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ON NONSTATIONARY MOTION OF A COMPRESSIBLE
BAROTROPIC VISCOUS CAPILLARY FLUID BOUNDED BY A
FREE SURFACE*

W. M. ZAJACZKOWSKIt

Abstract. The author considers the motion of a viscous compressible barotropic fluid in R?,
bounded by a free surface that is under surface tension and constant exterior pressure. Assuming the
initial density is sufficiently close to a constant, the initial domain is sufficiently close to a ball, the
initial velocity is sufficiently small, and the external force vanishes, the existence of a global-in-time
solution is proven, which satisfies, at any moment of time, the properties prescribed at the initial
moment.
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1. Introduction. We consider the motion of a viscous compressible barotropic
fluid in a bounded domain ©; C R3, which depends on time ¢ € ]Ri_. The free boundary
S; of Q; is governed by the surface tension. Let v = v(z,t) be the velocity of the fluid,
p = p(z,t) the density, f = f(z,t) the external force field per unit mass, p = p(p)
the pressure, u and v the viscosity coefficients, o the surface tension coefficient, and
Po the external (constant) pressure. Then the problem is described by the following
system (see [7, Chaps. 1, 2, 7]):

(1.1a) p(vy + v - Vo) + Vp(p) — pAv — vVdive = pf in QT,
(1.1b) p + div(pv) =0 in O,
(1.1¢) pli=0 = po, V|t=0 = Vo in Q,

(1.1d) Th — o Hn = —pon on ST,
(1.1e) v-n=—¢:/|Ve| on ST,

where ¢(x,t) = 0 describes S;, 2T = Use(o,r) ¢ % {t}, Q¢ is the domain of the drop
at time ¢, Qo = Q is its initial domain, §T = Useo,r) St % {t}, 7t is the unit outward
vector normal to the boundary (2 = V¢/|V4¢|), and p, v, o are constant coefficients.
Moreover, thermodynamic considerations imply » > 1/3y > 0, 0 > 0. The last
condition (1.1e) means that the free boundary S; is built of moving fluid particles.
Finally, T = T(v, p) denotes the stress tensor of the form

(1.2) T = —pbi; + 1 (Bzwj + am,-v") + (v — p)b;jdive = —pb;; + Dij(v),

where i, j = 1,2,3, D = D(v) is the deformation tensor and H is the double mean
curvature of S;, which is negative for convex domains and can be expressed in the
form

(1.3) Hn = Ag, (t)z, z = (21,22, 2%),

where Ag, (t) is the Laplace—Beltrami operator on S;. Let S; be determined by = =
z(s1,82,t), (s1,s2) € U C R?, where U is an open set. Then we have

(1'4) ASt (t) = g_l/zasag_l/2gaﬁasﬁ = 9-1/288°91/2gaﬂasﬁ’ Ot,,B =1, 2,
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where the convention summation over the repeated indices is assumed,
g = det{gag}a,6=1,2, Gap = Ta - Tg, Where T, = J5az, {g*P} is the inverse matrix to
{908} and {gag} is the matrix of algebraic complements for {gng}.

Let the domain € be prescribed. Then, by (1.1le), Q; = {x € R3 : z = z(£,t),£ €
Q}, where z = z(&, t) is the solution of the Cauchy problem

(15) X —v@d),  aheo=E€Q £=(€46%6)

Therefore the transformation z = z(&,t) connects the Eulerian z and the Lagrangian
£ coordinates of the same fluid particle. Hence

t
(1.6) r=£+ /0 u(€, s)ds = Xu(€,8) = (&, 1),

where u(§,t) = v(X,(¢,t),t). Moreover, the kinematic boundary condition (1.1e)
implies that the boundary S; is a material surface; so if £ € S = Sy, then X,,(&,t) € S:
and S; = {z : ¢ = X, (§,t),€ € S}

By the continuity equation (1.1b) and the kinematic condition (1.le) the total
mass M is conserved and

(1.7) / p(z,t)dz = M,

t

which is a relation between p and ;.

Let us define an equilibrium state to be a solution of (1.1a—€) such that v = 0, Q; =
Q. is a ball for all t € R! and f = 0. Then, in view of (1.1a, d), p = pe = const, and
P(pe) = (20/Re)+po, where R, = ((3/47)|Q|)*/3, and by (1.7), p. = M/((47/3)R3).
By summarizing we have the following.

DEFINITION 1.1. Let M, o, po and a functional dependence p = p(p) be given.
Let f = 0. Then by the equilibrium state we mean a solution of (1.1a—e) such that

(1.8) v=0, p=pe, Q% =N, teR}_,
is a ball of radius R, that is a solution of the equation
(1.9) p(M/((47/3)R?)) = 20/ Re + po,

which is also a relation between the total mass M and volume ||

In this paper the existence of such global solutions is proved when the velocity v
is small, the density p is close to a constant, the domain €, is close to a ball, and the
external force vanishes. Hence, we show the stability of the equilibrium state, which
means that any motion described by (1.1la—e), which starts from a state sufficiently
close to the equilibrium state, remains close to it for all time. However, we are not
able to show that it converges to the equilibrium state as t is passing to infinity. To
prove the global existence of solutions of (1.1a—€) close to the equilibrium state, the
surface tension is important because it controls a shape of the boundary and implies
that it is close to a ball. The case without surface tension is considered in [35].

Finally, to prove local existence (see Lemma 5.1) and then to prove global exis-
tence (see Theorems 5.5 and 5.6) we need the following compatibility conditions:

D28 (T(v,p)7s — cHA + poft)|s=0,s =0,  |a|+i<2,
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where times derivatives of v,p, p,7i at t = 0 are calculated from (1.1 a, b) and D,
means tangent derivatives only (see Remark 5.7).

As far as we know this paper and [35] are the first papers that treat global
existence of solutions to free boundary problems for compressible viscous fluids in
three dimensions. In the one-dimensional case there is a result of Matsumura and
Nishida [8], who additionally takes gravitation into account.

Since 1976 Solonnikov has been working in free boundary problems for equations
of incompressible viscous fluid [20], [21], [23], [25]-[29]. In a series of papers he
showed the existence of global motion of a viscous incompressible fluid bounded by a
free boundary, both with surface tension (see [23] and [25]) and without it (see [26]).
The latter case is proved for solutions of incompressible Navier—Stokes equations by
using the Korn inequality. To prove the existence of solutions of the incompressible
version of problem (1.la—e) with surface tension the existence of solutions of the
initial-boundary value problem for the Stokes system with a corresponding boundary
condition of type (1.1d) with surface tension has to be shown (linear problem). By
using potential theory techniques, this was also accomplished by Solonnikov (see [21]).
It should be emphasized that the existence of solutions of the latter problem was
shown in anisotropic Sobolev—Slobodetskii spaces ;’l/ % with noninteger positive [
(see definitions at the end of this section). The boundary condition (1.1d) with
surface tension contains both first- and second-order derivatives of solutions, so the
considered problem is noncoercive. Solonnikov used the spaces Wé'l/ % with noninteger
1 to prove the existence of solutions of the incompressible version of the problem (1.1a—
e) in Sobolev spaces as low as possible to omit compatibility conditions. In the case of
compressible fluid we have had to also prove the existence for the linear problem (3.3)
which, because of the boundary condition (1.1d) (see also (3.3)), does not follow from
the general theory of initial-boundary value problems for Douglis—Nirenberg parabolic
systems (see [24]). The existence of solutions of that problem is shown in the same
anisotropic Sobolev—Slobodetskii spaces as in the incompressible case (see [34] and
[36]). This implies that in this paper the technique of spaces Wé"/ 2 has to be used
in §3, where the local existence for (1.1a—e) is considered (see [34] and [36]). In these
considerations it is convenient to use noninteger ! to reduce a number of coefficients
of type T~%, a > 0, where T is the time of local existence, in the norms used in its
proof (see [36]). Such coefficients may imply difficulties in the proof of local existence.
However, to prove global existence we need local solvability of (1.1a—e) in such classes
that v € W*(QT), p € Wa¥/3(QT) 0 C(0, T;T>*%(Q)) (see Remark 3.2 and [37],
where existence of local solutions in these classes is shown). Then global existence is
proved in class M(t),t € R, (see definition of M(t) at the beginning of §5), which is
implied by differential inequality (4.195) (see Lemma 5.1).

Now we make some comments on the literature concerning free boundary problems
for the nonstationary incompressible Navier—Stokes system. Local existence of solu-
tions in the case without surface tension is proved in Holder and Sobolev anisotropic
space by Solonnikov in [26] and [27] (see also [20]). Potential theory techniques are
used to prove the existence of solutions of the corresponding linear problems in Hélder
and in Sobolev spaces (see [28] and [29]). In all papers of Solonnikov the Lagrangian
coordinates are used. Global existence is also proved by Beale [3], [4], where the
free boundary is infinite and gravitation is taken into account. Local existence with
surface tension is considered by Allain [2].

Local existence of solutions for compressible fluids without surface tension is
proved by Secchi and Valli (see [16]), but with surface tension by Solonnikov and
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Tani (see [31]).

Lately, Secchi showed existence and uniqueness of solutions of equations describ-
ing the motion of gaseous stars (see [17]-[19]).

References to the literature concerning stationary free boundary problems can be
found in [15]. Moreover, in [15] Pileckas and Zajaczkowski proved the existence of
stationary motion of viscous, compressible, barotropic fluid bounded by a free surface
governed by surface tension. In the proof, one has to assume that the domain and
the external force satisfy some extra symmetry conditions. In the present paper the
global existence is proved for f = 0 and without any symmetry conditions, so there is
no connection with the result in [15]. However, similar to the case treated in [15], to
prove global existence the necessary a priori estimate is found by the energy method
that was also used in papers [8]-[12], [15], [32], [33], and [35].

This paper relies heavily on the following main points. First we study inequality
(2.33), which guarantees that variations of the volume of Q; (denoted by |€2;|) and the
surface area of S; (denoted by |S;|) are as small as we need for all time. This inequality
follows from conservation laws for (1.1a—e) (see Lemma 2.1) and a special choice of
the parameters of the problem (1.1a—€) (i, v, o, po, » = p(p), |, |S|, vo, po, f = 0) (see
Lemma 2.2), which implies that the right-hand side of (2.20) is sufficiently small. This
result is crucial for the proof of global existence in the compressible case only, because
in the incompressible case || is constant. We have to underline that the result is
shown under the assumption that the considered fluid is barotropic, so p = Ap®,
where A, k are constants and £ > 1. Moreover, (2.65) is essential because it ensures
that Q; is close to a ball. Second, we prove the local-in-time existence of solutions
to (1.1 a—e) by employing the Lagrangian coordinates, and we find a suitable a priori
estimate (see Theorem 3.1—the proof is shown in [36]). The existence is proved in such
classes that v € W2H'2’l/2+1, p e WitH/2H1/2 1y9 _3/4 — ke NU{O}, & € (0,1/4).
However, to prove global existence we need a local solution such that v € W, 2 ),
p € Wa*'?(QT) n C([0, T);T3*/*(Q)) (see [37] and Remark 3.2).

Moreover, to prove global existence we also need a bound for variations of the
solution near the equilibrium state in terms of the appropriate norms of vy, p(po) —
po—20/Ry, H(x,0))+2/Ry (see Remark 3.2, where (3.6) is such an inequality), where
the last expression measures the deviation of the initial domain from a ball. From
this inequality and imbedding theorems we have the minimum and maximum of the
density, which are necessary to find the inequality (2.65). This fact and the use of
Lagrangian coordinates, which also exist only locally suggests that the proof of global
existence should be done step by step by employing local existence. However, this
procedure needs a special a priori estimates because (3.6) is not sufficiently strong.
The inequalities are shown in §4 (see (4.195), Theorems 4.13 and 4.14, and (4.197)),
whose proofs constitute the most technically difficult part of this paper. It requires
the technique of an energy method, which is very close to the methods used in [33] (see
also [8]-[12], [15], and [32]). To prove the inequality we need much more regularity of
solutions than is needed to show the local existence. This is achieved in Lemma 5.1
under appropriate assumptions on initial data.

The global existence is proved in the case f = 0. The main result is formulated
in Theorem 5.5. In the case of the external pressure py = 0 the proof of Lemma 2.2
essentially simplifies and the necessary relations between parameters of (1.1a—€) may
be explicitly formulated (see Lemma 2.8). In this case the global existence result is
stated in Theorem 5.6.

In this paper we use the anisotropic Sobolev—Slobodetskii spaces Wé’l/ 2(QT),
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I € Ry (see [5, Chap. 18]) of functions defined in QT = Q x (0,T). In fact, sz,z/ 2
are Besov spaces for | € Z; the equivalence between Wzl’l/ 2, l ¢ Z, and Besov spaces

follows from considerations in [1, Chap. 7]. In the case of noninteger ! we have the
norms (2 C R3)

(1.10)

T 1/2
"u“w;vo(gT) = (/0. "u”%vzl(n)dt> )

1/2
_ 2
”u"wg,l/2(ﬂ’r) = (‘/!._2 "u”W;n((O,T))dx) )

Ilungvé(g): Z ||D§u||%2(ﬂ)
lel <[]

D2 t) — D2 t)|?
>/ /1 fu@,t) - Dyulw, ) |

—_ 3+2(l—[l])
lal 0 e =l

t/2) WZ]U(:B t) — D[l/2]u(:z: 7)|?
Ilullwl/z((o ™) Z 1D ulZ 0,1y +/ f [t — | 1+2G/2-172) dtdr,

ll2 ey = > (ID20Ful, qr))
|| +2a0<[!]

T Deg*o t) — Dag%o t 2
+/ dt//dxdyl x™t U(.'B, ) y -t u(y, )|

|z — y[3+20-1)

,| D28 u(z,t) — D285 u(z,t')|?
/dx/ / dtdt [t = | 1F20/2— 172D ,

where D§ = 031 ...09~, 0, = 0/0z, 0y = 0/0t, and we use generalized (Sobolev)
derivatives. Similarly, by using local coordinates and a partition of unity we introduce
the norm in the space Wzl’l/ %(8T) of functions defined on ST = § x (0,T), where
S = 00. We also use W}(Q) with the third norm of (1.10) for functions defined in
Q. We do not distinguish norms of scalar and vector-valued functions. To simplify
notation we write

lullig = lullyiing EQ=0T or Q=28T,120llulig=llulwyq Q=2

or @ = (0,7),l > 0, and W2°’0(Q) = WP(Q) = Lz(Q). Moreover, |lull., @) =
lulp,@l < p < o0 and |ullyp0r = |lullL,©0rwi@) -

For the proof of global existence we also need the following notation: H'(Q) =
WL(Q), where Q is one of the following expressions: Q, S, 2T, and ST. We introduce
the space I‘f)’l/ %(Q) with the norm

lullpgingy = 3. 18iD2ullog = lulog,
0<2i+|a|<1

and '} (Q) with the norm

lullm @y = Y. l8uli-io = lulike,

0<i<i—k
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where l >k, k€ ZL U{0},0<Il€R.
We define L, (0, T;; l"f,’l/ 2(2)) with

"u"LP(O,T;I‘;"/z(Q)) = 'ull,O,p,QT,
and C([0,TY); I‘f,’l/ %(Q2)) with the norm

u s = Ssup |uj,0,Q-
I ”c([o,T],Ff)' *() te[O,T]| to

We also need

e = > ) |D28u,

0<ikl—k |a|=l-1

where || is the Euclidean norm either of a vector or a matrix.
Moreover, we shall use the imbedding (see [5] and [13])

(1.11) W) cLg(Q), QCR%a+3/r—3/p<§,
where [[ul|La(@) = [Dgu|p,0 and the corresponding interpolation inequality holds
(1.12) |DZulp,0 < 51_n|Df:u|r,9 + ce™"ulr g,

where kK = a/6 + (3/6)(1/r — 1/p) < 1,e € (0,1).

2. Global estimates and relations. We start with conservation laws for prob-
lem (1.1a-e).

LEMMA 2.1.  Sufficiently smooth solutions to problem (1.1a—e) satisfy

d 1
G UL (5o +000)) da-+ o+ alsil
Q¢
(2.1)
+ 5B0,0)+ (v~ )ldiv o0, = [ pf -va,
where |Q:| = vol(Yy, |Sy| is the surface area of St, h(p) = [(p(p)/p?)dp,
E(v,u =/ 'Uij + 7, uij +u?,) dz.
)= [ (054 (s + )
Moreover,

d
(2.2) -—/ pv-ndw=/ pf - ndz,
dt Q. Q.

where n = a + b X z,a,b are arbitrary constant vectors, and

(2.3) i/ pa:da:=/ pvdz.
dt Q. Q¢
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Proof. To prove (2.1) we multiply (1.1a) by v, (1.1b) by v2/2, add the results,
and integrate over §2; to get

/ l[c’?t(p'uz)+V-(p11'1)2)]d.'1r,'—/ T;n'vidr
Q.2 s

t t

+/ [_p‘sij +N(v;j +Uii)+(V—u)5,-j div v] vide= [ pf-vdz.
Q Q,

Using (1.1d) we obtain

d 1
dt/ 2p1,2da;—/ (oH — po)ii - vdr + = E(v v) + (v — p)||div v||3 o,
(2.4)
—/pdivvdw= pf - vdzx.
Q Qs

From (1.3) and (1.4), as in [23], one obtains
(2.5)
HA - vdr = — / —05a (g ﬁ\/ﬁa;p)wtdr = / g"ﬁ\/gmﬁmatdsldsz
S U
-1 / 9°P\/§0490pdsds? = / ds/gds'ds? = 4 / V/gds'ds? =il-|st|.

