.2, the critical
exponent s0(0) M- log2 poo(T is also the critical Hhlder exponent in the sense
that g E C8() implies s < s0(0) and is implied by s < s0(0). To analyze the limit
case s s0(0), one has to back to Theorem 2.5. By Lemma 3.3, this reduces to a
more refined study of lITj Iloo as j oo. Apparently, Theorem 3.2 does not give an
exact criterion for g to be continuous or to have n continuous derivatives. However,
we will see in 7 that this problem has an easy solution.

The first upper bound for poo (T) is furnished by the spectral radius formula, since

poo(T) < lIT }1j for all j 1, 2, Here, the operator norm can be found explicitly:
Regarding Tj as an infinite matrix with entries a(k, 1) TYeo(k- 2Jl) we have

(4.1) IIT Iloo sup la(k, t)l
kEZ IEZ

max E Te(k 2/)1"
k{0, 2-}

Before we discuss other means of finding upper bounds for poo(T), we turn to
the lower bounds. A naturM way to bound poo(T) from beneath would be to seek
for elements in the spectrum of T oo(Z) --+ t(Z). If we could restrict T to a
finite-dimensional subspace of too(Z), then this restriction would be just a matrix and
the modulus of its largest eigenvalue would bound poo (T) from beneath.

However, T fail to leave the simplest finite-dimensionM subspaces of oo(Z) in-
variant. These candidates are subspaces of finitely supported sequences and subspaces
corresponding to finitely supported measures on the Fourier side. The obstruction is
the "expansive" nature of T due to the discrete dilation D2 in its definition. For this
reason, we switch to the adjoint operator.

First define Sm associated to m() - Cke-ik5 by

(4.2) Stay(k) E 2c2_,y(1) D1/2 (2c y)(1),

where D/2y(k) y(2k). Let (-, .) be the duality bracket extending the scalar product
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in 12 12(Z C), that is,

z>
kEZ

Then the adjoint of D2 is D1/2, and the adjoint of a convolution with a sequence, is
the convolution with the reversed complex conjugated sequence. For the operators Tm
and Sm this gives the next lemma.

LEMMA 4.1. The adjoint of Tm is Tn Sin. That is, if 1 <_ p,p’ <_ oc with
1 + 1 y E .P and z P’, thenp 7

<T u, z> S z>.
1 thenIf l _< p, p’ _< oc with+

Hence, by Lemma 4.1,
sup{l(y,z)llz e Ilzll ,’ 1}.

(4.3) IIT I1, IIS 
where T T and S S. (A priori with S S, but this complex conjugation
makes no difference.) In the present case, we can therefore study the action of S on
1 (%) instead of the action of T on l(Z).

For n > 0, let Vn denote the n-dimensional subspace of tl(z) consisting of se-
quences supported by {0, 1,..., n- 1}. Assuming the support of the coefficients of

is contained in VL we find that S(Vn) C Vn as long as n >_ L- 1, (choose L >_ 2).
Moreover, if y is a finitely supported eigenvector for S corresponding to an eigenvalue

0, one finds by iteration that y VL. A first lower bound for pl(S) is then the
spectral radius of the restriction of S to VL, which is just an L L-matrix. In the
case L 3 this matrix is

22 21 20
0 0 22

Clearly, the spectral radius of this matrix is the maximum of the spectral radii of the
two submatrices

0)So 2’ 2’1
and $1

0 2’.

In the general case we define these to be representations of the restrictions

T_ISTIlvL_I, respectively, in the natural basis 0, el,...,s/-2 for VL-1.
While S is not translation invariant, we have

and

(4.4) ST2k TkS, k Z.

To get better lower bounds for pl (S), we can therefore also use the eigenvalues of
SjT-k. Indeed, if A is such an eigenvalue, and y is the corresponding eigenvector, then
for all n 1,2,...,

,ny_ (SjT_k)ny sJnT_ky,

for some integer kn. By the isometry of translations, this yields IIsJnlI1
_

I/1n SO

>
Another consequence of (4.4) is that sJT_kl is similar to SiT_k2 whenever kl

k2 (2j 1). Hence, we only need to consider the spectrum of ,JT--k for k
{0, 1,... ,2J 2}. If y is a finitely supported eigenvector for SJ-_k corresponding
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to an eigenvMue different from zero, iteration gives y
{1,..., 2J 2}, and y VL for k 0. On VL-I, we find from (4.4) that

(4.5) Sj
_

SS. S
where k =1 dt2y-t with dt {0, 1}. Equivalently, O.dd2... di is the finite binary
expansion of k2-.

By a separate treatment of the case k 0, we obtain that the set of nonzero
eigenvalues corresponding to finitely supported eigenvectors for sJT_k with fixed j
and all k Z is exactly the set of nonzero eigenvalues for the collection of 2j matrices

Sd Sd2 Sdj dk {0, 1}.
Returning to the formula (4.1) for TY we see that

(4.6) ]]Si]] max SJT_kO]I max
ke{0,1 2-1}

We collect the obtained results in the next proposition.
PROPOSITION 4.2. Define uj and lj for each j 1, 2,... by

maxJ max [TJ(k + 2Jl)]
de{0,}

uy
e{0, 2-}

de(0,}

J and ]Tin]] > ln for all j, n 1, 2, As a consequence, weThen ]]TJ]] uy
have supj lj p(T) infj uj.

Remarks. Clearly, uj maxde{0,} ]]SdSd Sd ]]]/J] and if we define the joint
spectral radius of two matrices as in [DL2] to be (S0, S]) limsupy uy, we can
exchange the 1-norm with any another matrix norm without altering the definition.
In the present case, we see that this joint spectral radius is just the ordinary/(Z)-
spectral radius of S. Due to a result of Berger and Wang [BW] we have also (S0, S)
lim supy lj. The last inequality of Proposition 4.2 is therefore never strict.

From Proposition 4.2 and Theorem 2.5 we get Corollary 4.3.
COROLLARY 4.3. Assume satisfies Cohen’s criterion, let j (1, 2,... } and fix

notations as in Proposition 4.2. Then
q < haw < M- og not if M-log 

(2) gB() ifsM-log2uj, but notffs>M-log21j.
In particular, if s > 0 is not an integer, then g CS() if s M- log2 uj, but not if
s > M log2 lj.

Remarks. Rioul introduced the use of (4.1) for Hhlder estimates in [R]. With
slightly different sets of assumptions and definitions of uj, the results of Proposition
4.2 and Corollary 4.3 about Hhlder regularity are also well known from [DL2], [CH2],
and IT].

The convergence of M-log2 uy towards s0(0) can be rather slow. To improve the
upper bound for p(T) given by Proposition 4.2, different techniques can be applied.
First we describe a method due to Daubechies and Lagarias [DL2]. (See also [CH1]
for applications of this trick.)

Suppose SdSd...Sd/j u for a finite collection of binary "words"
(d],d2,...,dj), complete in the sense that every binary sequence d" N (0, 1}
can be written d (w], w2,..., wk,... with wk . If j0 is the largest word length,
then uyj _< ]]SYuy for all j 1, 2, so p(T) _< u.
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Another method is described by the following proposition, which is based on the
S by second-order recursion. We willidea of modeling the dynamics of uj I1

see in 9 that Proposition 4.4 cn be quite useful in sufficiently simple situations. Of
course, generalization of the method to recursions of order higher than two is possible.

PROPOSITION 4.4. For each d (d,d2) {0, 1}2, let the vectors d,d,?d
VL-1 L-1 be such that Sd, Sd2O Sold "- Sld "- ?d. Put ad IIdlll + ]]d]]l,
bd ]d] and

{ }u max + + bd

Then ]TJ]] ]SJ]] Cuj for all j 1,2,... and some positive constant C.
Consequently, p(T) u.

Proof. Since ]]SJ]] maxde{0,} ]]&& SdeO, checking the four cases for
(dj-1, dj) and applying the triangle inequality yields

(4.7) lIS]] max {ad]]S- S-2
d{0,1}2

II1 + bdll II1},

for j 3, 4,
Observe that u -adu- bd 0 for all d {0, 1}e, and u > 0 since S 0. Define

y(j) IISlll -c with C > 0 large enough to have y(j) 0 for j e {1,2}. Then
(4.7) still holds when ISklll is replaced by y(k) for k e {j,j 1,j 2}. By induction,
y(j) o for an j , 2,

Finally, we describe a special ce where p(T) can be found from a single finite
dimensional spectral radius. This result is essentially due to Deslauriers and Dubuc
[992]. See aso [R] and [CD] for related results.

PaOPOSTION 4.5. Assume eiN(() 0 for all and some integer k. Let W be
a finite dimemsional subspace 4e (g) such that S(W) C W and e e W, nd let .
denote the operator norm induced by any fixed norm on W. Then there are constants
0 < C1 C < such that

for all j 1, 2, In particular, pl (S) p(Siw).
Pro@ Since all norms on W are equivalent it will be sufficient to prove the result

with I1 II I1" II . Also, we cn ssume k 0, since the general case then follows from
considering r() eik() and Sr ST-k T2kST-2k.

The inequality (Sw)y Ill IlsJ Ill is trivial and the lt statement of the propo-
sition follows from the spectral radius formula.

The main observation is that when > 0 we see from

j--1
1 f_ eik(To() ()d,

v /=0

that IITe01 Tee0(0)= (T0,e0) (0,Se0)= Se0(0). om Lemma 3.3
and the hypotheses on W we have therefore a finite constant C such that IIsYlI1

An immediate consequence of Proposition 4.5 with W VL is that if eik(()
is nonnegative for some k then pl(S) ll max{p(So),p(S1)}. In fact we have
necessarily L 2k+ 1 and we only have to consider the spectral radius of the restriction
of S to W span{e,... ,eL-2}, represented by a common submatrix of So and S.
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5. Calculating So(1/2). The case p 2 is particularly simple, since g2(Z) is a
Hilbert space and a convolution operator on 2(Z) has an easily computable norm.
Our starting point is the next observation.

LEMMA 5.1. With S -Sm we have SJS*Jy Sg]ju’O * y, for all y g2(Z) and
j 1,2,

Proof. From Lemma 4.1 we know that S T, so Sj S*j SiT. This operator
m

is invariant under translation, as it can be seen from (4.4) and the corresponding
adjoint formula. Therefore it is just the operator of convolution with Sj (T-eo)
D2-(0 " To) 02-, (Tmo) S]eo.

By Parseval’s formula for Fourier series, a convolution operator y z y, where
z g(), is continuous g2(Z) g2(Z) with operator norm equal to ]zc(v)
sup]a z(k)e-ik]. Hence, Lemma 5.1 implies that

(5.) Is ss*l S21leO[[C().

Let W be a finite dimensional subspace of (Z), such that SII(W W nd

e0 c W. Because ]]2 0, the proof of Proposition 4.5 shows that we have the
equivalence

(5.2) C 2Y[[(Aw)YI IIS2Jll C 2Jll(Aw)Yll,
where we have denoted by Aw the restriction of Sl12 to W. ]]. II cn be any fixed
mtrix norm. om (5.2) and the spectrM radius formula we get p2(S)2 2p(Aw)
and the following theorem.

THEOREM 5.2. With W and Aw as above, we have so() M- log4p(Aw).
When satisfies Cohen’s criterion and q < we have g B’q() if and only if
< o().

Remarks. If has support in (0, 1,..., L- 1} we can choose W to be the space
spanned by (e-L,...,eL-2}. In this case Aw is represented by the mtrix with
entries

n

In the case q 2, Theorem 5.2 gives a result about whether or not g belongs to the
Sobolev space H(). Eirola showed in [E] that sup(s [g H()) M-log4 p(Aw)
under the hypothesis that () 0 for all (. For a different proof of Theorem 5.2 in
the case q 2, see also IV]. The case where infinitely many Ck 0 has been treated
independently by Herv6 [HI and Gripenberg [G].

We have g c B’() if and only if II(p(Aw)-Aw)YJJ is bounded for j
By the Jordan decomposition theorem, this is the case exactly when each eigenvlue
A for Aw, with [A[ p(Aw), has equal algebraic and geometric multiplicity.

A simple bound for IIT I cn so be found from Ty Te0 *Dy, which gives

j-1

IITJll2 IITJ0lc< 2J sup
l=O

and consequently, we have the following.
lo2(supH 1(2*)l) for j 1 2PROPOSITION 5.3. S0() M 2 y ,...

Combining Proposition 3.4(2) and Proposition 5.3 for j 1 we find that g is
continuous if ]()] < 2M- for all . This sufficient criterion for continuity was
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proved in [D1] by considering the decay of the Fourier transform of g.

6. Estimates for so(l). As in 4 and 5, fix T T and S
defined by (3.1). From Lemma 3.3 we know that IITJlI1 IITJeolll. The simplest
lower bounds for so(l) are therefore given by

(6.1) so(l) >_ M + 1
1
log2 [[TJeol[, j 1,2,

The right-hand side of (6.1) increases with j and converges to so(l) as j
special case, so(l) can be found explicitly.

PROPOSITION 6.1. If Cn has nonnegative coefficients >_ O, then so(l) M and
g e B1M’ (I), but g q B1M’(g{) for any q < (x if Cn satisfies Oohen’s criterion.

Proof. Observe that I[T0[[ E(To)(k)= 2, and apply Theorem 2.5 with
p=lands=M.

We know from (4.3), that instead of studying the action of T on el(z), we can
study the action of S on e(Z). To find lower bounds for p(T) p(S), it is then
natural to search for eigenvectors of S: e(Z)

Define Wo f for each 0 I by wo(k eik, k Z. A straightforward
calculation shows that

(6.2) Sweo 2ff((0)W2eo.
Since wo+2 Wo, every j-cycle 1 2 j 1 for the map -, 2
mod 2r gives rise to an eigenvector for Sj, namely wt:

These observations lead to the following collection of upper bounds for so(1).
PROPOSITION 6.2. Let 1 be a j-cycle for the map

mod 2r. Then
4

s0(I) <_ s M_ _1 log.
/=1

If n satisfies Cohen’s criterion we have g B’ for q <
For a j-cycle as in Proposition 6.2 we have necessarily 21 + 2rk for some

.,r Z Apart from the trivial cycle 0 0 the simplest examplek Z. That is, 1
of such a cycle is 5 - - g. A few others are: - --7 - and
2_v_ _, _, _g

_
Note that with 3/= {ei(t }{=1 we have j2 j &S in

5
(3) of Proposition 2.4.

The idea of using such cycles to bound regularity from above is due to Cohen
[C2]. Using the present notation he proved the estimate of Proposition 6.2 with s0(1)
replaced by s0(0), under the further hypothesis that ]fft(r)[ > 1.

For each j 1, 2, we can write the set { 2_r_ k 0,2rk 1,..., 2 2} as a

disjoint union of cycles. The bound

(6.3) s0(1) <_ M-- log2 [()l d

then follows from Proposition 6.2 by letting j oc. However, the individual bounds

sj of Proposition 6.2 tend to give better results than (6.3), which averages out the
good estimates with the bad.
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In [CC], other results relating the regularity of g to invariant measures for the
map -, 2 mod 2r are obtained.

Recall that Proposition 3.4 offers a variety of inequalities from which upper and
lower bounds for so(v) for different v can be related. For example, if s0(1/2) is known
from Theorem 5.2, a lower bound for s0(0) can imply an upper bound for s0(1) via
the concavity of the graph of v so(v). Also, the inequality s0(1/2) _< s0(1) actually
performs better than (6.1) for finite j in many cases.

When the coefficients (ck) are real, there is an interesting connection between the
the fractal (box counting) dimension of the graph of g and the critical exponent s0(1),
as described in [DJ]. With the present notation, we have the result dim(graph g)
2- s0(1), if g is continuous, 0 < s0(1) < 1 and Cohen’s criterion is satisfied.

7. Continuity, differentiability and integrability. Theorem 3.2 does not
seem to give an exact criterion for g to be continuous, or to have n continuous deriva-
tives, g E Cn(I). Nor do we automatically obtain criteria for g to be integrable or
to have n integrable derivatives, g E Wn,I(]R). However, the following theorem will
remove these apparent weaknesses. With different notation and methods of proof, the
results below concerning cn(I) are well known; see [CDM], [CH2], [DDD], [DGL],
[MP], and [W].

THEOREM 7.1. Put T Tm, and assume Cn sastisfies Cohen’s criterion. For
every n O, 1, 2,... we have then the following.

(1) g Cn(I) v s0(0) > n. Equivalently, if there exists j 1,2,... such that
11(2 MT) < 1,

(2) g Wn’(I) V s0(1) > n. Equivalently, if there exists j 1,2,... such that
< 1.

Consequently, if g cn(R), then g cn+(I) for some e > O, and g wn’(I)
implies g Wn’P(]R) .for some p > 1.

Proof. Let S(I) have a Fourier transform with compact support disjoint
from the origin, as in Corollary 2.2. For a sufficiently small h > 0, we can then write

b(x) 0(x) O(x + h) where has the same smoothness and support properties as. Explicitly, put ()- ()/(1- eihb).
Assume g is integrable. With aj defined from as in Lemma 2.1 we then get,

(7.1) 2-J/2aj(k) / g(x)-(2Yx k)dx f (g(x) 9(x 2-ih))(2Yx- k)dx.

Summing over k we obtain 2-J/211ajll <_ Cllg- T(2-h)gllL1 with the finite constant
C supx -k I(x -k)l" It is well known that a -ag is continuous I --+ L(I)
whenever g e nl(I), so we conclude that 2-J/211ajlll --+ 0 for j --+ cx). By a combina-
tion of the Lemmas 2.1, 2.6, and 3.3, it follows that IITJlI2-j(M+I) --+ 0 for j --+

so s0(1) > 0.
On the other hand, if s0(1) > 0 then Theorem 3.2 implies g B’l(]) and

therefore g e LI(I) by (1.7). Even better, we have so(v) > 0 for some v < 1 by (2)
of Proposition 3.4 so g e Bp’() C W’P(]) LP(I) for some p > 1. We have just
proved (2) in the case n 0. The general case follows easily by partial integration in
(7.1).

Suppose now that g is continuous. Then (7.1) gives the inequality 2J/211ajll
]}OIILI supx Ig(x)- g(x- 2-Jh)l. Since g has compact support, it is also uniformly
continuous and we see that 2J/211ayl] --+ 0 for j --+ oc. This leads to s0(0) > 0, after
using the same lemmas as above. The special case n 0 of (1) is now obvious, and
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the general case follows again from partial integration in (7.1).
From (4) of Proposition 3.4 we can now derive a result about the necessity of

zeros at .
COROLLARY 7.2. Assume m satisfies Cohen’s criterion. Then g E wn’I(]R) im-

plies M >_ n + 1. In particular, m(r) 0 if g is integrable.
The last statement is sharp in the sense that m(r) 0 is not necessary for g to

be a complex measure: g is the Dirac mass at x 0 if m() 1. With the help of (4)
of Proposition 2.4, Corollary 7.2 can be extended to the case where m() and m(

le-i2are never both zero, but this condition can not be omitted. Indeed, m() 2

1110,2] E Lcorresponds to g 5
Note that when g 6 wn’I(I) with n _> 1, the (n- 1)th derivative of g is an

absolutely continuous function, differentiable almost everywhere, by the Lebesgue dif-
ferentiation theorem. A sufficient criterion for differentiability almost everywhere is
therefore contained in Theorem 7.1. For a detailed treatment of pointwise and local
regularity we refer to [DL2].

8. Quality of convergence. Until now we have considered the distribution
solution g to (1.1) as given by Theorem 1.1. When Cohen’s criterion is satisfied, the
regularity of g is then measured exactly by the critical exponent so(v) defined in 3.
However, g can also be regarded as a fixed point for the operator

(S.1) Pmf(X) E 2ckf(2x k).
k

Choosing a sufficiently nice initial function f0, one could hope that Pfo -- g as
n oc. If f0 is integrable with f fo dx 1, this convergence holds at least in the
sense of tempered distributions. We shall see (Theorem 8.2) that for a reasonable
class of initial functions, convergence holds in B,q() as long as s < s0(), and this
result does not depend on Cohen’s criterion. Loosely speaking, the critical exponent
measures the quality of convergence rather than the regularity of the abstract solution
g. When Cohen’s criterion is not satisfied, it can happen that there is a gap between
this quality and the regularity of g.

Assume fo e S(])is interpolating, that is, fo(k)= 0(k) for k e Z. Then (8.1)
gives for k Z and n 1, 2,...

(s.e) (Pfo)(2-nIg) (To)(k).

Therefore results about the convergence of the iterates Pfo will lead to corresponding
results about discrete approximations to g(2-nk). In the applications, one never sees

g, only the iterates Tmn0.
DEFINITION 8.1. Let X be a normed space with S(I) C X C $’(I). We say

that Pm converges in X, if Pnfo - g in X as n c for all fo e S(I) such that

/o(0) 1 and supp/o C [-2r, 2r].
The class of permitted initial functions described by Definition 8.1 certainly con-

thins the Meyer scaling function , by (1.5). For a permitted interpolating function,
one could take o I12 to obtain Ek o( + 2rk) 1 since {Tk}keZ is an orthonor-
mal sequence in L2(]).

THEOREM 8.2. Let p, q [1, c]. Then Pm converges in B’q(I) if s < so(-).
Proof. First of all, we know from Theorem 3.2 that g B’q(). Let f0 be as in

Definition 8.1 and put u f0 g. We have to show that Pfo g Pu converges
to 0 in B,q() as n -- oc.
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I*MAssume this holds in the case M 0. As usual we can write g [o,1] * , where

is defined from t in the sense of Theorem 1.1. By the support properties of ]o we
can also write fo I*M[0,1] * f0, where fo is still an allowed initial function in the sense

of Definition 8.1. The critical exponent corresponding to is s0() M, and with

fo the assumption implies that aNPu converges to 0 in B-M’q(])
The identity (1 + z)(1 z) 1 z2 leads to

P,m(l[0,11 * f) 110,11 * Pro f,

where #() l+eSi!2 In our case this gives Pnmu 1[0] * P. It remains only to

observe that convolution with 110,11 defines a continuous operator B,q(I) - _pBt+l,q()
in order to conclude that Pu converges to 0 in B,q(I).

Without loss of generality, we can therefore suppose M 0. Also, it will be
sufficient to show the convergence for q cx since B,() is continuously embedded
in B,q() for sl > s; see [e]. Among equivalent norms on B’c(), we choose the
one induced by the wavelet characterization of Theorem 1..2. If the wavelet coefficients
of f E B’() are f(k)= (f, Tk) and (k)= (f, )jk), then

n PnmuPutting n /P and cj cj simple calculations as those leading to
Lemma 2.1 give

-J/2-j, To, 0 _< j _< n,
(8.4) c -n/u o2 ay-n* D2-Tno, J > n.

Admit for the moment a result which we prove in the appendix.
LEMMA 8.3. There is a constant Co such that Ill’lip1 + Ilallpl <_ Co 2- for all

Pl e [1, oc] and n 1,2,
Then the first term of the right-hand side of (8.3) with f Pu clearly tends

to 0 as n -, oc. Choosing As > 0 with s + As < s0(), we obtain that

C12j((1/p)--/xs) for some C1 :> 0, by the definition of the critical exponent. An
application of Lamina 8.3 with Pl 1 in the first case of (8.4) gives us

2Y(1/2-+8)llallp <_ CoC1 2-(-J)2-yA8 <_ CoC1 2-n min{1,As}.

Since () 0 for I1 -< and the support of the Fourier transform of Pfo is
g for j > n + 2. In this case weincluded in [-2n+lTr, 2n+lTr], it follows that aj -aj

have therefore

For the remaining case j n + 1, (8.4) gives

2J(1/2--+s) llOllp

__
21/2-+SllOl]]iC 2-hAs.

Collecting the different cases we see that

(8.5) IIPUlIB,
_
C 2-n min{1,As},

for some new constant C > 0, and the desired convergence follows.
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There are two important cases where CoAch’s criterion is in fact necessary to have
even only a reasonable convergence.

Dyadic interpolation. Assume

(8.6) m() + m( + r) 1,

or equivalently, C2k 0(k). It is then an easy matter to verify that P, preserves
interpolating functions. In this case C2k+l are the coefficients of an interpolating sub-
division scheme [DLG], [DD1], and [DD2]. If Pm converges uniformly, (in supremum
norm) we see using an interpolating initial function f0 that g itself must be continuous
and interpolating. Hence m satisfies Cohen’s criterion by (2) of Proposition 2.4. But
then we know from (1) of Theorem 7.1 that s0(0) > 0 and we have shown all implica-
tions which are not trivial consequences of Theorem 8.2 in the next proposition.

PROPOSITION 8.4. If m satisfies (8.6), the following four statements are equiva-
lent and imply that m satisfies CoAch’s criterion:

(1) Pm converges uniformly (in sup-norm).
(2)  0(0) > 0.
(3) P, converges in C(l) for some e > O.
(4) g is a continuous interpolating function.

Biorthogonal filters. This second case is important for the construction of
biorthogonal and orthonormal bases of wavelets in L2(]), [C3], [VH], [D]. The as-
sumption is here that m and m2 form a biorthogonal filter pair in the sense that

(s.z)

The basic observation is then that the integer translates of P,lfl and Pm.f2 form
biorthogonal sequences in L2 (), provided this is the case for the integer translates of
fl and f2. (More precisely, {Tkfl, Ttf2}i2() eo(k l) for k, E Z.) To see this, just
note that m mlm2 satisfies (8.6).

Taking the Meyer scaling function as initial function for both Pml and Pm.,
we see that if we have convergence in L2(I), the integer translates of gl and g2 form
biorthogonal sequences in L2(I). Again (2) of Proposition 2.4 allows us to conclude
that both ml and m2 satisfy CoAch’s criterion. Since L2(I) B2’2(I), Theorem
5.2 now gives that both s01(1/2) > 0 and s02(1/2) > 0 where s(1/2) and s() are critical
exponents of ml and m2, respectively.

The conjugate quadrature filter case is when we have m m2 m. The integer
translates of gn Pn then form an orthonormal sequence in L2() for each fixed n E
51. In particular, Fatou’s lemma applied to ]nl 2 gives that IlgllL

_
liminfn Ilgnlli 1

so g L2(I). Now by Theorem 5.2, s0() > 0 if m satisfies CoAch’s criterion, so L2-

convergence is in fact equivalent to this criterion. With a slightly different definition
of L2-convergence, this result can be found in [C1]. Thus we have the following.

PROPOSITION 8.5. If the symbols ml and m2 satisfy (8.7), the following four
statements are equivalent and imply that both ml and m2 satisfy CoAch’s criterion.

(1) Pm and Pm. both converge in 52 (]).
(2) s(1/2) > 0 and s(1/2) > O.
(3) Pro1 and Pm. both converge in H(lf() for some e > O.
(4) The integer translates of gl and g2 form biorthogonal sequences in L2().

Moreover, if m m2 m, then (1)-(4) hold if and only if m satisfies CoAch’s
criterion.
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Let us finally describe some discrete convergence properties inherited from The-
orem 8.2. We expect from (8.2) that the sequence Tno should be a good discrete
approximation of g(2-k)keZ. We have the following result about the quality of this
approximation. Note that 2nt (e0 el)*Z, Tmno is just a way of writing the/th divided
difference of Tmnz0. The natural "step size" is 2-n.

COROLLARY 8.6. Assume s0(0) > r, where r is a nonnegative integer. Then
g E Cr(II) and

sup (2nZ(0 1)*’ * Tmna0) (k) g(l)(2-nk)l O(2-nmin{l’As})
kZ

for n --, oc whenever {0, 1,..., r} and 0 < As < s0(0) 1.
Proof. Note that o Pm= 2Pro o d and Pm o - T/2 o Pm. From these rules

we obtain

d
(8.8)

dx (P,(I[,I] * fo)) 2ng(50 -(2-n)*/
$ Pfo.

Let f0 be an interpolating initial function in the class of Definition 8.1. Then fl
1[*,1] * fo is still a permitted initial function. Choose 0 < e < 1 such that + e + As <
s0(0). Since dg/dx is continuous Bg+’(I) B’(I) C(I), (8.5) of the proof
of Theorem 8.2 with s + e gives us a constant C > 0 such that

dg(Pfl g) 2-nmin{1,As}sup (x) < C
xl dx

The corollary now follows by restriction to x 2-nz since (8.8) and (8.2) give

nd Pfl (2_n]g) (2n/(0 el), $ Tmn0) (k)
dx

Remarks. The upper bound O(2-") for the speed of convergence in Corollary
8.6 comes from Lemma 8.3. If ]o()(0) ()(0) for 0, 1,...,q, we can replace
min{1, As} with min{q + 1, As} in the corollary. One way to achieve this is to use

]0 RIll2 in the above proof, where is the Meyer scaling function and R()
k r(k)e-ik is a trigonometric polynomial with Rq)(0) .q)(0) for 0, 1,..., q.
(Recall that 1 in a neighbourhood of the origin.) f0 is then no longer interpolating
but fo(k) r(k) for k Z. In terms of discrete approximations, we consider the
sequences r Te0 in stead of T,e0 for the approximation of g(2-k)kez.

If Star r with kr(k) 1 the described method works with q M- 1,
because then

R(2) m()R() + m( + 7r)R( + r),

and m vanishes up to order M- 1 at 7r.

If we know the values of g at the integers, a much more direct result can be
obtained by putting r(k) 9(k), since we then have

(8.9) (r Tao)(k) g(2-"k)

for k Z. In fact (8.9) is a local version of what is called the nonlocal algorithm
in [DL1]. Standard results about spline interpolation then give easy and powerful
convergence results depending only on the regularity of g. Note that in this case

Star r is a consequence of (1.1).
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9. Examples. In this section we will apply the obtained results to three rela-
tively simple and well known examples.

Example 9.1. Let c- (12,5)1 ,2 ,( l+V2’ .1.-V).2 Cohen’s criterion is trivially satis-
fied and Im()]2 + Im( / r)l2 1. By (4) of Proposition 8.5 the integer translates of
g form an orthonormal sequence in L2(IR), and if we put

)(X) E 2(--1)l-kCl-kg(2x k),
k

then is the first compactly supported orthonormal wavelet of Daubechies [D]. The
regularity properties of b are exactly the same as those of g.

We are here in the situation described by Example 2.9 with 2 2
In terms of the critical exponent,

+ v- vlog2 /,(1 + V) + (/- 1)),"2

+

0<v<_l,

V--0.

We know also that this exponent is exact in the sense that g E B]_(")’q(IR) if and

only if q oo. In particular, g is Hhlder continuous with best possible exponent
2- log2(1 + x/-) 0.5500. A well-known result from [DL2]. We have s0(1/2) 1 and
v so(v) is strictly increasing. Hence, Theorem 5.2 gives that g Hs(]R) if and only
if s < 1, and from (1.7) we see that g is absolutely continuous with derivative in Lp
exactly when p < 2.

Thus, g is differentiable almost everywhere. For a description of the set of points
where g fails to be differentiable we refer to the pointwise analysis of [DL2].

Example 9.2. Let c 1/2(/3, 1-/3, 1-/3,/3) where/3 is a real parameter. This is
exactly the real symmetric 4-coefficient case. The family was considered by de Rham
in [dR] with 0 < /3 < 1/2, where the equation (1.1) arises from considering the limit
curve of a symmetric "corner cutting" scheme. (Lending the modern terminology from
[DGL].)

If m is defined similarly from 131 with (1 2/3)(1 2/31) 1 it follows that

m({)-T({) + m({ + rr)--T({ + rr) 1.

Hence m and ml define biorthogonal filters in the sense of Proposition 8.5. This filter
pair was studied by Vetterli and Herley in [VH].

We have the factorization c (5, 1/2) * (/3, 1 2/3,/3). Fixing M 1, we can then
choose

z({) 1 4/3sin2({/2).

For/3 < 1/4 this is strictly positive. For/3 1/4 the solution g is a quadratic spline
as in the case M 3 of Example 2.8. When/3 > 1/4, z has two real zeros in [-rr,
located symmetrically around { 0.

By (3) of Proposition 2.4, fail to satisfy Cohen’s criterion if and only if either

() 0 or () 0. That is, if/3 {1/2, 1}. In the first case, c (1/2, 1/2) (1/2,0, 1/2)
giving g 1/2110,1] * 1[0,21. In the second case c (1/2,0, 0, 1/2) and g 1/2110,3].

It turns out that so(0) can be found explicitly for all/3 e IR. When/3 {1/2, 1}
this critical exponent is exact in the sense that g B,()’q(IR) if and only if q oo.
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The result is:

2, = ,
(9.) o(0)

1 og( + v/4- ), 1/4 < < ,
log2 3,

-log2 [ 23, 3 < 0 v 3 > 1.

The case fl is eviden since c (, ),3. To show he other cases we firs
compute, wih notation as in 4,

When < we have N > 0 and Proposition 4.g immediately gives s0(O) 1-

log(2- 4) which is exact since 11 (- 4) for j .
or , we first compute of Proposition 4.2,

l max{2,4- 2}.

Next, we observe that

(9.2)

So

SoSeo
S1SoEo

(2- 23)Soo + (8/32 -43)o,
(2 43)2o,
(2 43)Soo,
(2- 2)Soo + (8/2 -4/)1.

An application of Proposition 4.4 then gives u max{ll-/l + 3- 1, 4/- 2}
11 and so(0) 1- log2(max{2/3,4/3- 2}) which is exact (when / {5, 1}) since

I111 for j --, o.
Here it turns out thatThe only remaining case of (9.1) is 1/4 < 3 < 5"

12 V/p(SoS) V/2(2 3 + V/4 72 ) +4 72

and 12 > ll. If we replace the first and last line of (9.2) with

So 2Soo + (4- 82),
SSoo 2Soo + (43 S2)o,

Proposition 4.4 now gives u 12, completing the proof of (9.1).
The solid graph of Fig. 9.1 is a plot of So(0) as a function of the parameter

3 # . We know that g is continuous if and only if 0 < 3 < 1, and g is continuously
differentiable only in the ce where it is a quadratic spline. In the interval

4+< 3 < there is a local minimum at 3 0.3867 where So(0) 1-4 14
2.+4.lg2( 7 0.8706.
When (1 2Z)(1 2Z) 1 we see that Z and Zl can never both be between 0

and 1. Hence for the biorthogonal filters mentioned in the beginning of this example,
the corresponding g and gl cannot both be continuous. A fact that w observed
numerically in [VH].

Except in the case Z , where Example 2.8 gives so() , the critical
exponent so() is determined via Theorem 5.2 with W span{co, c_1 + 1}. by the
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FIG. 9.1. The critical exponents so(0) (solid), so(1/2) (dashed) and bounds for so(l) (dotted) as

a function of/ for the family of coejcients considered in Example 9.2, c (f, 1 , 1 f,/).
For the result, so(v) 2 + v, is not marked.

spectral radius of the matrix

(12/2-8+2 8(1-2))2fl2 4fl(1 2fl)

Computing this spectral radius yields, for/ "
(9.a) so() 1 -log4 2 2 + 1 + (2 2 + 1) 8(1 2)a

The dashed graph on ig. 9.1 is a plot of this critical exponent. Solving a third-order
equation we see that 9 is square integrable if and only if 0 < < 1 where

1 ( (--43+9)1/3 (43 +9
/3

-0.1963.&= 1+
2 2

We saw above that for biorthogonal filters, the corresponding g and g cannot
both be continuous. However they are both square integrable exactly when o <

o 0.1410. The upper bounds for the regularity of g when g L2() are

so() 0.8969 and s0(0) log2(1 2&) 0.4778.

For the critical exponent s0(1), an application of (6.1) with j 1 and Proposition
6.2 with the 2-cycle - gives for Z ,
(9.4) 1 og=(21Zl + ]1 2Zl) 0() x log i1 3Zl.
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When/3 1/4 we have s0(1) 3 and when l E [0, 1/2] \ (1/4), Proposition 6.2 gives
s0(1) 1 since then all elements of- (/3, 1 2/3,/3) are nonnegative.

We see from (9.3)-(9.4) and Theorem 7.1, treating the cases/3 e (1/2, 1 } separately,
that g is integrable if -1/4 </3 _< 1 but not if/3 _< -1/2 or/3 > 1. Also g is not absolutely
continuous except in the cases/3 e { 1/4, 1/2 }. On Fig. 9.1, the dotted graphs give upper
and lower bounds for s0(1) when 3 < 0, the exact value when/3 e [0, 1/2] \ (1/4 } and an

upper bound when/ > . The lower bound are computed numerically from (6.1) with
j 10 and the upper bound is the one from (9.4). Numerical experiments suggest that
no better upper bound can be obtained from Proposition 6.2 by testing all j-cycles
up to order 7. For/3 > 1/2 the lower bound of (6.1) with j 10 is still very poor in
comparison with the inequality s0(1) >_ s0(1/2) from (1) of Proposition 3.4. V

Example 9.3. Let c (-w, 0, 1/2 +w, 1, 1/2 +w, 0,-w) where w is a real parameter.
This case corresponds to a 4-point interpolation scheme for curve design considered
by Des.lauriers and Dubuc [DD1] and Dyn, Levin and Gregory [DLG].

We have the factorization c (1/2, 1/2)’2,(-2w, 4w, 1-dw, 4w,-2w). Fixing M 2
then gives

() 1 + ST(1 cos)cos,

> 0 for -1/2 < w < 6, and has at most 4 zeros in [-r,], symmetrically
located around 0. From (3) of Proposition 2.4 and the fact that c2k 1/20(k)
so m() + m( + u) 1, we see that Cohen’s criterion fails to hold exactly when

t() 0. That is, when w -1/2. In this special case c (1/2,0, 0, 1/2),2 and therefore

We will concentrate on estimates of s0(0). Ifw 6 then c (1/2, 1/2),4.(_1/2,2,-1/2)
Forand s0(0) 2 as it can be seen by adding 3 to the result in (9.1) for/3 -.

w 6 the matrices So and $1 are

S0=
2-8w 8w -dw 0 S- 8w 2-8w 8w -dw
-dw 8w 2-8w 8w 0 -dw 8w 2-8w
0 0 -dw 8w 0 0 0 -dw

With notation as in Proposition 4.2 we find

(9.5)
1 + v’i- 16w,

l max{8[wl, I1 + /1 16wl} 4Vr,
<_w<,

i-- < W ,
w<--1/2Vw>.

Proposition 4.5 and the special treatment of the case w 6 gives the result

(9.6) s0(0):2-1og2(l+41-16w) for -1/2 <_w<_ .
This could also have been found with the methods of [DD2], see [R]. We see from
Theorem 7.1 and (9.5) that g can only be continuous if-1/2 <_ w < 1/2 and continuously
differentiable if 0 < w < 1/4. A well-known fact [DLG]. We will now apply the method
of Proposition 4.4 to show that g is continuous if and only if -1/2 _< w < 1/2. The
problem is to assert the continuity of 9 when < w <
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2

1.5

0.5

0"

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

w
FIG. 9.2. The critical exponent so(0) for the interpolating family c 1/2 (-w, O, 1/2 + w, 1, 1/2 q-

w, O,--w) is given by the graph when -1/2 <_ w <_ 6" For other values of w, the two graphs are plots
of the upper and lower bounds given by (9.9).

A consideration of the limit case w 1/2 leads to the idea of writing

Seo
(9.7) S2e

SOSleO
S1Soeo

For 0 < w < 1/2 Proposition 4.5 then gives p, (S) _< u max{4vr, 1 + v/i + 16w }
1 + x/1 + 16w. Hence the lower bound

(9.8) s0(0)>_2-1og2(l+v/i+16w) for 0<_w_< .
and the above claim about theClearly, this proves that 80(0) > 0 for 0 < w <

continuity of g follows.
A plot of numerically computed upper and lower bounds for 80(0) is given in

< w < 6 the single graph is given by (9.6). For otherFig. 9.2. In the interval -values of w the pair of graphs are given by the bounds

8w (2w(o + 3) + (1 2w)( -}- E2)),
2Sleo + 16w ((2w- 1)e0 2we2),
2Soe + 16w (-2weo + (2w- 1)e2),
2Soeo 16we.

(9.9) 2 log2 UlO

_
80(0)

__
2 log2 12,

using the notation of Proposition 4.2. Numerical experiments suggest that it should
be possible to show that s0(0) 2- log2/2, at least in a neighborhood of w 6, with
a generalization of Proposition 4.4 to fourth order recursions. Therefore we conjecture
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that g E CI(Ii() if and only if 0 < w < wo where Wo is defined by/2(wo) 2 and
wo 0.19272925.

Appendix.
Proof of Proposition 2.4. Assume (1) holds and m satisfies Cohen’s criterion. If K

is the compact of Definition 2.3, the intersection of K and + 2rZ must be empty. As
K is compact and + 2rZ is closed, it follows that all points in a whole neighborhood
of E [-r, r] can not be congruent to any K, contradicting Definition 2.3(1). We
conclude that (1) implies the failure of Cohen’s criterion.

Conversely, assume (1) does not hold. For all e [-r, r] we then have a k Z
such that ( + 2rk)
is an open interval containing . By compactness, the interval [-r, r] is covered by
a finite subcollection of {I I [-r, r]}. i modification of the corresponding finite
collection of intervals I + 2rk by set subtractions and closure operations will now
give a compact K as in Definition 2.3. In other words, Cohen’s criterion can only fail
if (1) holds.

The equivalence (1) a (2) is a consequence of the Poisson summation formula, in
the form that the Fourier transform of the tempered distribution ’k 5k is 2rk 52.
Indeed, a convolution with the compactly supported distribution ei’g corresponds on
the Fourier side to a multiplication with the smooth function of polynomial growth
T_. Hence,

+
k k

and the the equivalence (1) = (2) follows.
To show (1) (3), the main tool will be that

(A.1) (2 + 2rk)
+ k even,

m( + zr)( + rk), k odd.

If m() m( + r) 0 for some we clearly see that (2 + 2rk) 0 for all k E Z.
Let us therefore assume that m() and m( + r) are never both zero.

Suppose (1) holds and define Af {ei for all k Z ( + 2rk) 0. By
assumption, this set is not empty and it does not contain 1 because (0) 1. If
e2i Af, (A.1) shows that either ei or ei(+) is also in Af. That is, Af c Af2. We
also know that Af must be finite since is holomorphic. Since Af2 cannot have more

elements than Af, it follows that JV"2 iV’. Now the set - v/Af2 Afu (-Af) must
have twice as many elements as iV’, so A/" N (-Af) q}. If ei -Af, then e2i Af but
ei Af and the first case of (A.1) shows that m() 0. But this is exactly the last
statement of (3).

Next, we show that (3) :: (4). Observe that if the factorization Q()m()
Q(2)m0() holds, the degree of m0 must be less than that of m, provided Q is non-
trivial. By induction, it is therefore not necessary to show that m0 satisfies Cohen’s
criterion.

Assume (3) holds. If m(o) m(0 / r) 0, we simply use

m0() e_2i e_2ieo m().Q()
1 e-2io

If m() and m(+ zr) never both vanish, put P() rlzeAf(e- z). By the property
that Af2 Af, we have P(2) P()P( + zr). Since m vanishes when P( + zr) 0
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we can now use
P()Q()- P(0)’ m0() p( + r)"

Clearly, Q()m() Q(2)m0() and 0(2) m0()0() imply that (Q0)(2)
m()(Q0)() so Q0 by Theorem 1.1. But this is the Fourier transform of the
last identity of (4).

Finally the implication (4) =v (1) is evident, since () Q()0() 0 whenever
=0.
Proof of Lemma 8.3. Since P-norms decrease with p it suffices to show the lemma

for Pl 1. Also, we only prove the result for flu, the argument for c being the same.
Let v E S(R) have a compactly supported Fourier transform with b 1 on the

support of 5. Then b so

where C supx -]k I (x k)l < . With this sampling result in hand, we just have
to show that II-* Pull, < c 2-n for some C > 0.

By definition fi is a smooth function with fi(0) 0. Writing fi() F() with
F smooth, and putting Wn ’ * Pnu we obtain

n

vn() 2-nF(2-n)b() H m(2-J)"

The product 1-I__1 m(2-J) converges uniformly on every compact subset of ( to the
entire function as n --, cx). In particular, both the product and its derivative are
uniformly bounded on the support of . By the Leibniz rule, we find the same result
for 2nn. Hence II)nllH1

_
C2-n for some C > 0, and the lemma follows from the

well known inequality IIflILI <--II]IIH"
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A REMARK ON THE STABILITY OF VISCOUS SHOCK WAVES*

JONATHAN GOODMANt, ANDERS SZEPESSY:, AND KEVIN ZUMBRUN

Abstract. Recently, Szepessy and Xin gave a new proof of stability of viscous shock waves. A
curious aspect of their argument is a possible disturbance of zero mass, but log(t)t-1/2 amplitude in
the vicinity of the shock wave. This would represent a previously unobserved phenomenon. However,
only an upper bound is established in their proof. Here, we present an example of a system for which
this phenomenon can be verified by explicit calculation. The disturbance near the shock is shown to
be precisely of order -1/2 in amplitude.

Key words, stability, viscous conservation laws, shock waves, diffusion waves

AMS subject classifications. 35K55, 35L65, 76L05

In [4], Szepessy and Xin study the stability of a weak travelling shock wave
O(x st) of a strictly hyperbolic system of conservation laws

u + f(u) u, t > O,

The perturbed solution u(x, t) 6 Rm is decomposed into a translated shock wave
(I), a sum of scalar diffusion waves Oi, and a linear coupled diffusion wave r]. Following
Liu [2], the initial excess mass f-+o (no- ()dx determines the translation of the shock
and the masses of the m- 1 scalar diffusion waves. The scalar diffusion waves are
given by self-similar solutions of convected Burgers and/or heat equations with the
appropriate mass. The coupled linear diffusion wave 7, introduced in [4], has zero total
mass and is the solution of (1) linearized around the shock wave (I), with coupling from
the scalar diffusion waves as source terms. Theorem 2.2 in [4] shows that the coupled
wave decays time asymptotically as log(t)t-/2 in the shock region.