By (2.4) and (2.5) we have

d 1
+ (/ §p'02 dc + |St|) + %E(v, v) + (v — p)||div v||g,9t
(2.6) &

—-/ (p—po)divvda:=/ pof -vdz.
Q. Q

Now we consider the term involving the pressure. Using the equation of continuity
we have

- [ @=poxtiv viz= | @ po)opi-+ - Vo)) do
= [ 1ot puh) - V1t poh]
where hy(p) = — [(dp/p?) = 1/p. Since
/ lpe+ div(l(h+ pohr) do =0,
we get
~ [ o= m)aiv ude= [1(o0h-+ poh))-+div(u(h + poha))] de

(27) g
dt/ (h+p0h1)d$
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Inserting (2.7) in (2.6) and applying ph; = 1 gives (2.1).
To show (2.2) we pass to Lagrangian coordinates, so we have

% /Q pv-ndz = % /9 po(€)v(Xu(€ 1), 1) - n(Xu (&, t))dE,

where we used the fact that p = po/J and J is the Jacobian of the transformation
(1.6).

Now differentiating the integrand, using (1.1b), and proceeding exactly in the
same way as in [23] we get (2.2). Finally,

% /Q pxdz = % /9 Po(€)Xu(§,t)dE = /n po(&)v(Xyu(é,1),t)dE = / pvdz,

so (2.3) is satisfied. This concludes the proof.

Now we find restrictions on parameters of problem (1.1a—€) which imply that the
variation of || is small for all time. Let us assume that solutions of (1.1a—€) are
sufficiently regular. Let

(2.8) v—p/3>0.
Then

£ B(v,0) + (v - w)ldiv v q,
_ E i .‘ 2 _ . 2
= 2/nt (vz, +vi,) dz + (v u)/nc(dlv v)2dz
, I\ 2 .
> Zg/sz (v;, +vi,.) d:z:+(1/—u)/n (div v)%dz
i=j t t
= 2“2/:1 (vii)z dr + (v — u)/Q (div v)? dz.
i t t

Since (&1 + &2 + £3)% < 3(&7 + €2 + £2) the above expression is not less than (v —
©/3)|ldiv v||3 ,, which by (2.8) is nonnegative.
Hence, assuming f =0, (2.1) implies

1
5 | etdz+ / () dz + polQ| + o|Si|
(2.9) 2 2

1
<3 /Q povd dz + /Q o(p0) dz + polf| + o18| = d,

where p(p) = Ap", so p(p) = (A/(k—1))p", k> 1.
Using (1.7) and the Hélder inequality one gets

1/
M= [ pdx<|Q~V* (/ " da:) .
Qt nt

Now from (2.9) one obtains

A M=~ 1/(k-1) d
. _— < < —.
(210) (Z%) swiss
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Introducing the mean density g, = M/|€|, one gets

Mpo _ _ (5 — 1)d\ /="
(2.11) 4 <pt < (—m .
We also obtain
Po\ <1 K / * (K’ - 1)d
. — < < .
(2.12) (d) Mr< | prdes T

In this way we have shown that || and ¢; = fﬂz ¢(p(z))dz are bounded from
below and from above.

Multiplying equation (2.9) by |Q¢|*~1, using the Holder inequality ( fmp dz)* <
Qq|*"1 [, p" dx and (1.7), we obtain
Q

1
v(9u) +115 [ da+ (] — dmRE) el

+ A (|Qt]'°‘1/ ptdx — (/ pd:c) ) <0,
k—1 Q, Q.

K

(2.13)

where

AM
(2.14) y(x) = poz™ + coox* /3 — da*! 4 1

k>1, z=|Q,

and ¢ = (36m)/3, (47 /3) R} = |Q|.

Our aim is to find restrictions on the coefficients of (2.13) (po,0,d, 4, k, M) that
lead to small changes of || for all ¢ > 0. For this purpose we have to find a
minimum of the left-hand side of (2.13) and to show that for some relations among
Do, 0,d, A, k, M (2.13) holds only for small changes of |Q2;| near the minimum point.
Since the last three terms on the left-hand side of (2.13) are positive, we have

(2.15) y(z) = y(|%]) <O0.

This inequality holds for all physical drop volumes, and so for all real physical motions
governed by (1.1a-e).

Now our aim is to determine minimum points {zo} of y = y(z). In view of
(2.15) we must look for such minimum points zo that xo > 0,y(zo) < 0,y'(z0) =
0,y"(zo) > 0. Moreover, the coefficients in y = y(z) must be chosen in such a way
that |z — zo| is small for ¢ € {z : y(z) < 0}. Examining (2.15) instead of (2.13) is
justified since |z —z¢| < € for z € {z : y(z) < 0} (where ¢ is sufficiently small) implies
that |z — zo| < € also for z € {z : y(z) + a < 0}, where a denotes the sum of the last
three terms on the left-hand side of (2.13).

Minimum points of y = y(z) are determined by the equation

(2.16) ¥ (z) = [pokz + coo(k — 1/3)2*/3 — d(k — 1)]z""2 = 0.

Viete’s formulas imply that the solutions z1, 2, z3 of (2.16) satisfy

173
d(k 1)) >0,
Pok

-1/3
:1:}/3+:1:;/3+:1:;,/3=————cﬁa("C /)<0
Pok

.’L‘1°.’L'2~:l!3=( ’
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so there exists only one positive root of (2.16). Denote it also by zo. To calculate it
we consider the equation which follows from (2.16):

(2.17) w? +3pw +2¢ =0,

where w = u + po, u = 23, p = -, ¢ = pd — o, po = (coo(k — 1/3))/3pox,
vo = d(k — 1)/2pok. At a point zg of a minimum y = y(x), we have

(2.18) y"(2) |z=ao = PEx§ ™3 [—uoa:g/ 4 21/0] = phzs~3 [:co + 2/1,033(2,/ 3] >0,
because o > 0 and the last equality follows from (2.16) expressed in the form zo +
3/1,0:1:3/ 3 _ 21y = 0.

Now we find restrictions on the variations of |2;| near the minimum point .
Since limg o y(z) = AM*/(k — 1) > 0 and lim,_,o, y(z) = oo, if we assume that
the parameters py, 0, k, and d vary in a bounded set, we find that o = zo(po, 0, &, d)
belongs to a compact set separated from zero by a positive number, and y(z) = 0 has
exactly two positive solutions, which also belong to a compact set. Denote them by
wy,wp, and 0 < w; < wy. Inequality (2.15) implies that wq < |Q:| < we. Expanding
y(z) in a Taylor series in a neighborhood of zy up to the second order, we obtain

y(z) = y(zo) + 33" (xo + OR)R?,

where 6 € (0,1), h = z — 9. Assume that (zo — h,zo +h) C (w1, w2). Since y(z) <0
for z € (x1,x2), we have

—2y(z0) \“*
(2:19) he (Golens)

Moreover,
0 < y(z) — y(zo) = 3y"(zo + Oh)h%;

hence for h > h, > 0 we have y"’(zo+6h) > y. > 0. For zo+0h close to zo we use the
fact that y/, = y/’(x), where a = (po, 0, k,d) € B, which is assumed to be a bounded
set, is a continuous function of z. Then, y/(zo), @ € B, being separated from zero,
so is y/2(x) for z from a sufficiently small neighborhood of z.

By (2.19), —y(zo) small yields h small. Then (2.13) implies

1
[t [ o0 do +o(1Si] — xRl
Q

k(e e () 5

To get |h| small we can also assume that the denominator on the right-hand side of

(2.19) is large and —y(zo) is bounded. In this case the left-hand side of (2.20) is not

small. However, it is difficult to find conditions guaranteeing that y”(z) is large.
Now we find the minimum of y = y(z), so we look for solutions to (2.17). Let

(2.20)

(2.21) D =¢*+p* = w(w - 1)
Then we have the following possibilities:
(2.22)

D >0,up>2ud, coshp:=vp/ud—1>1, u=pe(22—1)>0, z=coshep/3.
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(2.23)
D <0 andwp€ (u3,2u3], cosp:=wvp/pd -1, u=p(22—1)>0, z=cosyp/3.

(2.24)
D<0 andyp€ (0,u], cosp:=1—rvo/ud, u=pp(22—1), z=cos(r/3—p/3).

Moreover, zo = u3.

Using the above notation we have

(2.25) y(wo) =popg ™ (22 — 1)3 V(s — 1/3) 1§ (22 — 1) — 20/ (5 — 1)]
+ AM*/(k —1)

and y" (%) |g=g,| > 0 yields

(2.26) pd(2z2 —1)2 — 2y < 0.

Equation (2.26) implies that the first term on the right-hand side of (2.25) is negative.
This enables us to make y(zo) arbitrarily small.
‘Let (2.22) be satisfied. Then (2.26) is satisfied and (2.25) has the form
y(z0) = —(k — 1)"'poud* (2 cosh(p/3) — 1)3(=~1)
(2:27) -[2(cosh + 1) — (k — 1)(k — 1/3)"1(2cosh(p/3) — 1)2 ]
+ AMK/(K' - 1) = _@1(”0’ ¥, Do, K, A7 M)

The first expression in (2.27) is a decreasing continuous function of z = cosh(y/3) and

Lo, which vanishes for z = % Thus there exists a set of parameters of ug, vg, po, k, A, M,

such that y(z¢) is very small negative.
Let (2.23) be satisfied. Then (2.26) is satisfied and (2.25) yields

(2.28)
y(zo) = —(k — 1)~ popd®(2cos(¢/3) — 1)*~1 [2(cos ¢ + 1)
—(k = 1)(r — 1/3)7(2cos(/3) — 1)°]
-|-AMK'/(K, - 1) = _QZ(NO, ©, Po, K, A1 M)1

where the first expression achieves its minimum at ¢ = 0 and increases with ¢.
Therefore, to guarantee that y(zo) is negative for some ¢ we have to assume that

(2.29) (35 —1/3)(k — 1/3) 1pouds > AM*.

Under this assumption there exists a set of parameters such that y(zo) given by (2.28)
is very small and negative.

Finally, assume that (2.24) is satisfied. Then (2.26) is satisfied for ¢ € (0,].
Moreover, (2.25) gives

(2.30)
(o) = —(5 — 1) posid~ (2 cos(n/3 — p/3) — 12D
[2(1 = cosp) — (k — 1)(k — 1/3) "} (2cos(m/3 — ¢/3) — 1)2] + AM"/(k — 1)
=—(k — 1)"'poug“T(p) + AM*/(k — 1) = —®3(uo, ¥, Po, K, A, M),
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where ¢ € (0,], (0) = 0, I'(7/2) = (V3-1)**"D[2— (s~ 1)(s — 1/3) " (V3 - 1)?]
and dI'/dyp > 0. Therefore, as in the above case we have to assume that

(2.31) poud(p) > AM*, ¢ € (0,7].

The above considerations imply that there exist sets of parameters pg, v, po, &,
A, M such that conditions (2.22), (2.23), and (2.24) can be satisfied and y = y(zo)
can be determined by (2.27), (2.28), and (2.30), respectively, such that y(zo) < 0 and

(2.32) ly(zo)| <,

where € may be made arbitrarily small. Then by (2.19) it follows that

(2.33) sup var|Q| < ¢¢, teRy.
t

From (2.33) we have | [, p*dz — fﬂy ptdz| = | fne\ﬂy p" dz| < cpe (where for con-
venience we assume that Qy C ;) because fnt p" dz is bounded. Hence

(2.34) sup var|yy| < cqe, te Ry,

where 9, = [, ¢(p) da.
Thus we have proved the following,.

LEMMA 2.2. Let e > 0 be small. Assume that the parameters pg, Vo, po, &, A, M,
where po = coo(k —1/3)/(3po), vo = d(k — 1)/(2po), satisfy the relation

(235) v € I, 0< ‘I)i(ﬂo,<Pi,p0, K, Aa M) <g,

where i = 1,2,3,®;,i = 1,2,3, are determined by (2.27), (2.28), and (2.30), respec-
tively, L = (2143,00), I, = (/1‘872/1’8]a I = (07”‘8], COSh<P1 = VO//—"% -1, Cos 2 =
vo/uy — 1, cospz =1 —vo/d.

Then there exist constants cy,co independent of € (they can depend on the param-
eters) such that (2.33) and (2.34) hold. Moreover, in the case (2.35) we have

(236) "Qtl — Q,l <cze Vte R+,

where i = 1,2,3,Q1 = pd(2cosh(p1/3) — 1)3, Q2 = pd(2cos(p2/3) — 1)3, and Q5 =
pg(2cos(m/3 — p3/3) — 1)2.

The condition (2.36) means that for parameters satisfying (2.35) the volume ||
of the considered drop does not differ much from the constant value @Q;,i = 1,2,3.
This means that the initial volume || must also be close to Q;,7 =1,2,3.

On the other hand, from physical reasons the drop volume |§2;| should also be
close to the volume || of the drop in the equilibrium state (see Definition 1.1).

For this purpose we show the following.

LEMMA 2.3. Let the assumptions of Lemma 2.2 be satisfied. Then there exists a
constant ¢4 such that

(237) |Qt - IQe” < cge, 1=1,2,3,

where € is sufficiently small.
Proof. Consider the case Q;, where i € {1,2,3}. Recall that 9 = Q;. Then
(2.16) determining zo has the form

2.38 poxg + (k—1/3 n_lcoaz“_1/3 +(k—1k"tdz"" 1 = 0.
0 o s
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Moreover, we have

(2.39) 0 < —y(zo) = —(pox + coozt /> — daf™! + AM"/(k — 1)) < €2.

In the case of the barotropic fluid (1.9) takes the form

(2.40) Do|Qe|® + 2(47/3) 30 |Q|*~/3 — AM® = 0.

Employing (2.38) in (2.39) yields

(2.41) 0 < pozg + (2/3)c0c7:l:0"1/3 — AM* < (k — 1)e2.

Calculating the coefficient in the second term in (2.40) we have
2(4n/3)Y30 = (2/3)coo, because co = (36m)/3.

Hence (2.40) takes the form

(2.42) Polfel” + (2/3)co0lQe =13 — AM* = 0.

Comparing (2.41) with (2.42) implies (2.37). This concludes the proof.
Considering variations of || near the volume |Q2.| we choose a constant cs such
that

(2.43) 9] — ]l < cse VEER,,

where comparing (2.33) and (2.36)—(2.38) we have c3 + c4 + ¢5 < c1.
Finally, (2.35) and (2.20) imply that for ¢ > 0 the left-hand side of (2.20) must
be smaller than ci€?, s0 1/2 [q, pv? dz < c1€?, the considered drop must be close to

a ball, and the last term on the left-hand side of (2.20) that vanishes for a constant
density is small, too.

To prove the global existence, we assume that ; is diffeomorphic to a ball, so S
can be described by

(2.44) |z| =r = R(w,t), weS,

where S! is the unit sphere.

LEMMA 2.4 (see the proof of Theorem 3 in [23]). Let S; be determined by (2.44)
and suppose that the origin of coordinates coincides with the barycentre of Q. Let
p(z,t) be a density defined for x € Q, and let t € (T1,T,). Assume that there exists
a mazimum and a minimum of the density for t € (Th,T%) denoted by

2.45 = mi i t .= i t).
(2.45) P teg}flmngtnp(w, )y P ter(g,%)ngtnp(w,)

Set 12| = M/p", 9] = M/p*, 5 = M/|].
Then there exists a constant § € (0,1/2) such that if

(2.46) sup |R(w,t) — R¢| + sup |[VR| < Ry, te (h,Tz),
s1 st
where |VR|? = R} + (sin0)~2R?, in spherical coordinates, R, = ((3/4m)|)) 3, then

[, (R, = R + |V RG@, P)de

< e1(|Se| — 4w R?) + 2 RE || 72(1Q] — 1),

(2.47)
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where ¢, ca are constants that do not depend on 6 and R;.

Proof. To make the barycentre of §2; coincide with the origin of coordinates we
must have (see Remark 2.6)

R(w,t)
(2.48) / p(z,t)zdz = / dw / p(r,w,t)r3o(w)dr = 0,
Qs st 0
where 7(w) = (cos psin,sin psin, cos§). We write (2.48) in the form
1 R(w,t) 1
@49) 2 [ do [ (plrw - prt)dr+ 7 [ (RAw,0) - RYp(w)do =0,
peJsr Jo 4Js:

where the first expression can be estimated by

(m/pe)(p* — Pt)R* (w, t) < wRA(|Qe|/M)(M/ || — M/|)
= (7R /| )) (1] — 1))

From |Q;| = (47/3) R} we have

(2.50) / (B (w,t) — BY)dw = 0.
S1

From (2.48)—(2.50) we obtain

(2.51)  R? fSI(R — Ry)dw = —R; /SI(R — Ry)?%dw — -;;/SI(R — R;)3dw,

(2.52)

3

R} /S ) (R - R)p(w)dw = -3 R? /S 1 (R = Ry)*v(w)dw — R, /S . (R — Ry)%0(w)dw
1 4
—Z/ (R - Rt)417(w)dw + :"/ (p - ﬁt)$d$.
st PiJa,
To estimate |S;| — 4mR? from below we use the formula
|S,| — 4nR2 = / (RVRZ+|VRP - B ) dw,
S1

and we write the integrand in the form

(2.53)

—R? + R\/R? + |[VR|?

= 2R,(R— R;) + —;-[Z(R - R)* + VR[]

1
+%/0 1- 3)2% [(Rt +8(R— R:))\/R +s(R— R)? + 32|VR|2] ds.

Therefore,

(2.54)|S| — 47R2 = — / (R- Rt)2dw+-1- / |VR|?dw — 2 (R— Ry)3dw +1,
St 2 St 3R, St
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where I is the integral of the last term in (2.53).
Using the inequality

1
[ < g [ 95k

for f = a+b-7+R— R;, where a = (1/47) [, (R—Re)dw, b = (3/4m) [, (R— Ry)vdw,
we get

(255) IR~ Rell3 s < (1/6)IVRIZ 52 +4n(lal® + [b?) + B VZII] 5.
Using (2.51) and (2.52) we obtain

la| < c36||R — Rello,s1,

(2.56)
|b] < c4bl| R — Rello,s2 + 5 (Re /| |) (1] — 1€2])

and
(2.57)
2 3 2 2 2 2
3R, Sl|R — Ry*dw < Z6||R — Rillgs:» || < ce6(||IR — Rtllg 52 + I VRl 51)-

From (2.55)—(2.57) for sufficiently small § one gets (2.47). This concludes the proof.
The double mean curvature of S in spherical coordinates has the form

(2 58) M= 1 i R‘P + 2 sin Ry _ 2
‘ Rsin6 \ dpsin6,/RZ+ [VR? 00 /RE+|VRZ) +/R®+|VRE

Now we consider the equation
2

(2.59) H(R) + = = h(w),
R

where h(w) = AT (v, ps)7|s.

From Theorem 4 in [14] we have the following.

THEOREM 2.5. Let R € Hf+5/ %(8Y), k € Z, U {0} be a solution to (2.59) that
satisfies (2.46) with sufficiently small §. If h € Hg +1/ 2(Sl), then

(260)  ||IR = Rell24p,s1 < Cillhlly,sr + c2l|lR — Rello,s1,  w=k+1/2.

To guarantee that the barycentre of ; coincides with the origin of coordinates,
we need the following.
Remark 2.6. Assume f =0 and

(2.61) /npovo dz =0, /ﬂpoﬁdg =0.

Then (2.2) and (2.61) imply [, pvdz = 0, and then (2.3) gives (2.48).

Now we formulate the main result, which is necessary in the proof of global
existence.

Remark 2.7. Let the assumptions of Lemma 2.2 be satisfied. Let |Q**| =
max; [Q, |Que| = ming |Q], ¥** = max; 1, and .. = min; ;. Let |S.u| = 4RZ,,
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where R.. is determined by (47/3)R3, = |Q..|. Then |S;| — |Ss«| = 0. Moreover, by
Lemma 2.2 we have |Q**| — |Qu.| < €, ¥** — tuu < &. Furthermore, by writing (2.1)
in the form

d 1
(2.62) — (/ =pv?dz + P + po|Q| + UlSd) <0,
dt \ Jg, 2
we obtain
1
§ o p’U2d£L' + ¢t - ¢** +P0(|Qt| - IQ**I) + U(lst' - IS**I)
(2.63) ‘

< 5/9 PoVAAT + Y — Yuw + Po (IR = |Qua|) + 7(|S] = |Sux]) < KoEo0,

where ¥ = 1o, g9 = £9(€) will be made arbitrarily small.

Since the minima of ||, |St|, ¥, for all t € R, exist, we can always obtain (2.63)
with an arbitrarily small right-hand side because we can choose € in Lemma 2.2 so
small that the right-hand side of (2.63) is as small as we please. To ensure the last
inequality we have to assume

1

(2.64) —-/ povddx < e.
2 Ja

Moreover, the coefficient ko in (2.63) will be chosen in such a way that Lemma 2.4
yields

1
(2.65) 3 [ poPde +IR@.0) ~ Rell 1 < e
Finally, we consider the case pp = 0. Then, instead of (2.9), we obtain

1 2
= | pvidz+ | o(p)dz + o|S:|
(2.66) 2 /“‘ /“‘

1
<5 [owidde+ [ olpm)da + 015 = do
Q Q

Hence instead of (2.13) we have

1
 (190]) + 100 [ pvida + () ~ anRE)

(2.67) K
A
+ (Iﬂtl"“1 f prdz — ( / pdw) ) <0,
k—1 Q, Q,
where
(2.68) y1(z) = cooz* /3 — doz" ! + —-—é——M", z = Q.

k—1

Inequality (2.67) holds for physical volumes |Q2;|. Since the last three terms in (2.67)
are positive, we have

(2.69) y(l%)) < 0.



ON NONSTATIONARY MOTION 17

An extremum point zo of the function y; = y;(z) calculated from the relation

ET) ) =eools 1/~ (s D =
is

_(_dols—1 \*?
o o= (Gote1m)

This is a positive number. From the form of y; = y;(z) we have y;,(0) = AM*/(k —
1) > 0, y1(00) = 00, ¥1(Z)|e<zo < 0, ¥1(Z)|z>zo > 0, SO o is a minimum point. We
also have

(2.72) Yy (o) = (2/3)do(k — 1)z5~> > 0.

From (2.69) it follows that there are two strictly positive solutions of the equation
y1(z) = 0. Denote them by w;,ws. We have 0 < w; < T¢ < we < 00.
To guarantee (2.69) we have to require that

2 do Br=1)/2 ;1\ 3(x=1)/2
2. = —— K — .
(273) y1(20) = —3 (’C — 1/3) e +AM*/(k—1) <0

Using the form of dy from (2.66) in (2.73) yields

y1(z0) = =3 (5 — 1) D/2(s — 1/3)31)/2(co0)~3s=1/2
(2.74) . 4 (Br—1)/2
. —/povgdm+—/p3da:+a|3| +AM*/(k—1) <0.
2 Q k—1 Q
Since M* < |Q|*~! [, pidz, we see that (2.74) may hold.
Now we show that for a given € > 0 there exists a set of parameters k,dy, A, M
such that meas X = |X| < ¢, where X = {z € R} : y1(z) < 0,0or w; < = < wsp}.

Moreover, o € X. To calculate meas X in the case of small £ we estimate solutions
to the equation

(2.75) y1(x) = cooz™ /3 — doaz*~t + AM* /(K — 1) = 0.
We expand the functions ! and z2/3 near the minimum point zg in the form
org T T (= DS (12— Dk~ D" (@)W,

' 223 =z2® 4 (2/3)z5 " h — (1/9)3; k2,

where (2o — h,zo + h) C (w1, w2) and &; € (zo — h,zo + h), i = 1,2.
Assume that h is small. Put (2.76) into (2.75) and take into account terms up to
the second-order with respect to h only. Then we obtain

2 6 9 2
Using (2.71) in (2.77) yields
(2.78) k| < (=3y(zo)/(do(k — )25 ™))/,

(2.77) [coo (5gi ey 2) T — dow] x5 3h? = —y(xo).
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Now we impose restrictions on the parameters &, po, vg, 2, A, 0,5, M such that
for a given € > 0 we have y1(zo) < 0 and —y;(zo) < €2. Hence by (2.78) we have
|h| < (3/(do(k — 1)z§™1))Y/2¢ = c;¢, where € may be assumed to be as small as we
need. Thus we have shown the following,.

LEMMA 2.8. Lete > 0. Then there ezists a set of parameters k, po, vo, 2, S,0, A, M
such that y1(zo) < 0, |y1(x0)| < € and

(2.79) sup var || < ci¢, t>0,
t

and there exists a constant cy such that

(2.80) sup var ¥ < cg€, t>0.
t

3. Local existence. To prove the local existence of solutions to (1.la-€) we
write it in the Lagrangian coordinates introduced by (1.5) and (1.6):

nus — uV2u — vV, Vy - u+ Vyug=ng in QT
N+ MVy-u=0 in QT
(3'1) Tu(u’ q)ﬁ' - UASz (t)Xu(ga t) = —poTt on ST,

uli=o=w0(§) inQ,

Ne=0=po(§) inQ,

where U({, t) = 'U(Xu(ga t)at)’ ﬂ(ﬁ,t) = p(Xu(€7t)’t)’ Q(Ea t) = p(X‘u(ga t)at)’ g({, t) =
f(Xu(§52),1),

Vu=0:8Vei, Ve =0, Tu(u,q)=—ql +Dy(u) and
Du('u,) = {p, (awikaEk’u,j + azjﬁkV@ui) + (V — u)6i,-Vu . u} y

Vau-u = 8,:£¥Veui. Let A be the Jacobi matrix of the transformation z = z(¢,t) =

Xu(&,t) with elements a;; = 6;; + fot Ogiu'(€,7)dr. Assuming |Veu|eor < M, we
obtain

(3.2) 0<ci(l— Mt)? <det{8ga'} <co(1+Mt)®, t<T,

where ¢, ¢y are constants and T is sufficiently small. Moreover, det A = exp( f(f Vau:
udr) = po/n.

Let S; be determined (at least locally) by the equation ¢(x,t) = 0. Then S is
described by ¢(z(¢,1),t)|:=0 = ¢(§) = 0. Moreover, we have

Va¢(z,1)

o ey = Ved()
oz ] ==en and fio=o(6) =

Ve (€)'

THEOREM 3.1. Let vo € Wi (Q), po € WIH(Q), f € CH(R3 x (0,T)), S €
Wyt 1> 8 and L -3 —k e Nc {0}, k € (0,1). Let G = G(t,t4,,3,7) be
an increasing positive function of its arguments (its definition is given by (3.55) in
(36]), where o = ||polli+1,0,8 = Ifllct+i®ex(o,my)s ¥ = |w(0)|i+1,0,9, which is such

n=n(z(¢t),t) =
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that G(0,0,a, 8,7) > 0. Suppose that A > G(0,0,a, B,7). Let [v(0))i+1,0,0 < A. Let
6,1 be sufficiently small (see the proof of Lemma 3.3 in [36]). Let T\ be so small that

TeAp: (T., T?A, A, A) < 6,
0<Cl(1—AT*)3 <det{g§}<02(1+AT )3

where @, is an increasing positive ﬁmctwn which is defined in the assumptions of
Lemma 3.3 from [36], z(£,t) = &€ + fo vo(€,7)dr, t < T, G(T\, T?A,0,8,7) < A
a > 0 and 0o(&,t) is defined in the proof of Theorem 3.6 from [36].

Then there exists Tys,0 < Ty < T, such that for T < T,, there exists a unique
solution to problem (3.1) such that u € W™ 2ALQT) p € WzH'l’l/ H2QT) 0
c (o, ;16 V2(@) and

lulli42,0r < 4, Inllit1,0r + Illi41,00,07 + 11/0lli41,07

(3.3) ~
< (lleolli+r,0 + 11/polli+1,0) ¢2(T, T* A),

where @2 is an increasing positive function defined in the theses of Lemma 3.5 in [36].
Having shown the local existence of solutions to (3.1), we find a more appropriate
estimate that will be useful in the proof of global existence. Let us recall that R; =

(%wlﬂt|)1/3, t > 0. In view of Definition 1.1, we shall look for motions of (1.1a-
e) which are close to the equilibrium state. Assuming that the initial motion is
sufficiently close to the equilibrium state, we introduce the quantity ¢, = ¢ — po — qo,
where gy = 20/Ry. The quantity describes changes of the pressure near the sum of
external pressure pg and the initial pressure of surface tension in the case when, at
the initial moment, our drop is a ball (gg). Therefore, we consider

nuy — uVﬁu — VvV, Vy - u==Vyug, + g,
oD, (w)7 =0,

t
(3.4) figDy(u)n — oAg, (t)/0 u(7)dr - fig =Rg - igy + g - (Ag,(t) — As(0)) €

+0(H(§,O)+%) ,

ul¢=0 = vo,

where Ilyg = g — g - NN, Illg = g — g - AN, and

4ot = —qo Y (n)divyu — (po + go)divyu,

(3.5)
9o lt=0=p(po) — Po — o,
where ¥ () = pn(n)n/p(n), Py = Oyp-
By Theorem 3.1 we have the existence of solutions to (3.4) and (3.5). Moreover,
we obtain the following.

Remark 3.2. Let u, 7 be solutions of problem (1.1a~€). Then from (3.4) and (3.5)
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for sufficiently small T' we obtain the estimate

lullirz,0r + 9o llivr,07 + 190]i41,0,00,07
Y (T, Ivolli+1,0: Neolliss,on 1 fllors ooy, ISllyseer2)
£ o+ e x0,) + llvollir1,0
+ [[p(p0) = po — qoll t+1,0 + 1 H(€,0) + 2/Rolliy1/2,5] »
where 1 > 3. The existence of solution v,p of (1.la—e) such that u € W24’2(QT),

g € W2 3/2 @TYync(o,T; rg"*/ %(Q2)) and estimate (3.6) for I = 2 are proved in [37].
Proof. Applying Lemma 3.3 from [36] to (3.4) yields

lulliya,0r <c(T, 4 8,7 1Slly+sr2 ) [lgolisr,or + lgliar
2
+ ||1H(£,0) + 2/Rolli41/2,s] -

(3.7)

Integrating (3.5) implies

¢ (&,t) = —exp [—- /0 t\Il(n)divuudt']

(3.8) ,
1

From (3.8) we have

t/
(Po + go)div,uexp / ‘I'(n)divuudt"] dt' + p(po) — po — qo] .
0

(3 9) "q0"l+1,9T + |q6|l+1,0,oo,ﬁ'r < C(T’ Aa «, :3’ Y "S"W;+5/2)

- (T?||ullig2,0r + llp(00) — Po — golli+1,9), a>0.

From (3.7) and (3.9) for sufficiently small T we have (3.6). This concludes the proof.

4. Global differential inequality. Assume that we have proved the existence
of a sufficiently smooth local solution. First we find a special differential inequality
that enables us to prove the existence of a solution by energy estimates and then to
prove global existence.

To show it we consider the motion near the equilibrium state ve = 0, pe =
po+20/Ro, p. = M/((47/3)R3); Ry is a solution of the equation, ' M/((47/3)R3)) =
po + 20 /Ry, o = 20 /Ry and p, = p — po — qo. Therefore, we examine the following
system:

(4.1a) p(vi +v - Vv) — 8,3 Ty (v, po) = pfiin U, t € [0, T,
(41b) pe + le(p’U) = 0in Q4,t € [0, T],
(4.1¢) T(v,ps )t = 0Ag,x - it + gofion S, t € [0, T,

where T = {T;;} = {(8,iv* + 05:v7) + (v — p)éijdiv v — pobi;}.
Using the barotropic law p = p(p) we write (4.1b) in the form

(4.2) Pot + v - Vp, + p¥(p)div v =0,

where ¥(p) = p,p/p.
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Set p, = mingr p(z,t), p* = maxgr p(z,t).

Now we point out the following facts concerning the estimates in Lemmas 4.1-4.12
and Theorems 4.13 and 4.14.

(1) The numbers §; are assumed to be small and are separately numbered in each
lemma.

(2) We distinguish absolute constants, denoted by c, which may depend on such
parameters of the problem as u, v, k, 0, A and which are coefficients in those terms in
the right-hand sides of the inequalities that contain the highest derivatives only, and
are finally balanced by the left-hand side main terms after appropriate summing,.

(3) We distinguish the coefficients by the lower-order terms, nonlinear terms, and
also by the force terms which depend on p,, p*, T,

T t
a= / "v"3,ﬂtl dt,a aO(t) = / Ve dT
0 0

on the parameters that guarantee the existence of the inverse transformation to
z = z(&,t), and also on the constants of imbedding theorems considered over €2;.
Generally, the coefficients are increasing functions of the parameters. In the state-
ments of the lemmas, we denote such coefficients by Py, P», ..., (common numbering
for all lemmas) and independently in each lemma by a;,as,.... Moreover, P;,a; are
positive and increasing functions of a and b.

(4) We have to underline that all estimates in this section are obtained under
the assumption that there exists a local solution of (1.1a—€) so that all the quanti-
ties pu, p*,T,a,b are estimated by the data functions. Moreover, the local solution
guarantees the existence of the inverse transformation to x = z(£,t). Generally, the
quantities p., p*, a,b, M, py might be large.