The purpose of this paper is to give an example for which the decay estimates
in [4] of in the shock region are sharp modulo a logarithmic factor, log(t). We
demonstrate this by explicit analysis of the example. The significance of this result
is to verify that the coupled diffusion wave is a physical phenomenon on the order of
the scalar diffusion waves, and not only a technical device for proving stability.

For the choice

2

(1) has a stationary shock

(3) : (1)= (-etanh(ex/2))0
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lim (x)=+ 0

For a constant m, Iml < e, we will consider a perturbation of form

(4) u0=O+ m6(x)

where 6(x) represents a dirac mass at the origin, and v E H2(R), the Sobolev space
of functions with two derivatives in L2, is assumed to be small.

With these choices, the decomposition of the solution described in [4] takes the
simple form

()Ul =+0+r+
u2 0

(o) 0

Here, the scalar diffusion wave 02 satisfies a convected heat equation with a dirac mass
initial dat; hence it is simply convected heat kernel moving with speed +1,

t) t, t),

(6) K(y, s) (1/)exp(-y2/4s),
while the coupled diffusion wave 1 satisfies

(7) LI lt + (1 (X)l)x 1 (/2)x,

nl(X,t 0) 0.

It is shown in [4] that

(8) lim U 0 ]]LP(R) O, p 2,

(9) lim lu 0 12dx dt O.

In the following theorem, we prove that neither 0 nor is negligible in the sense
of (9).

THEOREM 1. Let f and uo be given by (2), (3), and (4). Then there are positive
constants c and C independent of e, m, and t, such that if u is a solution of (1) and
0 and are given by (5), (6), and (7), then

(10) Cm2e/2t-1/2 > l(x,t) > cm2e/2t-1/2 for lx < e- and t > e-2,

and, for e suciently small,

(11) lim lu 0 dx dt O,

(12) lim lu Ol2dx dt oe,
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Hence,

(14) 71 (x, T) q2(y, t)Oye(y, t)/edydt -xo2/edydt,

where z x satisfies

() -z (()z) z 0,

z(, t T) 0(- x).

In [4], z is solved approximately, giving the bounds in Remark 1. In
the present case, is a solution of the Burgers equation and exact solutions can
be found; cf. [5]. Here, we derive these solutions by differentiating the Hopf-Cole
transformation.

The dual equation of (15),

(16) wt + wx wx 0,

is the linearization of

around v f (y, t)dy for a e2/2. The Hopf-Cole transformation

reduces (17) to
MH Ht Hxx + aH/2 O.

STABILITY OF VISCOUS SHOCK WAVES

(13) lim

Remark 1. The estimate of [4] is in this case

c’ log(t)/t/2, if lexl < log(t);
(x, t) c’ log(t)/t, if log(t)/e < x < tN + t/2 log(t);

c’ log(t)/[(1 + tN)(1 + x2)], otherwise.

We note that the limit (9) from [4] is a direct consequence of the energy method
used there and the Ansatz u + 0 + + error. The limits (12) and (13) show that
the simpler Anstze u + error or u + 0 + error are not compatible with the
energy method of [4].

The proof of the theorem is based on an exact solution found in [5].
Proof. Following [4] we solve (7) using the fact that the fundamental solution of

L satisfies an equation involving L*, the dual of L. Indeed, let satisfy

L* -t 0, t < T,

t T) x).

Then,

0 L*vldxdt iv,dxdt , (x, T)(x, T)dx

+
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Hence, by differentiating (18) at H, we see that

w H-lh exp(v/2)h

is a solution of (16) for any h satisfying Mh 0. Setting w(x, s t) =_ 5(x y) and
using the fact that

v 1 (Y, t)dy -2 log(cosh(ex/2)),

we obtain

w(x,s) --exp l(y’)dy’ (1/v/a’(s t)) exp(-(x y)2/a(s t) e2(s t)/a)

eeY/2 2_ e--eY/2
--eeX/2 + e_x/2 (1/ff4(s t)) exp(-(x y)2/4(s t) e2(s

e/ + e_/ (1/4(s t)) exp(-(z e(s t))/4(s t))

+ e/ + e_/ (1/4(s t))exp(-(z + e(s t))/4(s t))

for t < s. The purpose of using the dual equation is so that certain inner products
are independent of time. or example,

(x, T)w(x, T)dx (x, t)w(x, t)dx

when t < T. om (-, T) 5 and w(., t) by, we obtain

where
K+(z, s) K(z = es, s) (1/4vf)exp(-(z = es)2/4s)

y,T-t)]

e-eX/2
K+(x y,T- t) + eX/2 + e_x/2 K-(x y,T- t)eex/2 .. e--ex/2

a convex sum of two heat kernels moving outward with speeds +1; cf. [5]. This
follows, at let approximately, from very general principles. The convection field
-(x) insures that, in the backward direction, ms moves out to . In the far
field, is essentially constant, so that the behavior is like that of a convected heat
equation, and ymptotically the solution separates into two humps.

are heat kernels moving with speed :i:e. This means that although initially is a
derivative of a dirac mass, it decreases as t-1/2 for lexl < 1.

Equation (19) is equivalent to the fact that the backward problem for L* has
Green’s function
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Combining (4) and (19), we have an expression for r of which each term is the
convolution of a heat kernel or derivative of a heat kernel with the square of a heat
kernel, moving with (possibly) different speeds.

In particular, for Ix] < e-1 and t > e-2, the term

I =_
(eX/2 + e-X/2) o

K-(x y, T t)O(y, t)/2dydt

(e/ + e_/) K(z + e(T- t), T- t)K( t, t)/2ddt

is dominant. The integrand of this term is everywhere positive and, in the region

A {(y, t): I(Y t)l < V, I(Y x) e(T t)l < v/(T t)},
it is greater than C’(T- t’)-l/2t’-1 where t’ +T and C’
Hence, there is a positive constant c for which

m2 JAI > (e/ + e_/) K(x y + e(T- t), T- t)K(y t, t)/2dydt >

> cm2 V//T.
The other terms of (19) inserted into (14) can easily be estimated (cf. [31 and [11)

and yield exponential decay in T from K+, Ky+, and at least T-1 decay from K.
This proves the lower bound on in (10), which together with (9) implies (11)-(13).
The upper bound in (10) follows by estimating the term I, also, by the methods of

Remark 2. The choice of a linearly degenerate second field was made only for
convenience in exposition. For instance, the same argument shows that the theorem
remains valid for the flux

+
which has two genuinely nonlinear fields.
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INTERFACE PROBLEMS IN VISCOPLASTICITY AND PLASTICITY*

CARSTEN CARSTENSEN)’

Abstract. This paper is concerned with three-dimensional interface (or transmission) problems
in solid mechanics which consist of the (quasi-static) equilibrium condition and a first order evolution
inclusion in a bounded Lipschitz domain f and the homogeneous linear elasticity problem in an
unbounded exterior domain f2. The evolution problem in gt models viscoplasticity and Prandtl-
Reu$ plasticity with hardening as well as perfect plasticity. The exterior part of the interface problem
is rewritten in terms of boundary integral operators using the Poincar6-Steklov operator. This
symmetric coupling approach takes the total system of the Calderon projector into account. Then,
existence and uniqueness results are obtained in a mixed variational formulation.

Key words, interface problem, transmission problem, solid mechanics, viscoplasticity, plasticity,
perfect plasticity, first order evolution inclusion, Poincarg--Stecklov operator, Calderon projector
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1. Introduction. In this paper we analyze the following interface problem in
three-dimensional solid mechanics. Let ft2 be an exterior unbounded domain with
Lipschitz boundary F where the displacements satisfy the homogeneous Navier-Lamd
equations in three-dimensional elasticity and the radiation condition u2(x)
for Ix oc. In the bounded interior Lipschitz domain gt C_ ]R3 \ 2 we consider the
quasi-static equilibrium equation with a time-dependent body force and a first order
evolution inclusion modeling the material behavior. The latter is related to visco-
plasticity and plasticity with hardening as well as perfect plasticity (von Mises yield
condition, Prandtl-Reut flow rule without or with kinematic or isotropic hardening).
Finally, on the interface F ft gl Ft2 we have equality of the traces of the related
displacements ulr u21r and tractions t T2u2 (T2 is the conormal derivative).

The fundamental solution for the Lamd operator yields a representation formula
for u2 so that u2 is known as far as its Cauchy data (u21r, T2u21r) are known. The
Cauchy data are coupled by the Poincard-Steklov operator (or Dirichlet-Neumann
map) $2 through T2u2 -S2u21r. Hence, the interface problem can be reformu-
lated to some problem (P)" Given some body force f, find--under suitable initial
conditions--time dependent vector fields on ft, namely the displacements u E H,
the stresses cr E L and (possibly) the internal variables q L’, satisfying almost
everywhere in time

(1) *a + Su f,

(2) _q, e 0(/9(q

Here, the prime denotes the time derivative, A and S are linear, bounded, symmetric,
and time-independent operators; A is positive definite and models elasticity constants
and S is positive semidefinite and related to the Poincar-Steklov operator $2. The
linear operator maps the displacement field u to the related (linear) Green strains u,
the symmetric part of grad u. The dissipation functional q is a lower semicontinuous
convex uniform proper functional, 0 is its subgradient. This paper covers three
particular cases in the class of materials of the Maxwell type defined by (1) and (2):
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1. is given by

T( q :-- --__ dist(( q ), B)2

for Perzyna’s viscoplasticity (cf. [20] and the references given there) and

T(q):=0 if(q)eB, (q):=cx if(q)B

for the following.
2. Plasticity with hardening (q describes hardening).
3. For perfect plasticity (where q disappears). In all three cases B is the closed

convex set of admissible stress parameters () (cf. Definition 7.1).
Note that--in contrast to the elasto-viscoplastic material of the Grbger type [26]

or Burger type [23] treated in [4] for interface problems--the quasi-static equilibrium
condition (1) and the evolution inclusion (2) (based on the normality rule for the
dissipation functional), are not coupled such that no simple substitution gives a single
first order evolution inclusion. Therefore, in order to prove existence of solutions, a
laborious regularization technique [11], [16], [17], [21], [22J--outlined in the sequel.
must be applied" We start considering a regularization of problem (P) and prove
that the new problem (P) has a unique solution (u,a, q). Then we prove some
estimates of these solutions which are independent of . Thus, for a sequence (n) -- 0
we have sequences of solutions of the problems (P) which are bounded in a reflexive
Banach space W1,2(0, T; H L L). According to Banach-Alaoglu’s theorem we
select a weakly convergent subsequence. Finally, the weak limit solves problem (P).
In the case of plasticity a second regularization is required leading to problems (P,).

The crucial point here lies in the behavior of the displacements: Its traces (used
in the interface conditions) appear in (1) while the related strain rate eu’ appears in

(2). For example, this leads to uniqueness results for the traces of the displacements
whereas the displacements are in general not unique in the case of perfect plasticity.

This note presents existence and uniqueness of solutions of the problem (P)--and
of the interface problem as well--and considers a modified weak form of problem (P)
for perfect plasticity. The question of asymptotic stability of the solutions is left open
(i.e., 0 < T < oc will be fixed in the sequel). The paper is organized as follows.
The exterior problem as well as some boundary integral operators are introduced in

2 while the general form of the interior problem is described in 3. The interface
problem and the above mentioned problem (P) are formulated in 4 where we prove
equivalence of the two problems. In 5 we start with proving some general tools and
then consider existence and uniqueness for the problems with viscoplastic material
in 6 and plasticity with hardening in 7. Perfect plasticity is included in 8 giving
existence of solutions of the interface problem in a very weak sense.

In a further paper the numerical treatment of the problem (P) will be analyzed
consisting in coupling boundary element and finite element methods in space and,
e.g., the implicit Euler method in time.

2. The exterior problem. In this section we report the exterior problem (EP)
which is part of the interface problem.

Let f0 C fll C ]R3 be bounded Lipschitz domains in three dimensions such that
fo lies compactly in f. Then, f f \0 is the interior domain and /2 := lR3\1
is the exterior domain. The boundary of f is divided into two parts, namely the
interior boundary Fo := 0fo and the interface F 0fl; cf. Fig. 1. We consider



1470 CARSTEN CARSTENSEN

FG. 1.

Dirichlet, Neumann, or mixed boundary conditions on F0 and allow the case Fo
(whence ft0 0).

The exterior problem is the homogeneous Lam system of linear elasticity [9], [10]
for regular displacements [8]-[10], [12], [19],

(3) A*u :- -#2Au- (,2 + P2) grad div u 0 in f12

(4) u2

with A div grad denoting the Laplace operator, #2, A2 being the positive Lam
constants.

Let T2(u2) be the conormal derivative defined by

T2(u2) := 2#20nU2 + A2ndiv u2 + #2n curl u2.

0n denotes the normal derivative, n being the unit normal pointing into 2; cf. Fig.
1. Then, the interface conditions at the interface F read

t) (uelr, T .(ue)lr),

w,here u are the displacements in , , denotes the trace mapping, 7 := "[r, and t
are the (unknown) surface tractions at F acting like a surface force for the interior
problem.

In order to give a weak formulation of the exterior problem we introduce the space
of regular solutions [9], [10]

(6) 2 := {u2 e Hoc(t2; IR3): u2 satisfies (4) and A’u2 0}.
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Then the trace-mapping places u2 E 2 onto /u2 E H1/2 :- H1/2(F;]R3). The
tractions T2u2 can be defined by the first Green formula [8], [9], [10]

(7) /a A*u2v da2 (T2u., /v) + (I)2(u2, v)

for any v H1(2; IR3) with compact support and

3

(I)2(u2, v) =/ aijklekl(u2)eij(v) da2,
ijkl----1

where

aijkl )25ijbkl + #2(bikbjl + 5ilbjk),

5ij 1 for j and 5ij 0 for j. In (7), the strain tensor eu is defined by

(s) () := 1/2(, + ,),

H/2(u’) :-" (ui,j)i,j=,2,3 :- grad u. The brackets (., .) always denote the duality between
H/2(F;IR3) and U-/2 :-- H-/2(F;]R3) (H/2) such that for v

H/2(F; IRa) and w L2(F; IR3)

(w, v) fr w. v dr.

Note that by (7), T2u2 H-1/2.
DEFINITION (EP). Given (v,t) HI/2H-1/2 the exterior problem (EP) consists

in finding u2 e 2 with (v, t)= (7u2, T2u2).
In order to solve the exterior problem we need some boundary integral operators

concerning the fundamental solution G2 for the Lam operator. The Kelvin matrix

G2(x, y) is the kernel of G2,

A2+3#2 {1 + A2+#2 (x-y)(x-y)T}G.(x, Y)

I is the unit matrix in ]R3 and T denotes the transposed matrix. Since G is analytic
in ]R3 x ]R3 without the diagonal we may define its traction

T(x, ) := T,(G(, )), x # .
Then, the single layer potential V2, the double layer potential A2 and its dual A, and
the hypersingular operator D2 are defined by

(v.)(x) <.(x, .), >,
(A)() <T(x, .), v>,
(D2v)(x) -T2,x(<T2(x, .), v>),
(A)(x) -T2,x(<G2(x,.), >, v) (x e F).

From [5]-[8] and [10] we have the following properties of the above boundary poten-
tials. For real Banach spaces X and Y let /:(X; Y) denote the real vector space of
bounded linear mappings from X into Y.
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LEMMA 2.1. For H1/2 := H1/2(F,]R3) and H-/2 := H-/2(F, IR3),

V2 E (H-/2; H/2),
A2 e/:(H1/2; H/2),
A (H-/2; H-/e),
D2 (H/2;H-I

D2 is positive semidefinite and V2 is positive definite, i.e., there exists a constant
c > 0 such that for all v H/2 and all H-/2 there holds

<D2v, v> > 0 and <,V2> >

D2 and V2 are symmetric, A’ is the dual of A. El
We are now in the position to state the following equivalence result concerning

the exterior problem. The proof can be found in [2] and [4].
THEOREM 2.2. For any (v,t) H1/2 x H-/2 := H/2(F,) H-/2(r,t)

the exterior problem has a solution u2 if and only if

(9) t -S2v,

with the

(10) $2 D2 + (1/2 A)V2-(1/2- A2) e (H1/2;H-I
In this case the solution U2 of the exterior problem is unique and given by the repre-
sentation formula

(11) u2(x) {T2(x, .), v)- <G2(x, .), > (x e 2),

where := V2-1(A2 1/2)v. El
The proof of the following lemma can be found in [2]-[4].
LEMMA 2.3. The Poincard-Steklov operator $2 is positive definite. El

3. The interior problem. In this section we report the interior problem in
plasticity which consists of the equilibrium equation and the evolution inclusion.

In order to state the equilibrium condition, we define

H := {u e H(f; JR):  lr. 0};

H is the space of the displacements, H* being the dual of H, and

L L2(; ]]::.33 L’ L2

]]:.3 X 3 being the six-dimensionalare the spaces of stresses and hardening parameters, _vsy.
real vector space of symmetric 3 x 3 matrices, rn being a natural number. We identify
the duals of L, L’, L L’ with themselves.

Note that the trace map satisfies 3’ (H; H/e). Let 3’* e (H-1/; H*) denote
that dual of 7. Given u e H, define the strain eu through (8) such that e e (H; L),
e* (L; H*) being the dual of e (L L*).

Given a body force b E H*, the strong form of equilibrium

diva+b=0, anlrp , anlr t
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can be rewritten as follows. Multiply diva + b 0 with a test function v E H,
integrate v. diva over gt, use Green’s formula taking all the boundary conditions as
well as the symmetry of a into account and finally obtain

(12) e*a f + "*t,

where f E H* is given through b and [ assuming sufficient regularity of the given
tractions [" Fp --+ lR3 such that f is bounded.

The evolution inclusion causes time dependence of the problem. Given a real
separable Hilbert space X, a fixed real number T .> 0 and 1 <_ p <_ o, let
LP(O,T; X) denote the space of all measurable functions h [0, T] --+ X such that
h IIx e LP(O, T; ]R). Then wm’p(o, T; X) denotes the space of all h e LP(O, T; X)

such that the derivatives h, hr,..., h(m-l) are absolutely continuous (such that they
are differentiable almost everywhere in [0, T] in the classical sense as a limit of quo-
tients of differences and the derivative satisfies the main theorem of calculus) and
h(m) e LP(0, T; X). The norm of h in wm’p(o, T; X) is the sum of I[ h(j) I[Lv(O,T;X)
over j 0,...,m.

In order to describe the material law let L x L --+ [0, +oc] be a convex
lower semicontinuous proper functional; particular cases are under consideration be-
low. Then the constitutive relation--modeling the normality rule of the dissipation
functional--reads

(13) (eu’, 0) e (Aa’, q’) + O(a, q) a.e. in (0, T),

where A E :(L; L) is the inverse of a linear elasticity operator, i.e., A is positive
definite and symmetric. The subgradient of is defined by

O(a, q):= {(T,p) e Dom(): V(p, r) e L x L’

Dom(T) := {(z,p) e n x n’[(T,p) < }.

DEFINITION (IP). Given f W2’2(O,T;H*) and t W2’2(O,T;H-1/2) with

f(O) O, the interior problem (IP) consists in finding (u, a, q) e W’2(0, T; H x n x L’)
with (u, a,q)(0)= 0 satisfying (12) and (13).

Remark 1. Since (u, a, q) Wl’2(0, T; H x L x L’) is absolutely continuous it is
continuous so that the initial condition (u,a, q)(0) 0 makes sense. The restriction
to homogeneous initial data is only for convenience of notation.

Remark 2. It is referred to the literature for the physical background [21]-[23]
and particular cases.

Remark 3. Assuming Dirichlet boundary conditions (i.e., F has positive surface
measure, cf. Fig. 1) as in [10], we get existence and uniqueness of a solution of
problem (IP) for the three particular examples considered in this paper following the
proofs below.

4. The interface problem. In this section we formulate the interface problem
in plasticity and rewrite it in terms of boundary integral operators using Theorem 2.2
in the problem (P) which is analyzed in the following sections.

In (IP) the tractions t are given data. In the interface problem it is unknown.
DEFINITION (Interface Problem). Given f e W2’2 (0, T; H*) with f(O) O, the

interface problem consists in finding

(u, u2,t,a,q) G W’2(O,T;H x 2 x H-/2 x L x L’)
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with (u, u2, t, a, q)(0) 0 satisfying (5), (12), and (13).
Eliminating t with (9) one obtains the following equivalent problem (P).
DEFINITION (P). Given f E W2’2(0,T; H*) with f(O)= O, the problem (P) con-

sists in finding

(u, a, q) e wl’2(0, T; H x L x L’)

with (u, a, q)(0) 0 satisfying (13) and

(14) e*a + Su f,

where S := 7"$2" g(H; H*).
THEOREM 4.1. (u, u2,a,q,t) W(O,T;H 2 L x L’ x H-/2) solves the

interface problem if and only if (u, a, q) e W(0, T; H x n x n’) solves problem (P).
In the latter case t T2u2 and u2 is given through (11).

Proo The proof is straightforward using Theorem 2.2. The details are omitted.

Remark 4. Using the general Korn’s inequality and Lemma 2.3 one concludes
that

e*e + S e (H; H*)

is symmetric and positive definite. See, e.g., [3] for details. Thus, given > 0, the
operator (e*e + S) -1 exists and is bounded.

5. Preliminary results. In this section, problem (P) is analyzed using ideas of
[16], [17], [21], and [22]. The results are used in the following three sections (concerning
viscoplasticity, plasticity with hardening and perfect plasticity) for the proof that
problem (P) and hence the interface problem has a unique solution. As it is outlined
in 1 we consider some auxiliary problems and study weak limits as well as uniform
bounds of their solutions.

PROBLEM (Pv). Given > O, find (uv, a,q) WI’2(O,T;H L L’) with
homogeneous initial values satisfying almost everywhere in (0, T)

(15) *a + Su + . *u f
(16) (eu, 0) e (Aa, q) + O(a, q).

Remark 5. In (15), the additional operator . e*e may be replaced by any other
positive semidefinite operator Av provided that S + A is positive definite and A
tends towards zero if 0+.

LEMMA 5.1. Let > O. Then there exists exactly one solution (u,a,qv) of
problem (P).

Proof. According to Remark 4, (15) is equivalent to

(17) u (S + e*e)-l(f e*a) e WI’2(O,T;H)
which can be substituted in (16), which is then equivalent to

(18) (g, 0) e (da, q) + O(av, q)

with

g :-- e(S -t- e*e)-f e WI’2(O,T;L),
:= A + e(S + re*)-e*.
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According to the main theorem on first order evolution equations (cf., e.g., [25] and
in particular [26, p. 357] if is not the identity), (18) has a unique solution (a, q)
which proves the lemma.

The following lemma states that the limits of weakly convergent sequences of
solutions of problem (P) with -- 0 are solutions of problem (P).

LEMMA 5.2. Assume that (n) is a sequence of positive real numbers tending to
zero as n tends towards infinity such that

(19) (uu,au,qu)---(u,a,q) in L2 (0, T; H L L’)

as well as

(20) (u, q’ L2a,q) (u’,a’,) in (0, T;H x L x n’).

We have that (u, cr, q) are the solutions of the problems (P) for the parameter
sequence (Un).

Then (u,a, q) e WI’2(0, T; H n n’) solves problem (P).
Proof. Because of (19) and limn- un 0, we obtain (14).
Taking (T,p) E L2(O,T;L L’) in (16) and time integration thereof leads to

<q’ o p(eu. Aa.,,, a ds

which can be rewritten using (15) as

The left-hand side converges for n -, c. Using that (Aa, a)i + (Su, u)u + (q, q)i’
and are weakly lower semicontinuous and (14), one finally gets

T((eU Aa’, T a)i (q’,p q)i’) dt

<_ ((T, p) (a, q) dr.

From this one can prove (13).
As mentioned above, we discuss bounds of the solution of problem (P) uniformly

in . We fix a function

(21) (X, s) E W2’2(0, T; L x L’) with e*X / W2’2(0, T; L)

and (X, s)(0) 0. One way to construct the function x(t) is to use the solution

v HI()3 with e*ev=f(t) and vloa--O
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and to set x(t) ev.
LEMMA 5.3. Let (X,s) satisfy (21) and assume that (X,s) [O,T] [0, oc]

belongs to LI(O, T). Then,

(22) II (a, q) IILo(O,T;LxL,)

__
C,

where the constant c > 0 depends on IIAII, IIA-1 II, II(X., S)IIL(O,T;LL’), ](X’, S’)]]L’(O,T;LxL’)
and ](X, s)]]L(O,T) but not on .

Proof. Define

(23) (T,p) "= (a x,q s) e W’2(O,T;L x L’).
As seen in the proof of Lemma 5.1, (a, q) satisfies (18) which shows almost every-
where in (0, T)
(24) (-Ax’, O) e (, q) + O(a, q).

The definition of the subdifferential leads to

<(A:) (p))LxL’ < (X,S) (a,q) + <(s<Ax’) ())LxL’.pp

For t e (0, T), one concludes

(25) ((g,P;), (r,P))LL’ dt 1 + 211 (T,p)IIL(O,T;LxL,).

The fundamental theorem of calculus, the symmetry of and the homogeneous initial
conditions in (25) lead to

1((A(t),(t)), ((t),(t))), 5 + :l (,)ll(0,;,).

Since A is positive definite, one obtains

(,p)(0,r;,) 5 c.
LEMMA 5.4. Problem (P) determines the "stress parameters" and the traces of

the displacements uniquely, i.e., if (ui, a, qi), 1, 2, solve problem (P) then a a2,

q q2 and u u2.
Proof. Assume that there exist two solutions (ui, hi, qi) for i 1 and i 2 of the

problem (P). Let u := u2 u, a "= a2 a, q "= q2 q. Then,

(26) e*a -Su

and from the definition of the subdifferential for 1, 2

() ((u A,-q;), (,+ , q+l q,)), v(,+,+) v(, q),

where the index is used modulo 2, i.e., (u3, a3, q3) "= (u,a,q). Adding the
equations in (27) for 1 and 2 one obtains

((-’ + A’, q’), (, )), 5 0.

By (26), this gives almost everywhere in (0,T)
(es) (s’, u), + (d’,) + (q’, q), 0.

Due to the fundamental theorem of calculus, the homogeneous initial values and the
symmetry of S and A, integration of (28) shows almost everywhere in (0,T)
(29) (Su, U)H + (Aa, a)L + (q, q)L’ O.

Since $2 and A are positive definite, (29) proves a 0, q 0 and u 0.
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6. Viscoplasticity. The first example for the functional o describes the vis-
coplastic law due to Perzyna; we refer to [20] (and the references given there) for the
physical derivation and for the justification of the hardening parameters in particular.

Given a convex closed subset B of L L’ with 0 E B, let dist((a, q), B) denote
the distance of the stress parameters (a, q) from B in L L’. For tt > 0 define

1
dist((a,q) B)2.(30) o" L L’ --. lR, (a, q)

It is well known that o _> 0 is convex, continuous, and Gateaux-differentiable:

q) q)

where liB L L’ B is the orthogonal projector onto B in L
THEOREM 6.1. If is given as in (30), then problem (P) as well as the interface

problem have unique solutions.

Proof. Since is continuous, Lemma 5.3 shows (22) with a constant c independent
of > 0. Hence OT(a, q): [0, T] - L L’ is also bounded in L(0, T; L L’). By

(32) (eu Aa,-q) ]IL(O,T;LL’) <-- 2C/#.
Using this, Remark 4, and (15) we obtain almost everywhere in (0,T)

<_ (eu, A- + + f’,

Thus u IIL(0,T;H) --< C4 where cl,..., c4 are independent of . Hence u and u are
bounded in L2(0, T; H) uniformly in . According to (32) the same holds for the stress
parameters. Then the Banach-Alaoglu theorem and Lemma 5.2 prove the existence
of solutions of problem (P). According to (31) and (13), Lemma 5.4 shows uniqueness
not only for the stress parameters and /u but also for eu’. By the homogeneous initial
values we conclude uniqueness for eu and u as well.

Remark 6. The estimates in the proof of the theorem lead to (u, a,q)
WI’(0, T; H L L’) as well.

7. Plasticity with hardening. The second example for the functional de-
scribes the Prandtl-Reut plasticity with the von Mises yield condition. We refer to
[16], [17], [20]-[22] for the physical derivation and for the justification of the hardening
parameters in particular.

DEFINITION 7.1. Identify ]]:33 ]am L2(t; lap),--sym X with ]ap and write L
p :- 6 + m. A convex and continuous function f ]Rp ---, IR (f should not be confused
with the given body force) with f(O, O) < 0 is called a yield function of if

][:33 imC "= q) q) < 0},
B := {(a, q) e n n’= n(12;IRP)l(a, q) e C a.e. in t},
o := n L’ [0, c], (a,q)0 if(a,q)e B;c if(a,q) B.

(a) (p models plasticity with kinematic hardening (and the von Mises yield condi-
tion) if m 6, IR is identified with 11.axa and its yield fnction f is given through
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(b) models plasticity with isotropic hardening (and the von Mises yield condi-
tion) if m 1 and its yield function f is given through

 .aaf(a,q) aD aD (l + q)2, (a,q) e _:sym X

IR.33 given through ffD :__ ff 1/2tr(a)I,Recall that aD is the deviatoric part of a
I being the unit matrix in IR3. A" B := i,j=1,2,3 AijBji for A, B IR33.

In the next lemma we state an important relation between a and eu’ using the
following notation. For T, p ]R33 let the fourth order tensor T (R) p be the dyadic
product of T and p defined by

(T (R) P)ijkl :-- Tij

so that T (R) pa (p C)T for c ]R3x3.
LEMMA 7.2. Let (u, a, q) W1,2(0, T; H x L x L’) satisfy (13). For any t [0, T]

a (t) a (t) to a of through

t(t) := {x e 2lf(a(t, x), q(t, x)) < 0},
p(t) {x e gtlf(a(t, x), q(t, x)) 0}.

(a) If models kinematic hardening, then almost everywhere in [0, T]

eu’ Aa’, q’ O a.e. in ,
eu’ (A + (aD qD) (R) (aD qD))a, a.e. in p,
q (aD qD) (R) (an qD) a, a.e. in p.

(b) If models isotropic hardening, then a.e. in [0, T]

In both cases eu’ is uniquely defined through (a, q) and there exists a constant c de-
pending only on IIAII and (a, q)IILoc(O,T;LL, such that

eu’ IIL:(O,T;L) <_ C. (’, q’) IIL(O,T’,LL’).

Proof. The proof follows the lines of [17, Thm. 2] so that the details are omitted.
Remark 7. According to Lemmas 5.4 and 7.2, problem (P) has at most one

solution.
DEFINITION 7.3. We say that f W2’2(0, T; H*) is a safe load and that (X, s)

]l.3x3WI,(O, T; L(; =_sym JRm) satisfies the safe load assumption if x(O) O, e*X f
and there exists some 6 > 0 such that for any t [0, T] and for any (p, r) L x L’
the following holds

symX
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Following [17] the safe load assumption is just a regularity assumption if hardening
occurs.

LEMMA 7.4. Assume that there exists X E WI’(0, T; L) with e*X f and

.))

Then, .for kinematic or isotropic hardening, there exists s WI’(O, T; L’) such that
(X, s) satisfies the safe load assumption.

Proof. Let s := X in the case of kinematic and s := 2)/ X in the case of
isotropic hardening and let 5 := 1/2. Then, the lemma is proved by straightforward
calculations.

Remark 8. In perfect plasticity (cf. 8) the safe load assumption [16] is some kind
of bounded data requirement (bounded through the frozen hardening parameter). We
refer to [22] for examples (in one space dimension) without a solution if it is violated.
The question of a "limit load" is related to the safe load assumption (cf. [22], [24]).
Physically, the safe load assumption states that there exists a fictitious stress field
which is "uniformly below yielding" (i.e., it leads to a purely elastic material behavior
even for perturbed stresses) and in equilibrium with the exterior load.

dist((a, q), B)2 t is Gateaux-As considered in (30), let (a,q) :=

(a, q)) e L L’differentiable with the derivative D,(a,q) -fi((a,q)- liB x where

lib L L’ B is the orthogonal projector onto B.
LEMMA 7.5. Let (X, s) W’(0, T; L L’) satisfy the safe load assumption with

the related constant 5. Then for any (a, q) W1’2 (0, T; L L’) we have for p 1, 2

v
D(a(t) q(t))

.)
dt

;smX/R

<_ - < D.(a(t), q(t)), (a(t) (t), s(t) q(t)) >x’ dr.

Proof. The proof is explicitly given in [21, Lemma 2] or [22, Lemma 3.1 p. 306]
for the case m 0 and works verbatim for the present case.

After the above preliminaries the main result reads as follows.
THEOREM 7.6. If is given as in Definition 7.1 and if the safe load assump-

tion holds then problem (P), as well as the interface problem, has a unique solution
(u, a, q) W’2 (0, T; H L L’).

The proof is divided in several steps formulated as lemmas. The summary of the
proof is given at the end of this section.

According to Remark 7 it remains to prove existence of solutions. In order to
regularize problem (P) we introduce two parameters #, > 0 and consider problem
(P,,).

PPOBLEM (Pt,,).Given #, > O, find (u,,,a,,q,) WI’2(O,T;H L i)
with homogeneous initial values satisfying almost everywhere in (0, T)

(33) e*a,. + Su, + . e*eu., f,
(34) (eut, Aa’,, -q,,) Dt,(ag,, q,,).

LEMMA 7.7. Let #, > O. Then there exists exactly one solution (ut,,v a,v, qg,)
of problem (Pt,,), and (ut,,, ag,, q,,) Wl’2(0, T; H i L’). Under the safe load
assumption there exists a constant c such that for any it, > 0



1480 CARSTEN CARSTENSEN

Proof. Existence and uniqueness of solutions of (u,, a,, qt,,) E Wl’2(0, T;
H L L’) of problem (Pt,,) follow from Lemma 5.1. Choosing (X, s) from the safe
load assumption in Lemma 5.3 gives the bound of (a,., q,) independent of It, > 0
and concludes the proof.

The following two lemmas give uniform bounds for the solutions of problem (P,).
LEMMA 7.8. Under the safe load assumption there exists a constant c such that

for any , > 0 and for the unique solution (u,, a,, q,) of problem (P,) we
have

(%,,, qg,) []W,(O,T;H/xLxL’) C.

Proof. Define (rg,, pg,) := (ag, X, qg, s) where (X, s) satisfies the safe load
assumption. Then (33) gives

(35)

This can be differentiated with respect to time and substituted in (34) which gives

(36) 0 (T,,p.,)+ (Ax’,s’)+

with A + e(S + .. e*
In the first part of the proof multiply (36) with (,, p.,), integrate over [0, T],

use the fundamental theorem on calculus, notice the homogeneous initial conditions
and use that A is positive definite to obtain

dt

1< ((A. (T) p., (T)) (Tg,(T) Pg,(T)))LxL’
2 ’

+11 (Ax’, ’)

where we used Lemma 7.7. Then Lemma 7.5 shows

sym X

In the second part of the proof multiply (36) with ... p..) and integrate over

[0, T] to obtain

fT((AG ’ dt

(D.(a... q...). (X.. s..l)Lx’ L’ dt

T
dt

+ (Ax’, ’)ll(0,;,)II (,,,)I1(0,;,)
< Cl (x,, 8g,) IlL(0,T;L(;3x3sDm xm))
+ 11 (,,,) I10,;,),
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where we used the fundamental theorem on calculus, the homogeneous initial condi-
tions, 0 E B, u >- 0 and (37). Since A is positive definite this shows

Using (35) in the above estimate of

,T-,)idt k

we obtain from Lemma 2.3

"/U#, IIL2(O,T;H1/2)
__

C5.

The constants cl,..., c5 are independent of #, u. Since (X, s) is fixed and by definition
of (’rp,,,pg,), this and Lemma 7.7 prove the lemma.

In order to treat the case # - cx consider problem (P) where (see (16)) is
given as in Definition 7.1.

LEMMA 7.9. For any > 0 there exists exactly one solution (u,a,q) of
problem (P). Under the safe load assumption there exists a constant c such that for
any > 0

(9lug,, a, q,) IIW,(O,T;H/.LL,)

_
C.

Proof. Existence and uniqueness of Solutions (u, a, q) E Wl’2(0, T; H L L’)
of problem (P.) follow from Lemma 5.1. Note that for fixed > 0 the family

uu,u, o’g,u,

is bounded in W1,2(0, T; HLxL’); see Lemma 7.8 and (17). Consequently, according
to Banach-Alaoglu’s theorem, there exists a sequence (#n) of positive real numbers
with lim_n 0 and

(38) (uu,,,a,,,,q,n,) (,,0) in W’2(O,T;H L x L’).

As in the proof of Lemma 5.2 one concludes that (., &., .) satisfies the homogeneous
initial condition and (15). According to (34), Lemma 7.8 and (35) there exists c > 0
such that for any # > 0

Du(aa,, q..,) ]]L2(O,r;LxL’) <_ c,.

By definition of Dau this implies

(39) lim O.

Consider the continuous function

g L2(0, T; L L’) - IR,
T

(p, r) (P, r) 1-Is(p, r)II2LxL dt.

Since g is is weakly lower semicontinuous (39) leads to

(40) (5, c) e B a.e. in [0, T].
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Finally, let (T,p) e L2(0, T; L L’) such that (T,p) e B almost everywhere in [0, T].
Since a is convex, Dau is monotone. Hence, almost everywhere in [0, T]

0 <_ ((au,,,qt,,,)

Substitution of Dau(a,,, q,) from (36), integration over [0, T] and using (-,,p,) :--
(au, X, qu, s) leads to

(41) ..p..). (fT..P...))LL’ dt

Because of (38), the right-hand side converges. The left-hand side is a weakly lower
semicontinuous function in (Tu,, pu,). Hence, writing (, i5) :-- (&- X, s), one
concludes

Since (... c) satisfies (15) this gives

(42) T((T,P) (,0), (et A&,--O))LL dt <_ O.

As in the proof of Lemma 5.2, from this one proves (16).
Altogether, the weak limit (, 5,) from (38) is the unique solution of problem

(P). Hence, the bound of Lemma 7.8 holds also for (u, a, q). [:]

Proof of Theorem 7.6. According to Lemma 7.9 the solutions (u, a, q) of (P)
exist for any u > 0 and the traces of the displacements and the stress parameters
(-u, a, q) are uniformly bounded in Wl’2(0, T; H1/2 L L’). Since (u., a, q)
satisfies the conditions of Lemma 7.2, eup is uniformly bounded in WI’2(0, T; L) as
well. Thus, (u, a, q)>0 is bounded in W1’2(0, T; H L L’). According to
Banach-Alaoglu’s theorem there exists a sequence of positive real numbers (un) with
limn_ u such that

(u, a, qn)=l,2,3 and (u, a, q)n=,2,3

converges weakly in L2(0, T; H L L’). Then, using Lemma 5.2 one concludes
existence of solutions of problem (P).

Remark 9. The proof of Theorem 7.6 shows the role of the hardening parameters.
In the absence of hardening it is not guaranteed that eu is bounded and that a weakly
convergent sequence of solutions of the problems (P) exists.

Note that (37) gives a bound for euu,P independent of #,u in the space
L (O, T; LI (t;1R.33--sym)" This is the tool for proving existence results in the case of
perfect plasticity, i.e., m 0, in the space BD(); cf. the following section.
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8. Perfect plasticity. The third example for the functional describes perfect
plasticity with the von Mises yield condition. In contrast to the previous cases we
cannot prove uniqueness of the displacements (cf. [21] for a one-dimensional example
in the interior problem with infinite solutions) which may be discontinuous (in BD(fl);
cf. below) so that the interface conditions must be weakened.

As in Definition 7.1 we define

]]:.3 x 3C :- (a e--sym]f(cr)

_
0},

B := {a E L[a E C a.e. in fl},
:= L --, [0,], aO ifaEB;ifaB,

where m 0, i.e., no hardening occurs. The von Mises yield function f (f should not
be confused with the given body force) is defined by f(a) := aD aD 1 but other
yield functions are also allowed. Assume that B is closed and convex in L and that the
safe load assumption of Definition 7.3 is satisfied (for m 0, i.e., s does not appear).
For convenience of notation we assume that f0 q or 0 Fp C_ F0 0fl0. The more
general case of mixed or Neumann data on 00 can easily be included following the
lines of [22, Thm. 3.3] but, in view of a possible discontinuity of the displacements on
0f, this requires a further variable for the displacements on lp C_ 0/0.

In order to consider a weaker formulation of the interface problem we follow
[16] and [22] for the interior problem: Assume that (u, u2, t, or) satisfies the interface
problem. Then, provided e.g., f E L3(f; IR3), we have everywhere in [0, T]

a E E := {T E L" div T E L3(; JR3), "rn[r E H-l/2},
Tn being defined by Green’s formula. Hence, according to Green’s formula, for any

(-Ut, T O’)L ((T a)nlr, 7u’) fn u’div (T a) d.

Note that the right-hand side makes sense if 7u’ E H1/2 and u E L2/3(; ]R3) which
weakens the assumptions. Hence, using (13) one obtains a E E N B and for all

(43) 0 <_ (Aa’, (" a))n ((" a)nlr, "u’) + J u’div (T a)df.

Thus, any solution of the interface problem solves the weak interface problem
(WIP) which reads as follows.

DEFINITION (Weak Interface Problem). Given f E W2’2(0, T; L3(); jR3)) with
f(O) O, the weak interface problem (WIP) consists in finding (u2, w,t,a) E
W1,2(0, T;/22 H/2H-/2.VB) and v E n2(0, T; BD(f)) with (u2, w,t,a)(O)
0 satisfying

(44) div

(45) anlr t on F,
(46) (w,t) (u21r,T2(u2)lr) on F,

and for all - E V B

(47) 0 <_ (Aa’, (T r))L ((T a)nlr, w’) + J vdiv (T a)df.
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Remark 10.
1. The space of bounded deformations

BD() (v E il(;IR3) eij(v) i() (1 _< i,j <_ 3),

--M() being the space of bounded measures on , M() C()*, i.e., the
dual of the space of continuous functions with compact support in (endowed with
the max-norm)--w introduced by Strang and Suquet and is now established in the
context of plticity [24]. BD() is a nonreflexive Banach space endowed with the
norm

i,j=1,2,3

The space BD() is motivated by the fact that it is the dual space of

C(;33/( C(;33. divT 0, n]r 0}.

Consequently, we may consider the weak* topology on BD().
2. The embedding

BD(n) 53/2(; 3)
is continuous. Hence, according to a , (47) makes sense.

3. Comparing (47) with (43) one identifies u’ with v, but an additional variable
w appears in the role of u. The possibility of vr w arises from discontinuities of
deformations allowed on F [22].

4. Concerning BD(), Green’s formula is known in the following form [21], [24]:
Provided 0 is of cls C there exists (BD(); Ll(0;3)) such that for any
T CI(; .3x3 and any v BD()---sym]

where fn T de(v)
We have v v]on if v
5. Obviously, the embeddings

U BD(n) and S1/2 i(O; 3)

are continuous. Then a density argument shows ]H.
6. Note that BD() is the dual of a normed linear space X so that

n(o, T; BD()) L2(0, T; X)*; n is the space of weakly measurable vector valued
functions such that their norms belong to L2(0, T; ); cf. [15].

Eliminating t with (9) in (45), (46) one obtains the following problem (WP).
DEFINITION (WP). Given f e W2’2(O,T;L3(;3)) with f(O) O, the weak

problem (WP) consists in finding

(w, a) e W’2(0, T; H/2 B) and v e n(0, T; BD())

with (w, a)(0)= 0 satisfying (44),

(48) an]r -S2w on F
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and (47) for all T e B.
With Theorem 2.2 one concludes the following theorem.
THEOREM 8.1. (v, u2, w, t, a) solves the weak interface problem (WIP) /f and

only if (v, w, a) solves the weak problem (WP). In the latter case t T2w and u2 is
given through (11) having Cauchy data (w, t).

According to the previous theorem the following theorem proves existence of so-
lutions of the weak interface problem.

THEOREM 8.2. Provided that the safe load assumption holds for X E Wl’2(0, T;
the weak problem (WP) has a solution (v, w, a) with (w, a) being unique.

Proof. Let (P) denote the problem (P) in 6, i.e., problem (P) where is given
by (30) and m 0. According to Theorem 6.1, let (u, a) denote the unique solution
of problem (P) for any > 0. om the proof of Theorem 6.1 we know that
is the weak limit of some sequence of solutions (u,,, a,,) of the problem (P,) for

0. Hence, we conclude from Lemma 7.8 that (u,a)>0 is uniformly bounded
in W’2(0, T; H/2 L).

Writing T := a X so that e*v + Su 0 (X from the safe load sumption
with e*X f P yields

Since (u,a)>o is uniformly bounded in W,2(O,T;H/2 x L) well in
L(O,T;H/2 x L) this leads to a constant c > 0 (independent of > 0) with

(49) et

Lemma 7.g with p 2 shows

))

.3x3 andUsing this in (P) gives that eu, is uniformly bounded in L2(O,T;L(;__svm,,
in n2(0, T; BD()).

Nowdue to the Banach-Alaoglu theorem--we are in the position to select a
subsequence (n) of parameters with limn Pn 0 and

(u,, a,) (w, a) in W’2(0,T; g/2 x n),
L(O,T;BD()),(u,) * v in 2

(u,) v in L2(0, T;L3/2(;3)),
where and * denote weak and weak* convergence, respectively.