LEMMA 4.1. Let v,p, be a sufficiently smooth solution of (4.1). Then

1d | B
2dt/9 (pv +p‘Il() )d 2dt/s, 7 - /vsad'rn /Ovsﬂd'rds

L b .
Sl q, + (v — w)ldiv vll%,n,
2
0,31)

) b= "S”4+1/2’M’p0’

00,0

4.3)
”H( 0) + %

t
<el <||p,||g,ﬂt+ / vsdf
0

+ Py (ol 0, + 1£13,0,) + P2XaY3,
where €1 € (0,1), P; = P*(p«, p*,a0(t)), i = 1,2, and

0,5

X1 = “"’"%,Qt + "pa”iﬂu

£ 2
/ vdT
0

Proof. Multiplying (4.1a) by v, integrating over €, and using (4.1b, c) implies

(4.4)
Yi=X;+

2)St

5 dt/ pvide + Egt (v) + (v — p)||div v]|3 o, / pediv vdr
t

(4.5)
20 _ )
—a/se (Asta:-n+ Eg)n-vds—/gtpf vdr.
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Equation (4.2) yields

. 1 2
- ,dwvd:c=/ —— (0 +v-V)Zdx
/n,p Q P‘I’(P)( ‘ ) 2

and
2
(4.6) [Fy + div(Fv) + (Fpp — F)div o] 22 =
where F' = 1/(p() ¥ (p)); s0
df 1 p / 2
/Qtp Cdt Q p¥(p) 2 :( oP) 5
(4.7) <-4 / 1 7 2
<=3 ) 5 2.9 T Aulleela,

+ a1(px, p*,61) 15 |13 0, V113 0, -

In view of Lemma 5.2 from [35] and the relation p(p) —po = p—p(pe) = P’ (5) (P — pe),
p € [p, pe], we have

(4.8) lvlif q, < c2(p)(Eq, () + lIpslI3 o, Ivl3.0,)-
By the Holder and Young inequalities the right-hand side of (4.5) is estimated by
(4.9) 82llvll3 q, + c(62)PZIIfII3 o, -

Now we consider the boundary term in (4.5). By exploxtmg the Lagrangian co-
ordinates we express S; as follows: z(s', s?,t) = £(st, s2) + f u(é(st, %), 7)dr, where
{s!,s?} € U C R?, so the boundary term takes the form

(4.10)
—/ (Asa:-ﬁ+ —2—)v~ﬁds= —/ (3 (9**/gzp) -7+ -2—\/§)v~ﬁdsld32
S ¢ Ro Ry
= —/ (6,,« (9% V/g€ss) - + —2—\/_6) u - dstds®
U Ro
¢
—/ s (gaﬂﬁ/ usﬁd‘l') - - i dstds?.
U 0

The first term we write is the following:
_/u [(g“"\@),s« &ss - (1 — 7o) + (9°° — 9%%(0))/Gbsaso -
2
+ gaﬁ(O)\/ggs“sﬂ : ('ﬁ - 'ﬁO) + gaﬁ(O)\/ggs“sﬁ < + Eﬁ]u -dslds?

2\
__/St (H(O)+—R—0>v~nds+N1,

where H(0) = g*P(0),as5-Tio, Tt = (To1 X T42)/|Ts1 X T2, o = (€s1 X €2)/|€s1 X €s2],
9ap = Tgx * TgB, gaﬁ(o) = &s"‘ . §sﬁ and

t
Ny < 6 /0 vadr| s, + Ballvll2 o, +azllvlZ g,
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The second term in the right-hand side of (4.10) takes the form

t
2dt/s,, B /vsadrn /Ovs,sd*rds+N2,

t 2
f vedT
0

Hence, taking 8;,7 = 1,...,5, sufficiently small and using (4.7) and (4.10) in (4.5) we
obtain (4.3). This concludes the proof.
LEMMA 4.2. For a sufficiently smooth solution of (4.1) we have

where

0,5

t
|V2| < 65 ( + IIvllin,) +aslvllg g, +a4||/0 vdr||3s, [vl3 .-

1d 9 1, o d/‘ of
2dt (p’vt +pq,(p)p,t) dz + 2 & s,g Vga - Mg - N dS

(4.11) ”vtul .+ = plldiv v|§ o,

<e ("pcrt"(2) Q. + ”vzz"g,ﬂt) + P3(P*’ p*a 52)X2Y2
+ Py (113 0,0, + 013 ,0,)

where g5 € (0,1), Ps(e2) behaves like 5%, a > 0, and
(4.12) Yo =X, = |Pa|§,1,9, + |U|§,1,9,~

Proof. Differentiating (4.1a) with respect to ¢, multiplying by v;, and integrating
over (), yields

1d . .

2dt /Q pvidz + gEﬂe (ve) + (v — p)lldiv ve|[f o, — /Q Dotdiv vidz

(4.13) t .

- / T(v’pa),t - vds = Nl,
St

where

N1 < 8ullvellg g, + (@)l FI3 0, + X3+ c(b1, p°) 1 f2li3 -
From (4.2) and (4.6) with p,; in place of p, we obtain

1ld 1
2dt Jo,p¥(p)

+ c(pu, p*, 82) X32.

/Q Potdiv vedr < — ——p2; dz + 6|poe||3 o,
t

(4.14)

The boundary term in (4.13) is equal to

(4.15) —/ T(v,p,),t-ﬁ-vtds=—a/ Ag,v- v - nds + Na,
St Se
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where

IN2| < 83(Ilvellf g, + lvacllf 0,) + asllvllg g, -

Next, using the Lagrangian coordinates we have

-0 Agv-nvyg - ﬁds=—a/ Bse (9%1/§0,pv) - vy - N ds'ds?
As, U

(4.16)

od

=5 stg"‘ﬂvsa -ugs - ds + N3,

and
|Ns| < 65 (|lvell} g, + llv=ellf 0,) + azllvlif q, + asX3.

Finally, from (4.13)—(4.16) and Lemma 5.3 from [35] we obtain (4.11) for sufficiently
small é§’s. This concludes the proof.

From Lemmas 4.1 and 4.2 we have the following.

LEMMA 4.3.

(4.17)

1d 2.2y, L (2 2
i, 07+ o)+ iy 02 45

d t t
+_0'__ gaﬂ 'ﬁ/ 'UsadTﬁ'/ USﬁdT+ﬁ‘Us“ﬁ‘vsﬂ ds
2dt /g, 0 0

W . .
+ 3 (”U"%’,n, + ||Ut“%,9,) + (v — p) (lIdiv 'U||(2),n, + ||div Ut"(z),n,)

t
/ vdT
0

+ Ps(p, p*,€3) X3Y3 + Ps(|f13 o 0, + I3 0,)

where €3 € (0,1) and
¢
/ vdr
0

To obtain an inequality for z-derivatives we write problem (4.1) in Lagrangian
coordinates, so we can introduce a partition of unity in the fixed domain Q2. Therefore,
we have

2 2

+losalfa, + |C.0) + 2

2
0,51

<es ("pat"g,(z, + [lps 113 @, +
l,Sg

2
(4.18) X3 =X, Y3=X5+

2,5

’I)ui = Vi T:;j (u,90) = "gi:
(4.19) ot + q¥(N)Vu - u=0,
Tu(u, go )2 =0Ag,z(€,t) - AT + qo7,
where 7n({,t) = p(z(§,1),t), u(§,t) = v(z(§1),t), 9(&t) = f(z(§1)1), a(é,t) =
p(z(€,1),1), o = ¢ — o — qo, Vs = ¥, 8¢x, ¥(n) = gyn/q, and
(4.20)
Tu(u,¢0) = {TZ (u,00)} = {~0bij + b (Vuitt? + Voyst'*) + (v — )iV - u} .
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Next we introduce a partition of unity ({€%},{¢}),Q = Ui€. Let Q be one of
the €;, and s and ((£) = ((€) be the corresponding function. If Q is an interior
subdomain, then let & be such that @ C Q_and ¢(&) = 1 for £ € @. Otherwise, we

assume that QNS # ¢, oNS# P, & CQ Lt BedbnNSc QNS §=0n8S.
Introduce local coordinates {y} connected with {£} by

(4.21) y* = oF(¢ - Y, =nF(B),k=1,2,3,

where a*! is a constant orthogonal matrix, such that S is determined by y3 =
F(y*,v?),F € H**1/2 and

Q={y: ¥l <di=12F@F) <y’ <F@)+dy = (¥"y")}
Next we introduce functions u’ and ¢’ by
(4.22) w(y) = a9 (O)le=¢),  T() = 2(6)le=¢w)

where £ = £(y) is the inverse transformation to (4.21). Furthermore, we introduce
new variables by

(4.23) 2=y, i=12 2H=y>*-F), yeq,

which will be denoted by z = ®(y), where Fisan extension of F' to Q with ' € H3(Q).
Let 0 =®(Q) = {z:|2}| < d,i =1,2,0 < z* < d} and § = &(5). Define

(4.24) W(2) = (Yly=a-12),  4(2) = ¢ W)ly=2-1(»)-

We introduce Vj = E’x,, ({)zé,Vz.'k:x_l(z), where x(§) = ®(¥(§)) and y = (&) are
described by (4.21). We also introduce the following notation:

(4.25) @) = uw(€)¢(€), @ (&) =a()¢(), €€, QAnS=4¢,

and
(426) @(z) = w(2)E(2), @o(2) = (2)l(2), z€Q=@(), QNS#4,

where {(2) = ¢(€)le=x-1()-
Under the above notation problem (4.19) has the following form in an interior
subdomain:

(4.272) nig — Vo TP (4, §o) = 1§* — Vs BY (4, ¢) — T, (u,45) Vs = 1" + ki,
(4.27b) Got + q¥(N)Vy - &= q¥(n)u - Vyl = ko,

and in a boundary subdomain:
(4.28a) it — VT (@, §,) = 7' — V;BY(a,¢) — T9 (4, 4,)V;¢ = 7" + K,
(4.28b) ot + GU(A)V - & = §¥(A)d- V{ = ka,

t

(428¢c) (@, d,)n — oAz€ - Al — oAy / adr - Ah = gR%sz + ks + ke,

0
where

. A .. ~ A t A A t A -~
ki=BY(a,{)n;, ke =—0 (2v f adr V¢ + / adr v2c) - A,
0 0

B:i’ (u’ C) = /“(uivuﬂ'c + ujvui C) + (V - l‘*)aiju ‘ Vu,C,

(4.29)
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and T, B indicate that the operator V,, is replaced by V.

In the next considerations we denote 2!, 22 by 7 and 23 by n.

LEMMA 4.4. Let the assumptions of Lemmas 4.1 and 4.2 be satisfied. Then we
have

1 d/ ( ) 1 . )
- V|1 o+ —==Ips dz
2 dt . pl Il,O p\I’(p)l |1,0
od t t
+-— [ g*8 [ﬁ'/vsad‘rﬁ-/vs;adr+ﬁ-vsaﬁ-vs,a] ds
0 0

2dtJg,
t
ﬁ'/vslsad'r
0

¢ od
4 - 5287 - —
2dt/ =8 /Ov“ dra- /Ovsspd'rds+ dt/&

2
od 1_ 2
+53 S; (En-/ovs,,.d*r+2(H(O)+E)) ds

W
(4.30) + §|’U|§,1,9, + |Pa|%,o,9t
t
/vdr
0

HIHC0) + s+ IRC, 1)~ RO 50
+ P (I£113,0, + ||”||o,nt + 1o 113,,)
2
+ Py (X4Y4 + |H(-,0) + Follé’sl) )

2
ds

2

ey (”vt”%,m +llpotll o, +

0,9,

where the summation over the repeated indices (o, 3 = 1,2) and coordinates (z,s =
(81, 52)) is assumed, Py is a positive increasing function, P; = P;(a,b), and

Xy=X4(t) = |vl3 1,0, + Pol31,0,

(4.31) to
Ya=Ya(t) = Xa(t) + olla, + /0 ol o dr.

Proof. At first we consider interior subdomains. By differentiating (4.27) with
respect to §, multiplying the result by %A (A is the Jacobian of the transformation
= z(£)), and integrating over 2, we obtain

ld ~2 2

- muvu ~ ueum

(4.32) = [[doe - VateAde < Su(lueell? g + laoel? )
+ax(lull 4 + a0 12 5 + 1312 5)
t 2
+as (uung,ﬁ Jur| o+ laol? Qlulm)
0 3,0

where [|hlg o = (o [h|*Adg)/2.
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By the continuity equation (4.27b), we have

i . 1d 1
(4.39) - [ aeVu-teade = 3% [ dieade+ m,

where

IN1| < 8alldoel} g + aallull}

t
/ udr
0

2
3,0

+as [!qa 1allull g +lals ; 5) +llulll 4

Consider the Stokes problem in €:
ﬂvﬁ'& — vV Vy -+ Vyugo =ng — i + ka1,
(4.34) Ve 4=V, i,

a5 =0.
Hence, we have

1112 & + 132117 & < as(llglly & + [ul? 4 o + a3 &)

(4.35) 2

t
/ udT
0 3,0

»

tar(lul2 g + ]2 5) +ellVa-al2

Using Lemma 5.1 from [35] in the case G = Q, v = i, from (4.32), (4.33), and (4.35)
for sufficiently small 6; and 63, we obtain

s Jy (7 + zagye)
bl a2+ ——q2, ) A
2 Jo "%t (%) A%
[T . ~
+ 5 llel] o + (v — mI Ve - Bell} 5 + 1doellg
(4.36)
< b1 (llueelly o + laoelly )

+ag(I3ll2 o + lul} , g + g0 ll? o) + a0 Xa(DYa(SD),

where Xa(() = [ul2 | & +laol2 | 5, Ya(@) = Xa(@) + Jull2 g + fy lull2 5

Now we consider subdomains near the boundary. leferentlatmg (4 28a) with
respect to 7, multiplying the result by %,J, and integrating over Q yields (J is the
Jacobian of the transformation z = z(z))

1d [ .. m s_i A _ivg N,
2 ﬁnu.,.sz + E/ﬁ(Vzul + Vjur) Jdz+ v —-p)|V- 'U'-r"o’g
- [607'6 “UeJdz — /(ﬁT(ﬂ, qa)),-rﬁ-,-sz/
2 s

(4.37) < B3 (lls: I3 o + ldoz 15 )
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+a10(I312 ¢ + 1812 ¢ + 14012 )

t
/ udr
0

2
R
3,2

/ﬂ (V5T (@, G0))sr = V3T (i, Gorir Jd2' < 84|21 o + 1623 )
2

t
/ udr
0 3,0

’

+anllal2, (nau a2 o+ }

where we have used the inequalities

+ ana||ll} +e(llall? g + 140115 ),
and

/é (0, G0))yr T o, G i A < 052 2 + iel2 )

t 2
/ udr s
0 3,0

and the fact that VF' can be expressed in terms of f(f ugdr. Consider the boundary
term in (4.37). Using the boundary condition (4.28c), we obtain

+a13 (Ilﬁll + 1140113 ¢ + llall3 4

- [ (4@ @), ! = o | (Aaé ané + —2—7%6) \ iy Jd
$ 3 Ry

t
—GL (A-§¢/ adr - ’ft’ﬁ) , 7l Jd2 + [(ks + ke), i Jdz .
0 S

Similarly as in (4.10) the first term on the right-hand side is equal to

(4.38)

_ L0+ 2 ) ac- 1442
a/U(H(,O)+RO)n( Uss4/gds ds® + Na,

where

2 2

t
/ udr
0

+ara(l€ll) (uang,ﬁ +llall2

[N2| < b6 (

2
+ ||é || +iH( 0)+ —
2,8 *l2.0 Ro 0,8

2
3,(‘2)

The second term on the right-hand side of (4.38) takes the form

t
2dt/st B, . /uuadrn /ou”ad'rds+N3,

t
/ adr
0

_+IIR(»8) - R(, 0)”251)

]

ﬂ,dT
0

where

2

| N3| < 67 (

t
/ adr
0

2
3,

s + IIﬂnllﬁ,ﬁ> +a15 (Ilﬁllﬁ,@ + ||ﬁ||§,ﬁ

2
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Finally, the last term in (4.38) is bounded by

t
63 ( /’&dT
0

By summarizing, we have proved

(4.39)
/s (ﬁ'fr(a, q;,)) i Jde!