As above (before Definition (TIP))one concludes that

(50) div a, + f 0, a,n]r + S2u, 0

so that the weak limit (w, a) satisfies the same relations: div a+f O, anr+S2w O.
According to the definition of the subdifferential and because of X e B we have

V,(a,) (D,(a,),

Because of (49), this gives f(a)2 dt c. One proves a B as in the proof of
Lamina 7.9; cf. (39).
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In order to prove (47) let T e E N B. As explained above, (u,, a,) satisfies (43).
By (50) this gives

0 <_ (Aa;, (T- a,))L (’*rnlr + Su,, u’g) + u,(div T- f)dt.

By time integration and the weak convergence one proves that (47) holds for the weak
limits.

Finally, the claimed uniqueness can be proved following the lines of the proof of
Lemma 5.4 starting from (47); we omit the details, yl

Remark 11. Note that, following the arguments of this section, similar results
can be obtained in the more general case if hardening parameters occur which do not
allow estimates of the form

llL (O,T;L) q’) IIL(O,T;LL’)

as in Lemma 7.2.
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FINITE ENERGY SOLUTIONS OF
NONLINEAR SCHRODINGER

EQUATIONS OF DERIVATIVE TYPE*

NAKAO HAYASHIt AND TOHRU OZAWA$

Abstract. This paper is concerned with the initial value problem for nonlinear Schrhdinger
equations of the form

(t)
(0,) (), ,

where 0-- 0z O/Ox,,k,,kl,A2 E ] and 2 < Pl < P2 < 5. It is shown that if E Hi(N) and
1[1122 < 27r/IAI, then there exists a unique global solution of (t) such that C(N; Hi(R)). This
paper introduces a new method to obtain the result.

Key words, derivative nonlinear Schrhdinger equations, gauge transformation

AMS subject classifications. 35Q55, 35Q60

1. Introduction. In this paper we study the Cauchy problem for nonlinear
Schrhdinger equations of the form

(1.1)
(0, x) (x), x e ,

where is a complex valued function of (t,x) E N x N, 0 O/Ox, ,k N and
F C(N2; N2) satisfies the gauge condition F(ei4) eF(4), 0 N.

We assume that F can be written as F FI + F2 with Fj C2(N2 \ {0};N2),
j 1, 2, satisfying F’ e LloCCc(N2), Fj(0) F(0) 0 and that there exist positive
constants Cj, Dj such that

j’ IF(4)- F(’)I _-< C(11v-I + 4’1,
(1.2)

IF()- F(’)I-< Dj(IIp-2 + ’1,

where 2 < pl < p2 < 5. Furthermore we assume that there exists a function H
C(Re;R) satisfying H(0)= 0, F OH/O and

(1.3) g(f)dx >_ -M(llfll2)  llfll for 11 f E Hi(N),

where # N+, M C(N+;II,+). Under the above conditions we prove the following
theorem.

THEOREM 1. We assume that (1.2) and (1.3) are satisfied, HI(N), and

2
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Then there exists a unique global solution of (1.1) such that

Moreover, the map is continuous from ( e H(); I]]] < 2/A2 + 162}
with topology induced from H() to C(; H()) Loc(; W’()).

We prove that our result applies to the example

(1.4) F()
where 2 g Pl < P2 < 5, A1, 2 R. First, it is clear that (1.4) satisfies (1.2) (see, e.g.,
[6]). Second, we have

(1.5) g()dx 21 22 {p+
P2 + 1 :+1"

We deduce (1.3) from (1.5). By HS]der’s inequality we have for 1 p < 5

,+ lfll lfl12
from which we see that for any > 0, there exists a positive constant such that

< 1111 + Cllll.
UMn ths and (1.5) we

where
2, 21yl

+1’ +1j--1

which implies (1.3) with # ep. Hence we have the following corollary to Theorem 1.

COROLLARY 1. We let F() 2 -1j=lAYllpj , where2 <_pl <P2 < 5. We
2r. Then the result of Theorem 1 is valid.assume that e Hl() and 11112 <

In the case of F() --_ 0, Theorem 1 was proved in [4] (see also [3]) using the result
of [9, Thm. 3], which ensures the existence of global smooth solutions of (1.1) with
F() 0. When F() 0, the result [9, Thm. 3] is not applicable, and therefore we
need a different method from the previous ones (see [3], [4]). We state our strategy
of the proof of Theorem 1 for the convenience of. the reader. To obtain the result we
first consider the system of nonlinear Schrhdinger equations

(1.6)

with the constraint

Lu -iAu2 + F(u),
2Lv iAv + OF(u) v + OF(u) ,

(o) o, v(O) vo,

(1.7) v0 0u0 + In01 u0.

The initial value problem of (1.6) without constraint (1.7) fits in the framework of the
previous methods as in [7], [8], [10], [11] by making use of the space-time estimates
of solutions to the linear Schrhdinger equation. We first give the basic results about
(1.6) in 2 (see Propositions 2.1-2.3). The proof of the local existence of solutions
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to (1.6) requires the differentiability of nonlinear terms with respect to (u, v), which
in turn requires the condition pl _> 2. Second, we prove the existence of solutions to
(1.6) with constraint (1.7) in Propositions 2.4 and 2.5. In Proposition 2.4, we prove
the unique existence of H2 H2 solutions to (1.6) and the invariance of the constraint
v Ou + i(A/2)lul2u. The proof of the invariance requires the gauge condition of F.
In Proposition 2.5, we prove that the unique existence of solutions to (1.6) still holds
for the data with minimal regularity assumption (u0, v0) E H L2 under constraint
(1.7), which is to be invariant under the time evolution. The proof of Proposition 2.5
requires the smallness condition of u0 in the L2onorm.

In Theorem 2 we show that Propositon 2.5 implies the existence of a unique local
solution to (1.1) in H through the relation

u0=exp -i 112dy .
Finally, we prove Theorem 1 by a priori estimates of local solutions to (1.1).

We state the results of our related problem. In [5], we studied nonlinear Schrbdinger
equations of the form

iOtu + 02u F(u, Ou, t, 0k),
(1.8)

u(0) u0,

where F C4 --, C is a polynomial having neither constant nor linear terms. We
showed the existence of a unique local solution of (1.8) when the data satisfy conditions
such as u0 E H3 and xuo H2. The mixed nonlinear Schrbdinger equation

iOu q- 02u i3u20t q- iyJuluou /

was studied in [1] using energy methods, where/3, " ll and g" IR is a function
satisfying some regularity conditions. The authors established existence and unique-
ness of global smooth solutions in H8 for s _> 3 under some smallness condition on
the data.

In the case where the underlying space is a bounded domain t (0, ) with t > 0,
the global existence of H(f) solutions of the equation

with Dirichlet zero condition was shown in [2] under the smallness condition of the

H(t) norm of the data, where , a e It, and p >_ 2.
Recently in [12], a result similar to ours was obtained. We note here that our

method is different from that in [1.2] and our argument in the proof of Proposition
2.4 is useful to prove the existence of the modified wave operators of the derivative
nonlinear Schrbdinger equation in [13].

We conclude this section by giving notation. We abbreviate O/Ou to 0H. By we
denote the complex conjugate of u. We let Lp {f; f is measurable on , I[f[[p <
oc}, where [[f][pP f [f(x)lPdx if 1 _< p < oc and [If[[ ess. sup{If(x)[; x e R} if

m
p---- oc, and we let Wm,p {f LP; [If[Iw,,v V’y=0 I[OJf[[p}. For simplicity we

put Wm’2 Hm. We denote by (., .) the inner product in L2. For any interval I of
R and a Banach space B with norm I1" lIB, we let C(I; B) be the space of continuous
functions from I to B and LB(I; B) be the space consisting of strongly measurable
B-valued functions u(.) defined on I such that f/[[u(t)[]PBdt < oc. Different positive
constants will be denoted by the same letter C. If necessary, by C(,,... .) we denote
constants depending on the quantities appearing in parentheses.



DERIVATIVE NONLINEAR SCHRDINGER EQUATION 1491

2. Proof of Theorem 1. We consider the system of nonlinear SchrSdinger
equations of the form

Lu -iu2 + F(u),
(2.1) Lv i)v2 -t- OuF(u) v -t- OF(u) ,

u0, v(0) v0,

where L iOt + 02. In what follows we assume that (1.2) and (1.3) are satisfied.
For simplicity we restrict our attention to positive times since the problem is treated
analogously for negative times.

To obtain Theorem 2 stated below we need the following propositions.
PROPOSITION 2.1. We assume that uo E L2 and vo L2. Then there exist

unique solutions u, v of (2.1) and a positive constant T such that

u, v e C([0, T]; L2) f La(0, T; L).
For the proof, see [8, Thm. I].
PROPOSITION 2.2. We assume that uo H2 and vo H2. Then there exist

unique solutions u, v of (2.1) such that

u, v e C([0, T]; H2) f n4(0, T; W2’)

for the same T as that given in Proposition 2.1.
For the proof, see [8, Thm. V].
PROPOSITON 2.3. We assume that U(on), V(on) H2, no, vo L2, and lU(on)-

U0112 + I]V(on) V0112 --- 0 a8 n -- oo. We let u(n) and v(n) be the solutions constructed
in Proposition 2.2 with data U(on) and V(on), respectively, and we let u and v be the
solutions constructed in Proposition 2.1 with data uo and vo, respectively. Then we
have

sup ]lu(n)(t)-u(t)[12+ sup I[v(n)(t)--v(t)l[2
O<t<T O<t<T

/ Ilu< > u(t)lldt

--*0 as --+ (x)

and

vo Ouo + uol uo.
Then there exist unique solutions u, v of (2.1) such that

u, v e C([0, T]; H2) N La(0, T; W2’)

(2.2) v Ou + i-lul2u in C([0, T];L2)

for the same time T as that given in Propositon 2.1.

where T is the same as that given in Proposition 2.1.
For the proof, see [8, Thm. I’].
Using Proposition 2.2 we now prove the following proposition.
PROPOSITION 2.4. We assume that uo H3, vo H2 satisfy the condition
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Proof. By Proposition 2.2 it is sufficient to prove that (2.2) holds, namely

(2.3) sup I1() (Ou() / lulu())ll 0.
O<t<T -A direct calculation gives

(2.4) L(Ou) OLu -2iAueOu iAu20e + OF(u) Ou / OaF(u). Ot.

n(lul2u) 21ul2Lu / 2(0u)2 + 4ulOu]2 + u2(-- + 202)
2lul2(-i)u2 + F(u)) + 2(0u)2fi + 4ulOul2

(2.5) + 2u202fi u2(i)t2v + F(u)) (by (2.1))
_2iAlul2u2 + 2(0u)2fi + 4ulOu]2 + 2u202fi

iAlulav / (21ul2F(u) uUF(u)).

We put w Ou + -lul2u, then we have by (2.4) and (2.5)

Lw -2i)uOu- iXu20 + A2]u2u2O + iA(Ou)2fi

+ 2iAulOul2 + iAu202 + I14v

+ a(l ) +o.o + o.. oa

Hence by the second identity of (2.1) we get

g(w v) -io io+ + i(o)a

(2.6) + 2iAulOul2 + iu202 + V lulav iAv2fi

+ + (Ou v) +

We denote the jth term of the right-hand side of (2.6) by I. Using the definition
w Ou + u we obtain

I -2iuOu

2iAu(- )Ou- 2iAu Ou +

2iu( )Ou- z :lulOu.
This implies

(2.7)

We have

(2.8)

Ix + I5 2iAu( )Ou A21u]4Ou.
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Since

2
lul4(w v) + -lul4 lul2u- v

2 i3
lU6u A21U[2U20- [7,ell(-’)+

we obtain from (2.8)

A2 iAz [2(2.9) 2 + + u20(e ) lul2( ) + llu 21 u20.

We next consider the contributions of the terms I3, 14, and Is, the lt term of the
right-hand side of (2.7), and the lt two terms of the right-hand side of (2.9). We
have

By the gauge condition F(e) eF(), 0 e N, we see that F(II) F()
IRIF() Hence F() is written as

(2.11) F() G(11)
if we put

G(s2) { oF(S)/Sfor sfr= 0.s>0’
Using (2.11), the last term of the right-hand side of (2.6), I9, is rewritten as

I9 (2a(ll)ll O(ll)ll)
/ (a’(ll). / G(II2))(O v) / a’(ll). (oa

where a’(ll) 01l.a(lule). From the condition that there exists a function H e
C (N2; N) satisfying F() OHIO,, it follows that G (. Hence

( )I9 a’(lul)ll - o + Alul2u- v

(2.12) + a(ll) O + XII- v + a’(ll) O + 11- V

OuF. ( v) + O.F. ( ).
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By (2.6), (2.7), (2.9), (2.10), and (2.12)

(2.13)

Multiplying both sides of (2.13) by z0- , taking the imaginary part, and integrating
over space with integration by parts for the second term of the right-hand side of
(2.13), we obtain

d

2

from which we have

2IIw v]l2 <_ IIw(O) v(O)ll2

(/o )exp C (llullll0ull / [lulillvll / Iluil / Ilul]-1 / Ilull-X)ds

This implies the desired identity (2.3). Therefore we have the proposition.
We next prove the following proposition.
PROPOSITION 2.5. We assume that uo E H1, vo L2 satisfy the conditions

and

vo Ouo + uol2no.

Then there exist unique solutions u, v of (2.1) such that

u e C([O,T];HI)NL4(O,T;W’),
(2.4) v e C([0, TI; L2) N L4(0, T; L),

v Ou + i[u[2u in C([0, T];L2),

for the same time T as that given in Proposition 2.1. Moreover, the map uo u
is continuous from {no e H; Iluo[[22 < 2/]A[} with topology induced from H to
C([0, T]; H) N L4(0, T; W’).

Proof. We let U(on) e H2, V(On) e H2 satisfy Ilu(on)ll2 -Iluol12 for any n e N and

IlU(on) -uol12 -t-]lV(on) -vol12 --+ 0 as n cx). Then by Proposition 2.4 we see that there

exist unique solutions u(n), v(n) of (2.1) with the data u(n)(o) U(on), v(n)(0) V(on)
satisfying

?(n), v(n) e C([0, T]; H2) n4(0, T; W2’x)),
(2.15)

v(n) Ou(n) + i It(n) [2u(n) in C([0, T]; L2).
From Proposition 2.3 it follows that

(2.16) lim u() u and lim v() v strongly in C([0, T]; n2) La(0, T; n),
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where u, v are the unique solutions to (2.1) with the data u(0) u0, v(0) v0. Hence
Proposition 2.5 is obtained by showing

u C([O,T];H)M(O,T;W’),
(2.17)

v Ou + ilul2u in C([0, T]; L2).
We now prove (2.17).

By the second line of (2.15) and the first identity of (2.1) we have

2 u(n) 4u(n)(2.18) iu(’) -iA(u(’))20t(n) - / F(u(’)).

Multiplying both sides of (2.18) by fi(n), taking the imaginary part, and integrating
in x, we obtain

(2.19) Ilu(")(t)[12 --tlu(on)[12- [ltO[12,
where we have used the condition (1.3).

We put

2Jn) G’(6-j)/4u(n), j 2, 3,... 6

with

then it is clear that

Hence

) -//,()
3 "-n j+l"

(2.20) 0/) n) C" 1/4
Wj-F1 "]’- ""tj -.F1

from which it follows that

+ 11

since

1,(n)(2.22) I()1 ICJ)l +1.
We apply the Gagliardo-Nirenberg inequality of the Brm

4
(2.23) Ilfll
to (2.21) to obtain

Ilan)ll > 1 I,+11 I1=

We use (2.19) and (2.21) to see that
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and from this and the condition Ilu011 < 2r/lA it follows that

The definition of dn) implies

(2.25) 0n) G;lv(n) and n) u(n).

By (e.ea) ,d (e.e)

(2.26) IIj+ll x- ll011 IIv()ll

for j 1,2,... ,5.
We now prove {u(n)} is a Cauchy sequence in C([O,T;H). Using (2.20) and

(2.22) we write

a") -a) a/ (,+11 +1 -+1, +1)++-+1

+ (G1/ G1/) i,+11 +1 ++
om the mean value theorem and the Schwarz inequality we have

+111 I0}")

,+111 + I1+11)(11 I1 + II I1)1 I1.
We apply the Gagliardo-Nirenberg inequality, (2.26), and (2.22) to (2.27) to obtain

,,(-) ,.() < IIo)(2.28) [lWj+l Wj+lll2

+ C(llv<>llll<>llN + IIv<>l12)(ll<>ll + 11<>112)11<>
On the other hand, we have from

" ax(-)/,(.(.) () + (ax(-)/4

(2.29) I[J’) Jm)ll2 < Ilu(n) u(m)ll2
+ Cllu(m>ll2(llu<n)ll2 + II(m>ll2)llu<n) <m)ll2

for j 2,3,... ,6.
Hence (2.16), (2.28), and (2.29) imply that there exists a positive constant C

which does not depend on n, m, j and satisfies

for j 2, 3,... 5, from which and (2.25) it follows that

(2.30)

that
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In the same way as in the proof of (2.29) we have

Therefore we obtain by (2.16), (2.30), and (2.31)

(2.32)

This and (2.16) imply that {u(n)} is a Cauchy sequence in C([O,T];H). Hence,

(2.33) lim u() u strongly in C([0, T]; H).
n

om (2.33) and the Gagliardo-Nirenberg inequality it is clear that

(2.34) lim ]u()]2u(n) ]u]2u strongly in C([0, T];L2).

By (2.16), (2.33), and (2.34) w have the second line of (2.17). The proof of (2.17) is
completed by showing

(2.35) Oue na(0, T; L).
Since u e C([0, T]; H1) L4(0, T; L), the Gagliardo-Nirenberg inequality gives

lu2u e L4(0,T; L). Hence the second line of (2.17) and (2.16) yields (2.35). This
completes the proof of Proposition 2.5.

We next prove the local existence of solutions to the original equation (1.1).
THEOREM 2. We assume that e H() and ]]] < 2r/A. Then there exist

a unique solution of (1.1) and a positive constant T such that

e C([O,T];H)La(O,T;W’).
Moreover, the map is continuous from { e g; ]]]] < 2r/]A]} with topology
induced from H to C([O,T];H) L4(0, T; W’).

Proof. For any H () we define u0 and v0 as follows:

vo Ouo + no.

Then it is clear that u0 e g1, v0 e n2, and ]u0]] J]]] < 2r/]A]. Hence by
Proposition 2.5 there exist unique solutions u, v of (2.1) satisfying (2.14). We define
by

(2.36) (t,x) exp ia lu(t,y)12dy u(t,x).

Theorem 2 is established if we prove that satisfies (1.1). By (2.14) and the first
equation of (2.1) for u we obtain

(2.37) nu -iAu20- ]uau + F(u).

A direct calculation and (2.36) give
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(e.s)

(f)((;)i exp iA lul2dy iu + iA i lul2dy u + 2i)lul2Ou- A2lul4u

By (2.37)

(2.39)

(e.40)

2 Im(fi(-02u i)u20t))
-0(2 Im(50u)) 2)lul2 Re(u0fi)

-0 2 Im(0u) +

iAL JuJdy -A OJuJUdy + iAO[uJ

2Im(gO)+ 11 + ioll (by (2.

2iAuO + lul 4.

om (2.37)-(2.40) we have

(2.41)

/; (
+ ixoa + VI+ilIo

exp iA lul2dy (iAu20 + 2iAJui20u- 2JUl4U + F(u))

exp iA lulUdy (2iA[uJ2(Ou + iAJuJ 2) + iAu2(O iAJuj2) + F(u)).

Since

0 exp(iA lul2dy)(Ou +

lul=lbl and =
we have by (2.41)

n 2i1120 + i20 + exp i) lul2dy F(u).

Gauge condition of F implies the desired identity

Lb iA0(lbl2) + F().
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The last equation makes sense in C([0, T]; H-I) and all the computations above are
justified in C([0, T]; H-2). We could go though with the computations using approxi-
mate solutions u(n) as in the proof of Proposition 2.5 before limiting procedure at the
final stage. This completes the proof of Theorem 2.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. The iterative use of the same argument as that in the proof
of Theorem 2 and a priori estimates of solution of (1.1) in H yield Theorem 1.
Then it is sufficient to prove

(2.42) sup [l(t)liH, <_ C([l[IH,).
t[0,T]

We prove (2.42). After a long tedious calculation (see the Appendix) we arrive at

d ( 3 12 JH()dx) 0,d- II011 + AIm([12’0) + 111166 +
and from this and (1.3) we have

(2.43)

By the Gagliardo-Nirenberg inequality and (1.3) we get

E _<(2.44)

We put

Then

G exp - [b(t,y)[2dy

3 3

Hence
1 f

E H(b)dx.

By (1.3) we see that

We apply (2.23) and (2.4a) to the above to obtain

( 4(A2 ) )
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From this and (2.44) it follows that

(2.45) I10(G3/2)11 <- C(IIIIH,).

We let Cj G(6-J)/4 for 0 _< j _< 6. We have by (2.23) and (2.43)

I10.11 I10(G1/’;+)11"
1

IIO+11 AIm(0+1, I1+1)+ 1111

Therefore

I)’1 ) .(2.46) IIOo11 >_ 1- 1111 IIO11.

Since 6, G3/2 0, by (2.45) and (2.46) we have the desired estimate (2.42).
This completes the proof of Theorem 1.

Appendix.
LEMMA A. Let be the solution of (1.1) constructed in Theorem 2. Then we

have

(b)

d
dll,,ll. 0,

d 3 1.,2 /d-7(11011 + ’Im(112,0) + I111 + H()dx) O.

Proof. We first note that the computation given below is rather formal, but it can
be justified using H2-solutions Ck with the data Ck E H2, which satisfy the following
continuous dependence such that

lim I1 llm o implies lim liCe(t) (t)ll/, o

(see Proposition 2.5). In what follows we use the integration by parts without partic-
ular comments. We have by (1.1)

(A.1)
o11 2 Im(iOt)

2 Im((-02 + a0(11) + F()))
-0(2 Im(0)) + 2, Re(O(l12Osi)).

Since Re(0(ll))= o11 we have by (A.1)

( 3),l1)(A.2) o112 0 -20Im(0) +

from which (a) follows.
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We have

d
d--llOll 2 Re(0,

-2 Re(02,
(A.3) -2 Re(-i0t + iA0(112) + F(), 0re) (by (1.1))

2A Im(0(l12b), Ore) 2 ae(F(),
d / H()dx-2AIm(l12, 0t0)-

(by the condition of F).

We next consider the first term of the right-hand side of (A.3). We have

(A.4)
dIm(1[2, OtO) -(Im([[, 0))

+ Im((0[[), 0) + Im(l[20t, 0).

We apply (A.2) to the second term of the right-hand side of (A.4) to obtain

(A.5)

By using (1.1) in the third term of the right-hand side of (A.4), we have

(A .6)
Re(01l2. (-02
ae(01l

Since

Re(0(112), 02)
Re(01l2 , 02) + Re(1120, 02)

1 ]2,
1 2 102 2Re(0]l2. 02,)- (0

ae(0]2 02, ),
2

Re(02))
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the first term of the right-hand side of (A.6) is written as

(A.7) ae(01l2- 02,)
_2 Re(0(112 02)
3

_2 Re(0(112 -iOt + iA0(1]2) + F()) (by (1 1))
3

2 im(0(]]2), Ore) (by the condition of F)
3
2 im([[2
3

By (A.4), (A.6), and (A.7)
d 3 02

1 im(ii2A Im(Oll" 0(1I)’) + 5
1 im(Il:d

(im(112, 0))+ 2A Im(l]a02 ) +dt

From above it follows that

3 [4023 d (im(112,0))+ Aim(l(A.8) Im(l12,0t0)
4 dt

From (A.3) and (A.8)it follows that

(1.9) 110]]2d -A-3d (im(]12, 0)) + 312 Im(1]402, )+ - g()dx.

On the other hand, we have by (1.1)

(A.10)

Hence (A.9) and (A.10) yield the desired identity (b).
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PHASELOCKING IN A REACTION-DIFFUSION EQUATION WITH
TWIST *

G. BARD ERMENTROUT AND W. C. TROY

Abstract. A generic reaction-diffusion equation near a Hopf bifurcation is analyzed by a
two-dimensional topological shooting argument. Previous results of the authors are extended to the
case where there is amplitude modulation of the frequency. The results are compared to a realistic
chemical model.
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1. Introduction. The behavior of coupled nonlinear oscillators has been the
subject of numerous theoretical and experimental studies [1]-[6]. The majority of
these papers concern finitely many discretely coupled differential equations [1], [2],
[4], [5]. The general method of analysis is to introduce some type of small parameter
and then use the method of averaging to reduce the equations to a flow on the torus [7].
Alternative analyses exploit the special form of the oscillators near a Hopf bifurcation
[8] or in the weakly nonlinear limit [9]. Little theoretical or numerical consideration
has been given to continuous (as opposed to discrete) oscillatory media (see, e.g., [5]
and [10]).

In two previous papers, we have analyzed continuous diffusion models of coupled
oscillators for a special class of reaction-diffusion equations [11], [12]. These papers
are motivated by some recent experimental work by Tam and Swinney et al., in which
an oscillatory chemical reaction with a one-dimensionM spatial gradient in some pa-
rameter is allowed to react and diffuse in a one-dimensional spatial domain. In this
paper we continue this analysis for a system of more generic reaction-diffusion models.
Consider the general system:

(1.1)
vt (D(ax)vx)x + F(ax, v),

vx(O, t) Vx(1, t) =0.

0<x < 1,

We assume that the equation vt F(ax, v) has an asymptotically stable periodic
solution for each x in the interval [0,1], but the period and shape of these oscillations
is allowed to vary continuously in space. That is, we allow some spatial variation
(parametrized by a) in the one-dimensional medium. Tam and Swinney [13] consider
both an experimentM system and a model reaction and numerically study the behavior.
In a companion paper [14], Vastano, Russo, and Swinney describe some plausible
mechanisms for the interactions. In particular, for a large set of experimental and
numerical parameters, they find phaselocked solutions in which the entire medium
oscillates with the same period. Our goal is to determine conditions that guarantee
the existence of phaselocked solutions to equations such as (1.1). This is generally an

*Received by the editors October 26, 1992; accepted for publication (in revised form) July 15,
1993. This work was supported in part by National Science Foundation grants DMS9303706 and
DMS9002028.

Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
15260.
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impossible task, but under some circumstances formal and rigorous conditions can be
obtained.

We will study the following system of reaction-diffusion equations:

vlt -(vl qv2)(1 r2) (1 / ix)v2 + dvx,
v2t --(v2 -t- qvl)(1 r2) + (1 + ax)vl + dv2x,

where r2 v2 + v22, and subscripts x and t are partial derivatives. This class of
equations arises formally from a general reaction-diffusion equation whose dynamics
occur near a Hopf bifurcation and where each reactant has the same diffusion coeffi-
cient. This latter assumption on the diffusion coefficients is reasonable for chemical
reactions where all of the species are of similar size. In particular, this is the case
for the commonly studied Field-Noyes equations [13], [14]. The assumption that the
dynamics lie near a Hopf bifurcation is not so easily justified; numerical simulations
away from the Hopf bifurcation on models such as the Brusselator (see 4) provide
some evidence that the behavior is similar.

If the diffusivity D and the spatial gradient are small compared to the rate of
attractions to the limit cycle, then perturbation methods can be used to derive a set
of slowly varying phase equations. Neu [15] uses these methods to show that if the
spatial variation and the diffusivity are of the same order of magnitude, then (1.1)
reduces to a Burgers-type equation. More recently, Ermentrout [16] shows that if the
diffusion is O(e) and the spatial variation is O(e) with 0 < < 1, then locking always
occurs and (1.1) becomes a singularly perturbed nonlinear boundary-value problem.
For a particularly simple model system, it is also shown that O(1) variations can lead
to loss of locking when the diffusion is small.

However, if the attraction to the oscillator and the spatial variations and diffusion
are all of the same order, (1.1) becomes much more difficult. In [11] we consider a
special case of (1.2), where q 0. This form of (1.2) is amenable to rigorous analysis
since it reduces to a third-order differential equation that is analyzed with a shooting
argument. The appearance of the generically occuring parameter q, which is often
called the "twist" of the oscillator, makes the analysis considerably more difficult. A
formal perturbation of (1.1) near a Hopf bifurcation together with the assumption that
D(o’x) D and the spatial variation a are both small leads to an equation of the form
(1.2) with the addition of the "twist" term. (This type of calculation is performed
in [8] for a pair of discrete diffusively coupled oscillators.) "Twist" plays a role in
breaking the symmetry of coupled oscillators and, if sufficient, can even destroy the
stability of a synchronous solutions to identical oscillators (see [8]). Kuramoto [3] has
noted that in reaction-diffusion equations, this term leads to spatio-temporal chaos
if it is too large. We have recently shown that the presence of twist in a reaction-
diffusion equation on a disk can lead to rotating spiral waves (Paullet, Ermentrout,
and Troy [17]); with q 0 the spirals have straight arms.

If we convert (1.2) to polar coordinates using Vl rcos0 and v2 rsin0, we
obtain the following problem:

rt --r(1 r2) + d(r rO2),

O -l -t-ax-t-q(1- r2) -t-d ( 2rxOr + 0)
r(O, t) =r(1, t) O, Ox(O, t) Ox(1, t) O.

The boundary conditions are equivalent to Neumann conditions for (1.2) on the unit
interval. We seek time-periodic solutions to (1.3), which have the form O(x, t)
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(gt + 1)t+ f0 (s)ds and r(x, t) p(x). Then, (1.3) becomes the third-order boundary
value problem:

0 --p(1 p2) + d(p"- p2),

t =ax + q(1- p2) + d ( 2p’p
0 =p’(O) p’() (0) ().

We note that the period of the solution is T 2r/(ft + 1), independent of x e [0, 1].
Thus, a solution of (1.4) is a periodic phaselocked solution of (1.3).

When q 0, (1.4) is identical to the problem solved in [11] by a shooting argu-
ment. The techniques in [11] can not be extended to the present.case because when
q 0, reflection symmetry is lost. In [11], we were able to exploit this symmetry
and thus show that f a/2. Then, the resulting problem reduces to a one-parameter
shooting argument. Here, we cannot determine ft explicitly and must leave it as a free
parameter. Furthermore, we must solve (1.4) over the entire domain 0 _< x _<1 rather
than up to x 1/2.

If we set a 0 in (1.4), then the solution is trivially given as

p() , (x) 0, fl o.

This is an asymptotically stable periodic solution of period 2r. Thus, one can use
this as a starting point and explore the behavior of (1.4) for a small. In 2, we use
a regular perturbation method to find the qualitative form of solutions to (1.4) for
a small. Since a is small, and the perturbation is regular, p stays close to 1. Large
variations in a are required to reduce the magnitude, p(x).

Section 3, which contains the bulk of the mathematics of this paper, includes the
shooting argument for a "large." By "large," we mean that p stays bounded away
from 1 (in fact, 0 < p(0) < 1/2). The proof of existence depends on a two-parameter
shooting method along with a topological theorem of McLeod and Serrin [18].

In the last section, we solve (1.4) numerically for a variety of values of q. We
compare these solutions to the solutions of the full partial-differential equations; our
numerical results indicate that the constructed solutions are asymptotically stable.
We also compute the full "bifurcation" picture for a fixed value of d as a increases.
We show the phenomenon of oscillator death; i.e., the stabilization of the trivial state,
vl v2 0. The stabilization was proven in an earlier paper [12]. Finally, we provide
some numerical evidence of a similar phenomenon occurring for the Brusselator model
of chemical reactions.

2. Perturbation for small a. For small a we can solve (1.4) by a regular
perturbation series. This allows us to see the qualitative behavior of the amplitude
and the phase. In particular, it is seen that the magnitude of the oscillation decreases,
with the minimum in the middle, and that the phase gradient is close to quadratic.
As the numerics in 4 attest, this qualitative picture is preserved throughout the entire
range of values of the parameters.

We seek solutions to (1.4) of the form

(2.1) (x, ) () + .(x) + o(),

p(x, or) 1 + apl (x) + a2p2(x) - O(a3),
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(2.3) + +

We note that Ft is an unknown function of a and is determined by satisfying the
boundary conditions. Substitution of (2.1)-(2.3) into (1.4) yields

-2pl + dpl =- Lpl O.

The boundary conditions imply that pl 0, so we must go to higher order to see the
effect of a on p. The equation for 1 satisfies

d tl x.

This, along with the boundary conditions, yields

(2.4) ’1 1/2, dpl x(1- x)/(2d).

Thus, the locked frequency, gt, is close to the mean frequency, o’/2. Next, we find that
p2 satisfies

Lp2 x2(1 x)2/(4d),

which has a solution:

x3 x2 x4 3 d 1 3x 3x2
(2.5) p2(x)=

4d 8d 8d 4 8 4 4

(-/:),

8 sinh(dd
This can be used to obtain the solution to 2, which satisfies

(2.6) d2 a2 + 2qp2(x).

We do not explicitly give the value here; rather, we plot the results of the perturbation.
The details are tedious and were symbolically solved with MAPLE.

There are several interesting results of the calculations. First, the role of q is
to make the phase gradient asymmetric about the origin. This is seen by plotting
2(x), shown in Fig. 2.1, for various values of q and d. When this function is added
to the O(a) part of the result is a slightly skewed phase gradient. Even for fairly
large q or small d the effects of twist are very small and probably would not be seen
numerically (see 4.) The phaselocked frequency is also skewed from the mean by an
amount related to q and is found to be -2 q/12Od, q > 0 tends to lower the ensemble
frequency and q < 0 increases it. The form of (2.6) shows that the frequency depends
on q in a linear fashion; using MAPLE, one finds that the slope tends to zero for large
d and tends to infinity for small d. Thus, we cannot expect this expansion to be good if
d is very small; indeed, the case of small d is the subject of another paper [16]. Finally,
in Fig. 2.2, we show the O(a2) deviation of the amplitude p2(x) for various values of
d. It is clear that for d close to 1, p2(x) is small, so that very large gradients in a are
required to effectively move p(x) away from 1. One can use MAPLE to show that
p2(x) is strictly negative in [0, 1] so that the effect of increasing a is to always reduce
the magnitude of p(x). The next order expansion of p(x) will introduce the skewing
due to q, so that the apparent symmetry of p(x) about the center is a consequence of
our truncation. We finally note that each term of the series will involve only terms of
the form x and exp(ax), thus we can find tj, pj(x), and Cj(x) at each step.
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FIG. 2.1. ’2(x) .for q and d varying. (a) d 1 is fixed and q 1, 2, 5. Larger magnitude curves
correspond to larger q. (b) q 1 and d .5, 1,2. Larger magnitude curves correspond to smaller
values of d.

In the next section, we let a get larger and show that the magnitude of the
oscillations is bounded away from 1. Thus, we can "paste" together these two regimes
to construct a full picture of the structure as a increases. This is what is done in the
last section.

3. Existence of solutions to (1.4). Following our earlier work, we introduce
a new variable u defined as the logarithmic derivative of p, u px/p. Furthermore, we
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FIG. 2.2. The amplitude correction, p2(x), for d .5, 1,2. More negative values correspond to
larger values of d.

note that if (p, u, ) satisfies (1.4), then so does (p, u,-) for -a,-q, and -. Thus,
for simplicity, we find it convenient to replace with - and set ba, so that (1.4)
becomes the three-dimensional boundary value problem:

(3.1) p’ pu,

(3.2) u’ (p2 1)/d / 2 u2,

(3.3)

where
’ a(x b)/d- 2u q(p2 1)/d,

(3.4) 0 < p(0) < 1, u(0) (0) 0,

(3.5) u(1) (1) 0.

We assume that d _> 1 is fixed. Furthermore, we assume that a > 0 without loss of
generality (for otherwise, we could reflect the medium about x 1/2), 0 < b < 1, and
Iql > 0. We note that q 0 has already been analyzed in [11]. We prove the following
theorem.

THEOREM 3.1. Let q e [-1/8, 0) t2 (0, 1/8] and 0 < p(0) < 1/5. Then, there exist
values > O, b e (0, 1) such that the solution to (3.1)-(3.4) satisfies the boundary
condition (3.5).

Remark. One should note that the theorem states something that is slightly dif-
ferent from our objective. The two shooting parameters used are b and a, rather than
the ideal choices of and p(0). However, as is common in many nonlinear problems,
the variables that one wishes to solve for are difficult, and a different parametrization
is necessary. Thus, given a p(0) we obtain a b and a a solving (3.1)-(3.5). Clearly,
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A 2

A

FIG. 3.1. The shooting regime, a vs b. At A, (1) > 0 and at B, (1)

_
0.

this yields and, for the given p(0), some value of a. Since p(0) is small, the value of
a will not be small (cf 2.) In order to get a complete picture of the two regimes, we
resort to numerical solutions in 4.

Outline of proof. We employ a two-dimensional shooting argument. The parame-
ters which are free to be varied are b and a where 0 < b < 1 and a > 0. In Lemma 3.1
we show that u(1) < 0 along the line segment a 0, 0 _< b _< 1. Lemma 3.2 proves that
u(1) > 0 along a line segment a al > 0, 0 _< b _< 1. We then refer to a topological
argument of McLeod and Serrin [18] to conclude that there is a continuum F1 joining
the half-lines b 0, cr > 0, and b 1, a > 0, and such that u(1) 0 along F1 (see
Fig. 3.1.) Next, we turn our attention to the behavior of . We start with a point
(1, a*) E F1 and show that (1) _< 0 (Lemma 3.6). Lemma 3.5 shows that (1) > 0
on F 3 (b 0}. Also, standard theory shows that (1) is continuously dependent on

(b, a) e F. Thus, since F is a continuum, (1) must vanish at some point (b, ) e F.
Proof of Theorem 3.1. For notational simplicity and ease of exposition, we prove

Theorem 3.1 for the case d 1. The details for d > 1 are similar. For each a > 0
and p(0) e [0, 1/2] we let max( e (0, 1)1 the solution of (3.1)-(3.4) exists for all
x e [0,

Our subsequent analysis requires that we obtain a useful lower bound on u(x) for
0 _< x _< &. From (3.2) we conclude that

(3.6) u’ >_ -(1 + u2),

hence

u>_-tan(x)_>-tan(1) for0_<x<2.

In the first step of our shooting argument, we analyze the behavior of both u and
for the special case a 0.
LEMMA 3.1. Let a O. If 0 < q <_ 1/8 then u(x) < 0 and (x) > 0 for all
(0, 1]. If-1/8 <_ q < 0 then u(x) < 0 and (x) < 0 for all x E (0, 1].
Proof. An integration of (3.3) gives

x

(3.8) (x) q (1 p2)e-2 f (8)dSdt.
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We distinguish two cases.
(i) 0 < q _< 1/4. Then (3.8) implies that > 0 for x e (0,2) as long as p e (0, 1).

Therefore, as long as 4)2 <_ 3/4, then (3.1) and (3.2) show that u’ < 0,- tan(x) < u <
0, and so 0 < p < 1/2. To prove that 2 _< 3/4 while -tan(x) _< u _< 0, we combine
(3.7) and (3.8)and obtain

(x) _< q j01cos2(x cos2(t)dt < v/(.75) for x e [0,2).

We conclude that 1 since and u are bounded by 0 _< 2 _< 3/4, and u < 0 on
(0,2). Also, u(1) < 0 since u’ < 0 on (0, 1].

Next, we consider the second case.
(ii) -1/4 <_ q < 0. Then (3.8) implies that < 0 for x e (0,1) as long as

0 < p < 1. As in case (i) above it follows that u < 0, u < 0, and 0 < p < 1/2 as long
as 2 <_ 3/4. Since -tan(x) < u < 0 while 2 _< 3/4, it follows from (3.8) that

0 :> (x) >_ q j01cos2(x cos2(t)dt > -(.75)1/2 for 0 _< x <_ 1,

and the proof is complete.
Next, we determine the behavior of u for a large and 0 _< b _< 1.
LEMMA 3.2. There exists al > 0 such that if a >_ al, 0 <_ b <_ 1, and Iql <- 1/8,

then u(&) > tan(l) for some & e (0, 1). Furthermore, u(x) > 0 for & <_ x < and
limx- u(x) > O.

Proof. We assume that the lemma is false and obtain a contradiction. Thus, we
assume that there exists a sequence { (a, b) } with 0 _< b <_ 1 for all i, lim-o ai cx
and such that for each i, lu(x)l <_ tan(l) for x e (0, 1). Here 1 since u is bounded.
Since [0, 1] is compact there exists b E [0, 1] and a subsequence {bk } such that ik ---* oc
and bik b as k -- oc. Thus we may set b b, drop the dependence of a on i,
and consider large a. We first consider the special case b 0. Then (3.3) reduces to

(3.9) ’ ax 2u q(p2 1).

Since it is assumed that u(x) <_ tan(l) on (0, 2), it follows from (3.1) and (3.7) that p
is uniformly bounded on (0, 2). Thus there is an M > 0, independent of a, such that
(3.9) reduces to

’ >_ ax- M- 2u.

Integrating (3.10), we obtain

x
--2 ftx u(s)ds(3.11) (x) :> (at- M)e dr.

If 0 <_ x <_ M/a, then (3.11) reduces to

ox (rx2 Mx) e2 tan(1)(3.12) (x)

_
(at- M)e2tan(1)(x-t)dt

_
since u > -tan(l) on (0, ). In particular, from (3.12) we obtain

M2e2 tan(l) M
(3.13) (x) > 0 < x <

2a a
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If x > M/a then

(3.14)

2udsdt

Thus, for large a > 0, we conclude from (3.14) that

(3.15) (x) >_
tan(1) (7X2

for x e [1/2, 1].

Substituting (3.15)into (3.2), we obtain

(3.16) u’ > -2tan2(1) +
e-4 tan(1) (72X4

16
for x e [1/2, 1].

An integration of (3.16) shows that u(&) > tan(l) for some e (1/2, 1) and a large,
a contradiction of our earlier assumption.

A repetition of these steps shows that there is a/ E (0, 1) and a value 5 > 0 such
that if a _> 5 and 0 <_ b _< D then u(2) > tan(I) for some 2 E (0, 1). Next, let b [/, 1].
Again, there exists an N > 0 such that (3.3) reduces to

(3.17) ’ <_ a(x- D) 2u+ N

as long as lul _< tan(l). Under the assumption that lu] _< tan(l) on (0,/), we integrate

(3.17) and find that -(x) is large and positive over [, ]. Again, an integration of

(3.2) shows that u(2) > tan(I)at’some 2 (-, ). Finally, once we have u(2)> tan(l)
at some 2 (0, 1) we need to show that u > 0 for x (5, 1] as long as the solution
exists. For this we return to (3.2) and see that u’ > -(1 + u2). An integration of this
inequality from 2 to x gives the result.

In order to complete the proof of Theorem 3.1 we will employ the following
topological result.

THEOREM (McLeod and Serrin [16]). Let I be the closed unit square {0 <_ x _<
1, 0 _< y <_ 1} in the (x, y) plane, and let A1 and A2 be disjoint relatively open sets of
I containing, respectively, the lines y 0 and y- 1. Then the complement D of A1
and A2 in I contains a continuum, F1, joining the lines x 0 and x 1.

Remark. The McLeod-Serrin theorem applies equally well to any rectangle.
We are now prepared to define our first two shooting sets. We restrict (b, a) to

lie in the rectangle S- { (b, a)10 <_ b <_ 1, 0 <_ a <_ al }, where al satisfies Lemma 3.2.
Then,

A {(b,a) e SI 1 and u(1) < 0}

and
A2 {(b, a) e S either < 1 or else u(1) > 0}.

LEMMA 3.3. Let q [-1/4, 0)t (0, 1/4]. Then A1 and A2 are relatively open,
nonempty subsets of S.

Proof. Continuity forces both A1 and A2 to be relatively open sets. Lemmas 3.1
and 3.2 show that A = b and A2 .
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A1 contains the line segment a 0, 0 _< b _< 1. A2 contains the line segment
a=al,O<_b<_l.

The McLeod-Serrin theorem immediately guarantees the existence of a continuum
F1 C S which joins the lines b 0 and b 1, and has the further property that
F1 fl A1 F1 A2 . One final property of F1 is given in the following lemma.

LEMMA 3.4. Let q e [-1/8,0)tJ (0, 1/8]. If (b,a) e F1 then the solution exists

for all x e [0, 1], and u(1) 0.
Proof. We assume the lemma is false and obtain a contradiction. Thus, we sup-

pose that there is a point (b, a) E F1 such that the solution becomes unbounded at
some 2 E (0, 1]. Then, one of p, u, and must become unbounded as x 2-.
Suppose that u becomes unbounded at 2. Since u > -tan(l) on [0,2) it must be
the case that u > tan(l) at some (0, 2). But then (b, a) e A2ma contradiction,
since F1Cl A2 . Therefore -tan(l) <_ u <_ tan(l) for all x e [0,2). It then follows
from (3.1) and (3.3) that p and remain bounded over [0, 2). Thus the solution must
exist and remain bounded over [0, 1]. Finally, suppose that u(1) -7= 0. If u(1) > 0 then
(b, a) A2ma contradiction, since F1VI A2 . If u(1) < 0 then (b, a) e Almagain a
contradiction since F1 Cl A1 . We must conclude that u(1) 0, and the lemma is
proved.

Having shown the existence of the continuum F1 on which u(1) 0, we have now
completed the first half of our proof of Theorem 3.1. It remains to be proved that
there exists a point (, ) F1 for which (1) 0. We shall need the following result.

LEMMA 3.5. Let b 0 and q e [-1/8, 0) t2 (0, 1/8]. If u(1) 0 then (1) > 0.
Proof. The first case to be considered is that 0 < q _< 1/8. Again, we recall that

if u(1) 0, then it must be the case that

(3.18) -tan(l) < u(x) < tan(l) for 0 <_ x <_ 1.

An integration of (3.1) shows that

(3.19) 0 < p(x) <_ .95

for 0 _< x _< 1. It follows from (3.19) and (3.3) that

(3.20) ’_>ax-2u for0_<x_<l.

An integration of (3.20) gives

(x) >_ a te-2 f "(8)dSdt > O for0_<x_<l.

In particular, (1) > 0. Next, we consider the second case, that -1/8 <_ q < 0. We
assume, for the sake of contradiction, that (1) _< 0. Since u(0) u(1) 0 and
u’(0) < 0 there is a first 2 e (0, 1) such that u’(2) 0. Then 0 < p(x) < p(0) on (0, 2],
so that (3.2) implies 2(2) k 3/4. Suppose that (2) k V/-3-/4. Our assumption that
(1) _< 0 implies that 0 at some first x* (2, 1]. It follows from (3.3) that

(3.21) ’>_ q- 2u.
An integration of (3.21), together with (3.18), gives

(x)e2 u(s)ds (.75)1/2 + q e dt

k (.75)1/2 + 6.91q

>0
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FIG. 4.1. Solutions to (3.1)-(3.5) via a numerical shooting technique. (a) The magnitude at

the origin, p(O), as a increases for q 0, 5, 10; (b) magnitude versus x for a 8 and q 0, 5, 10;
(c) phase gradient versus x for same parameters as (b).
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FIG. 4.2. The ensemble frequency as a function of a for q 0, 5, 10.

for 2 _< x _< 1. Thus we have obtained a contradiction, at x 1, to our assumption
that (1) _< 0. It remains to consider the possibility that (2) _< -v/(.75). For this
case, we use (3.7), integrate (3.21), and obtain

>_ q

cos(x) > -/(.75) or 0 <_ < 1.

Thus (2) > -v/(.75), and we have arrived at a contradiction. This completes the
proof of the lemma.

The next step in our shooting argument is to determine the behavior of solutions
on the half-line b 1, a > 0, which we call L.

LEMMA 3.6. Letq e [-1/8,0) t2 (0, 1/8]. /f (1, a*) e F1NL then(1) <_ O.
Proof. First we consider the case q E [-1/8, 0).
As in Lemma 3.5, since u(1) 0, it must be the case that (3.18) and (3.19)

hold. It follows from (3.19) and (3.3) that ’ _< -2u. An integration yields (1) _< 0.
Next, suppose that q e (0, 1/8]. Since u(0) u(1) 0 and u’(0) < 0, there is a first
e (0, 1) such that u’() 0, and therefore 2(2) _> v/(.75). Since a(x- 1) _< 0, (3.3)

reduces to

(3.22) ’ + 2u _< 1/4 for 0 _< x <_ 1.

From (3.7) and (3.22) an integration leads to _< .25/cos2(x) < 4(.75). Therefore,
(2) <_ -V/(.75). Again, (3.22) holds over [2, 1]. Integrating (3.22) from 2 to 1 and
using (3.18), we obtain (1)exp(f 2u(s)ds) <_ .125 v/(.75) < 0. Thus (1) < 0 and
the lemma is proved.

We are now prepared to proceed with the final details of the proof of Theorem 3.1.
Because the set F1 and the interval 0 _< x _< 1 are compact, it follows from standard
theory that (1) is continuously dependent on (b,a) F1. Therefore, since (1) >_ 0
on F1 N {b 0}, and (1) _< 0 on F1 N {b 1}, we conclude that there must be a
point (b, ) F at which (1) 0. This concludes the proof.
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FIG. 4.3. The solutions to the full partial differential equation compared to those obtained from
the shooting argument. The solid line is the shooting curve. The remaining curves correspond to
grids of 50 and 25 points, respectively. (q 10, a 10, d 2.) (a) The magnitude. (b) The phase
gradient.

4. Numerical solutions. In this section, we numerically investigate the solu-
tion to (1.1) and (1.2). We first solve the boundary value problem (3.1)-(3.5) and
show the behavior of the solutions as a function of a. Next, we compare these with the
solutions obtained by solving the full partial differential equations (1.2). Finally, we
solve (1.1) for a chemically realistic model and compare the results with the solution
of (1.2). In particular, we show that the magnitude of the oscillators decays with steep
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FIG. 4.4. Space-time picture showing the first component of the Brusselator oscillator. The
highest concentration is black and the lowest is white. Parameters are d 1, a .6, b 1.5, a 9.
The method of lines with Euler integration was used; dt 0.0001, npts 50. The initial values are
on the homogeneous limit cycle. This figure depicts t.- 3 to 8 in steps of 0.025.

gradients in frequency.
We first numerically solve equations (3.1)-(3.5). There are two shooting parame-

ters, the amplitude p(0) and the bulk frequency t. We choose a 0 and thus obtain
values p(0) 1, t 0. Then, we can increase a and follow this solution. We do it
by integrating the initial value problem p(0) r0, u(0) 0, (0) 0 to x 1 to
obtain values of u(1) U(ro,) and (1) _-- (I)(r0, Ft). If these are both zero, we are
done. By integrating the variational equations obtained by differentiating equations

with respect to r0 and Ft, respectively, we can numerically find the partial
derivatives of the two functions U(ro, ) and (I)(ro, t). Thus, we can use Newton’s
method to improve our guess of r0, . Since we start with a guess that is the final
converged value for the previous value of a, it typically takes only a few iterations
to converge to a new value. If the convergence fails after 50 iterations, the program
stops. Otherwise, we increase a and continue the calculation. We use a fixed-stepsize
Runge-Kutta integrator to solve the initial and variational problems.

In Fig. 4.1(a) we depict the magnitude of the solutions at x 0, r0 as a increases
for several values of q,d. There is virtually no difference between the curves as q
changes; while the existence proof for q 0 is far more difficult, the behavior is
almost identical to the q 0 case. It is clear that as a increases, the magnitude of the
oscillations decreases. Figures 4.1(b), (c) show the magnitude and phase gradient as
a function of x for a 8 fixed and q 0, 5, 10. The main consequence of the "twist"
term is to induce a slight asymmetry on the amplitude. There is virtually no difference
in the phase gradient. Numerical simulations later in this section and the results of
[12] seem to imply that the trivial solution p(x) =_ 0 is the only stable solution for
d >= 1 and a sufficiently large. Changing d has a more profound effect on the picture;
with larger values of d the point at which the oscillation vanishes occurs at a larger
value of a. Again, citing our previous results [12], and noting that q appears only as
a nonlinear effect, it is clear that this critical value of a is independent of q.

The main effect of q is on the value of gt, the ensemble frequency. Figure 4.2
shows Ft as a function of a for q positive, negative, and zero. All curves pass through
the origin; the q 0 curve is given by t o’/2.

To ascertain if the solutions to the boundary value problem are stable solutions
to the initial value problem (1.2), we integrate (1.2) starting with homogeneous initial
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FIG. 4.5. Magnitude and phase gradient from simulation in Fig. 4.4. (a) The average ampli-
tude; (b) the average phase-gradient.

conditions vl 1, V2 0. We discretize space into either 25 or 50 points, and use Euler
integration with a small timestep to solve (1.2). In order to compare solutions to the
boundary value problem, we compute p(x) V/V2(x,t)+ v(x,t) at several times.
Locked solutions will not vary. We also compute by numerically taking the spatial
derivative and using the fact that vl pcosO, v2 psinO. In Fig. 4.3, we show p and

as computed from (1.2) for 50 and 100 points, along with the solution to (3.1)-(3.5).
There are differences which we believe to be primarily due to discretization error.
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FIG. 4.6. The first component of the Brusselator as a function of time and space when a 19.
This shows the decay to rest. Numerical parameters as in Fig. 4.4. Time is from 0 to 5.0 in
steps of .05.

As a final example, we solve the following chemically motivated example (the
well-studied Brussellator):

(4.1) ut (1 + ax)(a (b + 1)u + u2v) + duxx,

(4.2) vt (1 + ax)(bu u2v) + dvxx,

with Neumann boundary conditions. We have artificially imposed a gradient in fre-
quency by multiplying the kinetics by an x-dependent term. To compute the analogue
of p and the phase gradient , we proceed as follows. We assume that at each spatial
point, we can write

(4.3) t) + p(z, t) cos(O(x, t)),

(4.4) v(x, + p(x, t)cos(e(x, t)).

Here (, ) is the equilibrium point of (4.1), (4.2), (a, (b- 1)/a). Thus, if p 0 we are
at equilibrium. To compute p(x, t) we just calculate the root mean square deviation
from the equilibrium. Differentiating (4.3) and (4.4) with respect to x, allows us to
compute:

(x, t) ((’ t) ),(x, t) ((:, t) )(, t)
p(x, t)

Typically p(x, t) and 0x(x, t) will not be independent of time as in the example above,
so we average these values over one complete cycle to get r(x) and (x). In Fig. 4.4,
we show the u component of the solution to (4.1), (4.2) in a space-time plot. Fig. 4.5
shows the averaged value of r(x) and (x). We remark that for this fairly steep gradient
the magnitude of the oscillators is about half the numerically computed magnitude for
a 0. The qualitative picture of the phase gradient is virtually identical to that of the
A- w system considered above. Finally, in Fig. 4.6, we show a space-time transient
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plot of the u component for a 19. As can be seen, the magnitude of the oscillator
damps out, and the equilibrium becomes asymptotically stable.

We expect that other examples of diffusively coupled oscillators with large gradi-
ents will behave in the same qualitative manner. There are two crucial assumptions
that we have made for this behavior to occur: (i) the diffusion is strong, and (iN) the
diffusion is scalar. Indeed, in a recent paper [17] Sherman and Rinzel show that for dif-
fusively coupled membrane models (which have diffusion only of one of the variables),
then complex and chaotic behavior can occur. In [8] we show that a pair of identical- w oscillators can have a variety of complicated behaviors when the coupling is
nonscalar.

For small diffusivity, the behavior of these systems as the gradient increases is
quite different. Rather than a collapse to rest, phaselocking is lost and the medium
breaks up into regions with different frequencies separated by quasi-periodic and
chaotic regimes. We will consider some examples of this behavior and analyze this
regime in a later paper.
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SINGULAR PERTURBATIONS AND THE
COUPLED/QUASI-STATIC APPROXIMATION IN LINEAR

THERMOELASTICITY*
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Abstract. A uniform asymptotic expansion in the inertial constant e is given for one-dimensional
linear thermoelasticity by a two-timing method. The result shows that the usual coupled/quasi-static
approximation (e 0) is not uniformly asymptotically correct even to lowest order. The interaction
between diffusion and wave propagation is clearly displayed. The proof of uniform asymptotic validity
to order e2 is accomplished by energy estimates.

Key words, coupled/quasi-static linear thermoelasticity, singular perturbations, two-timing
expansion, multiple scales
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1. Introduction. In this paper we give a uniform asymptotic expansion with
respect to the inertial constant for linearized one-dimensional (homogeneous, isotropic)
thermoelasticity. The result shows that the usual coupled/quasi-static approximation
(which corresponds to zero inertial constant) of the temperature, displacement, and
stress is not uniformly asymptotically correct even to the lowest order. In contrast,
this approximation of the entropy is correct to the lowest order.

The governing partial differential equations (PDEs) in question are (in dimen-
sionless form)

(1.1)
(1.2)

0t 0xx + 7uxt 0,

e2uu ux + /0 0,

where 0 is the temperature (variation from a given reference temperature), u the dis-
placement, e the (square root of the) inertial constant, and the coupling constant,
which is a measure of the thermal-mechanical interaction. Equation (1.1) is a state-
ment of conservation of energy and (1.2) is a statement of balance of linear momentum
(see, e.g., [1], [2], and [3] for a derivation of the equations).

The coupled/quasi-static approximation of (1.1)-(1.2) consists of setting e 0
but retaining a nonzero coupling constant so that

(1.3) t xx + Yxt O,

(1.4) "# O.

If also 0, the temperature 0 is a solution of the classical heat equation

(1.5) }t tx O,
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and under vari.ous boundary conditions the displacement is identically zero (rigid
conductor).

The relationship of 0 to and has been studied extensively by Day (see [4]-[7]),
who establishes the asymptotic equivalence of solutions for large t:

(0-)--+0 and (0-)--,0 ast--+x

for the temperature in (1.1)-(1.2), the coupled/quasi-static in (1.3)-(1.4), and the
classical in (1.5). Day’s results are for the initial-boundary value problem (IBVP)
with appropriate boundary conditions and are independent of the initial values of, u, ut or or ; moreover, the results are uniform in the space variable x. The
cited results do not attempt to answer the question concerning the closeness of the
approximations for finite t; indeed, the temperatures , , and need not be close
initially. Our scaling for dimensionless quantities is the same as that used by Day in
[7] but our notation differs in order to simplify the resulting formulas.

In this paper we focus attention on the asymptotic behavior in e for small positive
e of solutions of an IBVP for (1.1)-(1.2). This is a singular perturbation problem.
One might expect that there is an initial layer near t 0 (as for hyperbolic-parabolic
problems, see, e.g., [8] and [9]) and that one can obtain a uniform expansion by the
addition of appropriate initial-layer correction terms. This is not the case, however,
and there are wave propagation terms depending on e, even at the lowest order. We
obtain the asymptotic expansion by the two-timing technique of singular perturbation
theory (see, e.g., [10]).

For definiteness we consider solutions of (1.1)-(1.2) subject to the boundary con-
ditions

(1.6) 0(0, t;e)=0, 0x(1, t;e)=0, uz(O, t; e) O, u(1, t;e)=0,

i.e., the temperature is maintained at zero on the stress-free end at x 0, and the
clamped end at x 1 has perfect thermal insulation. We have treated other boundary
conditions, including those considered by Day, but the resulting formulas here are
simpler.

At t 0 we specify the initial conditions

(1.7) 0(x, 0; e) (x), u(x, 0; e) f(x), ut(x, 0; e) g(x).

We will refer to the IBVP consisting of (1.1), (1.2), (1.6), and (1.7) as problem
(P). For smooth solutions of (P) to exist there must be the usual compatibility
between the initial and the boundary data, e.g.,

(0) ’(1) f’(O) =/(1) g’(O) g(1) 0

and further conditions for higher-order smoothness. These compatibility conditions
will be assumed without further mention except in the statement of Theorem 1 in

5 on the validity of the asymptotic expansion. The theorem is proved by means of
energy estimates.

2. The reduced problem and the coupled/quasi-static approximation.
The coupled/quasi-static approximation consists of the system of PDEs

(.1) + 0,

(2.2) 7 fi O,
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which is (1.1)-(1.2) with e 0. The system (2.1)-(2.2) is to be supplemented by ap-
propriate boundary and initial conditions. For definiteness we consider the boundary
conditions (1.6)

(2.3) 6(0, t;e)=0, x(1, t; e) 0, fix (0, t; e) 0, fi(1, t; e) 0,

but other boundary conditions, as mentioned above, are of interest. The system (2.1)-
(2.2) is of second order like (1.1)-(1.2), but represents a change of type since (2.2)
is just an ordinary differential equation (ODE) in x. The loss of the second time
derivative of u when e 0 implies that one can no longer impose the initial condition
(1.7) on fit. In fact, it is not immediately evident how to correctly pose appropriate
initial data. Because of (2.2) it is clear that 6 and fi cannot be specified, independently
at t=0.

The approach followed by Day [7], who is primarily interested in the evolution of
the temperature, is to eliminate the displacement from the system (2.1)-(2.2). From
(2.2) and the boundary conditions (2.3) we have

(2.4) 7(x, t) fix(x, t),

i.e., the displacement gradient is everywhere directly proportionM to the temperature,
so that (2.1) yields the classical heat equation

(2.5) 6t (1 +-2)-lxx.

With the boundary conditions (2.3) for/ plus the initial condition/(x, 0) (x), the
IBVP for (2.5) is well posed with unique solution

(2.6) /(x, t) E Cne--gt sin AnX,
n--1

where here and below c := /i + /2 An (2n-1) for n 1 2, and Cn is the nth2
Fourier coefficient of ,

/oCn 2 (x) sin AnX dx.

In view of (2.4) it follows from (2.6) that- t
n--1

COS ,nX.

It is to be observed that sin Anx and -( ,_xj, cos AnX appearing in the series for and
are precisely the (unnormalized) eigenfunctions for the coupled/quasi-static problem
(2.1)-(2.3).

In a similar manner, however, the temperature can be eliminated from the sys-
tem (2.1)-(2.2) yielding t (l+/2)-xx, which, upon integration and imposition
of the boundary conditions (2.3) on , yields the same heat equation, as in (2.5),

(2.7)
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The IBVP for (2.7) with boundary conditions (2.3) for fi and initial condition fi(x, 0)
f(x) is well posed and has the unique solution given by

oo 2

n--1

COS nX

and from (2.4),

e- sin Anx,

where fn is the Fourier coefficient of f,

fn 2 f(x) cos Anx dx.

The solutions (, fi) and (1, 1) do not coincide except in the special circumstance
that /(x) if(x). Thus, in addition to the loss of the initial condition on ut, the
independence of initial conditions on u and is also lost when e 0. The crucial
question is: What solution of (2.1)-(2.2) approximates the solution of (P) up to O(e)
uniformly on [0, 1] [0, T]? Following closely upon that question is the possibility of
an asymptotic expansion in e for higher-order approximations.

Before turning in the next section to the answer of the principal question just
posed, it is enlightening to approach the situation from a different perspective. We
note that (2.1) involves the time derivative of the entropy :- +x and (2.2) the
spatial derivative of the stress & :-- x -’ITS. Introducing [7] the entropy and the stress
as new dependent variables into the system (2.1)-(2.2) yields

(2.8) )t (1 + 2)-)xz 0,

(e.9) =0.

The boundary conditions (2.3) together with (2.9) imply that & 0 and the boundary
conditions (2.3) also imply

(2.10) )(0, t)=0, )(1,t) =0.

In addition, the initial conditions (1.7) require that we take

(2.11) 0) (x) + zf,(x).

The parabolic IBVP consisting of (2.8), (2.10), and (2.11) is well posed with unique
solution given by

(x,t) E(n /Anfn)e-X-tsinAnx,
n--1

from which it follows, using (2.4), that

(2.12) 2(x, t) E -5 (n 9/Anfn)e sin Anx
n--1
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and

The asymptotic analysis of 3 will confirm that the solution (, u) of (P) is closely
related to the solution (2, fi2) of the coupled/quasi-static problem. In particular, this
demonstrates the inadequacy of the solution (2.6) of the classical IBVP to describe
uniformly the behavior of the temperature (even asymptotically to lowest order). The
parabolic equations (2.5) and (2.7) clearly imply that in this approximation the evo-
lution of the initial temperature and displacement distributions is governed solely by
thermal diffusion. This is not the case for the solution of (P) which, even to lowest
order in e, is subject to thermal diffusion and dissipative wave propagation.

One of the dilemmas regarding the specification of initial data when e 0 can be
resolved in the following way. For e > 0 we are free to specify the initial temperature
and displacement independently of each other. As we will see, the solution of (P) for
small e, if one neglects wave propagation, is approximated to lowest order in e by the
solution of (2.1)-(2.3) corresponding to initial values

and

(x, 0) (x) + /f’(x)
1 q_q(2

fi(x, 0)
1 + -I2

[({) + "f’({)]d{,

for which it is true that /(x, 0) x(x, 0). But if one considers all contributions to
lowest order in e including wave propagation, then 8(x, 0; e) (x) and u(x, 0; e)

3. Asymptotic representation of temperature and displacement. In this
section we give an expansion of the solution of the full problem (P) in powers of the
inertial parameter e for e tending to zero. We will see that pa of the lowest-order
approximation is precisely the coupled/qui-static approximation (2.12)-(2.13) given
by the reduced problem. Our result is valid ( proved in 5) uniformly on [0, 1] [0, T]
in the x, t-plane for any given T > 0. The method used to develop the expansion is
the two-timing technique of singular perturbation theory (see, e.g., [10]).

We make an expansion with respect to the eigenfunctions of the coupled/qui-
static problem

(3.1) O(x, t; e) On(t; e)sin Anx,
n=l

(3.2) (x, t; ) Vn(t; ) cos nX,
n=l

where n (2n--1) for n 1 2, and A/c2 are the corresponding eigenvalues.
In view of the orthogonality of the eigenfunctions, substitution of (3.1), (3.2)

(P) results in a coupled system of linear ODEs

(a.a) + o,
(3.4) e2n + Vn + nOn 0
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for each n 1, 2,..., together with initial conditions

(3.5) o(0; ) , v(0; ) f, r2(0; ) a,

where the Cn and fn are the Fourier coefficients of the initial data and f, as in 2,
and similarly

/ogn 2 g(x) cos ,nX dx.

To study the asymptotics in e of (3.3)-(3.5) we introduce two time scales for each
mode,

t
s t, T "= -(1 +/n2 -t" ")’n4 -’’" "),

with n, n,.. constants to be determined. This choice is motivated as follows: elimi-
nation of either On or Un from (3.3)-(3.4) yields a third-order ODE with characteristic
equation

2r3 _}_ 2,2nr2 .. (1 + /2),2nr + ,4, 0

whose roots r lead one to s and T as given. One then makes the Ansatz

o(t; ) (,) + I’(, ) +(,) +",
Vn(t; ) F(s, ) + F/’(, ) +(,) +...,

which upon substitution into (3.3)-(3.4) yields the following systems of PDEs:

(3.6) L[F, (rd] O, M[F, (1 O,

(3.7) L F (r 2Fs.,. M[F,O{] -[Fg, 1,

(3.s)
L[F, or] -2F. F
M[F, Or] -[F, ],

(3.9)
L[F{,1 -2F,8,. F8, 2/nF.,.
M[F, or] -.[F, ’1 + nZ.[F,

where the differential operators L, M, and are defined by

(3.10)

L[F, (] F-- + .2F +
M[F, (I)]: +-
C[F, +1" + + +- .X.F.
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Likewise, initial conditions are obtained from (3.5)

((0, O) On F(0, O) fn, F,n (0, O) O,
(o, o1 o (o, o1 , 2,(j --, F2 =0, j-

Fni,r (0, O) gn F,,s (O, 0),
F. (0, o) -F. (0, 01.2,r l,s

The temperature variable if) can be eliminated from each of the systems (3.6)-(3.9)
by using the operator identity

--O0L[F, #P] "yAnM[F, (1
03F c2A2n

OF
+ 0-7

yielding the same third-order operator for F, F, As above, c is the positive
constant v/1 2. To avoid the presence of secular terms and subsequent deterioration
of the approximation, we ask that the resulting equations be homogeneous. Thus we
require the additional conditions:

(3.12)
(3.13)

where the operator K is defined by

K[F,@] -2& [FI + 7,[F, 1.

With the procedure for the expansion now delineated to any order, we find the solution
of the problems for F and (I), j 0,’1, 2. Details appear in the Appendix.

Thus we are led to the following asymptotic representation which is valid uni-
formly on [0, 1] x [0, T] for any given T > 0:

O(x, t; ) Oo(x, t; ) + o(x, t; ) + :O(x, t; ) + o(),
(, t; ) o(x, t; ) + (x, t; ) + (x, t; ) + o(),

where for j 0, 1, 2

[Oj(x, t; e) E "yAn sin Anx X [C q- "yt]e
n=l
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(3.19)

+ [(fi. + ct)cos #n(e)t + ( + t)sin

Uj(X, t; ) E COS nX X _,,/2 [t
__
t]{-:

n--1

22 1+ [(.42 + 2t)cos (e)t + (B2 + 2t)sin #(e)t] e-’-7t

for #n(e) Anc(1 + e2)/e and, in particular,

Oo(X, t; ) E -()n nfn)e t
n=l

(3.20)

and

(3.21)

sin A,x

-2t{ 7 }+ E e 2 -(nfn A-/n)COSltn(e)t sinAx
n--1

o(x, t; ) C2n (/nfn )n)e
n--1

COS nX

-f- Ee- fn zt- n Cn COS tn()t COS)nX.
n--1

The coefficients C etc. for 01,02, u, and u2 are constants depending only on the
data and are given explicitly at the end of the Appendix.

The first term in (3.20) and the first term in (3.21) are precisely the coupled/quasi-
static approximations given in (2.12) and (2.13). Thus, even to lowest order, that
approximation does not give a uniform approximation in e of the full problem (P) on

[0, 1] [0, T]. Such a uniform approximation is provided by (3.16) and (3.17) and to
lowest order by (3.20) and (3.21). The correction terms here do not exhibit boundary
layer behavior. Their influence decays exponentially but over a time interval indepen-
dent of e. Moreover, the interaction of the thermal diffusion and wave propagation is
exhibited at the various orders in e. Note that the damping of the waves is due to
the coupling and, to the lowest order, is independent of the inertial constant e. As
the parameter e gets smaller, the waves travel faster but do not damp out any more
rapidly.

4. Entropy and stress. One can introduce [7] the entropy and the stress a,

(4.1) := 0 + ux, a := ux

in place of the temperature 0 and the displacement u in order to study the ther-
moelastic problem considered here. Then from (1.1)-(1.2) one obtains the system of
PDEs

(4.2)
(4.3)

(1 + 72)r/t r/ + 7a O,.( +,) (1 + -)o o,
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which is subject to the boundary conditions

(4.4) r(0, t) a(0, t)=0,
(4.5) r](1, t) a(1, t)=0,
and the initial conditions

(4.6) (x, 0) X(x),
(4.) o(, 0) ;(),
(a.8) ,(, 0) + ,,(x, 0) (x),

where the relationships between these data and those for 0, u are

X(x) () + f’(),
(x) f’() (),
(x) ( + )’(x).

The initial-boundary value problem given by (4.2)-(4.8) offers an alternative ap-
proach to the thermoelastic problem. Moreover, there are certain simplifying features
which accrue by using the entropy/stress variables. For example, it follows from
(4.2)-(4.3) that the coupled/quasi-static approximation (e 0) in these variables is
governed by an uncoupled system

(1 + /2)t )xx 0,

ax 0,

so that the stress in this approximation is (because of the boundary condition) iden-
tically zero and the entropy (in this approximation) is a solution of a heat equation.

The asymptotics in for the entropy and stress can be obtained immediately via

(4.1) from the results in 3. The corresponding formulas are obvious (see, e.g., (4.9)
and (4.10) below). Conversely, one can develop the asymptotic result for the entropy
and stress directly from (4.2)-(4.8) by the same two-timing method of 3 (and the
Appendix), and subsequently the asymptotics for the temperature and displacement
follow via (4.1). It is a fact that there are simplifications in those details if one works
with the entropy and stress. For example, the terms F (of equation (A.2)) for the
displacement and (I) (of (A.3)) for the temperature have analogues

Xne- -s

for the entropy (i.e., their contribution to the entropy exhibits pure diffusion) and

,72A

( cos)c-)e-’-:
for the stress (i.e., this contribution to the stress exhibits pure damped wave motion).
Here and below Xn, Tn, and are the Fourier coefficients of the initial data in (4.6)-
(4.8) so that Xn Cn- ’Anfn, fn --Anfn- ")’d/)n, and n -(1 + ")’2)Angn. In
consequence,

x A2

?(x, t; e) E xne-=t sin Ax
n--1

oo .72A2--{,-,nn()} siI ,X + 0()(4.9) +eE c3
n--1
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and

which shows how the diffusions and damped wave behavior interact at the lowest orders
in e. In particular, we note that to lowest order the coupled/quasi-static approximation
correctly describes the entropy but not the stress.

5. Uniform asymptotic validity. In this section we prove the following.
THEOREM 1. Let and g belong to the Sobolev space HS(0, 1) and let f belong

to H9 (0, 1) with

(0) ,,(0) (s)(0) 0,

,(0) ,,,(0) f() (0) 0,

,(1) ,,,(1) (7)(1) 0,

1(1)-- 1"(1) f(8)(1)- O,

g,(O) g,,,(o) g() (o) o,

g(1) g"(1) g(6)(1) O.

Then for any given T > 0 the solution (0, u) of the initial-boundary value problem (P)
given by (1.1), (1.2), (1.6), and (1.7)satisfies

O(x, t; ) Oo(x, t; ) + o(, t; ) + o(),
,(x, t; ) ,o(, t; ) + (, t; ) + o()

uniformly as e O+ on [0, 1] x [0, T]. Here 0o, 01 and no, ul are given in (3.18) and
(:.1).

Remark. The smoothness hypotheses of the theorem are far more stringent than
those required for the existence of smooth solutions in the closed region [0, 1] x [0, T].
They are dictated by the appearance of 02 and u2 (see (3.18) and (3.19)) in the
proof of the theorem, though not in its statement. The higher-order energy estimates
considered in the proof place the greatest demands on the smoothness of the data.

We note that Day [6] also has rather stringent regularity hypotheses (C6(S) be-
havior on the strip S [0, 1] x (0, cx)) in examining the long time asymptotics of the
coupled/quasi-static approximation for the boundary conditions u(0, t) u(1, t)
O(O,t) 0 and 0x(1, t) h(t). When this last boundary condition is replaced by
0(1, t) f(t) Day [5] requires O,u e C8([0, 1] x [0, cx]) and f(n) e LI(O,x)NL2(O,(x))
for 2 < n < 6 in examining the uncoupled/quasi-static approximation.

Proof. The proof uses energy estimates on the remainder terms P and R defined
by

P(x, t; )" O(x, t; ) [O0(x, t; e) + cO1 (x, t; e) + e202(x, t; e)l
R(x, t; )" (x, t; ) [u0(x, t; ) + (x, t; ) + (x, t; )].

Then (P, R) is a solution of the IBVP consisting of the system of PDEs

Pt P + ")’Rt ep(x, t; ),
e.2Rtt Rxx -t- ")’Px e3r(x, t; e)
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with the initial conditions

P(x, 0; e) O, R(x, 0; e) O, Rt(x, 0; e) e2z(x; e)

and boundary conditions

P(0, t;e)=0, Px(1, t;e)=0, Rx(0, t;e)=0, R(1, t;e)=0.

The nonhomogeneous terms p and r are given by

O0 _2A2
p(x, t; e) E e 2c P, sin ,nX

n--1

where

and

where

64co A + 8c7 B

2c4
(.,/2 + 2) (A + at) + a32c6 c2

and the nonhomogeneous boundary datum z is

z(x; e) E "A3n(6 + 18/4 72,2 + 16) Cn
= 16c1

-{-
5y2)4n(4 122 + 8) 32A(72 4)

16c0 fn + 8c6
gn } COSnX.
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Now we obtain energy estimates for (P, R) in the usual way: multiply (5.1) by P and
(5.2) by R; then integrate the sum over [0, 1] [0, t] for 0 < t

_
T; integrate by parts

using the boundary conditions to get the energy identity

(5.3) E(t) E(O) / oo /oo /op2xdxds (e2pp + e3rRt)dxds,

where the energy at time t is

1/olE(t) := - (p2 + e2R2 / R2)dx

so that

E(0) - z2(x; e)dx.

Use of the Schwarz inequality and the arithmetic-geometric mean inequality gives the
following estimate of the right-hand side of (5.3)"

jol(e4p2 + p2 / ear2 + e2R2)dxds

so that

[ /o /o ]/op2dxds < E(0) + e4 (p2 + r2)dxds + E(s)ds

and thus by the Gronwall Lemma,

E(t) + p2dxds <_ eT z2(x; e)dx + e4 (p2 + r2)dxds }.
Therefore, we have the L2(0, 1)-estimates

liP(., t; e)ll 2 _< 2E(t) O(4),
lIRa(’, t; 0112

_
2E(t) O(4),

and so from the Sobolev inequality

IR(x, ; )I < Ri(, ; )d,

a uniform estimate follows:
R(, ; ) O(:).

To obtain a uniform estimate on P we use a higher-order energy estimate as follows:
differentiate (5.1) and (5.2) with respect to x, multiply the resulting equations by
Px and Rxt, respectively, integrate the sum over [0, 1] [0, t], integrate by parts using
higher-order boundary conditions obtained from (5.1)-(5.2) and the original boundary
conditions. This yields the energy identity

() k(o) + fo fo p2xdxds (e2pxp + e3rxRxt)dxds,
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where
1 foo Rxx)dx.(t) := - (p2 4-e2R2t 4- 2

It should be mentioned that it is this part of the argument that uses the stringent
smoothness hypotheses of the theorem.

Estimating the right-hand side of (5.4) as was done for (5.3) yields/(t) O(ea)
uniformly for 0 < t _< T and so

1

IP(x, t; e)l 2 <_ P,2dx <_ 2/(t) O(e4).

Thus we have the desired uniform estimate on P and the proof of the theorem is
complete.

Appendix. Determination of F, ).
PROBLEM 0. The lowest-order terms F, (I) are determined by the system of

PDEs
L[ 0 ] 0, M[F,(] O, K[F (] 0

subject to the initial conditions

8(0, 0) , F(0, 0) , F: (0, 0) o,0T

where the operators L, M, K are defined in (3.10) and (3.15).
Elimination of (I) from L[F, (] 0, M[F, (’] 0 yields

o3 OF
Or----5- + c’--r 0

so that with c x/’l + 72 as above,

F(s, T) a(s) cos AnCT + b(s) sin AnCT + d’(s),

and then from M[F, (i)] 0 we obtain

O(s, T) 9/An{a(s) COS AnCT + b’(s) sin XnCT + C(S)}

with a, b, c, and d to be determined. From L[F, (I)] 0 one obtains the addi-
tional relationship

d(s) -’)’2c(s)

while application of the initial conditions implies

a(O) - fn + -nCn b(O) =O, c(O) -n fn

Finally the equation K[F, (I)] 0 yields the first-order ODEs

(A.1) da2C-ds +Xa 0, db Anb0 O,2c2___s +7.72 2 n c2__s + 2ndcAnco =0,
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so that F and are completely determined. The results are

(A.2)

A

F( )= ( )e-

+e N + cosacr

(A.3)

1 2

a(,, )= 7( A)-*

q-e 2X2s{ ")’- .(nfnq-’YCn) COS)nCT}"
PROBLEM 1. The functions F and , are determined by the equations (3.7),

(3.13) subject to the initial conditions (3.11) and thus their solution follows the same
pattern as that for F and as we now show. By virtue of the fact that K[F,]
0 elimination of from (3.7) yields for F the same third-order ODE as for F and
so

F(8, T) a(8) cos ngT - b(s) sin Ancr + d(s).

Thus the "M-equation" in (3.7) yields

(s, T) =’YAn {a(s) cos AncT + b(s) sin ACT + C(S)

}c
a’(s) sin ,cr

while the "L-equation" in (3.7) implies

dr(s) --y2c(s).

The initial conditions (3.11) imply that

gn ")’ [3"yAnfn + Cn(’y2 2)] C(0) 0,a(0)=0, b(0)=+
while the "K-equation" (3.13) yields the same first-order ODEs (A.1) for a, b, c as
for a b c’ provided that

::(: + 4)n 8C6

Hence

"rax’9"s{ gn 72,’n [3fnq_ Cn ]}2c’- + -2c5 (.y2 2) sin AnCr

"/(’/ 2)f -"e(’/ + 4)n sin.nc’r.
2c5
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PROBLEM 2. The functions F and are determined by (3.8), (3.14) subject
to the initial conditions (3.11). Following the same method as above one finds

and

Cn

Collecting the above results yields (3.18), (3.!9) and hence (3.20), (3.21) with

(f + -)
A A c2

8 =78 =o,

(- -f)
8=8=o, c8=c8=

72 72A2n[ (/)n ]-N + (2- )A + )-2(2 1)

A (2 + 72) A
2c4 A + B,c

B B 0,

gn ,n
[37bn (272 1)Anfn], C C -C,c= 4+-

72"\3n (,nfn T 7n), O, 7 C10 (7)nfn (n)0- 2C10
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ERROR BOUNDS FOR ASYMPTOTIC
EXPANSIONS OF LAPLACE CONVOLUTIONS*

.X. LI AND R. WONG$

Abstract. Asymptotic expansions are derived for the Laplace convolution (f. g)(x) as x c,
where f and g have asymptotic power series representation in descending powers of t. Bounds are
also constructed for the error terms associated with these expansions. Similar results are given for
the convolution integrals

f(t)g(x + t)dt and f(t)g(x- t)dt

as x cx). These results can be used in the study of asymptotic solutions to the renewal equation
and the Wiener-Hopf equations.

Key words, convolution integrals, asymptotic expansions, error bounds, integral equations

AMS subject classifications. 41A60, 45E10

1. Introduction. Let f(t) and g(t) be locally integrable functions on [0,
The convolution integral

(1.1) (f )(z) f(z t)(t)dt, z > O,

occurs frequently in Laplace transform theory [1], [10] and Volterra integral equations
[6]. Asymptotic behavior of this integral, as z -- oe, has been investigated by Riek-
stir/g [9] and Handelsman and Lew [2], under the condition that f(t) and 9(t) have
asymptotic series representations in descending powers of t near t o. For simplicity,
let us assume that

(1.2) f(t) at--", 0 < a <_ 1,

and

(1.3) g(t) E bt--, 0 < _< 1,
8"-0

as t -+ c. The results of Riekstir and Handelsman and Lew establish the existence
of asymptotic expansions of (f g)(x) in certain forms, but these expansions involve
exponents and coefficients that are not explicitly known. To be of any practical use,
these quantities should be determined explicitly. The purpose of this paper is to
provide formulas for these quantities, and to construct computable bounds for the
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error terms associated with these expansions. For instance, in the case 0 < a, < 1,
it will be shown that

n--1 n--1 n--1

(f * 9)(X) E Asx-"-s "[- E Bsx-3-s q’- E Csxl-"-f-s -’I- Rn(X),
s=0 s=0 s=0

where the remainder satisfies

Rn(x) Qnx1-a-e-n

for x > 1. The coefficients As,Bs and C8 in (1.4) are given explicitly in (4.15)-(4.17)
below, and the constant Q is also given; cf. (5.3).

Our approach is based on the distributional method introduced by McClure and
Wong to obtain similar results for the Stieltjes transform [4] and the Riemann-Liouville
fractional integral [5]. For convenience, we include in 2 a brief summary of some of
the facts concerning distributions and convolutions given in these two references. In
3, we introduce the noncommutative convolution product

(1.6) (I (R) 9)(z) =_ I(z t)(t)dt,
,10

and explain why we need such a product. Section 4 contains the derivation of (1.4),
while the proof of (1.5) is given in 5. The case when one of the exponents oz and in
(1.2)-(1.a) equals 1 is treated in 6. Section 7 deals with the case c 1. In the
final section, we illustrate how the results in [12] and the present paper can be used
to derive the asymptotic expansions of the convolution integrals

(1.7) a+ (x) f(t)9(z + t)dt, z > 0

and

(1.8) G-(x) f(t)g(x t)dt, x > O.

In (1.8), it is assumed that g(-t) g(t) for every t - 0. Asymptotic behavior of these
two integrals has been considered previously by Muki and Sternberg [7] in a study of
an integral equation. Our investigation was motivated by a study of the asymptotic
behavior of solutions to the renewal equation [11]

(1.9) u(t) g(t) + f(t T)U(T)dr,

where f(t) is a probability density function on [0, oc), and the Wiener-Hopf equa-
tion [8]

(1.10) (t) (t) + I(t- r)(r)dr,

where f(-t) I(t). In both (1.9) and (1.10) f and 9 satisfy (1.2) and (1.a), respec-
tively. We will defer this problem to another investigation.

2. Distributions and convolutions. Let I be an open interval (finite or infi-
nite) in the real line , and let D(I) be the test function space of all C functions
(t) with compact support in I. A distribution A on I is a continuous linear functional
on )(I). We write (A, ) for the action of a distribution A on a test function . Two
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distributions A1 and /2, not necessarily with the same domain, are said to be equal
on an interval I if (A1, ) (A2, ) for all E D(I).

Let Loc(I) denote the space of locally integrable functions on I. Each f Loc(I)
defines a distribution f in I by

(2.1) <f, > /f(t)(t)dt, e (I).

If A is a distribution whose domain includes I, then we say that A belongs to Ltoc(I)
if there is a function f itoc(I) such that (A, ) (f, ) for all (I).

Let A be a distribution in I. Its derivative DA is defined by

where ’(t) denotes the ordinary derivative of T. If f e Ltoc(I), then we write Df
for the distributional derivative of f. If f also exists (in the usual sense) almost
everywhere and is locally integrable in I, then f also defines a distribution in the
sense of (2.1). It is well known that the two derivatives are not always the same; see,
e.g., [13, p. 250]. However, we have the following lemma [5]. (For a proof of this result,
see [13, p. 251].) Rcall that a function f is said to be lochlly absolutely continuous in
I if it is absolutely continuous in every compact subinterval of I.

LEMMA 1. Suppose f Lo(I). Then Of Lto(I) if and only if f is (equal
a.e. to a) locally absolutely continuous (function) in I, and in that case Df f’.

Let Lt+o() denote the class of functions which are locally integrable on R and
which vanish on (-c, 0). The distributions associated with functions in Lt+oc(I) all
have support contained in [0, x)). Fom Lemma 1, we immediately have the following
result; see I13, p. 2551.

COROLLARY. Suppose g e L+oc(). Then Dg e L+oc(]) if and only if g is equal
a.e. to a locally absolutely continuous function h in R. In particular, Dg e Lc(I)
implies h(O) O.

+If f and g belong to L,oc(]), then equation (1.1), i.e.,

f(x t)g(t)dt,

defines f g E Lc(). We note in passing that f g is continuous at 0, and at
every point of continuity of either f or g. This equation may also be regarded as
the definition of the convolution of two distributions, each belonging to Lc(IR). Now
we consider distributions of the form Dnf, where n is a nonnegative integer and

f Lc(). Clearly, the Heaviside function H, the Dirac delta function ti DH, and
tH(t) are all of this form, where # is any real (or complex) number. Throughout the
remaining portion of the paper, we shall write t for the last mentioned distribution,
taking it as understood that the distribution vanishes on (-oc, 0). In [a, 6.5], Jones
introduced the definition

Dnf . Drag D+m(f , g).

Since f g Lc(l), the distributional derivative Dn+m(f * g) on the right-hand
side of (2.2) is well defined. It was this definition that led McClure and Wong [5] to
the construction of an exact rem.inder for the asymptotic expansion of the Riemann-
Liouville fractional integral.
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3. The convolution (R). Returning to (1.2) and (1.3), we write

n-1

(3.1) f(t) E ast-- + fn(t)
’-0

and
n-1

(3.2) g(t) E bt-- + g(t)
s--O

for each n >_ 1, and let fo(t) f(t) and go(t) g(t). As in [4], we define inductively
fn,0(t) fn(t) and

fn,+(t) fn,j(T)dT

(--1)j+ /t
o

j!
(T t) fn (T)dT,

j 0, 1,... n- 1. All these functions exist and are absolutely continuous on It,
for each t > 0. Furthermore, if 0 < a < 1 then f,(t) is bounded on [0, R] for
any R > 0 and O(t-) as t --, oo. Ifa 1 then fn,n(t) O(t-) as t --, oo and
fn,n(t) O(I log t l) as t -- 0+.

Except for constant factors, each function t-- in (3.1) defines a distribution,
vanishing on (-cx, 0), as a derivative of t-; fn defines a distribution Dnf,, also
vanishing on (-x, 0). In [4], it was proved that if 0 < a < 1 then these distributions
are related by the equation

(3.4)
--I n

f= East-s--EcD-e4 f,
s=0 s=l

where

(-1)s M[/; s](-1) t-/(t)dt (s 1)!(a.) c (_ 1)!

M[f; z] being the Mellin transform of f defined by

(3.6) M[I; z] t-xf(t)dt

or its analytic continuation. For the second equality in (3.5), see Lemma 7 in [13,
p.173]. If 0 < fl < 1, then the corresponding result for (3.2) is

n--I n

+
s=0 s=l

where

(-1) t-g(t)dt= (-1)(3.8) ds (s- 1)! (s-1)’----- M[g; s].

Since the convolution product in (2.2) is distributive, taking the convolution of f
and g given in (3.4) and (3.7) leads to the distribution fn * g, By definition (2.2),

(3.9) f * g D2(f,n * gn,).
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Now fn,n * gn,n is a distribution in (0, oc) given by the locally integrable function

(fn, * g,)(x) fn,(x t)g,(t)dt
(3.10) r

x ]o f,n[x(1 u)]gn,n(xu)du.

To differentiate this function under the integral sign, we recall the following result
stated in [5]. (For a proof of this result, see [13, p. 327].)

LEMMA 2. Suppose that f(t,x) is integrable in a compact rectangle In, b] x [c, d],
and absolutely continuous as a function of x, .for each t E In, b]. Suppose also that
Of(t,x)/Ox is integrable in [a,b] x [c,d]. Then the function F(x) defined on [c,d] by
F(x)- f: f(t,x)dt is absolutely continuous in [c,d], and

F’(z) -I(t,)dt.

Since f,j and 9, are locally absolutely continuous in (0, oe) for j 1,..., n,
he function (f,,r * 9,,)(x) in (a.10) can be differentiated n (and only n) times under
integral signs. But equation (a.9) requires 2n times differentiation. Therefore, a
straightforward extension of the method given in [15] does not work, and we shall make
the following necessary modification.

The integral in (1.1) can be written as

(3.11) (f g)(x) f(x t)g(t)dt + g(x t)f (t)dt.
go go

This device is due to Riekstir [9]. In terms of the convolution product (R), (3.11)
becomes

(3.12) (f g)(x) (f (R) g)(x) + (g (R) f)(x).

This formula holds for any f and g in Lz+oc(]R). The advantage of the convolution
(R) over the convolution is that the function f(t) in (1.6) need be locally integrable
only on the open interval (0, cx)), and not on the half-closed interval [0, cx)) as required
in (1.1). Thus, equation (1.6) may be used to also define the convolution f g, where

f is a distribution in Ltoc(O,) and g is a distribution in Lc(). We wish to extend
this to a definition of convolutions of the form f Drag, where m is a nonnegative
integer.