<_£i/ B /tﬂ dTﬁ-/tﬂ drds
=Tod Stg o 38% o 3P
2 .
—G/St (H(-,0)+E)(uss-nds
t 2
+69( /’ﬂld’T
0

+ax (uang,fz a2

2

o+ nazzng,f,) + asell2 -
2,8

} - 2\ ;
T2 + (H(O) + -—) &2 5+ IRC, 1) - R(-,o>||§,51)

2,8 Ry
t 2
/ udr .
0 3,0

From the continuity equation (4.28b) we get

~ ~ 1d 1 ~2
. — V., - = - — —_— dz + N, ,
(4 40) [ Qo Vu Ursz 2dt / A‘I,(A)Qa'r'] 2 4

where

|Na| < 510"@61"(2,’9 + c”a”iﬁ

+aig lmg,l,ﬁ (Nal2 o + 14012, o) + a2

t 2
/ udt’ ,
0 2,0
and P = P(| [y @.dt'|o g, |hllo g = (g |k|?Jd2)!/?). From (4.37)~(4.40) and Lemma
5.1 from [35] in the case G = 2, v = i, we have

1 d ) 1 ~2
2t Jo (”“’ M0 ""’) Jdz

od B t~ ~ t~ ,
+—2—% gg - Oussadfn- 0u,,“,;ad'rd.s:

+a/ (H(-,O) + i) Cligs - Rds’
5 Ro

By - &
@a) B - w2,

t
/ udt
()

N . - 2
+ano (182 + 140 3+ W2+ NG 0) + -1 )

+ 020X4 (Q)n(ﬁ),

<bn (”azz"(z),g + ||@az"(2),ﬁ + I

_+IR(G 1) - R(-,O)Ilg,y)

2,8
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where Xo(Q) = (@2 | o + 1412, o, Ya(®) = Xa(@) + [|al2  + o 102 odt'.

Applying the operator (1 + 1)V to (4.28b), dividing the result by §¥(%), and
adding to (4.28a) gives

(4.42)
+ pos s s i i
{I“I](I;VzQUt+VzQU w(v? ’—ViV-u)—nut+ng
— BV G Gum)Y i+ LG (qu(@)a - VE) + k.
4o () q¥(n)

Multiplying the normal component of (4.42) by g,,J and integrating over €} implies
ld fu+tv _, .. .2
53t |, S0 B dz + 5laonlZ

< 2 o + az (12 + Nl + 112 4 + 1312 4
(4.43) '
+am (13 [ 90113+ 65+ cd)(al g + Wl )

t
+1dol} ) o (1401l o +l1al5 o + 11 [ @dt'l5q ) ) -
1, y 2,Q2 o 2,Q2

We write (4.28a) in the form
(4.44) fiie — pA@t — vV V - i = Vigo +ngt + ki — K,

where ky = (uAit + vV, V - i) — (uV2i +vV;V - u)
Multiplying the third component of (4.44) by @3, J and integrating over {2 yields

1d - +v, .
1o falaaras + i@
< ellizrl? o + uq:mug,f,
(4.45) + azs("ﬂlig + ||ﬁa||(2,,ﬁ + ||§||g,g + IIﬂtllﬁg)

+ 812(|T5 113 o + Nlizz ]

t
adt’
0

+ a2 (Iqa 1alldll o + Nl o + N1all3 4

2
3,@) '
To estimate @t,,, ¢ = 1,2, and g, we write (4.44) in the form
—pAE +V 14,
(4.46) = 7§t — Ak + ki — ki + V1§, — Vidy + vV idivi
= fi + vV .divi,
and the boundary condition (4.28c) as

out ou3 out o0l 1, .. 1 . 3 ,
(447) 5-2—3 = —-5;{ + (823 + — % ;T{]I‘n) + -l;kg. Ty = hz, 1= 1‘, 2, Zs = 0,
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where we have also used the fact that 7; -4 = 0, ¢ = 1,2. Considering the problem
(4.46) and (4.47) in Q we have to add the boundary conditions
(448)  @|ja=a =0, @l3=4=0, i1=1,2,Goljzj=a =0, Gols2=a=0.

Multiplying (4.46) by &, summing over i = 1,2, integrating over Q, and using bound-
ary conditions (4.47) and (4.48) yields

(449)  IVZI24 < 8alldo I g+ (17120 + IFIZ o + v al2 ),

where the prime denotes that only two components (i = 1,2) are taken into account.
We now look for a function w € H(f2) such that

(4.50) div w = Go, w3|,5—0 = x(2") /9 dodz, wlsa\s =0, w0 =0, i=1,2,

where x(2’) is a smooth function such that [ x(2')dz’ = 1, x(2') > 0, X|j2t|=a = 0.
Moreover, 1 < 4d?|x|,, 3, 50 |X|o g = 1/(4d). Finally, assuming that x vanishes

only in a neighborhood of the boundary of S, we require that min x(2")|211<d72 > 0.
Hence

1=/ z'dz'Z/ 2')dz' >d?> min x(z'), so min x(z') <1/d?.
[xehae> [ x> @ in (), w0 min x() <1/

Therefore, we can assume that x(2’) < c/d2.
We look for solutions of (4.50) in the form w = V¢ + a, where ¢ is a solution to
the Neumann problem

Ap =G5, Op30|3-0=x(7') / Godz = o, 0,30|33-4 =0,
(4.51) &

6zi(P||zi|=d = 0, 1= 1,2,/ﬂtpdz = 0,
and

(4.52)
div a =0, a|aﬂ\§ = —V(plaﬁ\sv, a"ﬁlg =0, o 7_','|$. =—-7;- V(plg, 1=1,2,

where 72, 7;, i = 1,2, are normal and tangent vectors to S.
Since the compatibility condition for (4.51) is satisfied, there exists a unique
solution to (4.51) such that ¢ € H?(f2) and

(453)  |l@llyg < cllldollon + leollos + llvollyjz,8) < e +dY*)gslloq

because

1/2
( /g |x<z')|2dz') < e llo 40
no_ (2 1/2
S

@oll1/2,5 < l/é dz
” "1/2,3 Py o g Ix/ - yll3

1/2
/&adz ([/|x’—y’|'ldm'dy')
0 sJs
[ Godz
0

lpollo.s < [ /Q Godz

[+
g

S Cd_3/2

< c"‘ia”o,(l’
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where we have used the fact that |Vx| < c/d3.
Similarly, the compatibility condition for (4.52) is satisfied because 7i - V| o0\g =

0. Hence, there exists a solution to (4.52) such that o € H({2) and

(4.54) lellyg < ellVelly 2,00 < cllellzg < clldolloq

By summarizing, there exists a solution of problem (4.50) such that w € H!({2) and
(4.55) lwlly6 < cllgollo,q-

Now we estimate ||y ||, . Multiplying (4.46) by w and integrating over Q yields

(4.56) —,u[Aa-wdz+[V¢ja-wdz=[f-wdz+u/Vdivﬂ-wdz.
) 0 0 0

The boundary term which follows from integration by parts in the first term of (4.56)
is estimated in the following way:
/ 3 widz’
s

<cll@gsllo allwll o

<c

‘,, /S A Vi wds! < cll@sll_y Pl o8

The second term on the left-hand side of (4.56) is equal to

/ g - widz' — / j,div wdz,
s 9}

where
‘ﬁdawsdz' =’[ dadz[dax(z')dz' Sc/dz/: |&a|dz[ |Go|dz’
S Q S Q S
<ot Pldrlyg [ la, )l
<ed?|\gsllo,alldollo s < 63alldosllg g + c(613)dlldo I3 4
and

/ﬁcj,,div wdz = ||(1,,||(2),ﬁ.

Finally, the last term in (4.56) can be expressed in the form

[ Vdiv @ - wdz = / div awdz’ — / div @ div wdz,
9) s Q

where

=’ / dodz / div @ x(2")d?'| < cd™V?||golo.0 / |div |2’
Q S ’ g

<ed"?|1Gollg plldivilly g < dlldolI3 ¢ + clldivill} -

/ div aw? d2’
3
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By summarizing, we obtain the estimate

(457) 1302 o < SralldoelZ g+ (IFIZ o + B2 o + NESs112 o + v ]2 )

for sufficiently small d.
Now instead of problems (4.46) and (4.47) we consider the problem

—pAE, + V iy = fi + Vudiv iy,  i=1,2,3,

(4.58) S
Bypiii, =hi,,  i=1,2.

Multiplying (4.58) by @:,, summing over i = 1,2, and integrating over ) yields

(4.59) I, 13 6 < S13lldoar I g + U1 ll5 o + IR NIF & + ldival? o).
Finally, let us introduce a function w; € W2 () such that
(4.60) divw; = Gppr, wi|gg = 0.
By i doxdz = 0 there exists a solution of (4.60) such that w; € H'({2) and
(4.61) lwallyq < elldozllo -
Multiplying the first equation of (4.58) by w; and integrating over Q gives
(4.62) 1oz 113 6 < el FII3 6 + lldiv @12 o + Nz [l 6)-
From (4.49), (4.57), (4.59), and (4.62) we have
205 & + Nz I o + 3o ll5 o + 1Go= 117 g

(4.63) < C(llf'lloyﬁ +IRN o + ldiv all? o + 1l
+6l3 "qaze' ”(2),9

From the form of f’ and &’ we have

172 o < a2 + el o + 12 o + 1012

t 2
adt’
0

(4.64) te ( o d) (o112 o + 12 ),
3,

A2 4 <C(|lﬁ 3 (

Finally, from (4.46) we obtain

" 2
adt’
0

1

+d) (all3 ¢ + Nl ﬁ))'

(4.65) linnlly o < cllldorlly g + 175 & + ldiv @ll} o + llu'aar[If 6)-

33



34 W. M. ZAJACZKOWSKI

Therefore, equations (4.63)—(4.65) imply

~ 2 ~
linn llo.a + 1do-ll3
< c(llag, 113 ¢ + div @ll? 4
+ass (315 o + 1817 4 o + 18117

t 2
[
0 3,2

(o2 o + uang,ﬂ) + Sualldonll2

(4.66)

+age

Now equations (4.41), (4.43), (4.45), and (4.66) follow:

(4.67)
1d

1
1la N ST IT
3 L [0 + 138 + 2 as
+—2-E/ B . /ussadrn /Ouss,adfds

2\, -
+a/§ (H(O) + E) (iigs - L ds’
7. -
+§"u"§,§1 + ||QJz"(2),ﬁ

2 2

< b ( [ (il + [m60+ 2| irey - R(-,O)u%,y)
0 2,8 2,8
+azr (19115 o +1alF o o + 140115 o)
+a28 X4 (Q)Y4(Q).
We also have
(4.68) % f iinJdz < b16liint I} ¢ + cllall? o + a20X4(Q)Y4(Q).

From (4.67) and (4.68) we have
(4.69)

1 d ~nD 1 ~2
ﬁfﬁ [”“’ M0 q‘”] dz

7 ~
+§'"u"§’ﬁ + Ianllﬁ,f,

£ 2
S 617 ( / &d'r
0

+ |lizzlf  +
2,8

+ago(|al] o + 140113 o + 13115 o)

+az1X4 (Q)Y4(Q)

9 2

0,5

_+IR(Gt) - R(',O)llg,m)

We examine the second term on the left-hand side of (4.69). By employing the fact
that the part of the boundary S; N {z : {(z) # 0} can be described in the local
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coordinates {y} by the formula y¢ = st,i = 1,2,33 = F(s!, s%,t), we have g*8 = §*F +
€*8, where e = F,aF,s (1 +F% + Ffz)_l. Assuming that supp{¢} is sufficiently

small we have that |F,| < 1. Then, performing summation over s € {s!,s?}, we
write the second term in the form
od

t t
5%/ —5°‘ﬁ'n /Oassad’l'ﬁ"/o '&,sad*r\/gdsld32

t 2
- / Gg152d7| (/gds'ds®
0
9 2
2 pr / Z( / u,,.,,dr+2(H( 0) + RO) c) V/gds'ds?

— 40— d ((H( 0) + i) C)2 ds'ds?
dt ) Ro \/g— )

where 627 = §%F + 28 and 3¢2 < §°P¢, 85,62 = € + &3

We use (4.70) in (4.69) and then we go back to the variables £&. Then from the
resulting estimate and (4.36), after summing over all neighborhoods of the partition
of unity, and going back to the variables z and from using (4.17), we obtain

- v+t =7 dt
2dt Jo, (Pl 1,0 2%(p) |Pa|1,0

od t t
+ == g"‘ﬁ [ﬁ'/’Usad‘T'ﬁ'/’UsadT-l-ﬁ-’l)saﬁ-’l)sﬂ] ds
0 0

2dtJg,
t
ﬁ'/vslssz
0

od
98 [ Lzap, .
+ 2dt/ —6%n . /ov” drn - /ovssades+ 2dt‘/s,

2dt/st§( /Uslssz+2(H( 0)+1§0))2ds

+ §|v|§,1,9, + lpoﬁ,o,n,
2
+||H(,0)+ —

t 2
< iy ( f vdr Rl 7t IR(-,t) — R('aO)Ng,Sl)
0 2,8 0,S¢

+ a32(|”|%,0,n, + ”Pcr"g,n, +If |“1’,o,n,) + a33X4Y,
d 2\?

+ 40— H(-,0 +———) ds.
dt St ( ( ) Ry

By virtue of the interpolation inequality (1.12), we obtain

ACEE)

Expressing boundary conditions (4.1c) locally we have

424
2dt )y

(4.70)

2
ds

(4.71)

2

ds < 618||vex ||(2),n,
(4.72)

2
+azq(||H(-,0) + }—%gllﬁ,sx +Ivll3..)-

t
(4.73) olg, f adt'=—a< 5 £+ ﬁ)( Tu(@, o)A+ by + I,
0
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where
. A .. -~ A t A A t A A
(4.74) I} =-BY9(4,()n;, bLb=o (2V / adr V¢ + / adr v2c) .
0 0

Multiply (4.73) by [ @dt’, then differentiate with respect to 7 and multiply by

Jo @-dt'. By integrating the result over S and summing over all neighborhoods of
the partition of unity we obtain

t
/ vdr
0

2

<ébig (Ivl3 g, + Ipsll3 0,)
2,5,

2

+ass (uvno o, + lpolZa, +
2

Rollo,s1

+ass(lvlZ q, + Ipol,) ] |2 o dr-

t
/ vdT
0 0 Qg

+IRC.O - RO, Ol )

(4.75)

From (4.71), (4.72), (4.75), and sufficiently small 817, 618, 819 we get (4.30). This
concludes the proof.

Now we obtain an inequality for the third derivatives.

LEMMA 4.5. For a sufficiently smooth solution of the problem (4.1a—c) the fol-
lowing inequality holds:

1d / ( 9 1, )

T a;a:+— oTT dz

2dt Jo, \P'== T pu(p)?

d t ¢

+%32L —-6"‘ﬁn Avslsgs“dTﬁ'/Ovslszsﬂdes
£ 2

'ﬁ-/vsxszsdT
0

ds
(4.76) +3 dt/ Z ( / VagiaidT +2 (H( 0) + ;0) )2d3

+vl3,0, + Ipo 113 0,

<es (u'va:a:t"g,ﬂg +

L 28
2dtJg,

9 2

H(-,0) + —
( ) RO 151

’

+IR(-,t) — R(,, 0)"331)

+ P (IFl2 0, + 0310, + |Pa|%,o,m)

4

2
H(- =
(,0)+R0

where the summation over the repeated indices (o, 3) and coordinates x, s; = (s, s2),i =
1,2,s = (s, s?) is assumed and

+ Py + P11 X5(1 + X5)Ys,

1,51

t
(4.77) Xs = 030, + [PolBra, + 0t 0, + / ol g,dr,
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t
(478) Y5 =vlliq, +lpsllfq, +1pol3 1,0, + el g, + /0 ol 0, dr-

Proof. We use the introduced partition of unity. First we consider interior sub-
domains. We differentiate (4.27) twice with respect to £, multiply the result by ¢ A,
and integrate over {2 to get

1d .
ST /nu&Ad§+ /(Vu.u££+Vmu§§) Ad¢

+ = IV el — [ doee V- ecAde

(4.79)
<61(10¢ulll & + 10290113 &) + ar(llull} 5 + o112 o + 13113 &
+ a2 X5()(1 + X5(€2)) Y5 (D),
where
t

Xs() = llull} g +laol | &+ lluell? 5 / llull2 5at’,
(4.80) ] 2,1,Q 3,0 .

Ys () =llull} o + lgol3 g + gol3 , o + lluell? o /0 llullf gdt’-
From the continuity equation (4.27b) we obtain

1d 1

4.81 — | GoeeVa - it == ,
(4.81) /9 GoeVu - Uge Adg = 5o / q\p(n)q,,&Ad§+N1
where

IN1| < Ealldoeelly o + cllull} g + asXs(Q)(1 + X5())Y5(<D).
Using the form of k; (see (4.27a)) from (4.34) we obtain

2 & + o2 & < aa(ll2 o + Iul2 o + o2 + 13el2
+as(uqan + lao 2 1l

t 2 t 2
+ /udt’ 1+ /udt’ llull2
0 3,0 0 3,0 ’

+C"Vu * '&”g,fl
Employing Lemma 5.1 from [35] in the case G = €, v = ig¢, and (4.79), (4.81), and
(4.82) we get

(4.82)

li ~ 1, B2 ~ 2
3 5 [ (it + i) Ade+ 1l + 11
(4.83) < 63(1|03ull2 & + 19245 12 5) + as (3112 5 + [ul2 , 5 + 116112 5)

+a7 X5(2) (1 + X5($))Y5($).
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Now we consider a subdomain near the boundary. Differentiating (4.28a) twice
with respect to 7, multiplying the result by 4.,,J, and integrating over 2 yields

1d a 1 By 2
2 dt a (WTT + qaq,(ﬁ)qa‘r‘r) sz+ 2“"’"""”1,()

- /S (AT (i, §o ) o7 - Thrr Jd2’
(4.84)

< Ba(ldosell2  + a2

tas(12 o + 1012 o + 312 ) + a0 Xs(@)(1 + X5 ()¥5(S),
where the X5({2),Ys({2) are defined by (4.80) with € instead of 2, and u,q, are

replaced by 4,§,. We have used Lemma 5.1 from [35] in the case G = Q,v = i,
and

1d 1

2@ e )q,,"sz+N2,

“/ do‘r‘rﬁ “UrrJdz =
9]
where

| V2| < 55"‘70""3,@ + a10||ﬁ||§,g + a1 Xs5() (1 + X5(0)Y5(Q).