Let f and g be two (m- 1)-times differentiable functions in (0, ), and let
g Lc(). For x > 0, we define

m--1
1 x (m--t)

=0

The motivation for this definition, and the nswer to the obvious consistency question,
are provided by the following lemma.

LEMMA 3. If f, g and Dg all belong to Lt(), then f g and 9 f are both
locally absolutely continuous, and we have

(3.14) D:f .) f Dg- f () g
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and

1

Proof. Since Dg E Lc(), by the corollary to Lemma 1 there exists a locally
absolutely continuous function h(x) such that g(x) h(x) almost everywhere in
and h(0) 0. By Lemma 1, we also have Dg g’- h’, and h’ e Lc(R). Thus, for
x > 0 we have

(f (R) h’)(t)dt h’(r) I(t- r)dtdr
,io

[f (x T) + f(T)lg(r)dT.

The last equality is obtained by integration by parts. Equation (1.6) then gives

(3.16) (f (R) h’)(t)dt (f (R) g)(x) + f(T)g(T)dT.
JO

Since h (and hence g) is locally absolutely continuous, g is locally bounded. Further-
more, since f is locally integrable, the integral on the right exists. Equation (3.16)
implies that f (R) g is locally absolutely continuous, and that

(x)f (R) g’ f (R) h’ f (R) g)’ / -f - g -By Lemma 1, D(f (R) g) (f (R) g)’ and Pg g’. This proves equation (3.14).
Using a similar argument, it can be shown that g (R) f is locally absolutely con-

tinuous. Since Dg e Lc(), replacing f and g by Dg and f in (3.12), respectively,
gives

Dg, f Dg (R) f + f (R) Dg,

which, in view of the definition of in (2.2), is equivalent to

(3.17) D(g, f) Pg (R) f + f (R) Dg.

Coupling (3.14) and (3.17), we obtain

Dg (R) f D(g , f) f (R) Dg
1 x x

1 x x

The last equality follows from (3.12). This proves equation (3.5).
Using the fact that DH, it can be shown directly from (3.13) that

(3.s) : D D:
for any :(z) hich ,anishes on (-, 0) d hs locally bsolutely continuous mth
derivative on (0, ). In particular, we have

(.) -’-" eD (-)( +
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where s and j are nonnegative integers and 0 < a < 1. In (3.19) we have used the
Pochhammer notation

(’)o 1, (3’)n=3’(3’+l)"’(3’+n-1), n=l,2,

The incomplete Beta integral is defined by

B(a,b) t-(1-t)-dt,

where a > 0, b > 0 if z >_ 1 and b can be negative or zero if x < 1. In terms of this
integral, it is evident that for 0 < c _< 1, 0 < < 1 and s any nonnegative integer, we
have

t--s (R) t- B1/2 (1 , 1 c s)t1---.

Using the fact that

t_e_j (-1)Y DYt_,
()

it can be shown from the definition (3.13) that

(3.20) t-- (R) t-e-j e,j(a, )t1--e--

in (0, cx), where

e,j( D) (a + + s 1) B] (1 D, 1 a s)
()

(a.1) -1
2.+z++_ (a + ,6 + s + )__

=o (Z + )-

If 1, then we use the facts that

and

where (o (1) log 2,

t--j
(--1)J Dj+l logt
j

t-- (R) logt [(()logt + r (c)ltl--,

(3.23) r/(c) fo 1/2
(1 u)--s log udu -a B1/2 (a, 1

for 0 < c <_ 1 and s 0, 1, The definition (3.13) then gives

(3.25) hs,j(c) (c + s)j 23_+s (c 1 + 8)j+l s(O)
j j

t-- (R) t-1-j [h,j(c)logt + ks,j()]t---j

for 0 < a < 1, s 0, 1,..., or a 1, s 1, 2,... and

1 (2_+ 1)(3.22) ((a)
a- 1 + s
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and

ks j(a) (j + 1) (a
1 + s)j (a 1 + s)j+l (a + s)j 2,_1+
j!

s(a)
j!

s(a)
j!

log2

+ j + 1 (a 1 + s)g
sos(a) (a + 1 + s + e)j_e_

e=o
g (J + 1 .)e (g + 1)j_e

_() (J(a +g)e+12-1+*]’ 0<a<l._

To derive the expansion in (1.4), we need one further preliminary result.
LEMMA 4. Let g and g2 be in Lc(IR), and suppose that g is n-times differen-

tiable and g2 is m-times differentiable in (0, oo). Let N max{n, m}, and suppose
that f is N-times differentiable in (0, oo). Then we have

(3.27) f (R) (Dngl + Drag2) f (R) Dngl + f (R) Dmg2

in (0, oo), i.e., the convolution (R) is left-distributive.
Proof. Without loss of generality, we assume that n > m, and write n m+k, k >_

0. Then
DUg1 + Dmg2 Dn(gl + g-k)),

where g(2-k) (x)is the kth iterated integral of g2(x), i.e.,

Let h gl + g(2-k).
definition (3.13),

1
n-1 (n-l-e)

f )(Dngl - Drag2)-- Dn(f ()h)-J-- y If ()h(.> ()]
g=o

In terms of g and g-k), this becomes
(a.s)
f (Dng+Dmg2) Dn(f g) + Dn(f g-k))

l
n-1

X g{e) X (,--e) l
n-1

X X

=o g=o

By re-indexing, we have

(3.29)

1
(x t)k- (t)dt.1)!

Then f (D (Dng + Drag2) f (R) Dnh, and h e Lz+oc(IR). By

The Leibniz rule gives

(3.30)

m--1
X X

j=O

k
X X

i=1

1
k

x (m+i-1)

n--1
X X

g=O
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In (3.29) and (3.30), empty sums are understood to be zero. Inserting (3.29) and
(3.30) in (3.28), the final result (3.27) now follows from (3.13). [

4. Derivation of (1.4). From (3.1), we have

n-1

(4.1) (f (3 g)(x) E as(t-8-" (3 g)(x) + (f (3 g)(x)
s--O

for 0 < x < oc. Each of the convolutions in (4.1) exists as an ordinary integral in
the form (1.6), and defines a locally integrable function in (0, oc). By Lemma 4, the
convolution product (3 in (3.13) is left-distributive. Hence for each s 0, 1,... n- 1,
we have from (3.7)

n--1 n--1

t-8-" (3 g E bjt--" (3 t--J E d+lt--" (3 D 6 + t--" (3

j=0 j=0

which, combined with (3.19) and (3.20), gives

(4.a)

n--1

t-s-a (3 g E bjes,j(a, )t1-a--s-j
j=0

n--1-- E(--1)j+ldj+l (O -- 8)jr-s-j-" - t--s--" (3 gn.
j=0

Since the distribution defined by gn is Dngn,n, by (3.13)

(4.4)

Note that gn, is locally integrable on [0, oc). Thus, from (1.6) we have

(4.5) (t--" (3 gn,n)(X) x1-a-s fj01/2(1 t)-a-Sgn,n(xu)d.

Since gn,y is locally absolutely continuous in (0, ) for j 1,..., n, by Lemma 2 we
can differentiate (4.5) under the integral sign n times to obtain

(4.6)

(t-s- (3 gn,n)(n)(x)
n

=jO (t)(--1)J(O--I+s)jxl---J o0
almost everywhere in (0, ). We have written the last expression in the form x-nc(sl)(X)
in order to indicate that the rate of decay of c(l) (x) is independent of n; see 5. Further-
more, since each function that has been differentiated is locally absolutely continuous,
by Lemma 1

(4.7) D(t--" (3 g,n) (t--" (3 gn,n)(n)(X) x--n!I)(x).
Now each distribution in (4.3) is determined by a locally integrable function in (0, ).
By replacing these distributions by their corresponding functions, we obtain from (4.4)
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and (4.7)

(4.8)

-.- x--ncl) (x)

holding in the sense of distributions in (0, c). It is straightforward to show that this
equation in fact holds pointwise almost everywhere in (0, c). Since every convolution
in (4.8) and (4.6) has at least one factor which is continuous in (0, cw), we conclude
that (4.8) holds for each x in (0, cx). Substituting (4.8) in (4.1) gives

n--ln--1

(f (R) g)(x) EE asbjes,j(c, )x
s=O j=O

n--ln--1-- EE(-1)j+l (O/-- s)jadj+Ix--j-
s=O j=O

n--ln--1

[( )1 x -a-s xEEa - g,-y+
=0 =0

n--1

+ E asCl) (XlX--n + (fn (
s’-O

(4.9)

for 0 < a <_ 1 and 0 </ < 1. Reversing the roles of f and g, we obtain a corresponding
result for (g (R) f)(x). Adding the two results together yields

(4.10)

n--ln--1

(y g)(x) EE asbj[es,j(a, ) + ej,(/, Ol)]Xi--3-s-j
s=O j=O

n-ln-1

+ EE(-1)j+l(O + sljasdj+lX-S-J-a
s=O j=o

n-in-1

+ EE(-1)j+(fl + s)jbsCj+lX-S-J-Z
s=0 j=0

+ Rn,4(x)+ Rn,5(x)+ Rn,6(x),

s=O j=o

x x
ffn,n--j (-) --bs (-) x]fn,n--j (-)

(n--l--j)

where
(4.11)

Rn,4(x)

(4.12)
n-1

Rn,5(x) E[asl)(x) -+ bs2)(x)]x-n,
s----o
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R,(.) (I )(x) + ( I)(x),

and (n2) (x) is given by
(4.14)

n

(1 u)-z-sun-’ f,j (xu)du.

Each of the three double sums in (4.10) can be rearranged to give a single sum,
and truncating each of these single sums after n terms gives the expansion (1.4) with

As (-1)J+l(o + s j)jas-jdj+l,
j=O

(4.16)
8

Bs E(-1)J+I( + s- j)jbs-jCj+l,
j=O

and

(4.17) C8 a_jby[e_j,j(a, ) + ej,_j(, a)].
j=O

The remainder Rn(x) in (1.4) can be written as

6

(4.18) R,(x) E Rn,i(x),
i--1

where

(4.19)
2n--2 n--1

s=n j=s--n+

as_jbj[es_j,j(a, ) + ej,_j(, Ol)]X1-a--s,

(4.20)
2n-2 n-1

X--8--ORn,2(x) E E (-1)J+l(z q- s j)jas-jdj+l
s=n j--s--n+

and

(4.21)
2n--2 n--1

Rn,3(x) E E (-1)J+i(/ q- s j)jbs_jCj+lX-s-.
s--n j=s--n+

The last three terms on the right-hand side of (4.18) are given in (4.11)-(4.13).
5. Proof of (1.5). First we estimate the terms Rn,l(X), Rn,2(x) and Rn,3(x).

By re-indexing, we have from (4.19)
n--2n--2--s

Rn,(x) E E an_y_b+j+[en_j_,+y+l(a,)
s=0 j=0

+ e++l,--l(Z, )]x--z-n-

Hence
Rn,l(X) "In,1xl-c--n
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where
n--2n--2--s

"Yn,l(X) E E an-j-lbs+j+l[en-j-l,s+j+l(Ce,/3)
s=o j=o

+ !-
Similarly, we have

and

where

P,2(x)l_< Anx--’

R,3(x)l< Bx--,
n--2n--2--s

tn E E an-j-tds+j+2(a + n- j 1)s+j+t
s=0 j=0

n--2n--2--s

n E E bn-j-ics+j+2(fl + n- j- 1)s+j+l I.
s=0 j=0

Next we consider the terms Rn,4(x), Rn,5(x) and Rn,6(x). As in [5], we assume

M(a) sup {t=+" fn(t l} < +oc
(0,)

and

Nn(t) sup {t=+lg(t I} < +.
(0,)

These conditions do not follow from (1.2), (1.3), and the local integrability of f and g,
but will be true in most applications. From (3.3), it is easily seen that for j 0,... n,

M,(a)(5.1) fns(t) 1< (a + n j)j

Similarly, for j 0,... n,

(5.2) g’j(t) l< ( + n j)j

Hence, from (4.6) and (4.14), we have

and

t-f-n+j

Coupling the last two estimates gives

I<_
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for x > 1, where

(.){ ’(a+s-1)’B1/2(l-,l-a-s),- N(f) a,
s=0 j=0

I,,I (/ + s-1)(a+ n- j) B1/2 (1 a’ 1 s) }"l+M() b

To estimate Rn,(x), we carry out the differentiation in (4.11). The result is

R,a(x) (_1)j2_+
n e. 1

a( + 8)j gn,j+l
s=o =o j=0

}
om (5.1) and (5.2), it follows that

,4(z)I ,4---,
where

{ ( )n,4 2aT+Ts_ n- i. 1

s=0 =0 j=0

(Z + n j )+ N(Z)
(a + n j )+

Since the convolutions fn g and gn f exist ordinary integrals, their estima-
tions are rather ey, and we have from (4.13)

R,() I,x-
where

7n,6 Mn(o)No()B1/2 (1 , 1 o n) + Mo(a)Nn()B1/2 (1 c, 1 n).

A combination of the estimates for R,,i(x), i 1,... 6, gives

(5.3) R(x)I_< A-"- +9-- +0-"--,
where

The result (1.5) now follows from (5.3) by letting Qn In +
6. The case 0 < a < 1 and 1 1. If one of the exponents a and f in (1.2)

and (1.3) is equal to 1, then we may assume, without loss of generality, that 0 < a < 1
and 1. In this case, the incomplete Beta integral in (3.21) does not exist, and
hence the expansion in (1.4) no longer holds. To derive the asymptotic expansion of

f g in this case, we shall make use of (3.24), instead of (3.20). Since the argument
here is similar to that in 4, we shall keep our discussion brief. The analogue of (3.7)
is

n--1 n

g E bst-s-1 E d*sDS-15 + gn,
s=0 s=l
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where

d: =i [gs,s (t)+ (-i)s-l"----ff(s-1,
b-I logt]

see [4]. (For more tractable expression of d;, see [13, p. 300, eqs. (2.32) and (2.34)].)
From (3.24) and (3.19), it follows that

rt--1

t--" (R) [.(.)ot + .(.)]t---"
j=O

+ (-)+( + );+t---" + t--o (R) .
j=0

Since the results (4.4) and (4.7) continue to hold when fl 1, by the same argument
used for (4.9) we obtain

n--ln--1

(f (R) )(x) [h;()ox + ,()lx---"
s=0 j=0

n-ln-1

+ ,(-)/( +);/---
(6.1)

=0 j=0

n--ln--1

[( )1 X -a-s XEE as - gn,n-j+
=o =o

n--1

+ E ase)(x)x- + (fn (R) g)(x)
s--O

for all x in (0, c). Furthermore, since (4.9) holds even when a 1, reversing the roles
of f and g (and hence a and ) in this equation gives an expansion for (g (R) g)(x). We
now add the expansions for f (R) g and g (R) f together, and rearrange the terms as in

4. The final result is

(6.2)

where

(6.3)

n--1 n--1

(f g)(x) E(D logx + E)x-"- + E Fsx-- + Rn(x),
s--0 s--0

D a_jbyhs_y,y(a),
j=0

(6.4)

and

(6.5)

8

Es E as_j{bj[ks_j,j(a) + ej,s_j(1, a)] + (-1)J+(a + s j)jd+l}
j=O

Fs E(--1)J+1(1 -4- s- j)jbs-jCj+l.
j=O
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To estimate the remainder Rn(x), we assume, again as in [5], that there exists
/’ E (0, 1) such that

N(’) sup {t+’ g(t I} < +.
(0,)

For x > 1, it can be shown as before that there are computable constants Pn and Qn
such that

(6.6) R(x) I<_ (P log x + Q)x-’--.
Note that the actual error R(x) in the expansion (6.2) is O(x-- log x). Hence the
estimate (6.6) is slightly short of the actual result.

7. The case c -= / ---- 1. This case turns out to be simpler than one might
have expected. This is mainly due to the split of the convolution integral (f g)(x) in
(1.1) into two convolution integrals (f (R) g)(x) and (g (R) f)(x) of the form (1.6). The
expansion for (f (R) g)(x) given in (6.1) allows the possibility of a 1; cf. (3.24)-
(3.26). By reversing the roles of f and g, the corresponding expansion for (g (R) f)(x)
also allows this possibility. For convenience, we set

hs,j =- hs,j(1) and ks,j -= ks,j(1).

Now let c 1 in (6.1), and write down the corresponding expansion for (g(R)f)(x).
Adding up the two expansions and rearranging the terms as before, we obtain

n-1

(7.1) (y * g)(X) E(Gslogx -- Hs)x-s-1 -- Rn(x),s--O

where

(7.2) G a_bj (h_j,y + hy,_j),
j=0

8

(7.3) Hs E[as-jby(ks-j,j + kj,s-j) + (-1)J+(1 + s j)i(as_jdj+ + bs- y+l)],
j=0

and c+ has the same meaning as d+ given at the beginning of this section except
that gs,(t) and bs_ are now replaced by f,(t) and as-.

To obtain an error bound, one may assume that there exists p E (0, 1) such that

sup {tn+p fn(t) I} < +oc
(0,)

and
sup {t
(o,o)

Under these conditions, it can again be. shown that there are computable constants
P and Q such that

Rn(x) < (Pn log x + Qn)x1-2p-n

for x > 1.
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8. The integrals in (1.7) and (1.S). In [7], Muki and Sternberg have con-
structed one-term asymptotic approximation for the integrals G+ (x) and G-(x) under
the conditions

o(1)(8.1) g(t)---+O ti: a?0, l<m<oo,

and

(8.2) f(t)

For the case of G-(x), they also assumed that g(-t) g(t) for every t - 0. Now if

f and g have the asymptotic expansions (1.2) and (1.3), then it is natural to expect
that infinite asymptotic expansions can be derived for these integrals. This is indeed
the case, and we shall show in this section how this can be done.

The asymptotic expansions of G+ (x) can be easily obtained from the correspond-
ing result for the generalized Stieltjes transform

o

f(t) dr.(8.3) S(x) ( + x)
If f(t) is locally absolutely integrable on [0, oo) and satisfies (1.2) then the integral
(8.3) converges absolutely as long as a + p > 1. Asymptotic expansions for S$(x) have
been derived in [12].

We suppose that f and g satisfy (1.2) and (1.3), respectively. When 0 < a < 1,
we can derive the asymptotic expansion

(8.4) G+ (x)
s--0 s=0

where

(8.5) A F(s + a +/3 1) ab_
F(1 i a)

=0
r( + Z)

and
s

bs-i(8.6) B; r(s + f) -(-1) r(s + Z)
i=0

where M[f; z] is the Mellin transform defined in (3.6).
If a 1 then we have

M[f i / 1],

(8.7) G+ (x) (C; log x + D*)x--,
s--0

where

(s.8)

and

(-1)C: F(s +/3) i!F(s + 13)aibs_i
i=0

(8.9) D c(s + p)b_,.
i--0
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The constant ci(p) is given by

(8.10) cs(p) (-1)8 r(p + s)
,! {[(* + (* + +

and

(8.11) a(p) lim M[f; z p + 11 +z--*s+p Z 8 p

Although no explicit bounds are given for the error terms associated with the
asymptotic expansions (8.4) and (8.7), it is evident from our analysis such bounds can
indeed be constructed.

In view of the condition g(t) g(-t) for every t = 0, the integral G-(x) in (1.8)
can be written as

(8.12) G-(x) (f g)(x) + g(t)f(x + t)dt.

The second term on the right-hand side is an integral of the form (1.7) which has
just been considered. Hence, the asymptotic expansion of G-(x) can be obtained by
adding up the corresponding results for the two integrals on the right of (8.12).
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Abstract. The authors prove that a semilinear elliptic boundary value problem has five solu-
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Extensive use is made of Lyapunov-Schmidt reduction arguments, the mountain pass lemma, and
characterizations of the local degree of critical points.
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1. Introduction. Let f" R R be a differentiable function such that f(0) 0,
and

(1.1) ff(oc) lim
f(u) e .

Let f be a smooth bounded region in n, and A the Laplacian operator. Let
/1 < ’2 -- _

k -- be the eigenvalues of-A with Dirichlet boundary condition
in f.

The solvability of the boundary value problem

Au + f(u) 0 in 12,
(1.)

u 0 on 0,

has proven to be closely related to the position of the numbers if(0), ff(cx)) with
respect to the spectrum of-A. In fact, Castro and Lamer in [11] showed that if
the interval (f’(0),ff(oc))t3 (ff(oc),f’(0))contains the eigenvalues Ak,...,zkj and
if(t) < Aj+l for all t E then (1.2) has at least three solutions. The proofs in [11]
are based on global Lyapunov-Schmidt arguments applied to variational problems.
Subsequently Chang (see [12]) approached the same problems using Morse theory,
and Hofer (see [14]) obtained the existence of five solutions when ff(oc) < 1. For
other results in the study of this problem we refer the reader to [3], [4], [6], [8], [10],
[17], [18], and [19], among others.

Here we prove the following.
THEOREM A. /f if(0) < , f’(c) e (k,k+)with k >_ 2, and

if(t) <_ " < Ak+, then (1.2) has at least five solutions. Moreover, one of the fol-
lowing cases occur.

(a) k is even and (1.2) has two solutions that change sign.
(b) of oI *he
(c) k is odd and (1.2) has two solutions that change sign.
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(d) k is odd and (1.2) has three solutions of the same sign.
The assumption k _> 2 is sharp; Theorem B of [11] gives sufficient conditions

for (1.2) to have exactly three solutions when k 1. We prove Theorem A by using
Lyapunov-Schmidt arguments to reduce the solvability of (1.2) to a finite-dimensional
problem, and then we use degree and index theories applied to critical points. We
make intensive use of the fact that the Leray-Schauder degree is invariant under the
Lyapunov-Schmidt reduction process. In order to calculate various indices and degrees
we prove that in large regions the Leray-Schauder degree of maps arising in problems
like (1.2) where f crosses the first eigenvalue

(__lim f(u) < 1 <limu,-, f(U))u
is equal to zero. We also use "mountain pass arguments" of the Ambrosetti-Rabino-
witz type (see [5]).

In 2 we recall the framework that allows studying solutions to (1.2) in terms of
variational functionals and the Lyapunov-Schmidt reduction method. In 3 we calcu-
late the index of the trivial solution when the nonlinearity crosses the first eigenvalue,
establish the existence of positive and negative solutions, and compute their indices.
In 4 we prove Theorem A.

2. Preliminaries and notation. First we state a global version of the
Lyapunov-Schmidt method. For the sake of completeness we recall that if (I) is a
iunctional of class C and u0 is a critical point of (I) then u0 is called of mountain
pass type if for every open neighborhood U of uo (I)-l(-cx),(I)(uo)) U 0 and
(I)- (-cx, (I)(uo)) g V is not path connected.

LEMMA 2.1. Let M be a real separable Hilbert space. Let X and Y be closed
subspaces of M such that M X Y. Let j" M I be a functional of class C. If
there are m > 0 and a > 1 such that

(2.1) (Vj(x + y) Vj(x + yl),y- y) >_ mI[y- YII[ for all x E X, y, y E Y

then we have the following.
(i) There exists a continuous function " X -, Y such that

j(x + (x)) minj(x + y).
yEY

Moreover, (x) is the unique member of Y such that

(2.3)

(Vj(x+(x)),y>=O for all y e Y.

(ii) The function " X ] defined by (x) j(x + (x)) is of class C1, and

(V(x),xl} (Vj(x / (x)),Xl} for all x, 1 e X.

(iii) An element x X is a critical point of if and only if x + (x) is a critical
point of j.

(iv) Let dimX < oc and P be the projection onto X across Y. Let S c X and
E C M be open bounded regions such that

{x + (); x e s} r {x + (x); x e x}.

If V)(x) # 0 for x OS then

d (V, S, O) d (Vj, E, 0),
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where d denotes the Leray-Schauder degree.
(v) If uo xo + (x0) is a critical point of mountain pass type of j then Xo is a

critical point of mountain pass type of.
Proof. The reader is referred to [9] for the proof of parts (i)-(iii). The proof of

part (iv) follows by arguing as in Lemma 2.6 of [16]. Now we proceed with the proof
of part (v).

Suppose xo is not of mountain pass type of . Let V be an open neighbor-
hood of xo in X such that either -(-x,(x0)) V is empty or path connected.
If )-l(-oc,(x0))n V is empty, by part (i) we see that {x + y;x E V,y Y} N
j-l(-oc, j(uo)) is also empty. Thus u0 is not of mountain pass type for j. On
the other hand if -l(-c,(x0))n V is path connected, letting W {x + y;x e
V, IlY (x)ll < 1} and using again part (i) it is easily seen that W j-(-oc, j(uo))
is also path connected. This concludes the proof of Lemma 2.1.

For each positive integer m let m denote an eigenfunction corresponding to the
eigenvalue Am. Let H be the Sobolev space H(D) which is the completion of the
inner product space consisting of real C functions having support contained in Ft
with inner product

<u, v> ] Vu(x) Vv(x)dx.

As it is well known, the set {(m) can be assumed to be complete and orthonormal in
H.

We say that u H is a weak solution to (1.2) if for every H

(Vu.V
f(u) ) dx 0

By standard regularity for elliptic operators (see [11]) it follows that weak solutions
are classical solutions when f is continuous and sublinear, i.e., when f is continuous
and there is a positive constant a such that

If( )l < +

Let J" H denote the functional defined by

(2.5) J(u) J Il]Vu]]2 F(u)) dx,

where F() fo f(s)ds. Since
J e C(H,) (see [19]) and

e (Ak,Ak+l), f satisfies (2.4). Thus

(2.6) (VJ(u), ) jn(Vu.V f(u) ) dx for H.

In particular u is a weak solution of (1.2) if and only if u is a critical point of J.
Let X denote the subspace of H spanned by {1, 2,..., k}, Y its orthogonal

complement, and J the functional defined by (2.5). We claim J satisfies hypothesis
(2.1). Indeed, from (2.6) and the mean value theorem

(2.7) (VJ(x + y) VJ(x + yl),y yl) IlY Ylll 2 /fl f’()(Y Y):"
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Denoting by I10 the usual L2() norm and using that f’() < 7 < Ak+l, we have

(VJ(x + y) VJ(x + yl), y y} >_ IlY YII2 9/IlY YII
(> 1

Ak+
where we have used that [[z[[ 2 Ak+l[[Z[[ for all z e Y. Thus (2.1) holds with
m 1- 7/(Ak+) and a 2.

3. Index of the trivial solution when the nonlinearity crosses the first
eigenvalue. For /> A let p(/) :-p be the homogeneous function defined by

Tx for x > 0,
p(x)

f’(O)x for x < 0.

Let P be the primitive of p with P(0) 0, and r: H be the functional defined
by

(3.1) r(u)= f (llVul,2 P(u)) dx.

As observed in 2 (see (2.4)) r is a functional of class C1, and its critical points are
the weak solutions to

Au + p(u) 0 in
(3.2)

u 0 on 0.

Because f’(0) < and the principal eigenvalue of the Laplacian in any subregion of
F is bigger than or equal to A1, we see that if u # 0 is a weak solution to (3.2) then u
is a positive eigenfunction. Since this contradicts that 7 > A1, we conclude that u 0
is the only critical point of r.

LEMMA 3.1. If B is a ball in H containing zero then d (Vr, B, 0) 0.
Proof. By the definition of the Leray-Schauder degree if Z denotes the subspace

spanned by p, 2,..., Pz with big enough

(3.3) d (Vr, B, 0) d (P VTr, B 3 Z, 0),
where P denotes the orthogonal projection onto Z. Since 7 > we see that h(t) "=

p(t) Xlt > 0 for t # 0. Because l is in Z we have

(P VTr(x), l} (Vr(x), l)

(3.4) f(Vx.V x h(x)) dz

]a(-h(x)) dz < O if x E Z N OB,

where we have used that is positive in t. From (3.4) we have now, for each s E [0, 1]
and x Z f30B,

(3.5) <sPVTr(x) + (1 s)(-l), 1> < 0.

Hence by invariance under homotopy of the Leray-Schauder degree we have

(3.6) d (P Vr, B 3 Z, 0) d (g, B t3 Z, 0) 0,
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where K(x) -1 for all x E Z. From (3.3) and (3.6) the lemma is proven.
Let f+ be the function defined by

f+() { ff!) if>_ 0,
(0) if<0.

Let F+() fo f+ (s)ds, and J+" g If be the functional defined by

(3.7) J+ (u) IIVu]l 2 F+(u) dx.

Imitating the proof of Corollary 2.23 of [19] it readily follows that J+ satisfies the
hypotheses of the mountain pass theorem. Hence J+ has a critical point u+, which
by the maximum principle is a positive solution to (1.2). Therefore, by Theorems 1
and 2 of [15], if the set of critical points of J+ is discrete then at least one of them
is of mountain pass type and has local degree -1. Similar arguments produce either
infinitely many negative solutions to (1.2) or a negative solution u- which is a critical
point of mountain pass type and has local degree -1.

Let , f’(oc) and r as in Lemma 3.1. Since f’(x) is not an eigenvalue of
-A with zero Dirichlet boundary conditions, for p > 0 big enough and s E [0, 1] the
function sVJ+ + (1 s)Vr has no zero on the sphere centered at 0 with radius p.
Hence by Lemma 3.1 we have

(3.8) d(VJ+, Bp, 0) 0

for p big enough. For future reference we summarize the above discussion into the
following lemma.

LEMMA 3.2. Under the hypotheses of Theorem A, (1.2) possesses a positive
(respectively, a negative) solution. If the set of positive (respectively, negative) so-
lutions is discrete then at least one of them is a critical point of mountain pass type
and its local degree is -1.

Since 0 is an isolated local minimum of J+ and J we have

(3.9) d(Vg+, B, O) 1 d(VJ, B, 0),

where B is a ball centered at zero containing no other critical point (see [2]). Hence
if is a bounded region containing the positive solutions and no other critical point
of J we have

(3.10) d(VJ, , 0) d(VJ+, , 0)
d(VJ+, Bp-, 0)
d(VJ, 0)- d(VJ, B, O)
-1.

Similarly we see that if 1 is a bounded region containing the negative solutions to
(1.2) and no other critical point of J then

(3.11) d(VJ, , O) -1.

4. Proof of Theorem A. First, we show that there exists u0 H such that
VJ(u0) 0 and, if isolated, then

(4.1) d(VJ, V,O)--(-1)k
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in any region V containing no other critical point of J. In fact, by Lemma 2.1 and
(2.8) there exists " X --+ Y such that

J(x + (x)) min J(x + y).
yEY

Moreover, (x) is the unique member of Y such that

(4.2) (VJ(x + (x)), y> 0 for all y e Y,

the function 07. X --* N defined by (x) J(x + (x)) is of class C1, and

(4.3) (VJ(x),xl/= (VJ(x + (x)),Xl/ for all x, xl e X.

We now claim that for x E X

(4.4) g(x)

Because f’(oo) E (Ak,Ak+) there exists b IR and > Ak such that F() >_ (2/2) +
b. Hence

1 / 1 fax2_b[fJ(x) - Ilxll F(x) < - Ilxll 2

Since (x, x) _< Ak (x, X}o for x X, we obtain

J(x)<-llxll 1-
Because J(x) <_ J(x), (4.4)implies that

(4.5) .](x)
Since dimX < oo there exists x0 X such that

(xo) max J(x + (x)).
xEX

Taking uo x0 +(x0) we have (see Lemma 2.1) VJ(u0) 0. Suppose now that xo is

an isolated critical point of J, hence u0 is an isolated critical point of J. Since -J has
a local minimum at x0, taking W {x e X; x+(x) e V} then d (V7, W, 0) (-1)k.
Therefore by part (iv) of Lemma 2.1 we have (4.1).

Suppose k is even. Let R be large enough so that if V](x) 0 then Ilxll < R.
Because f(t) _< - < Ak+, there exist positive numbers c and c2 such that for all
X e X II)(x)ll Cl 2t- C211XlI. Thus if u x + y is a critical point of J then Ilxll <_ R
and IlYll <- Cl + c211xll. Because _7 is coercive, d (V7, BR, 0) (-1)k 1. Thus by
part (iv) of Lemma 2.1 d(VJ, C, 0)= 1 where C {x + y; Ilxll < R, IlYll < c + c2R}.
Suppose that K, the set of critical points of J, is finite. Let $1, $2 and $3 be disjoint
open bounded regions in H such that $1 C K {0}, $2 N K is the set of positive
solutions to (1.2), and 3 C g is the set of negative solutions to (1.2). By (3.10) and
(3.11) we have

(4.6) d (VJ, $2,0) d (VJ, $3,0) -1.

If u0 xo + (x0) t $2 U $3 we let $4 denote an open bounded region disjoint from
$1 U $2 U $3 such that S4CK {no}. By the excision property of the Leray-Schauder
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degree we have

1 d (VJ, C, 0) d (VJ, $1,0) + d (VJ, $2,0) + d (VJ, $3,0) -- d (VJ, $4,0)

+ d (VJ, C ($1 t2 $2 U $3 t2 $4), 0)
1 1 1 + 1 + d(VJ, C- (S u $2 U $3 t9 $4),0).

Thus, by the existence property of the Leray-Schauder degree we see that there exists

u E C (S U $2 U $3 U $4) such that VJ(u) 0, which proves that (1.2) has at
least five solutions. In this case both u0 and U change sign.

Suppose now that uo E $2 t2 $3; without loss of generality we can assume that
u0 $2. Let $4 be a neighborhood of u0 such that $4 K {uo}. By Lemma
3.2 there exists a critical point of mountain pass type ul $2 such that if $5 is a
neighborhood of Ul containing no other critical point of J+ then d (VJ, $5,0) -1.
Thus

-1 d (vg, $2,0) d (VJ, $4,0) + d (vg, $5,0) + d (VJ, $2 $4 U $5,0)
1 l+d(VJ, S2 $4 USh,0).

Thus, by the existence property of the Leray-Schauder degree there exists

u2 E $2 $4 U $5 with VJ(u2) 0. Finally,

1 d (VJ, C, 0) d (VJ, S1, 0) + d (VJ, $2,0) + d (VJ, $3,0)

+ d (VJ, C (S t2 $2 t2 $3), 0)
1 1 1 + d (VJ, C (S1 [-J $2 [-J $3), 0).

Thus there exists u3 C- (S t2S2 S) with VJ(u3) 0. Thus the set
{O, uo, ul,u2,u} together with a critical point of J in $3 shows that (1.2) has six
solutions. Since u3 $2 t2 $3 and uo, ul, u2 E $2, u3 is a sign changing solution and
uo, ul, u2 have the same sign. This completes the proof of Theorem A when k is even.

Suppose k is odd. Let Si, 1,2,3 be as above. Ifuo $2$3 the proof
follows very closely that of the case k even; the details are left to the reader. Suppose
U0 $2 I..J $3, say, u0 e $2. Because u0 > 0 in gt and Ouo/O? < 0 in OFt (here
0/07 denotes the outward unit normal derivative), using that X is finite-dimensionM
and standard regularity theory of elliptic operators it follows that for some e > 0
x + (x) > 0 in t if IIx- x011 < e. Thus and + coincide in {x; IIx- xoll < e}. Thus
]+ has a local maximum at x0. Since we are assuming (1.2) to have only finitely many
solutions, x0 is a strict local maximum of +. Let 5 > 0 be such that +(x) < ]+ (x0)
if IIx-x011 < 5. Since k > 2, {x;0 < IIx-x011 < 5} is connected. Thus xo is not
a critical point of mountain pass type. By Lemma 3.2 J+ has a critical point of
mountain pass type ul x +(x) such that if V is a neighborhood of u containing
no other critical point of J+ in its closure then d (VJ+, V, 0) -1. In particular, by
part (v) of Lemma 2.1 x0 - x. Let V0 (respectively, V1) be a neighborhood of u0
(respectively, Ul x ++(x)) containing no other critical point in its closure. Thus

-1 d(VJ+,S2,0) d(VJ+, Vo,0) + d(VJ+, V1,0) + d(VJ+,S2 (Vo V),O)
-2 + d (VJ+, 32 (V0 t2 V1), 0).

Thus by the existence property of the Leray-Schauder degree there exists a third
positive solution u2 $2- (Vo W V). Since by the existence property of the Leray-
Schauder degree (1.2) has a solution u3 e $3, we see that (1.2) has five solutions,
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namely 0, Uo, ul, u2, u3. Since Uo, ul, u2 E $2 they have the same sign. This proves
Theorem A. ]
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EXPLICIT HEAT KERNEL ON GENERALIZED CONES*

HENDRIK W. K. ANGAD-GAURt, BERNARD GAVEAU$, AND MASAMI OKADA

Abstract. The authors compute explicitly the heat kernel on the surface of cones as well as on
their generalizations. A procedure similar to the Fourier transform is employed in order to combine
two Green’s functions: one for the Bessel equation on the positive half-line and another for the
Laplacian on graph networks. An analogue of the Poisson summation formula is derived from the
residue theorem applied to the Green’s function. Numerical computations are also implemented to
determine some geometric quantity via the asymptotic expansion of the spectral function as goes
to zero.

Key words, explicit heat kernel, Bessel function, graph networks

AMS subject classifications. 35R, 58G

1. Introduction. It is usually difficult to compute explicitly the heat kernel on
two-dimensional models except the euclidean space or the disk with suitable metric.
In this paper we would like to show that the explicit heat kernel can be computed
on (the surface of) cones and on their generalizations endowed with usual euclidean
metric.

It seems that few people had been interested in computing the explicit heat kernel
on various two-dimensional spaces. In 1967, however, the heat kernel on the Riemann
surface of log z was computed for the first time, as far as we know, by Edwards [1] in
his investigation of the statistical mechanics of polymers. Of cource, since the heat
kernel is a natural object in the classical probability theory, we can also find general
useful information in the book of It5 and McKean [3]. Later in 1973, numerical
computation among others was done by Saito and Chen [5]. Also see Nechaev [4] as a
recent reference. Besides these, it seems difficult to find systematic treatment of heat
kernels on the surface of cones in the literature.

In 2 of this paper, we will outline how the heat kernel was computed on the
Riemann surface of log z via the Fourier transform for the sake of completeness. This
is partly because we would like to elucidate by comparison our function theoretic
method based on the Green’s function which is described in 3.

In the next section, we start with the definition of generalized cones. These are
real objects in our three-dimensional world and the explicit computation of the heat
kernel on the surface of generalized cones is motivated by consideration of engineering
models of two-dimensional singular polyhedrons with intersections. After generalizing
the domain of definition of the Green’s function, we shall state Theorem 2, one of our
main results. As an application, we get an analogue of the Poisson summation formula
for the heat kernel. Also some geometric quantity can be computed by means of the
asymptotic expansion of the heat kernel.

In 4 we show an asymptotic expansion of the spectral function for some basic
models in order to compare with that for classical smooth models.

In the last section, we shall present numerical computation of the coefficients in
the asymptotic expansion.

Received by the editors May 7, 1992; accepted for publication (in revised form) July 29, 1993.
Tougaloo College, Tougaloo, Mississippi 39174.
Universit(! Pierre et Marie Curie, Paris, France.
TShoku University, Sendai, Japan.
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02 02. Heat kernel on the Riemann surface of log z. Let A O-/ rr +
be the polar coordinate expression of the usual Laplacian on the plane, where 0
and 2r are identified.

Then the heat kernel Pt is defined as follows.
DEFINITION 1. P (r, O) Pt ((r, 0), (r0, 00)) is the unique solution of the

following heat equation:

(1)
=0,

Pt - 5r=o he=Co "o’ as t I O,

where 5 is the Dirac delta function.
It represents the temperature at the point (r, ) at the time t provided that

an unit calorie is injected at the point (r0,0o) at the time t 0. Note that the
multiplication by 1/ro is required in the initial condition of (1) in order to have

f Pt (r, O)r dr d0 1. Then it is not difficult to compute Pt (r, ), since T is the
direct product of two real lines. In fact, as is well known, it is equal to (1/4rt)e-d/4t,
where d r] + r2 2for cos(0 00).

Now let us proceed to the computation of the heat kernel on 7 the Riemar.n
surface of log z.

DEFINITION 2. The heat kernel on 7 denoted by Pt(r, O) is defined in the same
way as the solution of the heat equation (1).

However note that in this case 0 varies on the whole real line (-c, c) i.e., 0
and 0 2r are no longer identified.

2.1. Computation of the heat kernel on the Riemann surface. To com-
pute Pt(r,O) Pt((r,O), (r0,0)), Edwards [1] used the Fourier inversion theorem
with respect to 0. In the sequel we shall essentially follow his argument.

Step 1. By definition Pt satisfies (1) with 00 0. First, we denote the Fourier
transform of Pt by Pt, which, is defined by

F /ot(r,) Pt(r, 0)e- dO 2 Pt(r, 0)cosOd0

Here we used the fact that Pt is an even function of by symmetry. Then by applying
the Fourier transform to the heat equation (1), we obtain

because of the property of the Fourier transform of derivatives.
Therefore it is reduced to solve the heat equation for one space variable r. For

convenience of computation, we shall assume >_ 0 from now on since Pt(r, ) is an
even function of .

Step 2. Let us consider the Laplace transform of the first equation of (2) with
respect to t.
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DEFINITION 3. Go G0(r, r0, #, _2) is the Laplace transform with respect to t

of roPt (r, ) with Re it > O, i.e.,

(3) Go e-t ro t(r, ) dr.
o

Then we get

(4) it- r-hr2 r Or r2

since by integration of parts,

0
e t’ -lt dt= P+o + Go

o ro

and Pt(r,) -+ (1/ro)hr=ro as t O. Therefore it turns out that Go is the Green’s
function for the modified Bessel equation. Now let us see how Go is computed.

LEMMA 1.

-r0(5) Go r, ro it
2

2sin I x/r ) I- v/-fi r I x/fi r I v/-fir ro<_r,

where I+(z) e=i/2 J(iz) is the modified Bessel function.
Proof. First, note that I+(v/-fir are solutions of (4) with 5 replaced by 0 and that

I E Loc near r 0 when Re { > -5 in view of the asymptotic expansion of I. Next,
we introduce another modified Bessel function K(z) defined by K(z) (I_(z)-
I(z) )/[2sin]. It is known that K(v/-fir --+ 0 as r x since Re v/-fi > 0 and
the Wronskian W(I(z),K(z)) -1/z. See Watson [6] for these facts on Bessel
functions.

Now we put u(r) I(v/-fir and v(r) K(v/-fir). Then the Green’s function
Go Go(r, r0, it, __2) is expressed as Go -u(ro)v(r)/W(u, v) for r0 <_ r, according
to the standard fact of Green’s function for Sturm-Liouville equations. The rest of
the proof is immediate. D

Step 3. Therefore by taking the inverse Laplace transform of Go,

1 fcWix etGo ditPt(r, )
2irro c-io

4i sin-Now for convenience of computation we modify the path of integration, i.e., we choose
the path F around the negative real axis.

Then, since I(v/-firo)I_(v/-fir is holomorphic and bounded in {it e (;Reit <_
c}, with c > 0, its integral turns out to be zero. Therefore

Pt(r,) 4sir et Ie(vffiro Ie(v/-fir d#

See Fig. 1.



EXPLICIT HEAT KERNEL ON GENERALIZED CONES 1565

FIG. 1.

Since I(z) e-i/2 J(iz), we obtain

e-i f-+iO e-’’2 J(ro) J(r)Pt(r,)
2isin +i0

by the change of variables i. Let us divide the integral into two parts. Then
the above integral is reduced to

since J(-z) ei J(z). Then it follows that

ev

2t

from Weber’s second integral formula.
Step 4. Therefore by taking the inverse Fourier transform of P

P(r, ) _2 P(r, ) cos() de cos(O) d

K)1
Pc(r, ) cos(0) d

4--el_(rarr2)/4t /_ iil (ror) eie d

Now we recall that

cos(u) ea cos duI(q)
r sinrr e_V_q cosh v dv
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(Watson, [6, p. 181]), from which Saito and Chen [5] obtained the next expression.
PROPOSITION 1.

 11 de

(8)

eq cos 0 1 f0
0

J(q, 0).

dy cosh( e-(e-q (r+O)y) q cosh((r-O)y)
1 y2+

0 < -r

dy (e-qcosh( (r+O)y) nt e-qcosh( (r-O)y)
1 +y2

dy
1 + y2 (e-q cosh((Tr-O)y) e-q cosh((r-t-O)y))

r<0

Proof. This can be verified by direct computation and we refer to [5] for the
details.

And thus we have finally the following.
THEOREM 1 (Edwards). Let Pt( (r, 0), (ro, O) be the heat kernel on the Riemann

surface of log z. Then

1 -(r+r2)/at (ror )(9) Pt( (r, 0), (ro, 0)) -4rt e J -, 0

where j(r_r_ O) is defined in Proposition 1.2t
COROLLARY 1.

1 1 -/t fO dy osh(.v))(10) Pt((r, 0), (r, 0)) 4rt 2r2t
e

1 + y2 (e-(/2t)

Proof. The proof is immediate from Proposition 1 and Theorem 1 with 0 replaced
by0.

3. On the surface of generalized cones. First we define the graph network.
DEFINITION 4. A graph network is a branched one-dimensional manifold with

finite vertices, namely, an ordinary circuit formed by joining a finite number of points
with segments called edges.

For a given graph network X let us define CX, the cone over X as follows.
DEFINITION 5. CX is the quotient space X x [0, oc)/X x0 endowed with usual two-

dimensional euclidean metric. Without the metric, CX is an object of the homotopy
theory. The metric is important in our study as the following example shows.

Example 1. Cc. This is is the cone over R/cz, according to our definition and
is actually nothing but the (surface of) ordinary cone of apparatus c.

Note that the euclidean plane corresponds to c 2r. Moreover the Riemann
surface of log z, 7 is expressed as CR. With these examples in mind, it is natural to
call CX a generalized cone. See Fig. 2 for some more general examples.

In this section we shall show how to construct the heat kernel Pt on CX using
the Green’s function on X and the Green’s function for the Bessel equation.

First we recall the Green’s function on X. Let Ax be the Laplacian on X which
is simply the second derivative on each edge with the domain of definition reflecting
the conservation law of heat flux at each vertex. See [2] for details.
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X

Y

FG. 2.

Now, here goes the definition of the Green’s function on CX.
DEFINITION 6. For a fixed point y of X, the Green’s function g g(x, y, ) on X

is defined symbolically by g- (AI- Ax)-I 5y, where It_ ,the negative real axis.
Next we would like to define the Green’s function on [0, c) for the Bessel equation

by G oG0, where Go has been already defined in (4) for A _2 e i]_. Now, for
a general complex value A, G(r, r0, #, A) is defined by the following.

DEFINITION 7. G i8 defined for R+ by

ro #- + -r -r + - =o.
Remark. We have to be careful about the domain of definition with respect

to the variable A. We have chosen the analytic branch of g which is continuous
across the positive real axis. However, in contrast to g, G should have continuous
analytic extension across the negative real axis. The consequence is that G(r, r0, #, A)
is uniquely determined for A _2 E R_ and that we have as in (6)

lr 1 (r+r.)/4t (ror)2i
e G d# e- I:- \-where for any A, Re > 0.

Now let us define pX the heat kernel on CX.
DEFINITION 8. PtX PtX( (r,x), (r0, x0)) is the solution of the following equa-

tion.

(11)
t>0,

PtX r-l 5r=r 5= as t O.

Then the following integral representation is a consequence of a natural general-
ization of the separation of variable technique and is an extension of Laplace-Fourier
transform method of 2.
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oT

-5

FIG. 3.

Let A be the contour along the negative real axis which approaches it as 5 $ 0.
See Fig. 3.

THEOREM 2. Let g and Ptx be the Green’s function on X and the heat kernel on
the cone over X endowed with the euclidean metric, respectively. Then

(12) PtX= 2ri
g(x, xo, ) dA e"t G(r, ro, #, ) d#

where A limst0 A. Here the improper integral with respect to is interpreted as

lim
1 IAee dA(..)

0
g

Proof.
Step 1. Let u(t, r,x) y_ e g dA(...). Then on the one hand,

Ou 1 /hegdA ( 1 jfr )Ot 2Ti # et G d#

On the other hand,

( 02101 )-r+-rrr + Ax u=

1 /Ae dA(1 fr )
Ou 1 ]2 eXgdA( 1 frOt 2ri

e"t d# ro

1 /he5x=odA( 19fr )27ri - e"tGd#

Here note that the second term of the right-hand side 0 since fr et d# 0 and the

third term is also zero because we have shown that fr e"tG d# t e--(r+r)/4t
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FIG. 4.

I--(--2t from which follows fA e Ij- dA 0. See the preceeding remark. Con-
sequently, u satisfies the heat equation.

Step 2. Let us show the second statement of (11). First we see that fr et G d#
5r=r0 as t $ 0 by definition of the resolvent owing to the operational calculusro

d
2 fr("I L) d, I (identity), where L + + . Therefore,

1 f ee’X 5r=rou gd/ as t$0.
2ri Jh r0

Next, note that hX (x, xo) fh eg dA was shown to be the heat kernel on X at
t e and limit0 hx 5x=xo [2]. This implies that Ptx lim0 u is actually the
desired heat kernel by the unicity of heat kernel.

Remarks. (i) In the case where X is the real line, then fr e’t G(r, r0, #, _2) d#
corresponds to t of the preceding section and g(x, xo, _2) to (ei(x-x))/2i.

(ii) We have employed the Green’s function g which plays the role of a resolution
of identity. Therefore it would be interesting to know if we could give other integral
representations of the heat kernel based on various integral formulas such as Hankel,
Kantrovich-Lebedev, Meijer and so on.

(iii) This type of decoupling procedure would hold in a more general case, for
example, in the case of several space variables.

Example 2. q.
DEFINITION 9. Let q((r, 0), (r0, 0)) be the heat kernel on Ca the surface of cone

of apparatus a. See Fig. 4.

We have then g(O, 0, A) (e/ + ev(-o))/(2v(ev 1)) by a simple com-
putation.

Therefore, after the Taylor expansion of g in terms of ev, we can use Proposi-
tion 1 to apply Theorem 2. The result is

(13) q E Pt( (r, 0 + rna), (r0, 0) ),
oO

where Pt is the heat kernel in (9), which is also easy to check from the geometry.
As a consequence of Theorem 2 we have an equivalent formula (Poisson summa-

tion formula) as follows.
COROLLARY 2.

a 1 e-(r+r)/4tlcosqt ((r, 0), (r0, 0)) c--
m--0

2m7c0
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Proof. It suffices to apply Theorem 2 using the residue formula to the integral
derived from the right-hand side of (12)

1 f-0 e + e(._e)
/2r J--i0 ei 1

r0r

Moreover, the classical reflection principle gives another equivalent expression for
special values of s. Let n be a positive integer. We define Q by

En=-n+l Pt( (r, 0), (ro, ms) if
Q (r, 0), (r0, 0)) En=-n Pt( (r, 0), (ro, ms)) if

27r

2r
S 2n+1"

Then we have the following.
PROPOSITION 2. Let q be defined in Definition 9. Then Q q.
Proof. First Q satisfies the heat equation. Next as r r0 and 4rt

Furthermore we easily see that Q is smoothly connected at -t-s/2. Therefore we
are done by the unicity of heat kernels.

Notation. Let us denote by C(s) the following quantity.
(14)

dO qt ((r, 0), (r, 0)) r dr s qt (r, 0), (r, O) r dr.

Then we can compute C(s) as follows.
PROPOSITION 3. Let K(s) dfO Thenly syl+cosh

c() K(r ms) K(r + ms)}-a K(r) + a Yr=l,:,. .., [./,] { 2r(1--os rna)
+ E:=I/I+I {( n) g( + n)},

where the second sum is supposed to be zero if s >
Proof. We compute each term of the series in (13) by means of Theorem 1 and

Proposition 1. [:]

Remarks.
(i) From the definition of C(s), an asymptotic expansion follows:

a f01 ctl2
q( (r, 0), (r, O) r dr dO - + C(s) modulo O(e-c2/t) as t O,

where is an arbitrary positive constant and c is a positive constant depending on s.

(ii) A direct consequence of Proposition 2 is the following.

n--1
S

k
S 2_K

C(a)
+ 2r(1 cos ks)

if O 2n’

n S 2rk= 2r(1 cos ka)
if a 2+"

(iii) Another interesting quantity X is defined by

X(a) 2a Pt( (r, ms), (r, 0) ) (1 cos ms) r dr.
rn=--cx)
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II

IV

X
FIG. 5.

Then we can compute X as in Proposition 3 and the result is:

X(a) 2aE (1 cos ma){ 27r(1m--1

1
K(r + ma)

cos mc)

-K( m)}
(1 cos ma) [K(r ma) K(r ++2a E

m=[/]+l

2r

2vr 2vr 2 3 ForThis last equality can be verified easily when c nn or , n 1,
other values of a, numerical methods show that equality holds within the margin of
error. This X(a) actually is the index of the cone Ca and the above numerical value
suggests that the Gauss-Bonnet formula is also valid for compact surfaces with conic
singularities. The full account of this will be published elsewhere.

Example 3. Let X1 be a graph network with two vertices connected by three
edges of length/, /and 5 as is depicted in Fig. 5.

Then the Green’s function is given by

(5)
XlCx + X2C-x if x E I,

G(x, y, A) x3CX + x4C-X if x II,
x5C + x6C- ifxIII,
xTC + xsC- ifxIV,

where C eV, ) 2 and x, x2, x3, X4, X5, X6, XT, and x8 are defined by the
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following:

3
_

C.r_ 1 C+ 2C+. 1C_+ C.+D=(C-2"r-l) -C- +2+ - 2 +

1 ]+c-e + (ce- )[ C-e + C--e + 3Cz+ 4 c-e + C--
+C-’r-e] + (1 C-e-’r) [C"r+e C-+e + C+’r 4 + C+e + 3C--’r

1 C_y+_2,,l_6+2CY--’r 43C_+ + C_,_.r_ + C__2. + -1 C_V+_2.r+ 1 y-/-2q,+6 3 ]- -C + -C-++ /D,

1[ 1C-+-6 I C--6 + C + C-+6 Cy--6x2 C-y+-2,-
4

1 C,_+ 9 C__2.r_ C_2.r]/D,+ +

9e_y_C_2.r_6 3 Cy__2.r_+ -1 Cy_2_.r++C- C--’r- / D,

1 I 3 C_++x,l L2C-Y+-’r CY-’r+’ 2CY+-’r C’

+Cy++ + CY-’- 1C-y+-4 1Cy+- 1
C-Y+-27+4

+Cy_2. 1 Cy+_2+e 3 C_y+Z_2_e] / D,
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1[ 1

/D,

1 [ C_y 1C_y+f_

+
3C_++ + C__ l_C_+
2- 2

x7 and xs are obtained if we interchange / and 5 in the expression of x5 and x6
respectively. The above values of xl, x2,..., x8 are obtained by computer by solving
eight linear equations derived as in [2].

DEFINITION 10. C(, % ) is defined by

Ix(Ion{ ’} )(16) C(Z, 7, ) dO P ((r, 0), (r, O) r dr

where P( (r, 0), (r0, 00)) is the heat kernel on CX1.
In 4 and 5 we will only consider the special case/ 2"), 5 r for simplicity.

4. Asymptotic expansion of spectral function. Let M be a two-dimensional
complex and Pt(x, x) be the heat kernel on it. M may have singular intersection but
on each simplex the metric is the canonical one. Then the spectral function Zt is
defined by Zt fM Pt(x,x)dx, where dx is the canonical surface measure. In this
section we shall compute the asymptotic expansion of Zt for some basic polyhedrons
of length L and 2L depicted in Fig. 6.

For simplicity we suppose that III is a box (rectangular parallelepiped) containing
one rectangle inside with rectangular intersection.

4.1. Asymptotic expansion of Pt. We observe first that Pt has an asymptotic
expansion

1
P (x, x) + c>0ast0

except at a neighborhood of points P, S, and T. Next, it is easy to see that Pt has
the same asymptotic expansion as q of the previous section in a neighborhood of P.

Note also that at the vertex S the singular surface is considered to be the gener-
alized cone CXI, where X has already been defined at the end of 3. Therefore it is
reduced to compute C(/, ,, 5) defined in (16).

Finally at the point T, the intersecting surface is considered to be the direct
product (0, e) X2 where X2 is a T-shaped network depicted in Fig. 7.
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I II III

P T
P

FIG. 6.

X 2

FIG. 7.

Therefore we know that for x- (Xl,X2), near xl -0,

1 ( 1 x2/t) O(e_C/t)Pt(x, x) 1- -e- +

t o [21.
Consequently we get the following asymptotic expansions.

PROPOSITION 4. Let C(.) and C(.,.,.) be as in (14) and (16), respectively. Then
as t 0 we get modulo O(e-c/t), c > 0,

(i) Z[ 2L2

(ii) Z[I
4rt + 4C(r),

(iii) ZItH 11L2 L
4rt -}- 8C(7r) -}- 4C(27r, 7r, 271-) where L i8 the length of edge8

of the models in Fig. 6.

5. Numerical computation. In this section we use numerical methods to cal-
culate C(a) as a function of a. The programs written were standard, using Simpson’s
rule and they were run on a VAX/VMS mainframe. The numerical results obtained
in this way showed that the values of C(a) obtained by the formulas in Propositions 2
and 3 are in agreement for the special values of a for which Proposition 2 is valid.

We generate Table 1 and present the results graphically in Fig. 8.
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TABLE 1

a C(a) (reflection)

13.0
10.8
9.0
8.0
7.0
6.28
5.0
4.0
3.14
2.09
1.57 0.313
1.31
1.05 0.486
0.79 O.656
0.63 0.825
0.52 0.993
0.45 1.161
0.39 1.328
0.35 1.495
0.31 1.663
0.20 2.664

0

C(c0 (numerical)
moo
-0.132
-0.095
-0.061
-0.041
-0.018
0.0
0.038
0.078
0.129
0.222
0.313
0.383
0.484
0.655
0.824
0.992
1.160
1.328
1.495
1.663
2.664

2.4

1.8

1.2

3 6 a--+ 9 12 15

FIG. 8.
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NONLOCAL NONLINEAR PARABOLIC DIFFERENTIAL

EQUATIONS*
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Abstract. The aim of this paper is to study a class of nonlocal nonlinear parabolic boundary
value problems. First the existence, uniqueness, and continuous dependence of the solution upon
the data are demonstrated, and then finite difference methods, backward Euler and Crank-Nicolson
schemes are studied. It is proved that both numerical schemes are stable and convergent to the real
solution. The results of some numerical examples are presented, which demonstrate the efficiency
and rapid convergence of the methods.
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1. Introduction. In this paper we consider the following parabolic equation of
finding u u(x, t) such that

(1) u + Au + f(u) 0 in QT,
u=0 on 0(0, T],

with the nonlocal time weighting initial condition

M

o) + (z), x e n,
k’-i

where QT (0,T], C Rd (d >_ 1) is an open bounded domain with smooth
boundary 0, T > 0, and 0 < T1 < T2 <... < TM T, k(x), (x) and f(u) are
known smooth functions with respect to their variables, and A is a strongly elliptic
operator

where a(x), ai,j(x) aj,i(x) are known smooth functions, and satisfy for some posi-
tive constants a0, a > 0 that

d

al12 <- E ai,jij <_ alibi 2, x e , e Rd.
i,j=l

The problem (1)-(2) can be viewed as a generalization of the standard time-
periodic parabolic problem (M 1, /1 1, 0, and T1 T). It can also arise
from the study of atomic reactors [2], [a] and some inverse heat conduction problems
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for determining the unknown physical parameters [9], [12]. Recently, the problem (1)-
(2), linear or nonlinear, has been given a considerable attention by several authors ([2]-
[12] and the references cited there), where some existence, uniqueness, and continuous
dependence of the solution upon the data by both classical approach [10], [11] and
abstract semigroup theory [8] are proved. It is noticed that the problem above also
enjoys the maximum principle [2], [4], [9], [10] like the standard parabolic initial-
boundary value problems [9], [14], [15]. For uniqueness the multiplier method [6] is
also employed. A similar nonlocal initial-boundary value condition (2) for hyperbolic
equation is also considered in [5]. For physical interpretation of (2) we refer to [2]
and [4].

In summary the work mentioned above relies on the following assumption, that
is, the weights k(x), k-- 1, 2,..., M, must satisfy the inequality

M

IZ (x)l < x e
k--1

See [2] and [10] for examples. The condition (3) is very restrictive, but critical to
the methods employed in [2]-[12], either by maximum principle [9], [10], potential
theoretical representation of the solution [9], [10], or abstract semigroup approach
[8]. The reason for imposing condition (3) could be that these authors do not take
the full advantages of the problem under consideration--a diffusion-type process, i.e.,
under some appropriate assumptions on the data, [[u(., t)l decays exponentially as
t cx, where I1" II denotes the maximum norm or L2(gt) norm. The author of [7]
considered the case of -kM=l I/k(X)[ _< C, where c is a positive constant, and showed
a solution exists via Schauder’s fixed point theorem, but very technical restrictions
on various Lipschitz constants and other conditions were assumed to compensate this
relaxation. In the first part of this paper we shall study the problem (1)-(2) under a
weaker (natural condition) assumption imposed on 3k(X) (which is discussed later);
the existence, uniqueness, and continuous dependence of the solution upon the data
are proved.

If f(u) is linear, then a purely algebraic condition on the weights 3k(x) will be
given, which is an optimal condition for the well-posedness of the problem (1)-(2). It
is also shown by an example that the violation of the proposed algebraic condition
below will result in nonuniqueness. The second part of this paper is devoted to the
study of finite difference approximations to the solution of (1)-(2) by backward Euler
and Crank-Nicolson methods. Both finite difference schemes are shown to be stable
and convergent to the real solution with an expected rate of accuracy. In actual
computations algorithms proposed will be used with a simple but effective (natural)
iteration procedure.

The rate of convergence of the iterative procedure is also given. For convenience
let us list our assumptions on the data.

(H1) The function f(u) is smooth, f’(u) + A0 _> # > 0 for u e R, and (x) e
L2 (t);

(H2) Assume that 13k(X) e L() and/; IIkllL(a) such that

M

k--1

=p<l,

where # > 0 is a positive constant and A0 A0(, a0, al) > 0 is the first eigenvalue
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of the elliptic problem

(4) An+An=O, xE,
u=0, x E 0.

Remark 1.1. It is clear that (H2) is a weaker assumption than (3).
The outline of this paper is as follows: In 2 the existence, uniqueness, and

continuous dependence of the solution of the problem (1)-(2) are proved via the
fixed point principle, and for the linear problem the eigenexpansion method will be
employed. A general nonlocal (time integration) condition than (2) is also considered
there. In 3 finite difference schemes are proposed, and then shown to be stable and
convergent to the real solution. Finally numerical computations of some examples are
reported in 4.

DEFINITION 1.1. A function u e C((O,T];L2(t)) NL2((O,T);H()) is said to
be a solution of (1)-(2) if

)Q
--net - ai,jUxiVx + auv + f(u) dxdt

T i,j--1

for all smooth function such that (x, t) e C(), and (x, T) 0.
Here and throughout this paper the standard notation [13], [14] will be used.

2. Existence and uniqueness. As stated in 1 we shall prove several existence
results and a nonuniqueness result in this section. First let us begin by the following
result.

THEOREM 2.1. Under assumptions (H1)-(H2), there exists a unique solution
u e C((O,T];L2())NL2((O,T);H()) such that for some positive constant C > O,
independent of the data,

(6) [lu(t)ll

_
C(1111 + If(0)l), t e (0,T],

h II, II i th L2() norm.

Proof. The proof is given by a fixed point principle.
Let mapping S: n2() --. L2(12) be defined as follows: For v e n2(t),

m

s Z(x)(x, T, ) + (x),
k=l

where u(x, t, v) is the solution of the following parabolic problem:

(7)
ut + Au + f(u) O in QT,

u 0 on 0gt x (0, T],
u(x, O)= v(x) e

According to our assumptions (H1)-(H2) and the standard parabolic theory [13], [14],
[1], [16], u(x,t,v)e L((O,T];L2())NL2((O,T);H())exists such that

(8) ( )-net + ai,juxivx + auv + f(u) dxdt v(x)(x, O)dx
T i,j--1
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for all smooth function such that (x,t) e C(D) and (x,T) 0. Using the
regularity theory [1], [15] we find that u(x,t,v) e C((O,T];L2(f)), and thus Sv is
well defined.

Now let u(x,t, Vm) be the solution of (7) with the initial data Vm(X) e L2(f),
m 1,2, respectively, and let w u(x,t, vl)- u(x,t, v2); it is easy to see that w
satisfies

(9)
w + Aw + f*w 0 in QT,

w--0 on c9x (0,T],
w(x, o) e

where

f. df (Ou(x,t vl) + (1 -O)u(x t, v2))dO > #- Ao.

Here assumption (H1) has been used.
Let {At, (x)}, 0, 1,..., be the eigenvalues and eigenfunctions of the problem

(4) with 0 < A0 <_ A1 <_... <_ Am _<"" and be orthogonalized as fn z(X)m(x)dx
m, l, m 0, 1, Let w 0(x)(t) be the solution of (9) [14], [15] using
the eigenpairs expansion.

If we multiply (9) by w and integrate over f, it is easy to see from the orthogo-
nality, f* >_ #- A0, and Ao _< An for all n >_ 1 that

(10) + < 0,

where (., .) denotes the inner product in L2(fl).
It is easy to see from (10) that

d

Thus, we have

I1()11 _< for t e (O,T].

The definition of S and assumption (H2) now imply that

Thus, we find that S L2(fl) -- L2(f) is a contraction mapping since 0 < p < 1.
That is, there is a unique v e L2(fl) such that Sv v e L2(f). Hence by (8)

and (5) the solution of (7) with this unique fixed point v(x) of S as the initial data
will be the solution of (1)-(2).

For the estimate (6), we write (2) as

us + Au + f**u -f(O) with f** df (Ou)dO
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and let u V q- W, where W satisfies

and V satisfies

Wt + AW + f**W -f(0) in QT,
W 0 on 0f x (0, T],

W(x,0) 0 xS2,

Vt + AV + f**V 0 in

(11) V=0 on 0f x (0,T],
M M

V(x, O) k(x)V(x, Tk) + (x) +yk(x)W(x, Tk).
k=l k=l

It follows from the standard argument [14], [15] that IIW(t)ll _< cIf(0)l, nd from
a similar argument to the above that IIw(t)ll < IIW(0)ll-’, thus from the initial
condition of (11) and (H2),

C(l,ll+mxllW(t)ll) t e (0,T].IlV(0)ll _< 1 p o<<T

Hence, (6) follows from the triangle inequality.
Now we turn our attention to two special cases. That is to find u(x, t) such that

ut + Au 0 in QT,
(12) u=0 on 0f x (0, T],

M

(, o) (x)(x, T) + (),
k=l

where g(x) e L2(2) and k(x) e L(f) for k 1,2,... ,M.
Let g be expanded using the eigenvalues and eigenfunctions of (4) by

g(x) gm,(x) with gz =/.g(x)z(x)dx, 0,1,

We seek the solution of the following form:

(13) u(x, t) amCm(X)e-’t,
m---O

where am, m 0, 1,... are to be determined. Substituting (13) into the initial
condition of (12), it follows from the linear independence of the eigenfunctions ,(x)
that

(14) am--am(ke-A’Tm) -bgm’
\k=l

m= 0, l,...,

provided that/3k(X) k are constants for k 1, 2,..., M. If

M

(15) 1 3e-’x’T :fi 0 for m 0, 1,...,
k=l
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then we have from (14) that

m(16) am M
m O, 1,...,

1 E ke-AmTk
k--1

and 2 c 2-m=l am < cx since m=l gm ( cx and Am --* cx as m c. Hence we have
obtained the following result.

THEOREM 2.2. Ifk are constants and (15) is satisfied, then the solution of (12)
exists and is unique, which is given by (13) and (16), and satisfies

u2(x, t)dx <_ C/ g2(x)dx, t e (0, T].

Proof. See the above analysis.
Now let us consider the general case when 3k(x) are not constants. Using the

inital condition (12) we find

m=0 m--0 m--1 k--1

Multiplying the above equation by Cj(x) and integrating over ft together with the
orthogonality of Cj(x), we obtain

(17) aj E amEm,j + gj, j O, 1,...,
m--0

where

M

k--1

k(X)m(X)/(x)dx, m,j =0,1,

Let a (am) and G (gin) be two infinite vectors and E (Em,j) be the infinite
matrix, then we have formally from (17) that

(I- E)a G.

Let [14]

12- {Y m-0

Thus we have the following result.
THEOREM 2.3. Assume that g E L2(ft) and k(x) L() for k 1,2,... ,M.

If the linear operator E 2 12 is such that the inverse operator (I- E)- exists
and is bounded, then the solution of (12) given by (13) exists and is unique with
a (I- E)-IG.

Proof. See the above.
Finally, we show that the assumptions in Theorems 2.2 and 2.3 upon k(x) are

optimal, that is, the violation of this will result in nonuniqueness. For this purpose
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let M 1 and g 0. If we select 1 e)T then u o(x)e-’t will be a nonzero
solution of

(lS)
ut + Au 0 in

u 0 on cgt x (0, T],
u(x, O) eTu(x, T), x e ,

with p 1 in (H2).
But u 0 is also a solution. Thus, the conditions given on k(x) in Theorems 2.2

and 2.3 are optimal in this sense.
Remark 2.1. Since the proof of Theorem 2.1 only uses the existence results of

parabolic problems, thus we see that if we consider nonlinear problem

(19) ut div a(x, t, u, Vu) + f(x, t, u) 0 in QT,
u=0 on 0I(0, T],

with the nonlocal initial condition (2), a and f smooth functions, and assume that
f(x, t, u) >_ 0 and

(a(x, t, , W) (x, t, v, Vv)) V( ) > Y00 IV( )

for all x, t, u and v, where A0 > 0 is the first eigenvalue of (4) with A -A, then
the assumption (H2) will imply the existence and uniqueness of the solution of the
problem (19) and (2). The proof is similar to the above we therefore omit.

Remark 2.2. As in [10], [11], if (2) is replaced by

(.o) u(x, o) Z(x)(, T) + (x), x e a,
k--1

where {Tk} C (0, T], Ek=/k < oc is a convergent series and satisfies

k--1

=p<l,

where # > 0 is defined in 1, then the solution of (1) and (20) still exists and is

unique following from the same proof of Theorem 2.1. We want to point out that
infk{Tk} > 0 is not required in our case, but in [10] and [11]. Finally let us consider
the problem (1) with the following initial condition [2]:

M

(21) u(x, O) E k(X)Fk(U) + g2(X), X e t2,
k--1

where

u(x,s)ds,Fk lt
T2k T2k-1 J T2 -1

k 1, 2,...,M,

and where 0 <_ T < T2 <... < T2M T. For problems (1) and (21) the assumption
(H2) needs to be replaced by the following.
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(H3) Assume that k(x) e L(f) and IlflkllL(a) such that

fT ; (e-t’T-’--e-"T)=P <1"e-’Sds
(T2k T2k-1)k=l T2k --T2k-1 JT2k- k=l

where > 0 is defined in assumption (H1).
Thus we have the following result.
THEOREM 2.4. Under assumptions (H1) and (H3), problems (1) and (21) possess

a unique solution u e C((O,T];L2()) L2((O,T);H()) such that

( i,j=l

for ll smooth fection sch ht (z, t) C(a) nd (z, T) 0, ad stisfies
the estimate (6).

Pro@ It follows from an argument similar to that given in Theorem 2.1.
In fact, (21) is a more general condition than (2) since (2) can be viewed as

discrete version of (21), which will be seen in next section.
Remark 2.a. Like he nonuniqueness of (18), if we let 0()e-Mr, where

0 and 0(z) are the first eigenvalue and eigenfunction of (4), then is a nontrival
solution of

ut + Au 0 in QT,
u=0 on 0t (0, T],

u(x, O) (x) u(x, s)ds,

with fl(x) AoT/(1 e-MT) and p 1. This example demonstrates that assumption
(H3) is also optimal for problems (1) and (21).

3. Finite difference schemes. In this section we shall consider two finite dif-
ference schemes for problems (1)-(2), namely, the backward Euler method and the
Crank-Nicolson method. For simplicity we study the following one-dimensional prob-
lem:

ut uxx + f(u) g(x,t), O < x < l, O < t <_ T,
(22) u(0, t)=u(1,t)=0, 0<t<_T,

M

u(x,O) Ek(X)U(X, Tk), 0 < X < 1.
k--1

For this simple model the first eigenvalue of wxx Aw with w(0) w(1) 0 is

A0 r2. Without loss of generality we assume that f(0) 0, f’(u) >_ 0 and ilk(x)
satisfies

M
,,-r2T
,k p< 1.

k=l
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Let Ax > 0 small and xi iAx, 0, 1,..., M1, where M1 1/Ax is a positive
integer, be the partition of [0, 1], and 0 to < tl < < tg T be the partition of
[0, T] such that Tk =tNk are the nodes for some Nk E {1,2,...,N}, Tk tk --tk-1
and T maXl<n<N ’n. Thus the backward Euler scheme reads as follows: Find {u}
such that

(23)

l <_n <_N,

where g g(xi, tn), k,i /3k(Xi) for 0, 1,...,M1, k 1,2,...,M and n
0, 1,...,N, and

2u + ’Ui-t-1 Ui--1
Ax2

Likewise the Crank-Nicolson scheme {u} is defined by

n-Xn n--1
1/2(24) ui u

Ah
T 2 2

1 _< <_ M1 1, 1 _< n _< N,

=M1’ =0, O<n<N,_
M

0 tNkUi k,i l<_i<_Ml-1,
k=l

where g+1/2 (g + g_1)/2. We are now ready to state and prove our stability
and convergence results.

THEOREM 3.1. Let {u} be the solution of the backward Euler scheme; then there
exists C > O, independent of At and Ax, and TO > 0 such that for all 0 < T

_
TO

N

max IIU ll c  -nllF llO<n<N
n--O

where Un (t tn )T Fn )T.......,M-I (g, gM-ln and I1" ldentes the natural
norm on RM-I.

Proof. Writing the finite difference equation (23) into the matrix form, we find

(I + T,(A + Dry)) U’ Un-1 -1- T,F’, 1 <_ n <_ N,

where Dn diag(D D, Dn with D f3 f’(Ou’)dO for all i and n andM1

2 -1 0 0
-1 2 -1 0

0 0 0 2
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Letting Bn (I + Tn(A + On)) -1, it follows that Un BnUn-1 -4- BnTnFn, and
then one finds by induction that

II
m=l m=l l=m

But since A is a symmetric and Dn is diagonal, we have from the standard matrix
theory [15] that

1IIBII l(z + (A + D))-ll mx
l<i<M- 1 + r u’

where u (i 1, 2,...,M 11 are the eigenvalues of the matrix A + On, and that
min<i<M, 05nN{U} 2. Thus we have

1
(26) lBll< n=0 1,... Y.

l+r2Tn
Therefore, we find from (25) and (26) that

1
(27/ IIUNII--< II /2 IIVll / ’mllFmll"

m=l Tm m=0

From elementary calculus we know

< exp w > O,
l+w l+w

so it is easy to see that

Nk 1 -< H exp _< expH1 + r2 Tm 1 + 7r2Tm 1 At- 7"f"2Tmm--1 m--1

_<exp
l+r2r

where T maXl<k<N Tk. But, we have for T small that

1 + r27" --Tr2Tk(1 7r2T -4-’’ ") <_ --Tr2Tk -}- 7r4TT <_ --Tr2Tk -4- 7r4TT

and then it follows

Nk 1 < e-r:Tk er4Tr k 1 2 M.
m--1

1 -71-2 Tm

We thus obtain that

Nk

IIuN’II _< -’=T’T’IIUOll / ,llFmll
m-O

Using the initial condition, we now find

M M N

k=l k=l m=0
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Hence, there exists a small T0 > such that for all 0 < T <_ TO

N

(2s) lluOll < c
1 pdr’T’r E Tmll

m--O

due to 0 < p < 1. In fact TO can be selected to be TO --log p/(r4T). Finally,
substituting (28) into (27), we obtain

max llUnll < c llUll + ’mllemllO<n<N
m-’-O

N

< C
m--O

Hence, Theorem 3.1 is proved. V1

THEOREM 3.2. Let {u} be the solution of Crank-Nicolson scheme, then there
exists C > O, independent of At and Ax, and TO > 0 such that for all 0 < T

_
TO,

N

max IIUll c ’llFnllO<n<N
n--O

Proof. Following the proof of Theorem 3.1, we write (24) into the matrix form

(29) ( l(d+Dn))Vn ( 1 )vn_I W -Tn I- -Tn(A T Dn_l)

F + Fn+l
+Tn l <_n <_N,

2

with Dn defined as before. Also (29) can be written in a compact form

Un K Un-1n + LnTn
Fn + Fn+l

n=l,2,...,N,

where

-1

Kn= +-
I + -(+D

(1 )I- -Tn(A + Dn-1)

From the standard matrix theory [15], we have that

max
l<i<Mi-1 1 -- -Tnl]

1-- 2

1 + 1/22Tn’
n-- 1,...,N.

Let Wm be such that

1 1- -,2Tm
1 + ’tOm 1 -- 1/27r2Tm

with 72Tm
172Wm

1-- " Tm
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it follows from a simple calculation as above that

H <H <II exp
1 -[- 1/27r2Tm 1 -t- 1

m--1 m--1 rn--1

_< exp
1 + 1/2’rm

Thus, we find that

l<_n<_N.

n
_rt e1/2r4T[Igmll <_ e I <_ n <_ N.

m=l

Hence, the remainder of the proof follows from an argument similar to that given in
Theorem 3.1. We omit the details.

We are now ready to state our convergence results.
THEOREM 3.3. (I) Let u be the solution of (22) such that u C4’2((T and

be the backward Euler solution (23). Then there exists a positive constant C > O,
independent of the step sizes Ax and At, and " > 0 small such that for all 0 < T TO

max ]U(tn) un]] < C(7 + Ax2);
0<n<N

(II) Let u be the solution of (22) that u e C4’3(T) and u be the Crank-
Nicolson solution (24). Then there exists a positive constant C > O, independent of
the step sizes Ax and At, and ro > 0 small such that for all 0 < T rO

max IlU(tn) UII < C(’r2 + Ax2)
0<n<N

Ilu(t) U ll lU(Xi,tn) ul2 Ax,
i--1

n 0, 1,...,N.

where

Proof. Let e u(xi,tn)- ur be the error, then e satisfies (23) with F/
O(T + Ax2) for the backward Euler solution or (24) with Fn O(T2 + Ax2) for
the Crank-Nicolson solution; then the results follow from the stability estimates of
Theorems 3.1 and 3.2. rl

Remark 3.1. We only give the stability proofs for one-dimensional problem above,
but our method of proof can easily be extended to any d-dimensional problems without
any technical complications. The assumption on the nonlinear function f(u) can also
be relaxed to assumption (H1) in Theorem 2.1, that is, f’(u) + ,0 # > 0 where 0
is the first eigenvalue of the problem (4).

Remark 3.2. For finite difference approximations to the solution of (1) and (21),
we see that if Fk(U) (k 1,2,... ,M) is discretized by some numerical quadrature
formula

1 Mk

+
j=0

O(Error), k 1, 2,..., M,

where T2k-1 <_ crj <_ T2k for j 0, 1,..., Mk and k 1, 2,..., M, we see now that the
discrete version of (21) is as the same as the condition (2) except for different weights
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functions /(x)’s. Therefore the stability of the finite difference schemes of problems
(1) and (21), backward Euler or Crank-Nicolson, can be proved in the same manner
above, and we omit the detailed discussions. We have proved that both backward
Euler and Crank-Nicolson schemes are stable and convergent to the real solution as
Ax, At --. 0. Obviously if a direct method is used to solve {u} one must deal with a
(M1 1)(g + 1) x (M1 1)(N + 1) nonlinear system. Fortunately a simple iteration
procedure can be used because of the parabolic nature of the problem, that is, let
(u)() 0 be the initial guess, then the (u) (t+l) is defined as the following:

M

k--1

1-0,1,...,

where (u) (1) is the finite difference solution of backward Euler or Crank-Nicolson
method with the initial data (u)(0. We have the following convergence estimates for
this iterative procedure.

THEOREM 3.4. Let r peraT’ < 1 where TO > 0 is selected as in Theorems 3.2
or 3.3 with respect the finite difference schemes, then it holds

(30) II(U) vii(u) ") z= x, 2,

Proof. It follows from an argument similar to that given above.
A direct consequence of Theorem 3.4 is the following estimate:

(31) max ]l(Un) (t+l) -(Un)(011 <_ rll(U)() -(U)()ll l= 1,2,
0<n<N

In fact (31) follows from (30) and the discrete stability estimate of backward Euler or
Crank-Nicolson schemes for parabolic equations [16].

In theory above it seems that the time step size T must be selected so small such
4

that pe To < 1, which is the convergence rate of iteration procedure, but in actual
computations the restriction of T can be relaxed in a great deal and is not important.
Therefore the restriction on T may be due to the method used in deriving the estimates
in the proofs of Theorems 3.2 and 3.3, It is the author’s conjecture that the stability
of finite difference schemes proposed above are independent of the step sizes just like
the stability of parabolic finite difference methods [16]. Numerical examples in next
section show that only a few iterations are needed in order to obtain an acceptable
solution.

4. Numerical examples. In this section we report some results of our numer-
ical calculations using finite difference scheme proposed in the previous sections.

Example 1. Assume that QT (0, 1)2 (0, T]. We consider the following problem:
Find u u(x, t) such that

ut- Au= f(x,t) in QT,
u 0 on 0 (0,T],

with the following nonlocal condition

u(x, O) 3lU(X, T1) + 32u(x, T2) + (x), x e

where T2 T 1 and 0 < T1 < T2. Let u sin(rx)sin(ry)e- be the solution of
(22) with data (x) sin(rx)sin(ry)(1- fileT1 -2eT2) and f(u)= 0 and g(x,t)=
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Ax
0.1
0.05
i/30
/a0
0.1
0.05
/0
0.05
0.05
0.05
0.05

TABLE 1
The Crank-Nicolson Scheme with T1 --0.5.

At
0.1
0.05
1/30
1/40
0.1
0.05
/0
0.05
0.05
0.05
0.05

L error
3.93 x 10-2

1.95 10-2

1.31 10-2

9.98 10-3

4.01 10-2

2.92 10-2

2.20X 10-2

5.59 10-2

5.45 10-1.11 x 10-1

1.19 x 10-1

L2 error

1.34 x 10-2

7.14 x i0-3

4.87 x 10-3

3.69 10-3

1.35 x 10-2

7.87 x 10-3

5.5 x 10-:

9.96 x 10-3

9.83 x I0-u

1.39 x 10-2

1.48 x 10-2

Iter.
3
4
4
4
3
4
4
4
4
4
4

1
1
1

1
1
1
5
5

20

TABLE 2
The Crank-Nicolson Scheme with Ax At 0.05.

0.8
0.5
0.4
0.3
0.2
0.1
0.05

# Iter. L error
2 2.93 10-2

3 2.92 10-2
3 2.92 10-2

3 2.96 x 10-2

4 2.91 10-2

7 2.99 x 10-2

11 3.24 x 10-2

L2 error
7.88 x 10-3

7.88 10-3

7.87 x 10-3

7.87 x 10-3

7.87 x 10-3

7.92 10-3

8.09 10-3

2

1
1

-1
-1
-1
-I
-5
20
20

(-1 + 2r2) sin(rx)sin(ry)e-t for any two constants/1 and/2. The Crank-Nicolson
method is used in this example. Table 1 shows the computational results of errors in
maximum norm, L2 norm and the numbers of iterations via various Ax, At, 1 and
/2. In order to keep the accuracy the stopping criteria TOL of the iteration tolerance
is chosen by TOL 0.5(Ax2 + At2) in all our computations, which is half of the
truncation error. That is, let the initial guess u 0 and if

for some l, then (u/)L+I and (u/N) will be accepted as the numerical initial value and
final value, respectively, and the computations will be terminated. We see from Table
1 that the accuracy of numerical calculation not only depends on the step sizes, but
also on the discontinuity.

Example 2. In this example we shall see the impact of T1, which affects the
numbers of iterations. For this purpose we use the same example as in Example 1
with fixed Ax At 0.05, /1 1, and /2 -1. When T1 is "far" away from 0,
such as T 0.5 and T 0.8, only two iterations are needed. This is because that no
matter what initial value we start with, solution u(x, t) approaches the steady state
quickly as t increases, thus u(x, t) can be calculated accurately for larger t which in
turn gives a good next step initial update data. When T gets close to 0, the numbers
of iterations increase in general. Table 2 shows this phenomenon.

Example 3. In this example we consider a simple nonlinear model problem of
finding u- u(x, t) such that

ut uxx / f(u) g(x,t), O < x < l, O < t <_ T,
u(O,t) u(1, t) O, 0 < t <_ T,
u(x, O) (x)u(x, T) + (x), 0 < x < 1,
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10

5

-5

-10

p=5
h=l 100
h=l /60
h=l /20
h=l 10

-15
0 0.25 0.50 O. 5

X

1.00

FIC. 1. The initial values for p 5 with h At Ax: rough data case.

0.75,

0.50 / ................. ..\t i

I
"1"11"" """ "’o. \

-o.,.o.o - /’;" "/" =iioo-x. .’" ’ h=1/60

’ ,’ ..’" /,’ = /20-o.7 ’,X,, ,," ..." /," ,= /o

-1.25

-1.50
0 0.25 0.50 0.75

X

1.00

FIG. 2. The final values for p 5 with h At Ax: rough data case.

where

fl(x)={ 5, 0<x<0.5, { 10, 0<x<0.5,
-5, 0.5<x<l, (x)= -10, 0.5<x< 1,
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10

5

-5-

-10

Legend
p=199
p=99
p=19
p=5

-15
0 0.’25 0.’50 0.75

X

FIG. 3. The initial values for h At Ax 0.01 via p: rough data case.

1.00

0.75

0.50

0.25

0

" -0.25

-0.75

-1.00

-1.25

-1.50
0.25 0.50 0.75

X

FIc. 4. The final values for h At Ax 0.01 via p: rough data case.

1.00

f(u) up p=1,3,5,..., end
10, 0<x<_0.3,

g(x, t) -40, 0.3 < x <_ 0.6,
30, 0.6<x<1.

The backward Euler scheme to be used in this example, which is different from
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16

14-

12-

10
0 0.25 0.50 0.75 1.00

1.25

FIG. 5. The initial values for h At Ax 0.01 via p: smooth data case.

1.00

0.75

0.50

0.25

0.25 0.50 0.75 1.00

FIc. 6. The final values for h At Ax 0.01 via p: smooth data case.

(23) in 3, is defined as

I<_i_<MI-1, l <_n <_N,
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It can be proved in the same manner as in the previous section that this scheme is
also stable. In this example h Ax At is selected. For p 5, Fig. 1 shows that
the initial values obtained by using the various step sizes h 1/100, 1/60, 1/20, and
1/10. The numbers of iterations of all cases are about two or three. It also can be
seen that small step sizes are needed in order to obtained an accepted solutions, which
is due to the discountinuity of the data. Fig. 2 shows the final values obtained for the
above example. For h 0.01, the Fig. 3 demonstrates the impact of the power p in
the nonlinear function f(u) on the initial values, and the Fig. 4 on the final values.

Example 4. As in Example 3 we now take (x) 5, g(x, t) 10, (x) 10 and
f(u) u5, that is, smooth data is used. Figs. 5 and 6 show the computational results
for the initial and final values. It is noticed that the numerical solutions are almost
the same for all step sizes, or the numerical solution is not sensitive to the step sizes
since the real solution is very smooth in this case. Examples 3 and 4 imply that for
the nonsmooth data problem special care needs to be given to the step sizes near the
discontinuity of the data in order to obtain a reasonable numerical solution without
solving a relative large matrix system.

Acknowledgments. The author thanks the referee for comments and sugges-
tions on the original manuscript which led to its improvement.
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MONODROMY REPRESENTATIONS OF SYSTEMS OF
DIFFERENTIAL EQUATIONS FREE FROM

ACCESSORY PARAMETERS *

YOSHISHIGE HARAOKA

Abstract. In a paper by Haraoka [SIAM J. Math. Anal., 25(1994), pp. 1203-1226], by
following Okubo’s theory [K. Okubo, Seminar reports of Tokyo Metropolitan University, 1987], the
canonical forms of all generic classes of Fuchsias systems of differential equations on pl(c) free
from accessory parameters are obtained. Among them the explicit forms of six classes are new. In
the present paper monodromy representations of the systems in the six classes are calculated. The
technique employed is similar to one used to obtain the canonical forms. Hermitian forms invariant
under those monodromy groups are also calculated. It turns out that the space of the invariant
Hermitian forms for each system is real one-dimensional.

Key words, accessory parameter, monodromy representation, invariant Hermitian form

AMS subject classifications. 33C20, 33C65, 33E30

In his theory on Fuchsias systems of differential equations on the complex projec-
tive line, K. Okubo has shown that, if a Fuchsias system of differential equations is free
from accessory parameters, we can compute its monodromy representation ([O]). Not-
ing that in general we have no way to compute monodromy representations, we expect
that systems free from accessory parameters are good systems of differential equations
and will define new special functions after the Gauss hypergeometric function.

In our previous work [H2] we have determined all Fuchsias systems on Pi(C)
that are irreducible and free from accessory parameters; we have followed Okubo’s
theory and used Yokoyama’s [Y] classification theorem to obtain our result. This
paper is devoted to computing monodromy representations of those systems. Here we
also follow Okubo’s theory and employ a technique similar to one in [H2].

Let S be a finite subset of p1 (C). Take a point x0 in P1 (C) \ S. Let

dY
A (x) Y(F)

dx

be a system of differential equations on P(C) of rank n with the set of singular
points S. Fix a fundamental matrix solution Y(x) defined in a neighborhood of x0.
The monodromy representation of the system (F) with respect to Y(x) is a group
homomorphism

R r (P (C) \ S, xo) CL (n, C),

which is defined by
Y (x) y (x). R (hi)

for any loop in P(C) \ S with the base point x0, where Y(x) denotes the analytic
continuation of Y(x) along the loop .

According to Yokoyama’s classification there are eight classes of systems of dif-
ferential equations which are irreducible and free from accessory parameters: Systems

* Received by the editors December 31, 1992; accepted for publication August 4, 1993.

Department of Mathematics, Faculty of General Education, Kumamoto University, Kumamoto,
860, Japan.
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(I), (I*), (II), (II*), (III), (III*), (IV), and (IV*). System (I) is known to be trans-
formed into the generalized hypergeometric equation, whose monodromy representa-
tion is known ([O], [OTY], ILl, [BH]). System (I*)is known to be transformed into the
Pochhammer equation, whose monodromy representation is also known ([M], [TB],
[HI]). Then we deal with the other systems (II), (II*), (III), (III*), (IV), and (IV*).
We note that the monodromy representations of systems (II) and (II*) of rank 4 have
been obtained in [ST] and IS], respectively.