Considering the boundary term in (4.84) we obtain the expression
[ (- T(i, §o ) rr - lrrJd2'
5

PURIPN 2 2 ..
_ =— [ (Asé nié + =4 ) iy Jd2!
(4 85) L( Sté C ROnC TT'U, Z

E

t
-0 / (Agc / adr-ﬁﬁ) iy Jd2' + / (ks + ke) rriirr Jd2'.
s 0 TT S

Similarly, as in the case of (4.38), the first term on the right-hand side is equal to

- . 2\; 5 172
a/U ((H( ,0) + Ro)n() ya182 sy ap1/gds ds? + N3

— . l _ _ -
_O'/U ((H( ,0)+ RO)nC) 181 uslsgaz\/gds ds +N4’

where the summation over the repeated indices s;, s is assumed, and where

t 2
/ adr
0 1,8

+ ana(lElla) 1813 5 + arsllall} o o
£l

2 2

Ry
t 2
/ adT
0

The second term on the right-hand side of (4.85) takes the form

t
2dt/ B /u,,l,,sadfn /Ou,,l,z,pdv'ds+N5,

| Ns| <66 (

el + HH(-,O) +
3,8 ’
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and

2 2

|Ns| < 67 (

t
/ udr
()

Finally, the last term in (4.85) is estimated by

t
68 / adr
0

By summarizing, we have

t
/ adr
0

o + IIﬂzzzII§,§,> + a14||ﬁl|§,ﬂ + 015||ﬁ||§,9

3,8

2

. + Ilﬁzzzllﬁ,ﬁ> + axe|dl} -
3,

[§ (ﬁT('&a qd)),ffﬂ"r‘r Jdz'

O'd t t
S——[gaﬁﬁ-/ﬁ31,2,adrﬁ~/ﬁslszsadr.]dz’
(4.86) -0 /S ((H (-,0) + )nC) o1 Usy 538, Jd2
t 2
+69( fﬁdr
()}

tarrlal2  + a2

2
H(”O)+—

e} + N

3,8
t
/ adr
0

2
1,8

2

3,8

By summarizing, we have

1d (., 1
2 dt |4 (nu-r‘r + WQUTT) Jdz

+-§Ii—t-/ aBp . / U, 552 dTT - /c; u,lszs,,dq-ds
d 9 i i )
+U&/"§ ((H( ,0) + E) C) 81 Usysp8, ° nds + g"u‘f‘f‘"iﬁ
t 2
/ udt
0

+|IB(-,?) - R(:, 0)"351)

(4.87)
< b0 (”ﬁzzz"g,(z + ||q””"?),ﬁ +

3,8
2

‘H( 0+ 5

targ (812 + 140112  + 112 ) + @z Xs(@)(1 + Xs()V5(S).

1,8

39

Differentiating the third component of (4.42) with respect to 7, multiplying the
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result by §onrJ, and integrating over 0 yields

1d fu+v _,
2dt Qq\I’( )Qtrn-r

< clliire |3 g

Jdz + "‘Ltn‘r"ﬁyﬂ

(4.88) +(811 + ed) (2} 6, + 1oz I IFIZ, 5 5

tan(al} | o+ 1417 o + 11317 o

+az X5(Q)(1 + X5(Q))Y5(f2).

leferentlatmg the third component of (4.44) with respect to 7, multiplying the result
by @3,,,J and integrating over { gives

ptv, .
5 35 LI+ B a2

< c(”uzr‘r" + "‘Ian-r"

(4.89) (812 + o) (222 g + 0wl IFIZ, 5 6
Tansll@el2  + ana(llEll2 o + a2 + 1312

+a25X5(2) (1 + X5(82)) Y5 ().

By differentiating (4.46) twice with respect to 7, multiplying by i, J, integrating
over €, and using the boundary condition (4.47), we get

"u’z'r'r" + "qﬂ‘”'"o Q
< (613 + Cd)("ﬁ'z:u"2 51 "‘jtrzz:"2 *)"ﬁ'"2 §
(4.90) 0,2 0,2 4+1/2,8
Tazo(ldiv @2 o + ]2 + 1912 o + o2 o + 1312

+a27X5(Q)Y5(Q).

Moreover, from (4.46) we obtain

ll%nr " < c(“ﬁ’-rﬂ'" + “qa'rﬂ'" + [|div ﬁ/f‘r“g a
+ (814 + cd) (82222 g + o=z 13 )IF I
(4.91) o) 4+1/2,8
+ ans(l? o + 1512 o + 1ol o + 112

+ ao X5 () (1 + X5(2)) Y5(2).

By summarizing, inequalities (4.87)—(4.91) we get the following:
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1d . 1
E—d—/ [n(u‘r‘r + lun-r| )+ \I’( )qoz‘r] Jdz

t
+-§'d't'/ *Pp - /Uswzs"‘d'r'n’ Au81828ﬂd7d3

od 2 s _
L (.94 2)9 o

il g+ 19o-12
S (615 + Cd)("azzz"g’ﬁ + “quzz " Q)“F"4+1/2 S
2
+ ||H(-,0) + —

t 2 2
+616 ( / adril ’ R +I1R(, ) — R(-,O)Ili,w)
0 3,8 1,81

+ago(lal} | o + 160117 o + 13117 4) + a31X5(2)(1 + X5())Y5(82).

By differentiating the third component of (4.42) with respect to n, multiplying
the result by §ynnJ, and then integrating over €2 implies

(4.93)

ld fptv., =2
§d_t/ A‘I’( )qananz+ "‘L‘rnn"o,ﬁ

2
< C(||ﬁr||§,g + (616 + Cd)("azzz”gﬁ + "@wz" Q))"Fl 4+1/2,8 + 617

t
/ adr
()

3,8
+aza(||@el? o + 1al5 o + IdollF o + 13112 o)
+ a33X5(Q)(1 + Xs(Q))Ys(Q)-
We write (4.28a) in the form
(4.94) (B + V)V idiv = —p(A% — V .div @) + Al — 7g¢ — ki
' —[uV2E + 1V udiv i — pV2aE — vV divil) — Vido.

Differentiating the third component of (4.94) with respect to n gives
(v @)nnl2 g < ir 2 + Ndmnll2
+(6un + eda2 IFI2,, 6

+aga(|al} | o + ||qa|| +1131% o)
+a3s X5 () (1 + X5(Q))Y5(Q).
Finally, differentiating (4.46) with respect to n yields

(4.95)

ltnnally o < e(llierlI? g + 1donll? ¢ + 1(div @)nll? g
+ (619 + cd)lall? , ||F||4+1/2 $
+age(|al3, o + IIanI +1111% &
+azr Xs(Q)(1 + Xs(Q))Ys(Q)-

(4.96)
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From (4.92), (4.93), (4.95), and (4.96) we obtain

1d e . L+v .
s L [0 i) + St e

+—2_?d—t/ By . /u31323adrn /Ouslszsadrds

od 2 . _ . ~
5 f((HOO+ 2)€) s 13 + 12,12,
(4.97) :31 ’ ’

< e(820 + cd)([[fzzzllf g + 1402213
9 2
HH(-, 0)+ =

" 2
+6 /ﬁdr +
21 ( 0 3,8 Ro

+asg([93 ;o + 16512 o + 1912 &) + a3 X5 (2)(1 + X5(€2))Y5(€2).

1,81

+IR(,t) - R(-,0)||§,SI)

To obtain the full second derivative of u under the derivative with respect to time,
we examine the expression

1d p D _ \ 1
(498) '2'32/677%»7‘12—/9 (’I]’U.zz cUypd + 2ntuzzJ+ 2”“ Jt)

<ol g + sl ) + aaollBl2 g2 o,
where we have used the relations
(4.99) fe+AV-4=0 and J,=JV-4

Employing (4.98) in (4.97) and using the fact that 22 is sufficiently small, we obtain

ld ssg MV o
2 dt ("ru'zz + A‘I’( )qazz) Jdz

t
2dt/ aﬂ /uslaga"dTn Au513235de8

od 2 - _
2 (09 2)9)

IR o + 112 4
(4.100) g X ) R )
< c(b23 + Cd)(”uzzt”(),ﬁ + ”'”'zzz”o,ﬁ + "qazz”o,ﬁ)

t 2 2
+524( / udr
0

+ag (a3 ) o + 140117 o + 113113 o)
+asaXs(2)(1+ XS(Q))Ys(Q)

2
+ H(-,0)+E

3,8 1,81

+IR(,t) - R(-,0)||:2>,,31>

Now we examine the second and the third terms in the left-hand side of (4.100).
Applying the same considerations as they were used in the case of inequalities (4.69)
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and (4.70), we obtain that both terms are equal to

2dt/ L /uslszsadrn /u,lszspd'r\/—dslds
0 0

+%%/ i /Otﬁsslszd’r
2dt/z( /uss.s.dr+2<<H(-,O)+%) C)

12 ((H(-,O) + %) g>2 Jads'ds?,

)8

V/9ds'ds?
(4.101)

2
) \/gds'ds?

)8

where §%7 is defined in (4.70).

Now, going back to the variables £ in the inequality (4.101), summing over all
neighborhoods of the partition of unity (for the interior neighborhoods we use the
inequality (4.83)), and then going back to the variables z, we obtain for sufficiently
small §; and d the inequality

1d 2 1 5
s, (e pagyvies)
d t ¢
+%a S —60"3’"/ /()"l)slszsadTﬁ"/()‘vslsesﬁdes
t

t
ﬁ'/’l)38132d7'
0
2
(4.102) +24 22: ln-/tv ~~d7'+2(H(- 0)+—2—) ds
. 2dt Sti:l 2 o 88ts ) -&) .

t
/ vd'r
()}

+aa(vl3 10, + 180130, + 1£120,)

2
rawrsr s raoy [ (w60 %) ) as

2

od ds

2d /s,

“H( 0)+ =

n
+5lvl3q, +lIpsl3,, < 624 ( N

2
1,51

3,S:

In virtue of the Young and Holder inequalities we get

L ((o+2) ) o
2

s%mmh+m@mm4mm+m

(4.103)

4
1,51
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Finally, using (4.73) and repeating the considerations following (4.75) gives

t 2
/ vdrl|  <bx(lvolEq, + IpolZa,)
0 3,S:
t 2
+( / vdr|  +[vl2a, + IPolZ g,
(4.104) o o
2 2
+ HH(-,O) + |l IR - R(-,O)uz,SI)
1,81

t
+ ass(lo]2q, + I2oZ.0,) /0 Iol2 g dr.

Therefore, from (4.102)—(4.104) for sufficiently small 824, 625, 626, we obtain (4.76).
This concludes the proof.

To estimate the first term in the right-hand side of (4.77) we need the following
result.

LEMMA 4.6. For sufficiently smooth solutions of problem (4.1a—) we have

1d , 1, d/ e
-z pv2, + —— de + — 7+ Vgga d
2 dt /Qt ( =t p\IJ(p)p"“) 2dt s,,g Vo * Va0 05

Hlvell3,, + IPotllf

9 |2
@ios) (uvmua,m +vesalia, + |HC.0)+ & )
0,s!

‘*‘Pu’(|v|§,cu,nt + |ps %,o,nt + |f|%,0,ﬂt)

+P13X6(1 + X6)Ys,
where

Xe=[vl3, 0, +IPs3 00, / I3, dr,

(4.106)

Yodollsa, + Ipone, + / o1, ¢

Proof. We use the partition of unity. First we obtain the inequality in an interior
subdomain. Differentiating (4.27a) with respect to ¢ and £, multiplying the result by
iiz¢, and integrating over 2 yields

1d [ . y »
5&'{ /ﬁn“tgAdE + g/(:l(vu‘uig + Vujutf)zAdg

= W el [ eV e Ade
(4.107) a
< Suliel?  + ar(luel? g + ot o + 1312 5 5)

+a3 X6 () Ys (),
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where
t 2
XG(Q) = |u|3 1,8 + Iqa 2,0, Q udt’ )
0 3,0
" 2
Vo) Full g+ ool g+ | [ |
’ 0 4,0
By the continuity equation (4.27b) we have
(4.108) - / Gote Vo ineAde = 22 [ L a2 ade 4 N,
) 2dt Jaq¥(n)
where

[N < 61”6“”3,9 + aa'ulg,m + a4 X6(2)(1 + X6(2))Ys ().
From (4.34) we obtain

laell} & + 1doell} g < ell(Vu - @ell? o + as(lleellf o
(4.109)

|’U,|2 1, fy) + |q‘7t|1 0, Q + |g|1 0, Q) + aﬁxﬁ(ﬁ)}fﬁ(ﬁ)

Employing Lemma 5.1 from [35] in the case G = {0, v = iig¢, and (4.107)—(4.109) we
obtain for sufficiently small §; and 65,

1d i 1 - o112 512
2 dt/(, (nutf + q¥(n) qate) Ad¢ + |lelm + "%ﬂ"l,ﬂ
(4.110) < ar(llissll2 g + [ul2 | & +laol2 o g + 1312 o &)

+as Xe(Q) (1 + X6($))Ys ().

Now we obtain an estimate in a subdomain near the boundary. Differentiating
(4.283) with respect to ¢t and 7, multiplying the result by i;,.JJ, and integrating over
Q yields

1d .. By~ 12
2 dt[j (77” A\I’( )QUt'r> sz+ 2”ut'r”11ﬁ

@i — [T 2o ) T < Bl + 2

+a9(|u|209 + lqﬂ IOQ + |g|109)
+a10X6(Q)(1 + X6(2)) Yo (S2),

where Xg(S2), Ys() are equal to Xg(Q), Y5(Q) with @, g, 1 instead of u, go, €,
respectively. Moreover, to obtain (4.111) we have used Lemma 5.1 from [35] in the
case G = (2, v = 1y, and

1d 1

"'/f;Qtrt‘rV'ut‘rsz_ 2dt gq‘ll( )

QUt'rsz + Na,
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and
IN2| < balldotll?  + anlaf] | o + @12 Xe(Q)(1 + Xo())Ye ().

Let us consider the boundary term in (4.111). Using the boundary condition
(4.28c) we obtain

- fs (W (@ 30)) o - e T2/

A A ” 2 .
= —0 Az &-anl + —n gy Jd2'
(4.112) /S ( 35,6 - IA¢ Ry C)’tr tr
t
—a[ (Agﬁ/ ﬁdr-fm) ﬂt,sz'+/(k5+k6),tfﬂt.,.sz’.
S 0 tT S

il

The first term on the right-hand side of (4.112) is estimated by

2

. . 2
s (nutng,f, HlalE g+ 6.0+

114 2112 £~ 112
S) +ars(lalld o + G2 g lel2 o)

tara(l2 4 + ]2 o).
The second term is equal to
od

2dt Js,

where

| V3| < 66 (Ilfttllg,,«2 +1El3 o +

§°Ph - liggati - liy40ds + Ns,
t
/ udr
0
2

2
2,5‘)
t
/ adr
0 4,0

A 112
a2
k)

2

t
/ udr

0
67 (Nael2 o + a2 o) + axr(llaell? o + a2 o)

t
/ adr
0

) + axg|]l3 -

3,Q2

+a1s (Ilﬁlli,f,

Finally, the last term is bounded by

2

)

tars (4l 4 + 612 4 )
3,

By summarizing, we have

(4.113)

/. (’ﬁ'ji'(’il, 60)),trﬁt-r sz'
S

od -
< —=— hg"‘ﬂﬁms,an-ussdez'

2dt /s
t
/'&dT 2
0

2
+ ”H(~,0) + —
2,8 Ro

+as (nmug,ﬁ 2 +

2
1,51
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t 2
/ adr
0 3,0

2
+ 1l g

t
+a (Ilﬁll + 13 g l1Eel3 o + N1l | ddr

4,
+ a20(||’a||(2),g + ||ﬁt||g,ﬁ)-

By exploiting (4.113) in (4.111), it follows that

1d [ (.. od
2 dt a ("711,2 P )qat-r> Jdz + 2dt/g 7 TUggah - UggnJd2’

By
+7 a1 g
t 2
/ adr
0 2,8

+a’21(|u|2 0, Q + |q0' 1,0, Q + |g|1 ,0, Q) + a’22X6(Q)(1 + XG(Q))},G(Q)'

(4.114)

< b9 ("Utu" + ||‘Iatz||2 0 + "“zzz"o a

By differentiating the third component of (4.42) with respect to t, multiplying
the result by Gon:J, and integrating over (2 yields

1d fu+v,
5 dt q‘Il( )QGntsz+"qont"09

(4.115) < (610 + Cd)”F"4+1/2 s("uzzt" ot "qazt"gyﬁ) + c"at‘f”ig
+a’23(|u|2 0, Q + "qo't" Q + |g|1 0, Q)
+a24X6(2) (1 + X6($2)) Ys(S2).