Systems (II), (III), (IV), (II*), (III*) and (IV*) are studied in 1.1, 1.2, 1.3, 2.1,
2.2, and 2.3, respectively. For each system, we specify a fundamental matrix solution,
give generators of monodromy representations (Theorems 1, 3, 5, 7, 9, 11) and, in
the case that the parameters of the system are real numbers, determine invariant
Hermitian forms for the monodromy group (Theorems 2, 4, 6, 8, 10, 12). As a result,
it turns out that, for every system, the dimension of the space of invariant Hermitian
forms over the field of the real numbers is one.

Theorems 1 and 2 are proved in 1.1. We can prove Theorems 3, 5, 7, 9, 11 by
combining the methods of proving Theorem 1 and Theorem in [H2], so in this paper
we omit their proofs. Similarly, the proofs of Theorems 4, 6, 8, 10, 12 are omitted,
since they can be proved in ways analogous to the proof of Theorem 2.

Sections 1.1-1.3 are concerned with representations of the fundamental group of
PI(C) \ {three points}. Sections 2.1-2.3 are concerned with representations of the
fundamental group of PI(C) \ {four points}.

Notation.
Z<0 the set of negative integers.
Ik the identity matrix of size k, for k E N.
O zero matrix of an appropriate size.

M(k, l; C) the set of k x matrices with entries in C, for k, E N.
(ij) matrix whose (i, j)-entry is cij for every i,j.
e column vector which has the only nonzero entry 1 in the ith position.
B(t,r) := {x e C; Ix- t < r}, for t e C and r > 0.
e(a) := exp(2rx/-L-a), for a e C.

1. System (II), system (III), and system (IV). Let tl, t2 be mutually dis-
tinct points in C..We set

B B (t, [te t[),
Be B (te, It t.l),
W= BI FIB2.

Since tl - t2, W is a nonempty, simply connected domain in C. We take any point

x0 W as a base point of P(C) \ {t,t2,c}; for example, we can take

X0
tl +t2

For i 1, 2, let 7i be a loop that starts from x0, encircles ti once in the positive
direction, and ends at x0, not encircling ti, (i’ i). Then the fundamental group
rl(PI(C) \ {tl,t2, c},x0)is generated by the homotopy classes [71] and [72].

This notation is fixed throughout this section.

1.1. Monodromy representation of system (II). Let n be an even in-

teger equal to or greater than 4. We set n 2m with m E {2, 3, 4,...}. Let
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A (A1,..., Am), # (#1,... #m) be elements in C", and let p (pl, p2, p3) be
an element in (33 satisfying

for i j, and
m m, + , ,, + (, i) +.
i=1 i=1

System (II),,p (or simply (II)) of rank n is the following system of differential equa-
tions for the unknown n-column vector y"

(I.i.I)
dy

(xtn TII) XX AllY

with

where

t2I.

a (; p) II
l<k<m

l</<m

Ak + #j Pl P2
A Ak J

)j +/zl Pl P2)p #

for i, j 1,..., m. The Jordan canonical form of the matrix AII is

The system (1.1.1) is Fuchsian over pI(C) with regular singular points at x tl, t2,
and is free from accessory parameters [H2].

We assume

(1.1.2) Pk6Z<o, Pk--PLZ, fork, l=l, 2,3, k#l,

(1.1.3) Ai, tti, Ai-Aj, #i-ttj6Z, fori,j=l,...,m, i#j.
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Then by the Frobenius method we obtain the following result.
PROPOSITION 1. We assume (1.1.2).
(i) At x tl the system (1.1.1) has the following n linearly independent solutions:

m singular solutions

(1.1.4) yi (x) (x- tl)i (el J-O(x- tl)), i= 1, ...,m,

which are convergent in B1, and m holomorphic solutions.
(ii) At x t2 the system (1.1.1) has the following n linearly independent solutions:

m singular solutions

which are convergent in B2, and m holomorphic solutions.
(iii) At x co the system (1.1.1) has the following n linearly independent solu-

tions: m solutions of the form

xPl bi,kx-k,
k=0

i= 1, ...,m,

(m- 1) solutions of the form

XP2 bm+i,kx-k
k--0

1,...,m- 1,

and one solution of the form
XP3 bn,kx-k.

k--0

Thus the solutions yl,..., y, and z,... ,Zm given in (1.1.4) and (1.1.5), respec-
tively, are convergent in W B V B2. Set

(x) (x) (x) (x))

for x e W. Then by the Gauss-Okubo formula ([O, Thm. 2.1, Chap. II]) we obtain
the following result.

PROPOSITION 2. We have

m

det Y0 (x)= H {(x-tl)i (x-t2)} x
i--1

yIim= F (,k + 1)1-Im__ F (# + 1)
F (pl -- 1)m F (p2 + 1)m- F (P3 + 1)

Thus Yo(x) is a fundamental matrix solution in W of the system (1.1.1).
THEOREM 1. We assume (1.1.2) and (1.1.3)

+ + z

for i 1,...,m,

for i,j 1, ...,m.

There is a diagonal matrix D E GL(n, C) such that the monodromy representation

RII 71"1 (P1 (C) \ {]1, t2, 00} ,xo) --+ GL (n, C)
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of the system (1.1.1) with respect to Y(x) Yo(x)D is given by

(1.1.8) RII ([711) (Era () (ij)) RII ([721) ( Im
0 , (n) o)Em (#)

where

Em (#) "..
() ()

and

II
l<k<m

( (’) (’)) II
l</<m

e (tj) e (/91 -- f12 k)
e (p + m. ) -e (p + p X) )

(p + p ()
() ()

for i, j 1, m.

Proof. We define fundamental matrix solutions Yi (x) and Y2(x) at x ti and
x t2, respectively, as follows. For every j 1,..., m, continue zj(x) analytically to
x ti to obtain

(1.1.10) z (x) , (x) +... + (x) + ; (x),

where ujk e C,k 1,... ,m, and y(x) is a holomorphic solution of (1.1.1) at x tl.
Similarly we have

(1.1.11) yj (X) VljZl (X) 2F Jr" VmjZm (X) -- Z; (X),

where vjk E C,k 1,... ,m, and z(x) is a holomorphic solution of (1.1.1) at x t2.
A fundamental matrix solution Yi (x) at x t is defined by

(1.1.12) Yl (x) (yl (x) ym (x) y (x) yn (x))

and a fundamental matrix solution Y(x) at x t2 is defined by

(1.1.13) y (x) ( (x)... za (z)z () z (x)).

Then it follows from (1.1.6), (1.1.10), and (I.I.II) that

(1114) Y0(x)=Yl(x) (Ira U) ( )Im Yo (x) Y2 (x) Im

where
U- (Ujk)l<_j,k<_m V-- (vjk)l<_j,k<_m"
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Since y(x) is holomorphic at x tl for j 1,..., m, from (1.1.4) we obtain

(1115) Y1 (x)l Y1 (x)(Em (A) )
Similarly by (1.1.5) we have

(11.16) Y2 (x)’ Y2 (x) I Im E ()

Then from (1.1.14) we obtain

(1.1.17)

Yo (x) Yo (x) (Em (A)
O\

(Em (A) Im) U )Im =: Yo (x) M1,

/Yo (x) Yo (x) (Em (#) In) V o)Em (#)
=: Yo (x)M2.

Now we have
Yo (x)"l"’r Yo (x) M2M1.

Since 71"72 is a loop that encircles oo once in the negative direction, from Proposition
l(iii) it follows that the matrix M := M2M1 is diagonalizable to the diagonal matrix

Thus we have

(l.l.lS)
(1.1.19)

rank (M (pl) In) m,
rank (M (Pl) In) (M (p2) In) 1.

Set

Then

E1 e (pl) Im, E2 e (p2) Im.

M e (pl) In
( E, ()- e
k (Em (#) Ira)YEm

(E, (:,) ,) U )(E, (#) .,) V (E, () ,,,) U + E,= (#) E,

Noting the assumption (1.1.7), we have e(Ai) e(pl) for every 1,..., m, and hence
it follows from (1.1.18) that the last m columns of M-e(pl)In are linear combinations
of the first m columns of that. Thus we obtain

(1.1.20)
(Em (#) Ira) V (Era () Im) U + em (#) E1

(Era (#) Im) VE, (A) (Era (A) El) -1 (Era (A) Im)U.
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Again noting (1.1.7), (1.1.2), and (1.1.3), we have e(Ai) 1, e(#i) 1 and e(#)
e(pl) for 1,..., m, and hence det V #- 0 and det Y - 0 by (1.1.20). Then from
(1.1.20) we obtain

(1.1.21)

U (Era (A) Im) -1 (Era (A) El)E{IV-1 (Era (#) Ira) -1 (Em (#) El).

On the other hand, by using (1.1.20) we have

(1.1.22)

where we have set
(1.1.23)

F (Em (A) El)(E, (A) E2) + (Em () Im) U (E, (A) Ira) VEm (A).

Then (1.1.19) holds if and only if

(1.1.24) rank F 1.

Putting (1.1.21) into (1.1.23), we have

F (Em (.X) Ira) -I (Em ()) El)E[

X [El (Em (,) E21 Em ()-1 _4_ V_ (Em (,1 El) Y]
Thus, setting

(1.1.25) F1 E1 (Em (.) E2) Em ())-1
_
V_ (Em (#) El) V,

from (1.1.24) we obtain

(1.1.26) rank F1 1.

Here we quote two lemmas given in our previous work [H2]. Let pl,..., Pm, q,..., qm
be mutually distinct complex numbers.

LEMMA 1 ([H2, Prop. 3]). Let

be diagonal matrices.. If V E GL(m, C) satisfies

rank (V-QV P) 1,
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there are diagonal matrices D1, D2 E GL(m, C) such that

V D1C-1D2,

wh{3r{3

pi qj <_i,j <_m

LEMMA 2 ([H2, Prop. 1]). The (i,j)-entry /ij of th{3 inverse matrix C- of

Pi qj <_i,j<_m

i8

H l<_l<_m (qi Pt)m[I= (p q)

" l-I _<_ (p ) II__, (q

for i, j 1,...,m.
We apply these lemmas to (1.1.26) to obtain

(1.1.27) V D1 (rij)l<_i,j<_m D2,

where D1, D2 E GL(m, C) are diagonal matrices, and
(1.1.28)

Hkm=l ({3 (/Zk) {3 (Pl -- P2 )j)) H l<_l<_m ({3 (Pl -- P2 /) {3 (i))
rij YI l<_l<_m ({3 (pl -- p2 ,e) {3 (pl +/92 -/j)) H l<k<m ({3 (lk) {3

for i,j 1,... ,m. U is now determined by (1.1.21).
Set

(1.1.29)

f’ I-I ( (p + p ) ( + p. ,)),
l<k<m

m (,,)II (( + ) ())" (1 ()
k--1

for i 1,...,m, and set

(1.1.30) D ( D-
fl

gl
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If we use a fundamental matrix solution Yo(x)D instead of Yo(x), the monodromy
matrices M1 and M2 are replaced by D-1M1D and D-1M2D, respectively. Thus the
theorem follows from (1.1.27)-(1.1.30).

We denote by 2t4n,,,p the image of the monodromy representation RH given
in Theorem 1; thus JM,,,p is the subgroup of GL(n, C) generated by Rn([3’l]) and
RH([2]) given by (1.1.8).

Let h be a Hermitian form over C. h is said to be invariant under a subgroup
G of GL(n, C) if

MHM H

holds for every M E G, where H is the Hermitian matrix associated with h.
From now on we assume that A1,..., Am, #1,..., #m, Pl,/)2, P3 are real numbers,

and give the Hermitian forms invariant under AdH,,,p.
THEOREM 2. We assume (1.1.2), (1.1.3), and (1.1.7). Let H be the Hermitian

matrix associated with a Hermitian form h invariant under AdH,,,p. Then there is a
real number c such that

H o hm

kl

(hij)

where

m
sin 7r# H sin 7r (ill - f12 "k #j)" H sin 7r (/zj #,)(1.1.31) kj

sin r (#j Pl)
k=l l</<m

hij
e Ai i

for i,j 1,... ,m, and ij is given by (1.1.9).
Proof. It suffices to determine the entries of a Hermitian matrix H that satisfies

(1.1.32) tM1HMI H and tM2HM2 H,

where Mi Rn([Ti]) for i= 1, 2. Set

(HI H2)H=tf-I2H3
with H1, H,H E M(rn, m; C). Using (1.1.8), from (1.1.32) we obtain

(1.1.33)
(1.1.34)

(1.1.36)

Em (,)-1 H1Em (A) H1,

Em ()-1 {HI (ij)+ H2} H2,

Em (#)-1 H3Em (#) H3,

{H2 + t(Tij) H3} Em (#) H2.

sin 7rAi
m

sin r (Ai Pl)" H sin " (Pl + P2 Ai #)" H sin - (Ai Ak),
/=1 l<k<m
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By the assumptions (1.1.2) and (1.1.3), from (1.1.33) and (1.1.35) it follows that
and H3 are diagonal matrices. We set

HI-- ".. H3 "..
h, km

and
H2 (hij)l<i,j<m.

Noting (1.1.2) and (1.1.3), from (1.1.34) we obtain

(1.1.37) hij
ij

hi
e (As) 1

for i,j 1,... ,m. Then, using (1.1.36) and (1.1.37), we have

1 1 e (#j)
ij" hi(1.1.38) kj

e (#j)glji e (Ai) 1

for i,j 1,..., m. Since the left-hand side of (1.1.38) is independent of i, we have

(1.1.39)
1 i__. hi

1 (l__. hi

for i 2,... ,m. By using (1.1.39), (1.1.38), and (1.1.37), we can express hi, kj, and
hij in terms of hi. Noting the formula

e (w/2) e (-w/2) 2v/-- sin rw

for any w E C, and noting that the diagonal entries of H are real numbers, we obtain
(1.1.31). It is easy to see that the Hermitian matrix H thus determined satisfies
(1.1.32). This completes the proof.

1.2. Monodromy representation of system (III). Let n be an odd integer
equal to or greater than 5. We set n 2m+1 with m E (2,3,4,...}. Let A
(AI,... ,Am+l),#-- (#l,... ,#m), and p-- (Pl,P2,P3) be elements in Cre+l, Cm, and
C3, respectively, satisfying

for i j, and
m+l

E +E #i mpl + rap2 + P3.
i-l i--1

System (III),,,o (or simply (III)) of rank n is the system of differential equations

(1.2.1)
dy

(Xln TIII) xx AIIIy

with

rIII- ( tl!m+l )t.I
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AIII

\ #rn

where

II
l</<m

H (kq-j--Pl--P2)
l<k<m+l

i 1,...,m + 1, j 1,...,m,

(Aj+#t-pi-p2)p_p, l m, j l m +

The Jordan canonical form of the matrix Am is

We assume

PkZ<o, Pk--Pt Z, fork, l=l,2,3, k=l,
AttZ, A-AftZ, fori, j l,...,m + l, # j,
#iZ, #i-# Z, fori, j=l,...,m, ij.

Then the system (1.2.1) has m + 1 singular solutions

in the domain B1, and m singular solutions

z () (x t.)’’ (,++ + o (. t)), i=l,...,m

in the domain B2. Hence we can define a matrix solution

Y0 (x) (yl (x) "ym+l (x) Zl (x) Zm (x))

for x E W Bi F B2. We see that Yo(x) is a fundamental matrix solution (cf.
Proposition 2). Then we obtain the following result.

THEOREM 3. We assume (1.2.2) and

(1.2.3)
Ai Pk Z for 1,..., m + 1, k 1, 2
#- Pk Z forj 1,...,m, k 1,2,
Ai+#j-(pi+p2)Z fori l,...,m + l, j l,...,m.

There is a diagonal matrix D E GL(n, C) such that the monodromy representation

RIII 7rl (p1 (C) \ {tl, t2, oo} ,x0) --+ GL (n, C)
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of the system (1.2.1) with respect to Y(x) Yo(x)D is given by

RIII ([’1]) (Em+l
O ) o )(ij) RIII ([72])Im (rhj) Era(#)

where

(1.2.4) ij (e(Ai)-e(pl))(e(Ai)-e(p2))e(p,)me (p2)m H (e(Ak e+t)-e(P’(Ai)e (Ak)+P2))
l_<k<m+l

for 1, m + 1, j 1, m, and

rhj II ( e Aj + .t e (pl + p2 )
fori= 1,...,m,j 1,...,m+ 1.

We denote by In,,u,p the image of the monodromy representation RII given
in Theorem 3; namely,

<R,,, 1), R,,, 1)>.
Now we assume that AI, Am+l,, m, p, P2, P3 are real numbers and give

the Hermitian forms invariant under
THEOREM 4. We assume (1.2.2) and (1.2.3). Let H be the Hermitian matriz

associated ith a Hp{tiao h iapiat dp III,A,,p. Then there is a real
number such that

where

H o

(ij)l<_i<_m+l
l<i<m

hm+

(hi. l_<i_<m+l
l<i<m

\ km

sin
hi II sinTr (Ai Ak)

mn r (Ai pl)" sin r (Ai P2)
l<k<m+l

m

x H sin r (Ai + #l pl P2),
/=1

kj 4 sin r#j

hij
e (Ai) 1

II
l</<m

m+l

sin r (#j #t). H sin -(Ak + #j Pl p2),
k=l
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for 1,...,m + 1,j 1,...,m, and ij is given by (2.4).
1.3. Monodromy representation of system (IV). Let (1, 2, A3, 4),

# (#1, #2) and p (pl, p2, p3) be elements in C4, C2, and C3, respectively, satisfying

)i 7 )U, Iti 7 Itj, Pi 7 Pj

for i 7 j, and

4 2

i=1 i=1

System (IV),,p (or simply (IV)) is the system of differential equations

(1.3.1)
dy

(xI6 TIV) xx AIVY
of rank 6 with

nIV

where

l-I=,, ( p)

1
j bj, i 1, 2,

4

all (AI+Ak +2--fll --f12--P3),
k=2

1,...,4, j 1,2,

j 1,...,4,

4

a12 H (At + A +/tl Pl P2 P3),
k=2

ay At + A + #j, pl p2 p3, 2, 3, 4,
bll b21 --1,

bij

{i, i’} {1, 2},

j=l,2, {j,j’}= {1,2},

II
k=2,3,4
kTj

i=1,2, j=2,3,4.

The Jordan canonical form of the matrix Aiv is

p112
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We assume

Pk-Z<o, Pk--PICZ, fork, l=l,2,3, kl
(1.3.2) AZ, Ai-Aj CZ, fori, j-1,...,4, ij,

,Z, -Z.
Then the system (1.3.1) h 4 singular solutions

yi (x) (x- t)’ (e + O (x- t)), 1,...,4

in the domain B1, and 2 singular solutions

zi (x) (x t2)" (e4+i + O (x t2)), i 1, 2

in the domain B2. Hence we can define a matrix solution

y0 (x) ( () (x) () (x) Zl (x) z: (x))

for x W B B2. We see that Yo(x) is a fundamental matrix solution (cf.
Proposition 2). Then we obtain the following result.

THEOREM 5. We assume (1.3.2) and

Ai p Z for i l, 4, k=1,2,3,
(..)

+ + (p + p: + p) z fori, j ,...,4, j, k=1,2.

There is a diagonal matrix D GL(6, C) such that the monodromy representation

Rv r (p1 (C) {t,t2, },x0) GL (6, C)

of the system (2.2.1) with respect to Y(x) Yo(x)D is given by

o h (v) ()

where

(al (al (.) (.)

e(4)

(1.3.4) ij
l-Iz3__l (e (Ai) e (Pz))

e(pl+p2 +p3)2e(,1)Hl_<k_<4 (e(.i)- e(Ak))
.xij,

i= 1,...4, j 1,2,

Xll [12: 2] [13: 2] [14: 2],
x2 e (p2 p)[12: 1] [13: 1] [14: 1],
x21 [12 2], x22 [12: 1],
x3 [13: 2], x32 [13: 1],
x41 [14 :.2], x42 [14: 1],
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Here we have set

[ij k] e (Ai + Aj + #) e (p + p2 + p3)

fori, j 1,...,4, k 1,2.
We denote by 3/[Iv,x,,,p the image of the monodromy representation RIv given

in Theorem 5; namely,

JIV,X,t,p (nlV ([’)’1]), nlv ([2]))

Now we assume that A1, )2, ,3, ,4, #1, 2, Pl, P2, P3 are real numbers and give the
Hermitian forms invariant under Adiv,,,,p.

THEOREM 6. We assume (1.3.2) and (1.3.3). Let H be the Hermitian matrix
associated with a Hermitian form h invariant under Mv,,,,p. Then there is a real
number a such that

H o

h2 h21 h22
h3 h31 h32

h4 h41 h42
11 t21 31 t41 kl

where

4 (/1sin ’A1 YIk=2 sin 7r

sin (,Xl
sin rrA1 1<k<4 sin r

hi 24 3HI-- sin rr (Ai pt)

x II H sinr(Al+Ak+#t-pl-p-p), i=2,3,4,
2<k<4 /=1,2

4

k 24 sin ’#j. sin r (#j pj,). H sin (A1 + Ak + pj, pl P2 P3),

j 1,2, {j, jt} {1,2},
ij

hi, 1,...,4, j 1, 2,hiy
e (Ai) 1

and ij is given by (1.3.4).
2. System (II*), system (III*), and system (IV*). Let tl,t2,t3 E C be

three points satisfying the following:
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(i) tl, t., ta are mutually distinct,
(ii) tl, t2, t3 do not lie on a line,
(iii) when we trace, in the positive direction, the circle C on which tl, t., t3 lie,

tl, t2, t3 come in this order. We set

B1 B (tx,min{It2 tx[,Ita- tl}),
B= B (t=, min {It t=l, Ira
B3 B (ta, min { [t t3 I, It2 ta I}),
W =B1 C B2 f3 B3.

Then, by the assumptions on the tj’s, we see that W is a nonempty, simply connected
domain. Take any x0 in W and fix it. For 1, 2, 3, let i be a loop that starts from
and ends at x0, encircles ti once in the positive direction, and crosses C only twice on
the arc t-itti+, where we set t_ t3 and t4 t. Then the fundamental group
7rl(P(C) \ {tl,t2,t3, 0}, xo) is generated by the homotopy classes [3’1], [/2], and [3].

This notation is fixed throughout this section.

2.1. Monodromy representation of system (II*). Let n be an even in-
teger equal to or greater than 4. We set n 2m with m E {2, 3, 4,...}. Let

(1,. ,/m), (Pl, m-1),/] and p (p, P2) be elements in Cm, Cm- 1, C,
and C2, respectively, satisfying

i 7 j, #i 7 #j, Pi 7 Pj

for j, and
m m--1

’Ai + #i + mpi + mp2.

i=1 i=1

System (II*)a,,,,p (or simply (II*)) of rank n is the system of differential equations

(2.1.1)
dy

(xIn TII" xx AII* y

with

Tn* (tlIm

#1

where
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II
l<k<m

k + #j Pl

i= 1,...,m,
1

i= 1,...,m,(- pl)(- )- II ,_ ,
ij=H()j+ptl-pI-p2 ), i=1, m-l,

l<l<m-1 i tl

m-1

j 1,..., m- 1,

j 1,...,m,

The Jordan canonical form of A* is

plIm
p2Ira l

The system (2.1.1) is Fuchsian over pi(C) with regular singular points at x ti,t2,
t3, (:x:), and is free from accessory parameters.

We assume

pl,P2 Z<0, Pl- P2 Z,
/kiZ, /ki-/k Z, fori, j=l,...,m, i#j,

(..2) #iCZ, #-#j CZ, fori, j=l,...,m-1, i#j.

Then the system (2.1.1) has rn singular solutions

Yi (x) (x tl)’ (ei -t- 0 (x tl)), i--1,...m

in the domain B1, rn- 1 singular solutions

(x) (x t)"’ (+ + o (x t)), i= 1,...,m-1

in the domain B2 and one singular solution

W (X) (X t3) (en -- 0 (X t3))

in the domain B3. Hence we can define a matrix solution

Y0 (x): (yl (x)’"ym (x)Zl (X)’’’Zm-1 (X)W (X))
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for x E W B1 N B2 N B3. We see that Yo(x) is a fundamental matrix solution (cf.
Proposition 2).

THEOREM 7. We assume (2.1.2) and

(2.1.3) Ai- Pk Z for i-- 1,..., m, k--- 1, 2,
Ai/#j-(pl/p2)Z for i-=l,...,m, j -----1,...,m-1

There is a diagonal matrix D GL(n, C) such that the monodromy representation

RII- ’1 (pi (C) \ {tx, t2, t3, (x)), xo) GL (n, C)

of the system (2.1.1) with respect to Y(x) Yo (x)D is given by

where

RII-([")’31)-- (J)l<j<_n-1 o)

Em (A) I e () I i(#)Era-1 (#) ".

(.)

(2.1.4)

( () (p)) ( (p ) i)

,m (e () e (p)) (e (p2 A,) 1)

II
l<k<m

II
l<k<m

e (#) e (pl + p= )
(p + p,. ,) e (p + p= ))

l,...,m,

i= 1,...,m,

?in

II
l</<m--I

II
l</<m--I

e(pl +P2--,j)--e
(,) (,,)) i 1,...,m- 1,

i 1,...,m- 1,

j= 1,...,m,
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and

We denote by A4ii.,x,,,,p the image of the monodromy representation RII- given
in Theorem 7; namely,

Now we assume that A1,..., Am, #,...,/Zm--1, V, Pl,/92 are real numbers and give the
Hermitian forms invariant under A/IH*,,,,p.

THEOREM 8. We assume (2.1.2) and (2.1.3). Let H be the Hermitian matrix
associated with a Hermitian form h invariant under JVIH.,,,,p. Then there is a real
number c such that

H o

(hij) l<i<m
<_j<_m

hm

kl

km-

fl

Ym--
g

where

sin 7r#j

sin 7rA I-[sin 7r (Ai p). sin 7r (Ai P2)
l<k<m

m--1

x H sin 7r (Ai + # Pl p2), i,..., m,
/=I

m

H sin r (#j #,). H sin.Tr (Ak + #j pl P2),
l</<m--1 k--1

j 1,...,m- 1,
sin

g
4m_2

hj .hi, i,j 1 m,
e (,i) 1 ""

rln k, i 1,...,m- 1,fi e (#i) 1

and {j, ln are given by (2.1.4), (2.1.5), respectively.
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2.2. Monodromy representation of system (III*). Let n be an odd integer
equal to or greater than 5. We set n 2m+l with m E {2,3,4,...}. Let A
(A1, Am), # (#1, #m), U and p (Pl, P2) be elements in CTM, Cm, C, and C2,
respectively, satisfying

for i : j, and
m m

i=1 i=1

System (III*),,,p (or simply (III*)) of rank n is the system of differential equations

dy
(2.2.1) (xln TIII*) xx AHI*y

with

where

AIII*

TIII* t2
t3I.

..
m m

0"1 O’m b’ 7"1

1 #1 ..
O

l<k<m

/ij--(#i--Pl) H
l</<m

Pl +P2--Ak--PjlA Ak

Ai Pl

kyi

i= l,...,m,

m

Tj H (k + #j Pl p2),
k=l

The Jordan canonical form of AIII* is

fllXm+l

j 1,...,m.

Tm

i,j 1,...,m,

i,j 1,...,m,
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The system (2.2.1) is Fuchsian over pI(C) with regular singular points at x tl,t2,
t3, oc, and is free from accessory parameters.

We assume

Pl,P2 Z<0, Pl--P2 Z,

(2.2.2) A z’ Ai-Ay Z, fori, j --1,. ,m, iCj,
#Z, #-#jCZ, fori, j=l,...,m, ij,

Then the system (2.2.1) has m singular solutions

(x) (x t) ( + o (x t)), i=l,...,m

in the domain B1, one singular solution

(x) (x t:)" (+ + o (x t:))

in the domain B2 and m singular solutions

Zi (X) (X t3)tt (em+l+i - O (X t3)), i=l,...,m

in the domain B3. Hence we can define a matrix solution

o () ( (x) (x) w (x) z (x) z (x))

for x E W B1 N B2 N B3. We see that Yo(x) is a fundamental matrix solution (cf.
Proposition 2).

THEOREM 9. We assume (2.2.2) and

(2.2.3)
p Z

#i pl Z
: + (pl + p.) z

for 1,...,m,
for 1,...,m,
for i,j 1,...,m.

There is a diagonal matrix D GL(n, C) such that the monodromy representation

RIII- 1 (P (C) \ {t, t2, t3, (:X:)}, X0) GL (n, C)

of the system (2.2.1) with respect to Y(x) Yo(x)D is given by

0
O_j_m )Im+

I o
RIII" ([’)’2]) (J)l<j<m e (b,)

O O

Im+
RIII* ([3]) (?ij) l<i<m

l_j>_m+l
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where

(2.2.4) Em (tt) I e (ttl)

i, j 1, m,

and

(2.2.5)

m

II ( (p. ) (, p)),
/--1

m

-+ (P) II (( 1 (p 1),
k--1

l</<m

e (P2 ,j) e (ttl Pl) ’(, ) (, p,) )

i,j 1,...,m,

vii .+l (e (pl #i) 1) II
l</<m
l#

e (lti Pl) e (ptl Pl)’

i=l,...,m.

We denote by .A4m.,),,,,,p the image of the monodromy representation RIII" given
in Theorem 9; namely,

A/[,II’,,t,,p- <RIII" ([’]),Rim ([2]), RIII"
Now we assume that A1,..., Am, pl,..., tm,/2, Pl, p2 are real numbers, and give

the Hermitian forms invariant under
THEOREM 10. We assume (2.2.2) and (2.2.3). Let H be the Hermitian matrix

associated with a Hermitian form h invariant under 24iii*,A,g,,p. Then there is a real
number such that
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where
sinTrAi H sinTrhi

sin 7r (Ai pl)

m

x H sin 7r (Ai + #l pl p2),
/=1

sin 7ru
g=

4m_

sin
kj

sin 7r (#j pl) H sin r (#j #l)
l</<m
lj

m

x H sin r (,k + #j Pl P2),
k=l

i= 1,...,m,

ij
hi, 1, m,hij

e Ai 1

hm+lj 1 e (# k j 1, m,

and (j, Tj are given by (2.2.4) and (2.2.5), respectively.

j 1,...,m,

j O,...,m,

2.3. Monodromy representation of system (IV*). Let A (1,,2),
(#1, #2),//= (//1,//2) and p (pl, p2) be elements in C2 satisfying

and

System (IV*)x,.,v,p (or simply (IV*)) is the system of differential equations of rank 6

dy
(2.3.1) (xI6 TIv*) xx AIV*y

with

where

)i Pl

ij #i Pl
#i

Cij,

for/= 1, 2,

for 1, 2,

for 1, 2,

with {i, i’} {1, 2},

with {i, i’} {1, 2},

with {i, i’} {1, 2},

j 3, 4, 5, 6,

j 1, 2, 5, 6,

j 1, 2, 3, 4,,
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ala A1 + #2 +/21 2pl -/)2,

a15 A2 - 2 --/21 2p P2,

a23 A2 + 2 + 2 2p P2,

a2 A2 + 2 + v2 2p P2,

b A2 + + v 2p p2,

b21 A2 + 2 + 2 2p P2,

b25 1 + 1 + 2p p2,

c A1 + : + 2 2p p2,

c3 + 2 + 2pl p2,

c2 + + 2p p2,

c23 + + 2p p2,

The Jordan canonical form of AIV* is

plI4

a14 A1 + pl +/22 2pl --/)2,

a16 A2 - Pl -/22 2pl D2,

a24 A2 - 1 -/21 2pl P2,

a26 A2 + Pl +/21 2pl P2,

b12 A1 -t- #1 +/22 2pl p2,

b16 A1 + #2 --/22 2pl p2,

522 )1 + 2 +/21 2pl p2,

b26 )1 -}" P2 -}- /21 2pl P2,

c12 A1 + #2 +/21 2pl P2,

c14 1 + #2 +/22 2pl p2,

c22 A1 + #1 +/22 2pl p2,

c24 1 + #1 +/22 2pl p2.

p212 1
The system (2.3.1) is Fuchsian over PI(C) with regular singular points at x tl,t2,
t3, oe, and is free from accessory parameters.

We assume

(2.3.2)

pl,P2 Z<o, Pl--P2 Z,
,1, ,’2 Z, 1- )2 Z,
1,2 Z, Pl- 2 Z,

Then the system (2.3.1) has 2 singular solutions

yi(x) (x tl) )’ (ei + 0 (x tl)), i=1,2

in the domain B1, 2 singular solutions

z (x) (x + o (x i--1,2

in the domain B2 and 2 singular solutions

(x- + o i= 1,2

in the domain B3. Hence we can define a matrix solution

Yo(x) (yl (x) y2 (x) Zl (x) z2 (x)Wl (x)w2 (x))

for x E W B1 3 B2 f3 B3. We see that Yo(x) is a fundamental matrix solution (cf.
Proposition 2).

THEOREM 11. We assume (2.3.2) and

(2.3.3)
Ai p it Z
#-p it Z
a-p t Z
Ai A- #j A-/2k (2pl A- P2) Z

for 1, 2,
for 1, 2,
.for 1, 2,
fori, j,k 1,2.
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There is a diagonal matrix D E GL(6, C) such that the monodromy representation

RIv- Zrl (p1 (C) \ {tl, t2, t3, oc} ,xo) --* GL (6, C)

of the system (2.3.1) with respect to Y(x) Yo(x)D is given by

Riv- ([’1])

e (,1) 11 12 13 14
e(2) 21 22 23 24

1
1

1
1

Riv- ([2])

1
1

?11 ?12 e (#1) ?13 ?14
?21 ?22 e(#2) /]23 ?]24

1
1

Riv- ([31)

where

6 (i) 6 (Pl)
Xij, for 1 2 {i i’} {1, 2} j 1,... 4,

() (,)
e(#i)-e(pl)

fori-1 2 {i,i’}={1 2} j=l 4,(2"3"4/ UiJ e (pi) e (i,) "yij,

e(Pi)--e(pl)
"Zij, fori= 1,2, {i,i’}= {1 2} j= 1 4,=()-(a,)

[211] [1111
Xll X12

e (/21 --I- 291 -]- P2)’ e (1/1 -- 2pl -}"

[122] [111]
X13 X14

e (1 "+" 2 "- /]1 -[- 3pl + P2)’ e ()1 "- #1 " /]1 " 3pl +
[221] [2]

X21 X22(1 + e;1 + ;:)’ (.1 + el + ;.)
[212] [22]

X23 X24
e (A2 + #1 + 1 + 3pl + p2)’ e (A2 + #1 + -1 + 3pl + P2)
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[121] [111]
Yll Y12

[212] [222]
Yi3= (A2/3pl+p2)’ yl4=

e e ()2 - 3pl + P2)
[221] [2111

Y21 Y22

Y23 Y24e (A + A + # + + p)
zll -e (Ai / vl)[221], zl2 -e (A2 / vl)[111],

Here we have set

for i, j, k 1, 2.

[ijk] e ( + #j + uk) e (2pl + p2)

We denote by JIV*,A,U,v,p the image of the monodromy representation RIV* given
in Theorem 11; namely,

IV*,,X,,u,p (RIv* ([/1]), RIv* ([2]), RIv- ([’)’3])).
Now we assume that A1, A2, #l, 2,/]1, t]2, pl, p2 are real numbers, and give the

Hermitian forms invariant under J/IIV*,,u,v,p.
THEOREM 12. We assume (2.3.2) and (2.3.3). Let H be the Hermitian matrix

associated with a Hermitian form h invariant under A/IIV*,X,u,u,p. Then there is a real
number a such that

where

H ol

sin rAi. sin r (Ai Ai,
sin r (Ai pl)

sin r#i. sin r (#i #i,)
sin x (i Pl)

sin ra" sin r (i v,
sin (a pl)

for i 1,2, {i,i’} {1,2},

e (#i) 1

hi,

gi,

1 sinr (Ak + #i + 2 2pl P2),
k=l,2

lI sinr (Ai + #k + 2 2pl P2),
k=l,2

H sinr(Ai+#2+vk--2pl--p2)
k=l,2

1,2, j 1,...,4,

i, j 1, 2,

e (2pl -[- p2)[121] e (2pl + p2)[211]
Z21 Z22

e (2pl + p2)[212]
z23 -[211] z24

e (A. + # + v)
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and ij, are given by (2.3.4).
Note added in proof. The author has discovered that the system (II) is studied

in detail in [ST2].
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SMOOTHING EFFECTS FOR DISPERSIVE EQUATIONS
VIA A GENERALIZED WIGNER TRANSFORM*

THIERRY COLINi

Abstract. Generalized Wigner transforms, which are adapted to several linear dispersive equa-
tions, are introduced. In applying these transforms some local smoothing effects are recovered, and
the estimates on the solutions are found.
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1. Introduction. In a recent work, Lions and Perthame [5] have shown that the
classical Wigner transform (see (2) below) can be used in order to recover the smooth-
ing effects of the linear SchrSdinger equation. More precisely, consider a solution
to

(1) i--+A 0 in xI,

and set

(2) f(x; ; t) JR e-iV’(x -b y)-(x y) dy, x e In, e Ifn.

The mapping - f is known as the Wigner transform; it has the remarkable property
that if satisfies (1), then f satisfies the linear transport equation

Of(3) Ot (" Vx)f 0 in In X In X I.

The following question naturally arises. If, instead of (1), is the solution to a more
general linear dispersive equation

(4) - + P(D) 0,

where this once P(D) is a general differential operator with real symbol P(), is it
possible to recover a similar framework? At least two directions are possible. First,
one can keep the transform (2) and try to find an analog of (3). We have not been
able to find a "reasonable" equation. Second, one can try a new transform that again
leads to (3). Let us denote by the Fourier transform of with respect to the space
variable x. In this direction, we have the following proposition.

PROPOSITION 1. Let q(, r]) ]Rn ]Rn -- ]R be such that

" q(, 7) P(]) P( ]),
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SMOOTHING EFFECTS FOR DISPERSIVE EQUATIONS 1623

and define the generalized Wigner transform (GWT) by

GWT(@)(x; ) jf, eix’q(;v) (/)( /) d.

Then f(x; ; t) GWT(@(x; t)) solves (3) if q2 solves (4).
Remark 1. (i) If P() I12 then q(, 7) 2/- satisfies (5) and one recovers

the classical Wigner transform (2).
(ii) For the moment, Proposition 1 should be seen as the result of a formal com-

putation since the phase q(; /) can be singular. We shM1 make this more precise
later.

2. Statement of the main results.

2.1. The one-dimensional case.
THEOREM 1. Let " I --, C be the solution of (4) with initial value Co(x).
(a) If P() is a polynomial with odd degree, then

2

9[ e-’ (v)(2)IP’(v)I/ dl dt

8= S I()1 (2)= d.

(b) If P() is an even polynomial then

Vx E I,
2

where 9 is a cut-off function

() _-- 1

() o

99()4 d i e2ix’ 0()0(--)()4

Remark 2. We recover the local smoothing effect for dispersive equations (see
Constantin and Saut [3] and Kenig, Ponce, and Vega [4]).

Indeed, Theorem 1 shows that

/) I,(;D<) < l01L,

where $--1 denotes the inverse Fourier transform in the /variable. On the other hand,

m-1 (01)(1 (2r/))IP’07)l lIe) e L(. x ltt),

which leads to

(IP’II(D)) 1(;i’o,<) < c1o1,

where (IP’Ii(D)) .r-(IP’(v)li;(v))(x).
Rmark 3. If P(f) I1<+ o P() I1< , one c tke o _= 1 nd one obtin
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(i) Vx e ],

for P()= Il+1
or

dt=./lo(e)lde, for P() Il,

where we have used the notation ]Dl(x)
For the Airy equation, we obtain the following corollary.
COROLLARY. Let be the solution to the Airy equation:

o o3
K + b-x =0,

(x; 0) Co(x).

One has

Vx E I, Ix (x; t) dt= ClOIi2().

We recover the result of [4]"
Remark 4. Theorem 1 remains valid for any pseudo-differentiM operator whose

symbol satisfies the conclusions of Lemmas 1 and 2 or Lemma 3 in 3.1 below.

2.2 Generalizations in arbitrary dimensions.

2.2.1. The case of a power of the Laplacian. We consider the equation

iCt+(--A)a=O in IxIn,
(6) (x; 0) 0(x),

where a > 1.
Our results read as follows.
THEOREM 2. The solution (x, t) to (6) satisfies the following: Vxo n,
n 2:

f_’t’ jf ’([D’a-l)’2 ((x xo) (’D’-ld))2
oo Ix- xol ix x013

dx dt

< lol
n= 3:

/+_ {jfa ](IDla-l))]2 ((x-x)
xol Ix xo] 3

dx
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n> 4:

ix_x013 an dxdt c1o [:3

THEOREM 3. The solution to (6) satisfies

dy dt C01/2
i + i]]+l/

forO<5l.
Theorems 2 and 3 are the results corresponding to those of Lions and Perthame

[5] in the case where P(D) is the Laplacian. They improve the known results on the
local smoothing effects (see [3] and [4]). Theorem 3 implies, for example, that

The estimate in Theorem 3 is analogous to the one given by Ben-Artzi and Devinatz
in [1].

(7)

2.2.2 Case of a tensorial symbol. We consider the equation

i- +E Pj(Dj)
j--1

(z; 0) 0(),

=0 in I

where the symbols Pj(j) of 5(Dj) are real and even. We impose the requirement
that P be a bijection from onto . We have

and since P is odd

Pj (j Pj (j -j Pj(j + tj dt,

(8) P(y tj)dt (2j ) gy (, rS)

where gy is a regular function.
THEOREM 4. The function solution to (7) satisfies

( ())Vy I, iPll 0

S (I&(e)l _,,.e. &o(e) o(-e)) e.
The results of this paper were announced in [2].

3. One-dimensional case.
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3.1. Technical results. As in (5), we introduce the following function:

q(, 7) P(7) P( 7)

The aim of this section is to prove some results that we will use in the course of the
proof of Theorem 1.

LEMMA 1. If P is an even polynomial or if the degree of P is odd, then BR1 >_ 0
such that if ]] >_ R1, then 7 q(; 7) is a diffeomorphism from I to I. K]

Proof. First we notice that

Oq P’ (7) + P’( 7)

If P is even, then P is odd and

Oq P’ (7) + P’ (7 )

Now 7 -+ P’ (7) and 7 -* P’(7-) are two translated odd polynomials; therefore, if
is sufficiently large, they do not have any intersection point and
Oq/07 O V7 I.

If P is a polynomial with odd degree, then pI is a polynomial with even degree
and it is clear that if I1 is large enough, then

P’ (7) + P’( 7)

cannot vanish.

Now, in both cases, it is easy to verify that Oq/07 is a polynomial in the 7 variable
with odd degree. The lemma follows. K]

LEMMA 2. If P is even, then R2 > 0 such that V E ], 7 - q(; 7) is a
diffeomorphism from \ I-R2 ;R2] onto its range. K]

LEMMA 3. If the degree of P is odd, then R3 > 0 such that ,
P(7) P( 7) is a diffeomorphism from ] \ [-R3; Ra] onto its range. K].

Proofs. If P is even, then the coefficient of the dominant term of 7 -+ q(; 7)
does not depend on ; hence Lemma 2 follows from Lemma 1 and from the continuity
of the roots of a polynomial with respect to the coefficients.

If the degree of P is odd, we make the same remark with 7 -+ P(7)- P(-
instead of 7 - q(, 7). K]

3.2. Proof of Theorem 1 in the case where the degree of P is odd. Let
P be a polynomial with odd degree, let q be given by

q(, 7) P(7) P( 7)

and let R1, R3 be associated with P according to Lemmas 1 and 3. We introduce the
following function:

----1 if

=0 if

with 0 <_ _< 1, even, and R max (R1, R3).
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Let b E S(I); define the generalized Wigner transform of b as in Proposition 1:

) () J(r/)(- r/)eixq(e’) dr/.GWTI()(x;

We now consider the case where depends on the time t and satisfies (4), i.e.,

+ P(D) O, x,t e x ,
(x; 0) 0(), z e ,

(9) f(x; ; t) GWTI(b(., t)).

It follows that is given by (; t) 0()eiP()t. Hence f satisfies the transport
equation (3), i.e.,

Of Of
at x =0, ,,xexxI.

We multiply (3) by ( and we integrate on x with respect to x, (, and on I-T; T]
with respect to t. One obtains

I(T) f (x; ; T) d( dz f(x; ; -T) ( d( dz

(10)

At this stage, we let T + and we will identify the limits of I(T) and II(T).
(i) Limit of I(T) as T +. Since f satisfies (3), we have an explicit formula,

f(x; ; T) fo(x + T
where fo(Y; ) f(Y; ; 0).

Hence

// x // x
I(T) fo(x + T, ) dx d fo(x T; ) dx d.

We make the changes of variables y x + (T and z x T in the above expression,
and letting T + we get

(11) I(T) -2 ff fo(y, () [ () d( dy.

Using (9) in (11) leads to

lim I(T) -2 fff o()0( )[([ eiyq(’) () dd dy.

Thanks to Lemma 1, z q((, ) is a diffeomorphism for ]( R; hence, letting
f(, z), we obtain

ff[ o(/(; z))il 0(-f(; z)) ()z(e) To+lim I(T) -2
JJJ [oq (; f(; z))[

dy dz d.

and we introduce
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In (12), we use the formula f 5()d- 2r o(0) and we are led to

f o(f(; o))11 o( f(; o)) ()lim I(T) d.J -7)1
We remark that f(; 0) /2 and that

"q (;/2) 2P’(/2)

which implies

hence

lim I(T) -4r i o(/2)o(/2) 2T--+-t-oo

<,<::,()
IP’(/2)1

(13) lim I(T) -32ri 1()12 0(2)
d.