By dlﬁ'erentlatmg the third component of (4.44) with respect to ¢, multiplying
the result by @3,,,J, and integrating over { implies

1d 9
3 dt/nlu"‘l Jdz +

~ 2 ~ 2 ~ 2
4116 = (611 + Cﬂl)llFlLH_l,z s1Tz22llg o + 1Gozellg o) + r2llaeelg
+c("ﬂ’ZTt"0’Q + |lq6nt|| ) + a’25('u|2 0, 0 + Iqﬂ 1,0, 0 + |g| 1,0, Q)
+az6Xe(Q)(1 + Xe(ﬂ))Ye(Q)-

ptv, .
2 "unnt"(),f)

By differentiating (4.46) with respect to t and 7, multiplying by 4, J, integrating over
2, and using (4.47) we get the following:

"uztrll + ||¢Iat-r"0 Q
< (613 + ed) |13, , 1 s (ITeaely g + 1Goatlf o

+cl|(div 1~4’),ﬂll + azv(IuL_, 0at Iqa 100t Igl1 0.0)
+a28 Xe(Q)(1 + Xe(ﬂ))Ys(ﬂ)-

(4.117)

Moreover, from (4.46) we obtain
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(4.118)
"ﬂ:mt"g,g < (et Cd)||ﬁ||2+1/2’§("ﬁzzt"(2)’(] + ||‘iazt||g,(~,)
st 2 g+ Gotrl2 ) + azo (82 g + 102 o + 1612 o 0)
+a30X6(Q) (1 + X6(€))Ys(€2)-

Finally, we have
d nn ~ 2 ~ 112 ~ 2 ~ 112
@19) g [ s < billialn + el g + el o412 ).

From (4.113), (4.115)—(4.119) we obtain, for sufficiently small é’s,

1 d AnD 1 ~2 o d oBr o .
2dt/s:7 (nuzt+ q\‘p(ﬁ)qo'zt) sz+ 2dtég - UggaN ussdez

+ IIﬁzztII?,,g + "fjazt“g,ﬁ
2
1,.§)

< 616"'&:“"3’(’2 + (617 + Cd)("ﬁzzt"g,ﬁ + "ﬁazt"g,ﬁ)

t

/ adr

()

+ a31(|ﬁ|§,0,g + |do f,o,ﬁ + lg'io,s‘z)
+ a32X6(2)(1 + X6(2)) Yo ().

By going back to the variables £ in (4.120), summing over all neighborhoods of
the partition of unity (where we use (4.111) for the interior subdomains), then going
back to the variables x and using estimate (4.104), we obtain (4.105) for sufficiently
small §’s and d. This concludes the proof.

To estimate the first term in the right-hand side of (4.105) we need the following
result.

LEMMA 4.7. For a sufficiently smooth solution of the problem (4.1), the following
inequality holds:

(4.120)

2 2
o+ ”H(-,O)+ =
2,58

+ais ("'azzz"g,ﬁ + Ro

1 od
e 24 1 2 Vart 28 [ 0B im0,
2dt Lt (m]tt+pw(p)pﬂtt) T+ 2dtLtg N - VgatN - Vg1 @S

+||”tt”%,nt + ||Pott ”(2),1%

(4.121) o |12
< cllvell g, +e7 ||[H(,0) + 5=
Ry |jg,1
+Pu(| full3 o, + 1712 0,0,) + PisX7(1 + X7)Y7,
where

t
(4.122) X7 = |"|§,1,nt + IPalg,o,np Y, = |’U|:"i,2,nt + |Pa|§,1,n, +/0 ||U||g,n,d"-
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Proof. Differentiating (4.1a) twice with respect to ¢, multiplying by v, and
integrating over (), yields

1d 1 M
2@ o, (p'vtzt + —\I‘,(—;I’?nt) dz + §||vtt||§,nt
(4.123) / (T (v,95)) 22 - Viyds < 81(||vell? q, + llpoeelld )

+a1(lfE o0, + Iful§ ) + asX7(1+ X7)Yr,

where we have used

/mpottdiv Vg dx = 2dt/ P5(p )Pottd"’+Nl’

Lemma 5.4 from [35], and
IN1| < b2llpotell} o, + asXr(1+ X7)Yr.

Employing boundary condition (4.1c) we obtain

2
(7 T(v,p0)) 1t 'Uttd3=0'/ (gaﬁxsasﬁ -+ —ﬁ) - vyds
S, Ro

(4.124) 7S St

od
= "EEZ o gaﬂﬁ . ’Usatﬁ . 'Usﬁtds + N2,
t
where
9 |2
|N2| < 83 | vaeellf o, + lvoatll o, + HH (,0) + &= + aqllvelf o,
'RO O,Sl
" 2
+as(lol 0, + vulB0,) (uvug,n, || [ var ) '
0 2,0,
Moreover, by the continuity equation (4.2) we have
(4.125) Ipotel3, < cllvel.q, + asX7(1+ X7)¥7.

Hence, (4.123) and (4.125) imply (4.121). This concludes the proof.
Summarizing, from Lemmas 4.5-4.7 we obtain the following.
LEMMA 4.8.

(4.126)
1d / pID2 uf? + ——|D2 p,[?) de
3 dt Jo, \P17 ot \p( )| PaitPe

od 8 = ¢ _ t od
+-2—EZ/ ~§%By, /0vslszsad'rn~/ov,1,2,pd7'ds+ 2dt

3o Z(—n [Fousdr+2 (60 + ))d

od B _
2dt/ g ﬂn-v,atn-’vsptds

2
ds

t
- f Vgglg2dT
0

d
+—2—a—t/ G°PT - Vggal - Vgepds +
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t 2
/ vdT
(i 0,9

X + ”R(1t) - R(ao)llg,sl)

+|”|§,1,n, + ‘Pa@,o,n,

< P (Iv@,o,m +poli o0, +

+€8 (
2

+Pur (1R o, + I ielB) + Pis (Xs(l + Xg)Ya + ”H(- 0+ =

9 2

’H(-,O) b

»

Ry

4
)
1,81

where the summation over repeated indices (o, = 1,2) and coordinates (z,s; =
(s',8%),i =1,2,5 = (s, 5%)) is assumed and

t
Xs=[v} 1 0, + peBoq, + /0 o3 g dr,
(4.127)

t
Yo=|v 50, + polia, + / loll3 g, dr

Finally, we obtain inequalities for the fourth derivatives.
LEMMA 4.9. For a sufficiently smooth solution of the problem (4.1la—) the fol-
lowing estimate holds:

(4.128)

2dt/(;‘t (pvwzz + \I’( )pozzz) dz
t
+§ a/ 6aﬁn A vslszsss"‘dTn ‘/0 vslsgssspdT ds
od t 2
+§Et'/s ﬁ"L 1131323132d’r
t

ds
t 2 2
2 dt/;tz ( /0 ’Ua;szsisid’r-i-z (H(',O) + E"o),slsz) ds

‘*‘"”"4,9e + ||I’<r||3,ne

<es ("”wwzt"%,m + \

2 2
H(-,0) + —
(:0) + - -

’

t
/ vdT
0

+IR(,t) = R(-,0)|3 51 + ||f||§,n,)

+IR(,t) - R(-,O)Ili,m)

2

+Pyy (|1’|§,2,0e + |lpo i3 0, + ’
O,Qt

9 4

+Pao (Xg(l LX)V + “H(-, 0+ 5

t
/ vdr
0

2,81
2

+R(t) = R(;,0)|3 1

4,S;
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t 2
/ vdr ,
0 3,5

where the summation over repeated indices (o, 8 = 1,2) and coordinates (z,s; =
(st,8%),i=1,2,3) is assumed and

+||R(-,t) — R(:, 0)”Z+1/2,51

t
Xo=|vl 20, + [po2sq, + /0 loll2 0, dr
(4.129)

t
Yo=[0lg, + IPolan, + /0 ollZ g, dr-

Proof. We use the partition of unity. First, we consider interior subdomains. We
differentiate (4.27a) three times with respect to £, multiply by @ A, and integrate
over {2 to get

1d / ( , 1, )
—— + —d- A
2t Jo \Mhee T gy Tocee ) AK

+g/§z(V“‘ﬁgf€ + Vusligee)* Ad€ + (v — )|V - Teeelf

(4.130)
< 8u(llggell? ¢ + ldocecl2 ) + ar(llul2 o + llaoll2 & + 13112 )
+a2Xo(Q)(1 + X3(2)) Yo (D),
where
t
Xo(®)= 0l +larlZ 0+ [ Il gt
B t
Yo(@) =10l g+ lao B+ [ Il
‘We have also used
—/~ Vo - igeeAde = 24 1 Ad¢ + N,
| JoeceVu BeeeAdE = 5o | oS P L
where

IN1| < 8alldoceell3 o + asllull; o + a2 Xo()(1 + X3(Q))Yo (D).

Moreover, the following relation has been employed, too:

/ﬁ [(VuVauii)gee — VuVaiieee] - tigee AdE + /Q [(Vulo)eee — Vuloeee] - tieee AdE
< b3lliieee | o + a5 Xo()(1 + X3() Yo (Q).
From the problem (4.34) we obtain

||u|| + |1 || <c||Va ull o T as(|ul? +||q.,|| o+ 1312 5)
(4.131) 7 32,0 241

+ a7X9(Q)(1 + X3 (1) Ya (D).
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From (4.130) and (4.131) for sufficiently small §; we have

1d ~2 1 ~2 ~112 ~ 2
(4.132) 2.4t ), (ﬂuggg + q—mqaggg) Ad¢ + ||u|l4,ﬁ + ”‘IG“3,ﬁ

< as((ul2 , o + lao ]2 & + G112 5) + as Xo(Q)(1 + Xo(2)) Yo(),

where Lemma 5.1 from [35] in the case G = () and v = 1igee has been used.
Now we consider a neighborhood of the boundary. Differentiating (4.28a) three
times with respect to 7, multiplying by @%.,,J, and integrating over {2 yields

ld ~=2 1 5, By 2
2dt Ja [WTTT + (j‘I’('f])an".jI Jdz + Ellu‘r‘r-r”l’ﬁ

@ = IV el = [ G 0)) rrr - e T
(4.133) 8

< 64("'az1'1'1'"g,ﬁ + "60,:7'1'"3,()) + am(lﬂliyz,ﬁ + ||@o||§,ﬁ + ||§||§,f,)
+a11Xo(2)(1 + X3()) Yo (),

where Xg(ﬂ),Yg(Q) has the form Xg(ﬁ),Yg(Q) with @, §,,? instead of u, go, <, re-
spectively. Moreover, we have used

1d 1

—/ da-r‘r‘rﬁ : ﬁ'-r-r‘rsz =8
Q

— 2 N,
2 Jo g BN

where
INa| < 85llGorrr I} o + arzllall} o + a1aXo(@)(1 + X3 (€2))Ys($).

We have also employed the following considerations:
\/: [(66’&),7'1'1' - vé'a"r'ﬂ"r] * '&TTTsz + /: [(ﬁ‘ja),‘r'rr - ﬁija-rr-r] : ’a'TTTsz
Q Q
< 66(||ﬂzzrr"§,ﬂ + ”qaz‘r‘r”?,,ﬁ) + al2("'&”§,§, + "‘ja";fl

+a13Xo () (1 + X3(Q)) Yo (),

‘L [(ﬁT('&, 4o))rrr — 'ﬁT('&TTTa Gorrr)] - irrrJd2’

< 81(llGzrrell} g + Ndozrell} o) + ara(llil} o + 1o 17

+a15 Xo(2)(1 + X3(2)) Yo (),

where 8¢ and 67 have been assumed sufficiently small.
Finally, Lemma 5.1 from [35] in the case G = 2 and v = @i,,, has been used.
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Using the Lagrangian coordinates and boundary condition (4.28¢c) we rewrite the
boundary term in (4.133) as follows:

_—/ (ﬁT(ﬁ’ qa)),‘rrr . '&rrrsz,
s a2 . 3
(4.134) = — 0/§ (Agtﬁ-nnﬁ+ En() UprrJdz’

t
—o / (Agt / ﬁdr.ﬁﬁ) gre JdZ + / (ks + k) rrriirrr Jdz'.
S 0 ,TTT S

Similarly, as in the cases of (4.38) and (4.85), the first term in the right-hand side of
(4.134) is estimated by

od 2 2 ‘ ' ’
\ ~ ~ 2 i
-2—;1—5 4 (H(, 0) + E),ﬂ- ¢h /0 u-rrr.-reds + 63 <”u‘rr‘r”1,§ + /(; adr 8
) 2
+ HH(-,O) + +|R(-,t) - R(-,O)IIZ,SI)
2,51

Y
t 2
/ udr
0

+a17||R(-,t) — R(-, 0)|I3 5

0,Q2

t
/ udT
0 4,8
t
/ udr
()

+a16 (Ilallg,f, + _HIRC, ) - R('»O)llf,,g)

2

2
+0/18"R('7 t) - R('70)||Z+1/2,Sl

3,8

We estimate the second term by

t
69 ( / adr
0

+ asoll@ll} o + azoll@ll}

2 t
4"§ + ”'&T‘r‘r”iﬁ) + E-Jt-/ aﬂn / u.,-.,-.,-sadt n- A urrfsﬁdt dS

t 2
/ udr
0

Finally, the last term is bounded by

4,8

t
/ adr
0

C"’&”g,g + 610 (”ﬁ'rﬂ'"iﬂ +

Summarizing, we have

2
4,.§) '
(4.135)

t
/(ﬁT(ﬁv qﬂ)),TTT lrrrJdz < "—"/ B . / r— 4 / u‘r‘r-rsﬁdt ds
S 0

od 2 ol t ,
2dt/ (H( 0)+R0) "{n-/ou.,..,.,.mdt ds

2
+ 61 (”'&r‘rrlliﬁ + I

+ 2
/ adr -+
()} 4,8

l H(-,0)+ "1% o I1R(,¢) — R(~,0)||i,51)

’
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t
/ adr
()

+ a2 (IIR(-, t) = R(-,0)[I3 s

2

+ a2 (”ﬁ";g, + ‘ _+I1IR(-,t) — R(, 0)”(2),51)

0,02
t
/ adr
0
2
3,§)

2

4,51

t
/ adr
0

+||R(-,t) — R(:, 0)||2+1/2,31

t
/ adr
0 4,8

From (4.133) and (4.135) we obtain
(4.136)

1 d A~ 1 ~2

—|—§ ZE / “ﬁn / Urrrse dt'n - / Urrrsh dt'ds

od 2 s [h '
viaf, (A0 + 7)) G [

’

+Z"a‘r‘r'r”1,ﬁ +@—-w|V- a‘r‘r‘rllg,ﬁ

t
/ udr
0

_+IIR(G1) — R(',O)Ilim)

2,8

t
/ adr
0
t 2
/ adT
0

_+IIR(-,¢) = R(-,0)II3 5
4,8
t 2
+"R(, t) - R(, 0)"2+1/2,Sl / adr A)
0 3,8
+age Xo()(1 + X3() Yo ().

Differentiating the third component of (4.42) twice with respect to 7, multiplying the
result by §onr+J, and integrating over (2 gives

1d 1
2 dtLqW(ﬂ)qanTTsz+ I|QUn-r‘r"09

< (613 + cd)(lfhzzrr IF ¢ + lGonrrllf o

2
+ a23||’7||§,g

2

< 12 ("azrr‘r"g,ﬁ + "qaz""""g,ﬂ + 5
4,8

2 2

+ ”H(-,O) + 2

2

_+ldoll; o + IRC,t) = R(, 0I5 5 + Iléllﬁ,ﬁ)

0,2
t
/ adr
0

+az4 (mlg,z’ﬁ +

2

+azs (llﬁllg,g,g

4,8

(4.137)
tellirrrll} o +a2r(al] , o + laoll} o + 1315 6)

+a2s Xo(Q) (1 + X3(2))Ys (D).
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leferentlatmg the third component of (4.44) twice with respect to 7, multiplying the
result by %2, J, and integrating over ) implies

24 / A3, [2Tdz +

- 2 . 2 _ )
(4138) < (614 + Cd)("uzz‘r'r" a + ||q.,z,..,|| A) + 615":“”1_”"0 a

+e(||fizrrr 2 4 +||qm||m)+a29(|ulm+uqau o 11312 5)
+asoxg(f2)(1 +X3(Q) Yo ().