T-+ IP’()I
(ii) Limit of H(T) as T +x. Let us recall that

II(T) (z; ; t) d dx dr.

We integrate by parts in the x variable:

II(T) f(O; , t)2 de dr,
T

T

by the definition of f (see (9)).
Let us now estimate the difference:

T

41 1 v(2( ))/11 (2)1/2] d de dr.

Since is given by (; t)= o()e’P()t, one has

H(T) (2( ))1/2]]

(2V)/] e(;nlt dt d( d.

Now, Lemmas 1 and a enable us to make the change of variables z (q((; )
(;).

One obtains

(14) [()_41_01 (2(_v)),/lvl (2v),/] fff }ezt dt dz d.P’() + P,( )
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First we remark that fT_T eizt dt C5o in the sense of measures and g(; 0) /2.
On the other hand,

* .i 0()0(5 r) [2() 415 r{ (2(5 ))1/2[[ (2)1/2]

ei(q(;)t dtd
T

is dominated almost everywhere by

which belongs to L by bini’s theorem.
Therefore, we can ps to the limit T + in (14) and we obtain

lim II’(T) O.

Hence, we deduce that

II(T)
T--+

] (2)/2 dyd dr,

whence

(15) T-,+oolim H(T)---4i+_ I1 ((2))/ dlTI
2

dr.

(10), (13), and (15) yield

(7)Ivl (27)/ dlTI
2

dt 8r IDo()l ()
IP’()I

We apply this result to the function defined by

(; t) (; t) IP’()I/I1
This leads to the result of Theorem l(a) with x 0.
translations ends the proof of Theorem l(a). K]

The invariance under the

3.3. Proof of Theorem 1 in the case where P is an even polynomial. In
this section, we consider the case where P is an even polynomial; thanks to Lemmas
1 and 2, we can find three nonnegative functions KI(), K2(), and K3() such that
r/ -, P(r/) P( /)/ is a diffeomorphism from I \] gl(), gl()[ onto \]
K2(); K3()[ and K1 K2 K3 0 for I1 >- R1. We take R max (R1, R2) and
we introduce qo as in 3.2. We define a slightly different generalized Wigner transform
for

GWT2()(x; ) f()( r/) eiz’q(’v) 9(l) 9( 7) dl.
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If b satisfies (4),
0
i- + P(D) O, t, x e I x R,

(; o) Co(x), x e ,
we introduce

(16) f(x; ; t) GWT2((.; t)),

and f satisfies the linear transport equation (3). Arguing in 3.2, one obtains the
equality (10).

(i) Limit of I(T) as T +. As in the previous section, we get

lim I(T) -2 ff fo(Y; ) d dy

-2]" o()o(-)eiyq(’u) ()(-)dddy,

by the definition of f (see (16)). Lemmas 1 and 2 enable us to make the change of
variables z q(, ) and f(, z). We obtain

lim I(T)

fff o(f(; z))l0(-I(, z))(f(, z))v(-i(, ))

l{R]_g();ga(5)[} (Z) dy d dz.

Using the formula f ()d 2rh(0), we obtain

lim I(T)
T+

() -4f o(f(;o))i5o(-I(,o))(f(,o))(-f(,o))
] (; f( 0))]

I{]_K();Ka()[} (0) d.

If 0 ]- K2(); K3()[, then the integrand in (17) is zero.
If 0 ]- K2(); K3()[, then f(; 0) /2. Whence (17) yields

lim I(T)=-4 o((/2)1 I1T+

and we obtain

(18)

(19)

lim I(r) -327r /Io()1T--,q-o IP’(5)I ()2 de.

(ii) Limit of II(T) as T +oc. As in 3.2, we obtain

T
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The identity 2 ( 27)2 + 4r]( 7) and the change of variables (, r]) -- (z
2r]- , 7)in (19)lead to

II(T) ()( z) z2 ()( z) d dz dt
T(o)

4 ’() ’( ) ()( )dd dr.
T

Let us set H’(T) fTHz2()( z) ()( z) d dz dr. We can estimate
this term by defining a Wigner-like transform

](x; ; t) f (,,) ()( )()( ) d.(1)

Since P is even, ] still satisfies the linear transport equation. The
function ](x; ; t) is "almost" the generalized Wigner transform defined by (16); there-
fore, arguing as in the beginning of this section, one obtains

2 ff ]0(Y,)ddy

()
JJ

J-- J

JJ J

which implies

(23) lim H’(T) -32r / 0() 0(-)I12 ,()T-,+o IP’()I
Together with (20), (23)leads to
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4. Multidimensional case.

4.1. Technical results. Let us denote by the solution to (6):

i+(-/x)-=0, t,ex,
(x; 0) 0(x). .

where c > 1.
We denote by P() -I12 the symbol of (-A) and we compute

P() P( ) I1:" -I vl:"

Let w(a; b) as- b/a- b; w is a regular (C1) function. It follows that P(r/)
P( r/) . (27 )w(Ir/12; It/- 12). We introduce

(6) q(; ) ( ).(11; I 1).
We have the following lemma.

LEMMA 4. If is fixed in I, then q(, rl) is one-to-one from I’ onto I
Proof. Let z Rn, ]’. Let us solve the equation

(27) z (27 )w(lr/12 Iv/- 12).
The vector r/must be in the one-dimensional affine space /2 + IRz. We search

under the form r/= /2 + Az. A satisfies

2/z
z.(1/ + 1;I /1)

or equivalently

which is equivalent to

(es) 2/(. z)

If . z :/: O, (28) means

2(. z) 1/2 + Azl2" -IAz /212",
and we have to prove that - 1/2 + Azl2 -IAz- /212" is one-to-one. By a change
of variable, it is sufficient to prove that # - (1 + #2 + fl#)a (1 + #2 _/#) is
one-to-one. This can be verified after derivation by a straightforward calculation.

If.z 0, then 2r/. I[2 and Iv/-12 Ir/I 2, (28) becomes z
2/ z w(Ir/12; Ir/12), and it is easy to conclude. [3

For E S(n), we define the generalized Wigner transform of by

(29) GWT3() / eix’q(’n) (r/)( r/).(112; I 12)n-1 d.

If solves (6), then f(x; ; t) =_ GWT3((., t)) satisfies the linear transport equation.
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4.2. Proof of Theorem 3. We define an operator as follows. Let h(, z) E
n IRn) and H(x; ) be the function given by

(30)

then

H(x, ) / eix’z h(; z) dz;

(31) (H)

where z q(; 7) and g(z, ), i.e., g is the inverse function of q(., ) which exists
by Lemma 4.

We will apply to the transport equation.
From now on, we suppose that

(32) l(l -(-) E L2(]Rn).
We perform the change of variables z q(; r/) in the definition of f (see (29)):

(33) f(x; ; t) f eix’z (g(z; ))( g(z; ))
wa(Igl 2, g12)n-1

g(z; )
dz,

where J(z; ) Idet (Oq/Ol) (; g(z; ))1" Hypothesis (32) implies that (33) is well
defined.

We apply to the transport equation and then we integrate

(34) -- dx d dt V f) dx d dr.
T T

(i) Left-hand side of (34). First we remark that commutes with O/Ot. On the
other hand, since f solves (3), f(x; ; t) fo(x + t; ). Therefore, by (33),

f(x; ; t) / ei(+t)’ 0(g(z; )) o(-g(z; )).(Igl; I-gl2)-1

Whence f is in the form (30), and by (31)

dz.

Hence

(f) : e{(x+t)’ (o() o( )x

J(1 + w(Igl2; [c g12) Ixlh)/
dz.

:// dxd dt
O(f)I(T) =

:/: d(+).z 7:o()7:o( ).n x.

J(1 + wlxl5) 1/6 dz d dx

fff(_). o()7:o( ). x.

( + lxl)/
dzd dx.
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We make the changes of variables y x + T (respectively, y x- T) in this
expression and letting T --, +oo, we get

(35) lim I(T) -2 eiy.z bo(g) bo( g) coa I1
T--*4-cx 1(; Z)

dz d dy.

In (35) we use the formula f z()d ch(O) and we obtain

lim I(T) cf o(g(O; )) o( g(O; ))
J - (o;)12(Ig(O;) ;l- g )11

d.J(;0)

We remark that g(0; )= /2 and J(; 0)= (112]4; 112/4)n. This leads to

(36) lim I(T)
T+

(ii) The right-hand side of (34). Notice that

This leads to

II(T) =_ ,(. Vf) dxd dt
T

(. Vz)(eiX.z) (g)( g)cos x._
J( + lxl)/

We integrate by parts in the x variable:

dz d dx dr.

: /// (g)( g) eix.z 022-1H(T) j
jT

Oxj (1 4d-i[)1/5
dz d dx dT
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In order to carry on the computation, we return to the variable

H(T)
T

(’)( ’) ’q(;’) G (1 +
(. x) ix- ](i G.lxl)+/ d,d dx dt.

acn that q(; .) (e. ).(I.l; .l) nd set V x .(I.l; I .1) (T)
becomes

H() (,)( ,)
(1 + 1)/(37)

(f" y) ly_ ]

A this sge, we re in he sme situation s in [8]. Le us recMl how o conclude.
We hve

(1+ l)/ ( + l)+/ ( + I)/
We write i (i- r/i) + i in (37) and we obtain

Oy Oy Oy Oy Oy Oyj

Oyy (l+ lyl)/,
dydt,

H(T)

-T OyiOYj
-2 0 0

T cOyj Oyi Oy Oy (1 + I1)1/
YYIyI- ](1+ lyl)+/

dy

(a81 - i1
T Oy Oyy Oyy (1 + yl e)l/e

dy dt.

The equalities (34), (36), and (38) give

(39)
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Now we remark that the Cauchy-Schwarz inequality yields, for any v in In,
v (. ) I1- [

v2

( + ll)+z"
On the other hand, we have the following lemma.

LEMMA 5. If 5 1, then

A div
(1 + lyl)’/ >- o.

Assuming this lemma, (39) gives

i_’=i Ioo (1 + I,1)+/
dy <_ c I0()1 I1-<’-) d.

We apply this equMity to the function defined by

() II-()
(in prticular, hypothesis (32) is stisfied). We get

(1 + I1)’+’/
dydt _< c101D,<:.

We still must prove Lemma 5. One has

We introduce

Then, one computes

div

k(v) (1 + u)1+1/

n- i (n + (n- l)u)k’(u)- (l+u)i+i/- (l+u)2+i/ (i+II)

-(1 + n/) (n’ "’i’)u
<0 for u_>0,

(1 + u)2+1/

/"(u) [I + 1/,] -( ( +’I’) + "(1 + u)3+1/7
> 0 for u >_ 0.

Hence k is convex and decreasing. Finally, since y lyl is concave for 0 < 77 _< 1,
the mapping

y -+ div Y
(i + lyl)/

is convex and the lemma follows.
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4.3. Proof of Theorem 2. In order to prove Theorem 2, we proceed as in the
previous section, but instead of applying : in (3), we multiply (3) by (x. )/Ixl and
we integrate over Nn x ]Rn with respect to x and and on I-T; T] with respect to t.
We get

I(T) // f(x; ; T)
x If- dxd f(x; ; -T)

x

(40)
Vxf dz d dt =_ H(T).

As previously, one has

f(x; ; T) fo(x / T, ).

From now on, we suppose

(41) 0()1[-(-1) e n2(Rn).
(i) Limit of I(T) as T --, +cx. Making the changes of variables y x + T,

y x-T in each term of the expression of I(T) in (40) and letting T --, +cx) lead to

(42) I(T) -- -2 ff Il f0(z; ) dz d.

We argue as in 4.2(i), and we get

(43) lira I(T) ca f I0()12 [11-2(-1) d.
T--+c

(ii) Limit of H(T) as T --, +oc. An integration by parts in H(T) with respect to
x yields

II(T)
-T

f ij dxd dt

and

and we get

II(T)=
r

ij
ix

n-1 dx dd dr.

Now since q(;V) (2V- vl ), we perform the following 4ange of
variables:

and we get

/T j/]. ( 6ij yi Yj ) eiy[2_(lH(T) ij
-T lYl lYl 3(44)
() b( 7) dd dy dt.

We now conclude as in [5].
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(44), (43), and (40) applied to the function defined by

(in particular, satisfies (41)) imply the theorem for x0 0. A translation on the
initial data gives the theorem for any x0

4.4. Proof of Theorem 4. Let be a solution of (7)

i-+(D/=o i ee,
j=l

(x; 0) 0().

We define gy in (8), i.e.,

(a) a(; v) P() P( )
(2v )

and we denote by q/(y; j) the following expression:

(a) q(;) (e )(;).

We now introduce the generalized Wigner transform of by

f(x; ; ) OWWa()

(;)1 d,
j2

where q(;) is the vector formed by (qy(y;j))y= to n. Then f solves the linear
transport equation (3)

o
o .vf=0.

As in the proof of Theorem 1, we multiply (3) by x/[x[ and we integrate fT H dx

d dr. We get

I(T) /J f(x;;T) xll dxd f(x; ;-T) x

Calculation of I(T). We impose that

(48) l ]p(l)l/2
e n(n).

Since f satisfies (1), f(x; ; T) fo(x + T; ). Therefore,
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Using the change of variable y x+T (respectively, y x-T) and letting T
leads to

lim I(T) -2//f0(Y; )[11dxdT---t-cx

-2///eiy’qll ()( ?) U Igjl dd dy.

We now make the change of variables z q(; rt) and we denote by g(; z) the inverse
function. Thus we obtain

lim I(T) 2/]/eiY’zl (g(C; z))( g(; z))

YIj>2 Igjl
dzd dy,

J

where J is the Jacobian of the transformation. Making use of the formula f t() dc
ch(O) in the above expression of lim I(T) leads to

f
lim I(T) -2cl I1 d,

or equivalently,

(49) lim

Calculation of II(T). We integrate by parts with respect to the x variable in
the expression that defines//(T):

For j >_ 2, let yj xj gy(y; rb); thus we get

H(T) (2 () ((_)
T

(2-)

dy2 dyn dd dr.

Let us remark that 2 ( 2)2 + 4(1 )rl. After the change of variables
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H(T) becomes

()
IX(T) z21 )(T) /)(T Z) e yn dy2 dyn dz d? dt

T

(o) (2v/-)

Yn
-T

H(T)+ H.(T).

dy2 dyn dd dt

In order to estimate H1 (T), we let

](x;;t) / eix’q(;v) (/)(/- ) H IgJ(J; 5 )1 d/"
j>2

] satisfies (1), and proceeding in the same way as in the beginning of this section, we
obtain

(5o)

H Igjldx2"’" dxn d drl dt.
j>_2

On the other hand,

(51) II2(T) -c /: /T (0, Y2,..., Yn, t) dy2.., dyn dr.

Equations (50), (51), (49), and (47) lead to

Yl (0;y2,...,yn) dy2...dyndt

c
ip(1/2)l ip(1/2)1

b(/2)(-/2)d

Applying this formula to the function defined by

() ()

(in particular, (48) is satisfied) leads to Theorem 4 with y 0. The general case
follows by the invariance under the translations.
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CHARACTERIZATION OF THE SMOOTHEST INTERPOLANT*

BORISLAV BOJANOV

Abstract. This paper characterizes the smoothest function from W[a, b] of a given shape.
The shape is prescribed by the condition that should take given values (fi}+1 consecutively
on [a, b] and that its derivatives up to certain orders (pi}+1, respectively, have to vanish at the
interpolation points.

Key words, interpolation, perfect spline, interpolant, Sobolev space
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1. Introduction. This paper is devoted to an extremal problem studied by A.
einkus in [10]. For given [a, b] and interpolation values {fk}0N+I satisfying the condi-
tions

(fk+l fk)(fk f-) < 0, k 1,... ,N,

he characterized the function from the Sobolev space

W;[a, b] (f e AC-Z[a,b] f() lip<

which takes on the values fo, f,..., fN+ consecutively on [a, b] at some points a

xo < x < < XN+I b (free to vary) and has a minimal Lp-norm of its rth
derivative. We consider here a generalization of this problem allowing equalities in (1).
This leads to certain osculatory conditions on the smoothest interpolant. In addition,
we extend the study to a set of classes (defined by a condition of the form f(r)(t) I<_
a(t) on [a, hi) that includes W[a, b] and can be used to obtain a generalization of the
Pinkus result for W[a, hi, 1 < p < oc, in an indirect, simple way.

Let us state the problem.
Suppose that t is a given subspace of ACr- [a, b] supplied with a certain semi-

norm f(r) II. Let u0, u,..., Un+ be fixed natural numbers not exceeding r. Suppose
further that y {yk}+ are given values such that

(--1)(Yk+I--Yk)(Yk--Yk-)>0, k--1,...,n.

For every set of points t (tk}+, a to < t < < tn+ b, F(t,y) will denote
the class of all functions f from that satisfy the interpolation conditions

f
O,

k 0,...,n + 1,

k=0,...,n+l, j=l,...,k--1.

The aim of this paper is to describe the extremal function in the problem

inf inf Y( )II(2)
a=t0<tl <’"<tu+l=b JeF(t,y)

with respect to certain norms, including Lp, 1
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2. a-perfect splines. Assume that a(t) is a nonnegative function from L1 [a, b].
A a-perfect spline on [a,b] of degree r with knots {} (a =" o < 1 < <
n < n+ :-- b) is any expression of the form

p(x) axi- + d
(r 1) (; t) dt

i--1

where {hi} and d are real parameters and

< t <

j 0, 1,..., n. Functions of this kind were introduced and used in [2], [4] to solve
certain extremal problems.

The function a(t) gives rise to the Minkowski seminorm

f(r)i1: inf{M" If(r)(t)l <_ MR(t) a.e. on [a,b]}

in ACr-[a, b]. The a-perfect splines are an important tool for the study of (2) in the
space

(3) := {f e ACr-[a, b] f() I1o< oc}

with respect to I1" [1=11 I1. They preserve most of the properties of the ordinary
polynomial perfect splines. We recall below some of them, which will be used in the
proof of our main result.

THEOREM A. Suppose that a(t) is an integrable nonnegative function that does
not vanish on subintervals. For any given set of multiplicities {Uk}+1, 1 _< -k <_ r,
points x {xk}+1 b, and values y {yij, ia XO Xl Xn+l
0,..., n + 1, j 0,..., ui 1}, there exists a a-perfect spline p of degree r with no
more than N- r 1 knots (N := u0 +"" + Un+l) that satisfies the interpolation
conditions

(4) p(Y) (zi) yj, O,...,n + l, j O,...,i -1.

Moreover, every such a-perfect spline p possesses the extremal property

over the set of all functions f e AC-[a, b] satisfying (4).
The proof, even of a more general statement including Birkhoff’s interpolation

conditions, can be found in [4]. Notice here that Theorem A does not hold in the case
when a(t) vanishes on subintervals. Indeed, assume that a(t) =_ 0 on [a, Z] C [a, b] and
a < xk < < Xk+r < . Let k k+ 1 and Yk+i (--1)i, 0,..., r.
Suppose that there is a solution p of the corresponding interpolation problem in
Theorem A. Since a(t) 0 on (a, ), p coincides with a polynomial of degree r- 1
on (c, ). On the other hand, because of the choice of yk,..., Yk+r, P should change
sign at least r times on (a, ), a contradiction.

The next theorem, the so-called Fundamental Theorem of Algebra for a-perfect
splines, can be derived as a particular case of Theorem A (see [4]).

THEOREM B. Suppose that a(t) is an integrable nonnegative function that does not
vanish on subintervals. Given the points t {t}+1, a to < tl < < tn+l b,
and the multiplicities A0, A,... ,An+ such that

0_<A0<_r, 0 _< An+l _< r, l_<Ak_<r, k=l,...,n, N’=A0+AI+...+An+I,
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there exists a unique (up to multiplication by -1) a-perfect spline p(t; x) of degree r
with no more than N- r knots, which satisfies the conditions

p(J)(t;ti)-0, i=0,...,n+l, j=0,...,Ai-1,

(no condition is imposed if Ai 0), and

p(r) (t; t)l a(t) a.e. on [a, b].

Moreover, p has exactly N- r knots.

3. Main result. We extend here a result from [1] concerning polynomial perfect
splines and apply it to get the complete characterization of the extremal function of
the problem (2) for t, defined as in (3), with I1" I1=11 Ila.

Let [a, b] be a given finite interval. The multiplicities/k0,..., An+i and r will stay
fixed,

N := 0 +"" +)in+l

__
r, 1 _< k < r, k 1,..., n, 0 __( )0 --( r, 0 _( ,n+l __( r.

Denote by Pr(A0,..., An+l) the set of all a-perfect splines p of degree r with N r
knots, which satisfy the boundary conditions p(J)(a) 0, j 0,..., A0 1, p(J)(b)
0, j 0,..., An+l 1, and have n freely chosen zeros tl < < tn in (a, b) of multi-
plicities A1,..., An, respectively. Assume that they are normalized by the conditions
p(t) > 0 on (tn, b) and

[a,

According to Theorem B, p is defined uniquely by its zeros tl,..., tn.
THEOREM 3.1. Suppose that a(t) is a continuous, positive function on [a,b].

Then for any given set of numbers e0 > 0,..., en > 0, there exists a unique a-perfect
spline p from Pr(A0,..., An+l) and a constant c > 0 such that

k+l

(5) c p(t) dt ek, k O, n,

where {ti} are the interior zeros of p, a =" to < tl < < tn+l :: b. Moreover,
c is a continuous, strictly increasing function of co, el,..., en in the domain eo >
O,...,en 0.

Proof. In order to prove the existence of a particular p that satisfies (5) we
start from an arbitrary Po E P(,o,..-, An+l) and co 1 and get p by a continuous
deformation of Po described by a system of nonlinear equations. The parameters
{ o 1N- coai }l, {o} of po(t) and 1 are taken as initial conditions. Let a too < t <

o b be the zeros of Po Denoteton tn+l

e :=
o

ft+l po(t) dt k O,...,n.

For every s E [0, 1] define the quantities

k-O,...,n.
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Clearly ek(0) e, ek(1) ek and hence ek(s) > 0 on [0, 11. Our goal is to construct
a a-perfect spline p(s;t) e 7r(A0,...,/kn+l) with parameters ai(s),i(s),ti(s) and a
function c(s) such that

p(J)(s;ti(s)) O, i l,...,n, j O,...,Ai -1,
(6)

where In := 0, l :=/+ +... + )n, k 0,..., n- 1. Evidently system (6) has a
solution p(s; ) Po(), e(s) 1 for s 0. The ease s 1 corresponds to the problem
stated in Theorem 3.1.

System (6) consists of N + n + 1 equations in unknowns

t "= (tl,..., tn, c, al,..., at, ,..., N--r)"

Denote by J(s) the Jacobian matrix of (6) with respect to t. Assume for the sake of
convenience, that the equations in (6) are ordered in the following manner:

p(.i-1) i 1, noo.

tl

p(a),p’(a),...,p(-l)(a), c pdt,

ti+l

p(t), p’ (t),..., p(),,-2)(ti), c pdT,

p’

Here only the characterization parts of the equations are mentioned. Then J(s) has
the form

n+l

n+0
n+3o+1

n+o++l

n+N+l

tl tn

D

0

0

f: pdTo

0

where the block marked by O consists of zero elements and

D’= diag{p(al)(s;t(s)),...,p(a")(S;tn(S))}.
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Therefore

n

det J(s) H P()’k)(s; tk(s)), det
k=l

where the matrix A(s) is obtained from J(s) by deletion of the first n rows and
columns. Now unfolding det A(s) along the elements of the first column we get

n

det A(s) E(-1)"x+’’’+
i--0 Jti(s)

p(s; Ti) dTi. det Ai(s),

where det A(s) is the adjoint minor of the (0 +"" + + 1, 1)-element of A(s). In
order to describe Ai(s) precisely we need an additional notation.

For any set of points Yl <_ <_ YN and smooth functions ul(t),...,uN(t) we
define

u()

,uN(t)] := det u(y2)
YN

1()

subject to the usual convention that for coincident y’s the repeated rows are replaced
by appropriate derivatives of Ul,..., UN. Let us choose

{u(t),...,UN(t)) {1, t,...,ff-, ( t)+-,..., (N- -)

{y(i),...,yN(i)} =-- {(a, Ao),To,(t,A- 1),Tl,...,(tn,n- 1),Tn,(b,)n+l)}\Ti,

where {Ti} are parameters, 7i E (ti, ti+l), and (t, A) means that the point t is repeated
A times in the sequence Now taking into account that

0 0 + (x t)+ (_l)n_kif(t) dtojP(X) J k=O Ce (r- 1)
r--1

(_)__o(1( t)+
(r- 1)

and setting aj := 2(-1)n-J-a(j), j 1,..., N r, we see that

det Ai(s) [c(s)]n (IraJ)
with

det 5(s) .\i/. ’Ltl(t),...,uN(t) dTo.\/.dT,(), ,()

where \//means that the symbol corresponding to is skipped.
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It follows from the total positivity of,the truncated power kernel (see [7], [8]) that

c det hi(s) >_ 0

with some c 1 or a -1, independent of i. It is also seen that the points
yl(i),..., yN(i) and the knots 1,... ,g-r of the a-perfect spline p(s; t) satisfy the
interlacing conditions

(s) yk(i) < k < Yk+r(i), k= l,...,N-r

for some Tj E (tj,tj+l), j 1,...,n, provided p(s;t) is a solution of system (6).
Indeed, the a-perfect spline p(s; t) vanishes at

{il,...,iN} {(t0,0),(tl,.l),...,(tn-t-l,n+l)}

and p() (s; t) changes sign at 1,..., N-r. Then, by Rolle’s theorem, Ok < k < Ok+.
But y (i),..., yN(i) becomes very close to 01,..., ON for some T0,..., ’n and thus (8)
holds too. This yields (on the basis of the total positivity of the truncated power
kernel) strict inequality in (7). Therefore det 5(s) O. Finally, noticing that

p(s; T)dT (-1)Zie(s)

and A0 +"" + A + 1 N ’n-t-1 :: N0, we get

n n

det J(s) [c(s)]n-1 H P(Xk)(s;tk(s))E(-1)Ne(s)’deth(s)
k-=l i--O

(-1)[c(s)]-a a I’IP(x(s;t(s))_e(s).ldet&(s)l
j=l k=l i=0

and hence det J(s) O, if (6) admits a solution p(s; t), c(s).
Now we are ready to prove the existence of a solution of (6) for each s E [0, 1].

As we mentioned earlier po(t) and co 1 is a solution for s 0. Hence, by the
result we just obtained, det /(0) = 0. Then, by the implicit function theorem, there
exists a unique set of continuous functions a(s), (s), ti(s), c(s), which satisfy (6) in
a neighborhood of 0. In other words, there exists a solution p(s; t), c(s) of (6) for all
s from some interval [0,) and p(0;t) p0(t), c(0) 1. So, if > 1, our aim is
achieved.

Assume that _< 1 for the maximal/. Letting s --* we shall define a a-perfect
spline p(; t) and c(/) that satisfies (6) for s . In order to do this, note that

(9) liP(J) I1 <- (b-a)-j Il a lloo, J O, l, r -1

for every function p AC-I[a, b] that has at least r- 1 zeros and
almost everywhere in [a, b]. This implies the equicontinuity of p(J)(s; t) on [a, b] for
s E [0,/). Since

la(s)l- Ip(-)(s;a)l/(i- 1),

(9) also yields the existence of a constant M > 0 such that

a(s)I_< M Vs e [0,/).
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Note further that p(s; .)IIo is not less than the best unifbrm approximation of the
function

b (x t)+ b((s); t) dt(r- 1)

by algebraic polynomials of degree r- 1 in [a, b]. Thus there exists a constant M2 > 0
such that

This implies

.)I1 _> W e [0, Z).

b

IP(a; t)l dt M3 > 0

because pl(s; t) is bounded. Since

0 < min{ek,ek} < ek(s) < max{e,
for s E [0, 1] and

k=O,...,n

b

c(s) Ip(s; t)l dt eo(s) +... +

we get 0 < M4 < c(s) < M5 with some constants M4 and M5. Finally, it follows
from the equicontinuity of p(s; t) and the boundedness of c(s) and ek(s) that there is
a 5 > 0 such that

5 < tk+l (s) tk(s) on [0, ).

All these uniform estimates assure the existence of convergent subsequences of ai(s),
i(s), ti(s), and c(s) as s - and the limit values define a a-perfect spline p(/3; t) E
79t(Ao,... ,An+l) and a constant c(/3) that satisfy (6) for s . Then, by the result
we proved in the beginning, det J() -7/: 0 and the solution p(s; t), c(s) can be extended
beyond/. This contradicts the assumption that/3 is maximal. Thus/3 > 1 and the
existence is proved.

The differential equation approach of Fitzgerald and Schumaker [6] to problems
of a similar kind can be used here to show the uniqueness in an elegant way. In order
to do this, note that if we differentiate the equations in (6) with respect to s, we
shall get a linear system of differential equations. Denote it by (S). Observe that the
coefficient matrix of (S) with respect to

(8), a1(8),..., at(s), 1 (s),...,tl(s),...,tn(s) c’

coincides with J(s).
Consider the set Y of all points

y {tl,..., tn, al,..., at, 1,..., N-t},

where tj,aj and j are the parameters of p when p runs over Pt()0,...,/kn+l)
According to Theorem B, {aj } and {j } are defined uniquely by the zeros a < t <

< tn < b of p. Moreover, the system of equations

p(J) (tk O, k 0,..., n + 1, j 0,..., Ak 1
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with respect to al,..., at, 1,..., N-r has a nonzero Jacobian (since the zeros and the
knots of every p E 7)(A0,..., An+l) satisfy the interlacing conditions). Then, by the
implicit function theorem, {aj} and {j} are continuous functions of t,..., tn. This
shows that Y is a connected set because the set {(t,... ,tn) :a < t < < tn < b}
is connected. We have proved already that for each choice of the initial values y E Y
and c(0) 1, system (6), and consequently the system of differential equations (S),
has a unique solution p(y, s; t), c(y, s) in [0, 1]. Define the mapping (b: Y --+ (Y, R)
in the following way:

(y) {al (y, 1),..., a.(y, 1), (y, 1),..., N--(Y, 1), c(y, 1)},

where {aj (y, s)}, {j (y, s)}, and c(y, s)is the solution of the system (S) corresponding
to the initial conditions defined by y. As we mentioned already, the matrix of (S)
coincides with J(s) and thus it is nonsingular. Then, by virtue of a well-known result
in the theory of differential equations, the solution of (S) depends continuously on the
initial values y. Therefore

(a) is a continuous mapping.
Furthermore, the result det J(y, s) : 0 for s I and the implicit function theorem

show that system (6) has only isolated solutions for s 1. Thus
(b) (Y) consists of isolated points.
Observation (a), together with the fact that Y is connected, implies that O(Y) is

a connected set. Then it follows from (b) that O(Y) must consist of only one point.
Thus, starting from any y Y and c 1, the described procedure leads to one and
the same point. Therefore system (6) has a unique solution for s 1. The uniqueness
part of the proof is completed.

It remains to show the monotone dependence of c on ek. Recall that c

c(eo,... ,e) is a solution of (6) for s 1. Since det J(1) - 0, c is a differentiable
function of e0,..., e. Moreover,

dc det Jk
dek det J(1)’

where Jk differs from J(1) by its (n+l)th column, which has only one nonzero element,
namely (--1)Ik+ek, on position n + A0 +’." + Ak + 1. Unfolding det Jk according to
this column, we get

det Jk (--1)+’"+;xk (--1)l+lek det Ddet Ak(1)

-(-1)N det D det Ak(1)e.

Therefore

dc
--C 0dek -n__0 e det 5i (1)[

which was to be shown. The theorem is proved. [:1

In the study of problem (2) we shall actually use the following immediate conse-
quence of Theorem 3.1.

COROLLARY 3.2. Suppose that o, + are fixed multiplicities such that 0 <_
k_<r, k=0,...,n+l, N:=0++...++ >_ r. Then for each set of real
numbers y0,..., Yn+ satisfying the requirement

(10) (--1)(Yk+l Yk)(Yk Yk-) > O, k 1,...,n,
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there exists a unique a-perfect spline of degree r with N- r 1 knots and points
a xo < X < < x+l b satisfying the condition

(11)
v(x )
() (x) 0,
() (x) 0

k- 1,...,n,
k 1,...,n, j 1,...,k,
for k O and k n, j --1, ,k -1.

Moreover, the quantity q(r) I1 is a strictly increasing function of ek :=1Yk+l- Yk I,
k=O,...,n.

Proof. It suffices to observe that q/(t) is the solution of a problem considered in
Theorem 3.1 and c =11 q(r)I1. [q

Now we are prepared to present the main result concerning the extremal problem

Let us recall that here II. I1=11 I1 and F(x, y) are defined for the set ft from (3).
THEOREM 3.3. Let a(t) be an arbitrary positive, continuous function on [a, b].

Then for every given y {yk}+l satisfying requirement (10) there exists a unique
a-perfect spline q of degree r with N r- 1 knots .for which

inf inf
a=xo<x<".<xn+=b fF(x,y)

q is uniquely characterized by the condition

qa(k)(x)=0, k=l,...,n,

at the extremal points a x < xl < < x+ b. Moreover, qa is the unique
extremal function to (2).

Proof. By Corollary 3.2 there exists a unique set of points x* {x}+1 and a
unique a-perfect spline .(t) of degree r with N- r- 1 knots that satisfy (11). We
shall show that . is the wanted extremal function to (2). To do this, recall that by
Theorem A, for any given x {xk}+1 there exists a a-perfect spline q(x; t) e F(x, y)
of degree r with N r 1 knots such that

inf{[] g()I1" e F(x,y)}.

Since y satisfies (10), (x;t) has an additional local extremum in (Xk--l,Xk+l) at
some point tk, for k 1,..., n. Then qa(x; t) may be considered as the solution of a
problem like that studied in Corollary 3.2 with multiplicities V := {0, 1, 1 1, 1, 2
1, 1,...,n+1}, in an order corresponding to the order of the points {(xk)+1, (tk)}
in [a, b], and values Y {Yo, 11, Yl, 12, Y2,..., Yn+l}, where q(x; tk). But q, is
the solution of the problem with the same multiplicities V and values Y with k
yk, k 1,... ,n. Since for each x : x*, ek(q) := IZjk+l kl > lYk+l Ykl ek(q,),
the monotone dependence of q() I1 on ek(q) shows that (,) I1 < ()(x; .) I1.
Thus , is an extremal function to problem (2).

Assume that f is another extremal function, different from ,. It follows from
Theorem A that

for each x : x* and g e F(x, y). Therefore f e F(x*, y).
It is seen also that f(k)(x:) 0 for k 1,...,n. Otherwise f would have

additional local extremum at some point tk from (Xk-l,Xk+l) and then, as in the
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reasoning above, we can show that the a-perfect spline 990(t) that interpolates f at
the points (xo, tl,xl,t2, x2,... ,tn, Xn, Xn+l} with multiplicities {0, 1,1 1, 1,2
1,..., 1, n 1, n+l) would satisfy

which is acontradiction. Therefore f(k)(x) -0 for k 1,... ,n.
Next the proof proceeds as in the simple node case (considered in [10]). If f = 99.

on some subinterval (X_l, x), then 99’ (t) f’ (t) changes its sign on (x_,x). Thus,
for sufficiently small e > 0 the function 99.(t) (1 e)f’(t) would change sign too in
(x_,x) and hence would have at least 1 + 0 1 + + 2 +"" + n + n+
1 N- 1 zeros in [a, b] counting the multiplicities. Then, by the Rolle theorem,
99(.r) (t)- (1 -e)f(r)(t) would have at least N- r sig, changes while 99.(t) has only
N- r- 1 knots, a contradiction. The proof is completed. [:]

Remark 1. The extremal function 99. is a a-perfect spline of degree r with N-r-1
knots. Since 99. (t) has N- 2 zeros (prescribed by (11)), it is seen that 99.(t) has no
other local extrema except those eventually at x,..., x. Therefore 99. (t) is a strictly

and fork-0, n.monotone function between Xk Xk+l
We promised in the beginning of this paper to characterize the smoothest inter-

polant in the case some of the values {fk}0N+ in (1) are equal. We are ready to do
this now.

THEOREM 3.4. Let {fk}0N+I be given values satisfying the requirement

(12) (fk+l fk)(fk fk-) <_ 0, k 1,...,N.

Assume that N := +... + n >_ r and the first 1 values in the sequence fl,..., fN
are equal to Yl Yo := fo, the next 2 are equal to Y2 Yl, and so on, with the last un
values equal to Yn Yn+ := fN+l. Then, for any fixed positive, piecewise continuous

o(t) on [a,

(13) inf inf II
a=xo_xl _..._XN+l=b gEFt, g(xt)=g, k=O N-F1

has a unique solution (x*, 99). The sequence x* {x}+1 contains only n+ 1 distinct
points a t < t < < t+l b and 99 is the a-perfect spline of degree r with
N- r + 1 knots, which satisfies the conditions

99(t) yk, k=0,...,n+l,

99(J)(t)=0, k=l,...,n, j=l,...,.

Proof. In other words, the solution of (13) coincides with the unique solution of
the problem

inf inf g()II,
a=to<t<...<tn+=b gEF(t,y)

where F(t, y) is defined with respect to the multiplicities 1, u,..., un, 1.
Assume that 99 is an extremal function to the problem (12) and x* is an extremal

set of points. Clearly 99 is a a-perfect spline of degree r with no more than N r + 1
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knots. Assume further that x* contains more than n/ 1 distinct points. Then, because
of (13), would satisfy interpolation conditions of the form

(xk)=], k--0,...,N+l,

o(j)(xk+j-1) O ifxk+j_l=X}, l <_ k + j l <_ N,

with some {Xk} and {]k} such that ]+- ]k I>_1 fk+- fk I, k O,...,N.
Moreover, at least one of the last inequalities is strict. Then, by the monotonicity of

II () Ila on J+ (see Theorem 3.3), we can find a a-perfect spline with

r)I1<11 (r)I1 and still take consecutively the values fo, f,..., fN+. This is a
contradiction to the extremality of . Thus the extremal set of points x* consists of
n / 1 groups of coinciding points. Using the equicontinuity of the a-perfect splines,
one sees that the required Lagrangean interpolation conditions

(x)=f, k=0,...,N+l,

transforms into the corresponding Hermitian conditions for x x*. The theorem is
proved.

4. Applications: W case. We shall apply the results of the previous section
to study problem (2) for f W[a, b] and II. ]1=11 liP" As usual, set

II lip := I(t)lp dt for 1

II f llo :-supvrai {If(t)l t e [a, b]}.

Clearly the particular choice a(t) _-- 1 of the function a leads to the case p--- cx. We
concentrate here on 1

Our main observation is that the characterization of the extremal function to
problem (2)in W;[a,b](1 < p < oo) can be derived from an extension of Theorems
3.1 and 3.3, which allows functions a that could vanish on subintervals. Only for
the sake of simplicity, we gave a detailed proof of these results in the case of strictly
positive a(t). Now we shall see that Theorem 3.1 (and consequently, Theorems 3.3
and 3.4), holds also for any integrable nonnegative function on [a, b], which is strictly
positive on a subset of [a, b] of positive measure. Let a(t) be such a. function. For
every small e > 0, define the function a(t) as a positive continuous function such
that la(t) -a(t)l <_ e almost everywhere on [a, b]. By Theorem 3.1, there is a unique
a-perfect spline p from Pr(,0,...,n+l) and a constant c(e) > 0 that satisfy (5).
Since estimation (9) holds for a, we see (following the reasoning after (9)) that
the functions {pc(t)} are equicontinuous on [a, b]. Thus, letting e 0 we can find a
subsequence of {p(t)}, which tends uniformly to a a-perfect spline po(t). The critical
point in the proof is to show that the sequence {c(e)} is also bounded as e approaches
0. The assumptian that a(t) > 0 on a subset of measure zero is used here. Let us
prove the boundedness of c(e). Denote by (e) {(e)} the knots of p. Clearly the
best uniform approximation of the function

b (X t)r+-1 t) dt.=
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on [a, bl by algebraic polynomials of degree r- 1 is distinct from zero (since s(r) (t)
a(t) and a(t) > 0 on a subinterval). Then there is a constant M2 > 0 such that
II P > M2 for all sufficiently small e > 0. Now following the same reasoning as that
in Theorem 3.1 (the part after (9)), we deduce that the estimate 0 < M4 < c(e) < M5
holds for all small e > 0. Thus {c(e)} is bounded and going to a subsequence if
necessary, c(e) --. c(0) as e --, 0. The existence of a solution to the problem in Theorem
3.1 is proved.

Next we sketch the proof of the uniqueness. Let al(e),..., ar(e),(e) < <
N-r(e) be the parameters of p(t) (e _> 0). By the construction of po(t),

Assume that there is another solution ,ib(t) of (5), with parameters {i}, {i} and
zeros {{i}. Since N _> r, we have > 0. Furthermore, for small e > 0, denote by
the he-perfect spline with the same parameters {i}, {i} as iS(t). Clearly and ibm(t)
satisfy a system of equations

(15)
!J) hij(e), O,...,n + l, j O,...,Aj -1,

c Jikfik+l e(t) dt ek(e), k O, n,

where H(e):= {{hij(e)}, {ek(e)}} and H(e) --+ H(0) as e 0. Note that hii(0) 0
and ek(O) ek. Consider now (15) with a right-hand side all(e)+ (1 -a)H(O) for
a e [0, 1]. Denote by J(e; a) the Jacobian matrix of (15) with respect to {t,..., tn, c,
a,..., a,, N-}. Let det J(e; a) be the determinant evaluated at the solution
of (15). Since (15) admits a solution for a 0, namely (c(e),p(t)), we see that as in
the proof of Theorem 3.1, det g(e; 0)=/(e)B 0, where

N-’

:= : H
j--1

and B is a determinant expression, distinct from zero. Similarly,

det J(e; a) =/(e) (B + -(e; a))

with some - such that ]-(e; a)l --, 0 as e -- 0 for each a e [0, 11. It is seen that
det g(e; a) 0 for sufficiently small e and every a E [0, 1]. Thus, starting from
(c(e),p(t)) one can get by continuous deformations the solution (,ib(t)) of (15)
moving a from 0 to 1. By the Implicit Function Theorem

dj det Jj (e; a)
da det J(e; a)

where Jj(e;a) is obtained from J(e;a) by replacing the column corresponding to
by the column (H(e)-H(O)). Since H(e)-H(O) tends to 0 as e 0, we

get detJ(e;a) O(e/(e)) and therefore dj/da I= O(e). Now the assumption
that j(e) j would lead to contradiction for small e. Thus j(e) y for all
j 1,..., g r and sufficiently small e > 0. This is possible only if (0) for all
j. Similarly one shows that c(0) , a(0) a i.e., that (5) has a unique solution.
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In order to prove the monotone dependence of c on ek, consider the function
c(; ek), which is the solution of the problem (5) for a(t) and e0,... ,en (ek being
chosen as a parameter). We have to show that

(16) c(0; ek) < c(0; ek + h)

for each h > 0. It follows from the expression of dc/dek that

dc(e; ek) > const.
dek

for each sufficiently small e > 0. Thus

c(e; ek) + K.h < c(e; ek + h)

with some K > 0. Now the desired inequality (16) follows from the fact that c(e; ek)
c(0; e) and c(e; e + h) -- c(0; ek + h) as tends to 0. Thus we proved the following
remark.

Remark 2. Theorems 3.1, 3.3, and 3.4 hold for every integrable nonnegative
function a(t), which is distinct from zero on a subset of positive measure.

After this remark we can prove our characterization result.
THEOREM 4.1. Let 1 < p < cx. Suppose that q is an extremal function to the

problem

inf inf II f(r)
a--to<t <"’<tn+--b fF(t,y)

afia with respect to f W[a,b], multiplicities o,,..., n+,
and values {yk}+ such that

(--1)k(Yk+l Yk)(Yk Yk-1) > 0, k 1,...,n.

Then q satisfies the conditions

(k)(t) 0, k 1,...,n,

at the extremal points t* {t}+1 and (t) is strictly monotone on (t, t+l), k
O,...,n.

Proof. Any function f from F(t, y) satisfies the inequality

f(r-1)iic[a,bl < f()(t) dt < (b-a) 1/q f(r) lip,

where X/q + lip 1. Then f’ licit,hi< const.[I f()lip and this, together with the
assumption Yk+l --Yk > 0 implies the existence of noncoincident extremal points
(i.e., such that a t < t <... < t+ b). Next, we know from [5] that for fixed
t* there is a unique function q from F(t*, y) of smallest Lp-norm of its rth derivative.
Moreover,

() (t) const.

where (t) is a function of the form

N-r

(t)= a,B,(t), g:=o+...+,....
i--1
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and B are B-splines. Thus, (r)(t) is a piecewise continuous function. By the varia-
tion diminishing property of the B-spline sequences (see [7] or [3]), b(t) has at most
N-r- 1 sign changes. On the other hand, it follows from the interpolation conditions
on that (r)(t), and consequently (t), has at least g- r- 1 sign changes. Thus,
(t) has exactly N- r- 1 sign changes. Then all coefficients c must be distinct
from zero and hence, (t) cannot vanish on subintervals. (Similar reasoning was used
before in the proof of Theorem 2 from [2].) Thus the function a(t)"=1 (r)(t) is
positive almost everywhere on [a, b]. Clearly is an extremal function to the problem
considered in Theorem 3.3 with this a. Then the characterization of follows from
Theorem 3.3, taking into account Remark 2. The proof is completed.

Finally, note that the same reasoning also shows that Theorem 3.4 holds in the
space W[a, b].

The uniqueness of the extremal function in W[a, b] is still an open problem.
Uniqueness results are known only for p- 2 in case r 2 [9] and r 3 [11].
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