BTV )8

nnTT "0,5")

Differentiating (4.46) three times with respect to 7, multiplying by ;
over 2, and using the boundary condition (4.47) we obtain

J, integrating

TTT

"ﬂzTTT" + qo'TTT"O Q

< (616 + Cd)(”ﬁzzzz"g’g + "‘fazzz"g,ﬁ)
(4.139)

+elldiviie, |12 ¢, + asa (1813 , o + 1915 o + 13113 o)
+a32 Xo(2)(1 + X3(2)) Yo ().
Moreover, from (4.46) we find

(4.140)
"ﬁ'nnr‘r"o o < (617 +cd) ("'”'zzzz"o at "qazzz" Q)
C("“rr-r-r”o o +ll(div U)rrr”o at ||¢7¢-r-rr||2 o)
+aga([al3 , o + doll3 o + 13113 o) + asaXo(2)(1 + X3(2)) Yo ().

To summarize, from (4.137)-(4.140) we obtain

1d o~ p+v - .
EEEA (nlunr‘rlz A\I’( )qgn‘r‘r) Jdz + "‘IUz-r‘r"g,Q + ”uzzTT”(z),Q
(4.141) S (618 + Cd)(”uzzzzllo,ﬁ + “qozzz"g’ﬂ) + 619"'&'1;1-71"3,‘5
+c"ﬁzr"“(2,,g + a35(|ﬁ|§,2,ﬂ + |If§a||§,ﬁ + ||§||§,Q
+a36Xo(Q)(1 + X2())Ys ().

Differentiating the third component of (4.42) with respect to n and 7, multiplying by
GdonnrJ, and integrating over Q yields

1d fp+v
5 EE A‘I’( )QUnn-rJdZ + HQGnn-r”o fe)

(4.142) < (620 + cd) (lzar 2 g + Gosar 2
+C"'&zz1'7'" + 037(|u|3 2.0 + |qo, 200 + ”g"
+aasX9(Q)(1 + X2()) Y ().
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Differentiating the third component of (4.94) with respect to n and 7 gives
(4.143)
I(div @)nnrllf o < (B21 + ed) (lEzzzzll} g + 10222115 )
+ c(||@zarrlly o + Gonnrly o) + aso (183 , o + doll3 o + 113113 o)
+ a4oX9(9)(1 + X3 () Yo ().
Next we differentiate (4.46) with respect to n and 7. Hence we get
(4.144)
lGnnnrlly o < (822 + cd)(|1azzllf g + NGozezly o)
+ c(lizzrrllf o + I(aiv @)anrlly g + doanrlly o)
an(lil? o+ 1ol o -+ 1912 0) + aa Xa(@)(1 + X3@) ().
From (4.141)—(4.144) we obtain

1d o3 19, MTV . 2 . 9
_2' —d—t- o (nlunr‘rl A\I’( )qozz‘r) Jdz + HUZZZT"(),Q + ”qa'zz‘r"o,fl
(4145) S (623 + Cd)(”'&zzzzllo’ﬁ + ||Q¢rzzz”2 *) + 624"ﬂnrrt"g’a
Velltzrrellf o + ass(18]] , o + 140115 o + 113115 &
+a1aXo(2)(1 + X3(2)) Yo ().

Differentiating the third component of (4.42) twice with respect to n, multiplying the
result by §ynnnJ, and integrating over € yields

1d fpu+tv ,
3 5 | ot Bomn e+ om0

(4.146) < (625 + cd) (Hisssel2  + ress 2 )
+c"azzz‘r” + a45(|“|3 20T 4o 2 2,1,0 + ”g"
+a46X9(Q)(1 + X3(€2)) Yo ().
Differentiating the third component of (4.94) twice with respect to n implies
(4.147)
(div @)nnnll} o < (626 + cd) (1Ezzzzll} g + Goz2z 5 o)
+ c(|Ezzar I3 o + IIqammll ) Taar((al , o + ldoll} o + 13113 6)
+ 0/48X9(Q)(1 + X3 () Yo (V).

We differentiate (4.46) twice with respect to n. Hence after integrating over Q) we
obtain

(4.148)
lnnnnlly g < (627 + cd) (lGzzzzlly g + Ndozzzlly o)
+ c(l@zzar I3 g + II(dlV @)annlly g + |Goznnlll o)
+asg ([l 5 o + o1} o + 115113 0) + as0Xa(D)(1 + X3 () Ya ().
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Finally, using that

1d (., L
(4_149) 2 dt/nuzzszz < 628("uzzzt" a + "uzzzzllo,ﬁ)

+ellall o +e(ldol3 | o + 18113 )I1E3 o
from (4.145)—(4.149), we obtain

1d . p+v - ~
§ Et- fl ("uzzz + Aq,( )quzz) sz + “uzzzz"g’ﬂ + "qazzz"g,ﬁ

(4150) < 529||ﬁzzzt" a + (630 + Cd)("ﬂzzzz"2 5+ "éazzz"g’ﬂ)

+ cllzrrr |2 + a51(|u|3 20T |d12 210t ||9||
+ a52X9(Q)(1 + X2($0))Ye(92).

From (4.136) and (4.150) it follows that

(4.151)

1d a2 u+v PE
2dt/;; (num+ av (@) Qo222 | Jd2
t
Z2 | a®Ph o
+2dt/ n- /u-r-r‘rs dt'n - /Ou‘r-r‘rsﬂdt ds

od 2 YA /
+5af, (10 7) G [[rmnatas
+"uzzzz”0,ﬁ + (jcrzzz"g,{)
~ t ~ 2
<3 ("uzzz'r"(z,’ﬁ + /(; udr + "H(’O) + _R;"isl + "R('at) - R('a 0)"3,51
4,

+(632 + Cd)("'azzzz"g,g + "‘jazzz"g,fz)
2

t
/ﬁdf
0 0,0

2

+|q¢,219

+as3 (lﬁlg,z,ﬁ +
+[|R(-,t) = R(-,0)[I3 51 + llélli,a)

t
/ adr
()

+lIR(-,t) — R(:, 0)"§+1/2,S1

+as5 Xo () (1 + X2()) Yo ().

2
_+IIR(t) = R(, 0)|I5 51

4,8
t 2
/ adr
0 3,8

Now we examine the second and the third terms in the left-hand side of (4.151).
Applying the same considerations as in the case of (4.69), (4.70), and (4.101) we find

2

t
/ adr
)}

+asa (nanz,@

4,8
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that both terms are equal to

t
2 % /g =8B, . /0 Tig, sga5sadTT - /0 Tlg, spagsn dtJd2!

t 2
/ ioyoyetgidr| Jdo!
0
. 2
— —— — 1 gt ,
+2dt/z( A /ou,,lsmdru((ﬂ( ,0) + ) ),M) Jdz

d 2\? ,
4adt/<H(-,0)+E) Jdz'.

18182

Going back to the variable £ in (4.151) and (4. 152), summing the result and (4.132)
over all neighborhoods of the partition of unity, using that 632 and d are sufficiently
small, and, finally, going back to the variables £ we obtain

(4.153)

od
+___

2dt /s
(4.152)

2
ds

od i t
429 _6aﬁ— /’Uslszsss"‘d'r'ﬁ'/ vswzsasﬁdeS
o 0
od
+_—
2 t :
od 1 .
A S L
. 2
/'vdT 2
0

2dtJs,2
t
5@ s, n /(; ’Uslszslszd’r
< 833 ("vmmt"?),m + Ry
2 2
+ass (|"|3,2,nt + llps 2,0, +

‘H( 0+ =

4,8 2,51

+IR(,¢) - R(~,0)I|3,sn)

2
+[|R(t) = R(,0)|I3 52 + IIf ||§,m)
2

O,Qt
t
/ vdTr
()}

'vd'r
()}
2

+ | R(-,t) — R(-,0)|13 5

t

/ vdT

0 4,5
2
3,st>

+ase (X9(+X3)Y9 + ””"g,m

4,5

t
/ vdTr
0

+HIR(,t) = R( 0)||341/2,51

d 2 \?
dt/ (H(-,O)'l"‘R—O)’ssds.

We have the estimates

+a57

+ 2
/ vdr < 634("”3::::1::::"(2),9, + ”paa:a:m“?),ﬂg)
0 4,5,
2 |12 bR
+ ass (”R(,t) - R(,O)"i sl + ”H(,O) + = + / vdT
’ Ro |z, 0 0,9
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(4.154)
+lol3 g, + upan%,n,)
t 2 t 2
+ asa(lolf,s, + pol ) | [ var (1+ [ var )
0 4,Qt 0 3,0
and
2 4
wss) |2 f (H(-,0)+1) ds| < bssllvlq, + || H(0) + =
dt S RO ,88 no RO 2,8

Using (4.154) and (4.155) in (4.153) implies (4.128) for sufficiently small §34 and 635.
This concludes the proof.

To estimate the first term in the right-hand side of (4.128) we need the following
result.

LEMMA 4.10. For a sufficiently smooth solution of the problem (4.la—) the
following inequality holds:

1d 2 ”’+V 2 o d/ op _ _
2dt Q (P’Ua:a:t"'p‘l’(p)pammt dx+2dt Stg Vg, 508> * Vs, 5,58 fids
2

+H|vezat "(2)19t + lPozxt "3,9,
2
#.)

(4.156)
< e ("'Ua:a::cm"g,gt + "vmxtt"g,ﬂt + \
+Po1([v13 1, + 1Pol3 1.0, + |F131.0,) + PeaX10(1 + XF,)Yi0,

where €19 € (0,1), the summation over repeated indices (c, 8 = 1,2) and coordinates
(z,8; = (s',82),i=1,2) is assumed, and

t
X1 =1vl320, +Po131.0, +/0 lvll3 . d7,
(4.157)

t
Yio=[v 5.0, + IPol310, + /0 ol 0, dr-

Proof. We also use the partition of unity. First we consider the interior subdo-
mains. Differentiating (4.27a) twice with respect to £ and once with respect to time,
multiplying by dis¢¢ A, and integrating over () yields

1d , 1,
2dt ./n ("u‘“ M) q"t“) Adt

+'l2£/:, (Vu*‘ﬁ{gg + Vi ﬂi€£)2Adf + (V - /")"Vu . ﬂt{ﬁ“g’fl
(4.158) a

< b (liecell?  + Noteel2 3) + an(fil2 o + o2, 5 + 1312, )

+a2X10() (1 + X%())Y10()),
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where

t
Xio@) =0l + 0o 0+ [ Nl ot

t
Vao®) =fuld g + 10013+ [ Tl gt

Moreover, the following considerations have been used:

~ - 1d 1
- [ dreeV - tuccde = 55 [ —sitieede + M,

’ /Q [(VuVuil) tee — VuVailgee] - Giree AdE

+\/§;[(qu;)¢§£ - Vudat{f] . ’atggAdf,

< Salliieell? &, + asX10(Q) (1 + X5 (€2)) Y20 (€2),
where
N1 < 83)losgelly & + aal@l} , o + asX10(2)(1 + XT5(2))Y10(D).
From (4.34) we obtain

(4.159)
l@ell3 & + ldoell; 6 < €llVa - @ell3 g
+ a6(|u|3,1,fz + |q°|§,1,ﬂ + |§|§,1,ﬂ)
+arX10(Q) (1 + X3 () Y10(€).

Now, by applying Lemma 5.1 from [35] for G = Q and v = Ugee from (4.158) and
(4.159) for sufficiently small §;, we have

R
22 (mide + —or—@uge ) Ade + )2 g + o2 4
(4.160) 2 dtJo \"T"%¢ T qu(m) Toree 1]} & + ldoel1?
<as(lulf, g +1gl5, 6 +1315,0) + a9 X10(€2)(1 + X2,(§2)Y10(E2).
Now we consider boundary subdomains. Differentiating (4.28a) with respect to ¢

and twice with respect to 7, multiplying by ¢,,J, integrating over 2, and applying
Lemma 5.1 from [35] for G = Q and v = @, gives

1d . .o 1 .2
5 dt \/;] [nutrr + (j\I’—(ﬁ)qatTT] Jdz + "utTT”LQ
0= WY D grrl2 g~ [ BTt - T
< 64("'&”11“2 ot ”ijo‘zrt”g Q)

+a10(|u|3 1 Q + |q¢7|2 1 Q + |g|2 1 Q)
+a11 X10(Q)(1 + X2 (2))Y10(9),

(4.161)
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where we have used the following relations:

. 1d 1
- dorr CUrrgJdz = —-— ~ Yorr Jd Na
/s;q,-tVut 2z 5 % nq\Il()q Jdz + Na

'/ﬂ[(v’ﬁ‘(ﬁv ija)),'r‘rt _ﬁT(ﬁfrt; qarrt)]'a‘r-rtsz
< O (aare 2 ¢ + onrel2 ) + ar2 (1812 | o + 14012, )

+a13X10(Q)(1 + X (Q))Ym(ﬂ)
and
N; < 56"60771”(2),(] + al4|'u|3 20T a15X10(Q)(1 + X3 () Y10(2).

Moreover, X10(Q), Y10(€2) are obtained from Xi10($), Y10(f2), replacing u, g, 2, by
i, 4o, {2, respectively.

In view of the boundary condition (4.28c) the boundary term in (4.161) can be
estimated in the following way:

. d
(4.162) — /(ﬁ']l‘(ﬂ, Go)) trr * UgrrJd2' = —-Za / 9°Piirrgn - iy rep - Jd2’ + N3,
s
where
t 2 2 |12
~ 2 ~ 2 ~
IN3| <& ("ut‘r‘rz”()’ﬁ + ”Uzzzz”o’ﬁ + /(; udr ifh + I.H( 70) + —1'2; O,Sl)

+aeldf} | o +a1rX1o(@)(1 + XFo())Y10(€2).

From (4.161) and (4.162) we obtain

(4.163)
1d .o 1 ~ od
§Zl_t Q [nu?""' + Q‘I’(ﬁ) qtzvt'r-r] Jdz + E'Ji g u'rrs"‘ Nlrrgp * -nJdz'

Hliere |13 g + (v = wl(diva) err 13 o

2
(”'U'trrz“ + ”Uzzzz" + "qgt-r'rlo 19} HH( 0) + =

2
..

+aig(|af] | o +1doly , o +1315, 0) + a10X10() (1 + X35(2)) Y10().

Differentiating the third component of (4.42) with respect to 7 and ¢, multiplying the
result by §yn-¢J, and integrating over Q implies

1d [p+v, . )
2 Eﬁ/ ¥ (n )qan‘rt‘]dz + ”‘Ianrt”()’ﬁ
(4164) < (69 + Cd)(”uzz‘ftnz 5t ”daz‘rt”g ﬂ)

+C“ﬂz‘r‘rt” + a20(lul3 1 Q + Iq0'|2 1 Q + |g|2 l,ﬁ)
+a21 X10 (Q)(l + X2 () Y10(S2).
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Dlﬁ'erentlatmg the third component of (A4 44) with respect to 7 and ¢, multiplying the
result by @3,,,,J, and integrating over ) gives

(4.165)

2
2dt/ | ‘nTt'

S 610"uzztt”§,()
+(510 + Cd)("ﬁzzzt”g O + "qcrzrt"g,ﬁ) + c("ﬂz‘r‘rt"g’fl + "qanrt"g,ﬁ)
+an(al} o +1doly; o +1317, 0) + a23 X10(Q)(1 + X35(£2))Y10(2).

Upnrt "gyﬂ

From the problem (4.46)—(4.48) we have

I n‘th"o at "qcr‘r-rt" < (612 +cd) (||Uzzzt|| + ||¢fozzt||g,g)
He([[@5nre I3 o + I|umt||0 a)
tana([2 o +1dol2, o + 1612, o)
+a25X10(Q) (1 + X2, (£2))Y10(92),

(4.166)

2

where prim denotes that only components u!,u? are taken into consideration. More-

over, from (4.46) we get

"unm-t" < c(||(diva), T‘rt" + "‘ja‘rrt"g,ﬁ)
+(813 + Cd)(||uzzzt||2 5t "‘jazzt"g,ﬁ)
+ags([al} , o + 14015, o +1315, o)
+ag7 X10(Q)(1 + X3()) Yio(£2).-

(4.167)

Summarizing, from (4.164)-(4.167) we obtain

1 d Al ~ ll/ + - .
—2- %\/1;2 (77|umt|2 A‘I’( )qa-nrt) Jdz + "unnrt“gyﬁ + "qu-,-t"g,{2
< buallially o + clliertll} o + (G15 + ed) sz} g + Mozl )
(4.168)
+a28(|u|3 1 Q + |q0' 2 1, Q + |g|2 1 Q)

+a20X10(2)(1 + X30(£2)) Y10().

Differentiating the third component of (4.42) with respect to ¢ and n, multiplying the
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result by §ynntJ, and integrating over Q yields

ld [pt+v .,
2 dt/Qq\Il( 7)Y GonntJdz

"‘b’nnt"o a=> C”uzzrt”
(4.169)

+ (616 + Cd)(”azzztug’ﬁ + ”@nzt"&ﬁ)

+ago(|8l | o +1dol2 | o